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Abstract. We model temperature and density profiles for a das the collision frequency and the optical depth, that clearly
lute planetary ring, based on the hydrodynamic balance egpassess their particular functional dependence on density and
tions for momentum and energy of granular flows. Within ouemperature due to the rings’ actual three-dimensional nature
approximation the ring consists of inelastic smooth spheres(8tewart et al., 1984). Therefore, a knowledge of the vertical
unique size and mass, while the fluxes of mass, momentum aingj structure is of principal interest.
energy are linear functions of the gradients of density, velocity Theories describing the ring dynamics usually incorporate
and temperature. The resulting system of coupled differentrabthods from kinetic theory, in order to derive balance laws
equations leads to temperature and density profiles, which fee mass, mean velocity and energy of the particle stream. In
compare to the results of a triaxial kinetic approach to the dijre literature the non-isotropic nature of a ring system is taken
namics of a planetary ring. We find that both approaches agie® account by using a triaxial Gaussian velocity distribu-
fairly well in the elastic limit. Further, we carry out event drivertion (Goldreich & Tremaine, 1978; Araki & Tremaine, 1986;
N-particle simulations of a ring, subject to the conditions of thkraki, 1988 Araki, 19911). Within this framework the descrip-
theoretical model. The simulated profiles are then compareditm of the non-equilibrium state of the system is of zeroth order,
the theoretical ones: for the density a good agreement is foundhe sense of a systematic expansion of the distribution func-
for both theoretical approaches, but the simulated temperattiom in orders of the gradients of density, mean velocity and
profiles increase monotonically with vertical distance wheretemperature. In the same theoretical context Simon & Jenkins
the theoretical profiles always have a turnover at some dista(t894) studied the vertical components of the balance laws for
from the mid plane. This disagreement is likely to be connectathss, momentum, and energy, and obtained numerical solutions
to the vertical dependence of the velocity ellipsoid, which is nédr the temperature and density, depending on the height above
taken into account in the theoretical treatments. the midplane of the planetary ring.
In this study, we follow the usual hydrodynamic approach to

Key words: hydrodynamics — methods: N-body simulations granular kinetics and compare the results to those of Simon and
planets and satellites: general Jenkins, i.e. we employ an isotropic Gaussian phase space distri-
bution plus first order corrections to give a consistent description
of the non-equilibrium fluxes of mass, momentum, and energy.
The particles are identical smooth spheres (i.e. rotational de-
grees of freedom are neglected) that collide inelastically, where
In the past, theoretical investigations as well as simulationsth energy dissipation is described in terms of a constant normal
planetary rings have mainly concentrated on the disk’s horizarsefficient of restitution. We make use of constitutive relations
tal features, e.g. gaps, wakes or resonances, (see for instafe#red by Jenkins & Richmah(1985), where kinetic theory has
Showalter et al. (1986) and references therein). In the majorifgen systematically extended to include the dissipative nature
of the applications the ring was treated as a two-dimensionilthe interparticle collisions in granular matter (see also Lun et
object, an approximation that is justified for many purposesl, 1984). In the present work, we employ their results in order
considering for example the thickness of Saturn’s ring systedescribe the ring as a (three-dimensional) granular flow under
(~ 10m—100m) of only a few typical particle diameters com-the influence of the gravity of the central planet.
pared to its horizontal extensior (108m). On the other hand Under the same conditions we then make simulations of a
there are dynamical properties of the particle ensemble, sythnetary ring, varying the optical depth and the coefficient of
; . restitution. We use an event driven code to simulate N particles
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1. Introduction
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namic and the triaxial kinetic approach to the dynamics of thteree is the constant coefficient of restitutiog), andd are the
ensemble of inelastic ring particles. particle’s bulk density and diameter, respectively, ard o/ o,

The paper is organized as follows: In Sect. 2 the balanisgthe filling factor. We neglect corrections to the transport coef-
equations for mass, momentum, and energy are given, derifietents and the equation of state (Chapman & Cowling, 1970;
by using an isotropic Gaussian distribution function, togeth@anahan & Starling, 1969) due to the finite particle volume,
with the constitutive relations. We then solve the vertical compkeeping in mind that they become important in the denser re-
nents of the balance laws numerically. Furthermore, we resobyiens of a planetary ring (Araki & Tremaine, 1986).
the corresponding balance equations of the triaxial approach In order to apply Eq[{1) to the particle flow in a planetary
of Simon & Jenkins[{1994) and discuss the differences to thiag, we choose cylindrical coordinatés ¢, z), wherez = Qs
solutions of the hydrodynamic approach. In Sect. 3 we presém midplane of the ring. The external forEeis the gravitation
the simulations and the comparison to theoretical expressioofsthe planet

Finally, in Sect.4 we summarize our results and discuss the GM ) )
solutions. F= V\/ﬁ = —O0%(err +ex2) + O{(z/r)"} (6)
2. Balance laws with the Kepler frequency) = /GM/r3. In the following
_ we neglect orders aofz/r)?, sincer is about10®m, while we
2.1. Hydrodynamic approach are interested in a vertical extension of less than a hundred me-

The dynamics of granular matter are theoretically described!f{S- Furthermore, for a stationary ring we have= 7{le,,
terms of kinetic theory, based upon a kinetic equation of BoltZ:{¢ 4, T} = 0 andV - u = 0. We want to obtain the ver-
mann or Enskog type. By computing the first three momentsiial profiles of density and temperature, thus we evaluate the

this kinetic equation, the balance laws of mass, momentum, an°mponents of the balance lais (1) subject to the latter con-
energy for a dilute system of inelastic smooth spheres read ditions. Together with the constitutive relatiob$ (2) dnd (3) and
the transport coefficientg](5) we find

(WT) +29% =0
a(e) [T/\/T}/ +b(e) VT — %Vz\/ﬁ =0 (7

for the balance of momentum and energy, while the continuity

Here o and u are the density and the mean velocity of th A . . . o
fing material andF is the external force exerted on the part_aquatlon is trivially fulfilled. A prime denotes differentiation

ticles. T = (1/3)((v — w)2) is the granular temperatureWith respect.tOz.. In the second equ'a'Fion the first tgrm stands
(m == 1,kp = 1) andq = (1/2)0((v — w)(v — u)2) i for the contribution of heat con_ductl\_/lty to the v_ert|cal energy

: balance, the second one describes viscous heating, and the third
he collisional cooling. The functions b andc stand for their

espective dependences on the coefficient of restitution, given

(at +uava)9 = _Qvaua
Q(at + uava)uﬁ - QFﬁ - Vapaﬂ (1)

3
ig(at + “ozvoz)T = - aﬁvauﬁ —Vaqa —1I'.

the heat flux, defined in terms of the velocity fluctuatioRsis
the pressure tensor, ardis the steady dissipation of energ)}
due to inelastic interparticle collisions. We relate the therm
dynamic fluxes of maso{), momentum P), and energyd)

to their respective thermodynamic forc&8 4, Vu, VT) via a 0 — 1
linear ansatz, i.e. (14 €)(49 — 33¢)
Pog =pdap —2nDap — (V0,003 2 p= 3 3
: o 01+ 0G0 ®
and
48 1 9
qa:_HVQT- (3) €= 25771'( € )

The shear and bulk viscosity and the heat conductivity are déhe calculation of the transport coefficients (5) is restricted
noted by, ¢ andx respectively, and) is the shear tensor.  to the nearly elastic case and further it is based on the as-
1 9 sumption of small gradients of temperature, density, and ve-
Dusg = i(vauﬁ + Vgua — g%ﬁVWA) - (4) locity. So, for instance, the functional dependence of the vis-
cosity in [B) on the temperature and in particular its inde-

For the transport coefficienksandn, as well as for the cool- endence of the density are valid only if the systems densit
ing I we employ the expressions derived byJenkins&Richmgn y y y y

- . ) .. _.and temperature can be considered as being constant over dis-
(1985) for granular gases in the dilute and nearly elastic I|m|fl .
ances larger than the mean free path of the particles. Fur-

7 = 5 Vropd VT thermore, since any ring particle moves on a Keplerian or-
24 (1+¢€¢)(3—¢) bit in between two collisions, its free path is essentially re-
25 Vo, d stricted by its epicyclic motiorj (Goldreich & Tremaine, 1978;

k=7 (1 + ¢)(49 — 33¢) vT ) [Stewartetal, 1984). Strictly speaking, the collision time of the

hydrodynamic system

1—e)? »
I = 12(\/%@\/@. te = \/7d/(24VTv) 9
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(see Chapman & Cowling 1970) should be significantly smallef c(;) o (e‘)
than the characteristic time scale of Keplerian motjon 7 /12, {
i.e. o9

Qd 0.6 J 0.6 lotﬁ’(e\)\ 7
T < 24T (10) |

10%b(e) y
Assuming for the moment a Gaussian density prafile= ©4[~--._ - 7 041
vy exp{—(z/H)*} with a typical scale height/ and aconstant | -~ I P
(i.e.z-independent) temperatufg (see Stewart et al. 1984), weo.2 1 0.2 Nf)‘ - .
find 2 < 2H, for Ty ~ 107*m?/s?, 1y ~ 1072, Q ~ 104571, T e\
s s s 0.0 10xa(g) | . | s s

andd ~ 1m. This means that the validity df](5) is restricted t6-0 !
the region near the midplane of the ring. We have to be awar&® °% °* _°¢ 08 10 00 02 04 06 08 10
of this fact when applying {7) to the ring system, where the

density evidently decreases quickly out of the equatorial p|aIJI:é%, ¢, anda, . ~ stand for the dependence oof the heat conduc-

Fur-ther, since the 'mpac,t frequgncy scales prqportmna! to tﬁb% heating, and collisional cooling, respectively. The functids a
Op_t'cal depthr, we expect mequalltﬂ_JO) tobevalidupto h'ghaneasure for the restitution dependence of the temperature anisotropy.
latitudes for the case of a larger optical depth (All shown quantities are normalized by the maximum values of

v, respectively.)

. 1. Restitution dependence of the coefficients in Eh. (7) (112).

2.2. Comparison between hydrodynamic and triaxial kinetic
approach havel = vt and thus) = vv°t.. For inelastic particles we then
obtain the formulal{5), since ~ /T, and the density depen-

!Pr et:qzi:]?lev;%r)kt:fri;he dmr?a)l(rlr?ilcspgirr%%%h &Oggilidnrse'(c]gg& ence cancels. For low optical depths and for higher latitudes
) g dy ' ==~ Towever, we should sét= vty since the mean free path is re-

investigated the vertical structure of a planetary ring. They cal-. L X )
culated the restitution dependence of the second moment of} ficted by the epicyclic motion. Then the density dependence

; . - e heating term is retained and we find- Tv. In detail
velocity fluctuations approximatively and formulated the ba] his modified viscosity;* reads
ance laws in terms of an anisotropic Gaussian velocity distri-
bution. Under the assumption ofzaindependentelocity el- Nt = 5 "%
lipsoid the vertical components of these balance laws lead to Q1+e)(3—¢)
two coupled differential equations for density and temperatuge will apply this modification in Sect. 3 and discuss its im-
(T'=1/3Tr{T,sp}) that are the triaxial analogue of EQL (7):  provement to the hydrodynamic balance laws, when we com-

, 9 pare the theoretical and simulated stratification.
/ W) + A2 = 0 Comparing the coefficients b, ¢ with «, 3, - that describe
ale) [T’\/T] 4 BE op, 29 2 s _ the ¢ dependence of the heat flux, heating, and cooling contri-
d d? bution to the energy balance, respectively (see[fFig. 1), we find

vT. (13)

(11)

with rough qualitative and quantitative agreement for the cooling in
) - the triaxial and the hydrodynamic system. In both cases the
a = -z -9l —7(1—¢)] cooling vanishes, when the coefficient of restitution approaches
(1+€) {49 — 33e + 5755 (5e — 54)(237¢ — 461) } unity. However, we observe different properties for the heating:
1 1_« in the hydrodynamic approach we see a finite heating contribu-
8 = 9_56\/1257T (225€2 + 4415¢ — 2876) (12) tion for all values of the restitution due to the granular viscosity,
48 (e — 1)(195¢ — 979) monotonically increasing adecreases. On the other hand, the
yo= (14 S ¢ )(1— €?) heating contribution to the triaxial heat balance equation is a
d 25m 6272 consequence of the temperature anisotropy, which in turn stems
an 7 from the inelasticity of the interparticle collisions. Thus, the
A= 715 heating term becomes zero for elastic partictes:-(1), where
€

the temperature is isotropic. In this case, since the distribution

We observe a different temperature and density dependencéuattion is purely Gaussian, the heat balance equation cannot
the heating term~ T'v) in comparison to EqC{7)~ /7). In
the hydrodynamic description the heating is a consequenceapproaches zero, corresponds inkintegrated triaxial kinetic
the granular viscosity, which is a material property of the ringpproach to ring dynamics to a vanishing optical depttius,
particles. As already argued, the mean free path of a particlénghis limit, heating is getting more and more inefficient.

restricted by the epicyclic motion. if denotes the most proba-

contain a heating term. The critical valae~ 0.635, whereg

We observe an additional restitution dependei¢e of

ble velocity of the particle antlis its mean free path, we havethe momentum balance equation (first relation in Ed. (11)),
n ~ vol. As long as the collision time, (Eq. (9)) is substan- which is related to the temperature anisotrdpy, < T
tially smaller than the characteristic orbital timle= 7/Q we (Simon & Jenkins, 1994).
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Temperature Density

the heating is proportional to the density, it gets quite ineffective
for largez. Thus, the system has to build up comparatively high
08l —0ss | temperaturesinorder to establish energy balance. In contrast the
| hydrodynamic viscous heating, independent of the density, in-
S 06| <o | creases with temperature as z increases. This implies, that lower
temperatures are needed in order to achieve energy balance. Fi-
oaf W\ «<oes 1 nally, the temperature reaches a maximum value and then de-
AR creases. This difference in the temperature profiles is dominant
ozl '\ 1 however only at latitudes where the density is essentially zero.

\ In order to establish a connection to the formalism of Gol-
0.0 b ‘ dreich & Tremaine (1978) we integrate the energy balance equa-
R oo 0 0 %% tionsin Eq.[[7) and(d1) over. The additional requirement, that

) ) ] ) . thez-integrated heat flow should vanish then leads to the for-
Fig. 2. Temperature and density profiles from the numerical solution ulae

the linear hydrodynami€{7) and the triaxial kinetic balance equations

15

T T vl 1.0 T T T -
000150 s hydrodynamics |
m - triax. Kintetics

v(z)/v(

(@I1) for different values of the coefficient of restitution. @ [ 0d r - fooo & D2ﬁ3 "
(e VT [Z =T
We_note that for a zero order distribution function, Iik_e o Od fooo dz Dz\/f?’
the anisotropic Gaussian, all odd moments of the velocity = =) (15)
fluctuation (v, — u,) vanish. Consequently, the heat flux ( (€ vovTo Jo dzT7
(va —uq)(v —u) - (v —w))isa priori zero (Zhang, 1993). Si- 50 tively, where the definitiong = vivg and T =

mon & Jenkins[(1994) provided a heat conduction contributi
to their energy balance equation, by incorporating a form of t
heat flux calculated by Zhang (1993), which was derived usirg
higher order corrections to the anisotropic Gaussian.

T, are used. By these equations the parameter combina-
ns Q,d, vy, Ty that correspond to solutions with vanishing
9lntegrated heat flux are determined, depending on the resti-

tution (Simon & Jenkins, 1994). For instance, we car{¥j,
andT, and obtain an appropriaté by iterating Eq.[(T¥[T5).
2.3. Numerical Solution This in turn leads via

Next, we solve Eqs[{7) and{11) numerically, employing a vari-__ 3 /oo dz v (16)
0

able step size fourth order Runge Kutta method. Since the (ﬁf-: d
ferential equations are first order inand second order iff,

S . to relations between optical depth and restitution. The triax-
the appropriate initial conditions are

ial e-7 relation reproduces well the simplified formula]18) of
TO)=Ty v(0)=wvy T'(0)=0 Goldreich and Tremaine,and both agree with the hydrodynamic
relation in the elastic limit (Fid.13). The deviations of the hy-

where the last relation is due to the requirenigft) = T'(—z). drodynamic curve are a consequence of the restriction of the
If we choose as parameter valu@s = 1.5 - 10~*s™!, validity of the granular transport coefficients to the nearly elas-

To = 10=*m?/s?, 1y = 0.01, andd = 1m, which are close tic case.

to the probable values of Saturn’s A ring, we obtain fairly simi-

lar temperature and density profiles for both approaches. Thgs%imulations

are plotted for different values of the restitution in fijy. 2. The’

density profiles are strongly peakedzat 0, decaying quickly Inthis Section, we compare the theoretical profiles from the nu-

for increasing height over the midplane of the ring, while themerical solution of Eq[{7.11) to the results of 3-D event driven

temperature shows a minimum in the midplane. Furthermoid;body simulations, using the code described in (Salo, 1992).

the profiles get narrower when the interparticle collisions aBepending on the simulation parameters, we simulate about

more dissipative, i.e. the ring becomes thinner. 500 to 4000 identical particles in a box with periodic bound-
In spite of the differences of the balance laws that we hagey conditions. The particles have a diameter/ct 2m, and

pointed out above, both approaches yield similar results. Neitllee simulation box is located at a distancerof= 108m of

the different functional dependence on temperature and density central planet with = 1.95 - 10~4s~!, corresponding to

of the viscous heating term, nor the different restitution depetypical values of the optical thick rings of Saturn. Initially, the

dence ob or 3, respectively, nor the additional paramel¢¢) particles are randomly placed in the box having Keplerian ve-

in Eq. (I1), alter the vertical stratification near the midplane ticitiesu = r{le, and a superimposed random velocity that

the ring considerably. Far off the ring plane however, where therresponds to an initial temperature. In a collision the particles

density approaches rapidly zero, we observe a different behoese energy determined by the coefficient of restitution, while

ior of the temperature profiles. The temperature of the triaxial between two collisions they move on Keplerian trajectories,

kinetic approach finally shows a linear dependence on z. Siraording to the equations of motion
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1 0 50 100 150 200 250 300
[ b Orbital Periods
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0 2 4 6 8 Fig. 4. Development of the scalar velocity dispersion in simulations
Optical Depth 7 plotted against the number of orbital periods for various values of the

. . ._coefficient of restitution. The optical depth is fixed (here- 0.4) and
Fig. 3.e—7relations from Eq[{I4) anA{lL5) compared to the Goldrelctﬁe restitution is varied.

Tremaine formula Eq[{18). The diamonds are the values taken from
the simulations with a mean velocity dispersion of28. The actual

critical ¢ values corresponding to an infinite calculation box exteiy finding critical e-~ pairs would vary in a spurious way with

would be slightly larger (about 0.01 at most). different 7, and the so obtained vertical profiles would corre-
spond to different temperatures, making their direct comparison
-2y =0 difficult. For these reasons we chose the strategy to search for
i+ 204 — 302y = 0 (17) € pairs which yield a fixed temperature, corresponding to a
502 — 0 velocity dispersion of about 28d. This rather high temperature

assures that the influence of non-local heating, an effect that is
wherez andy are the azimuthal and radial coordinates in theot considered in the theoretical formulas, is small and mostim-
co-rotating box, withe, y, z < r. In order to obtain results com- portantly, stays on a fixed level for all the studied optical depths
parable to the theoretical investigations of Sect. 2 we carry autlt also assures that the profiles we obtain are not affected by
the simulations for a constant restitution, and neglect rotatiorthé size of the calculation region (i.e. by the number of particles).

degrees of freedom of the particles. The values of we obtain forr = 0.1,0.4,1.0,2.0, 3.0,4.0, and
According to the simplifiec-7 formula of Goldreich & 5.0are0.645,0.702,0.820,0.9125,0.947,0.964,and0.973, re-

Tremaine|(1978) for dilute ring systems spectively. These-r pairs fit well with the theoretical relations

(1 _ 52) (1 n 72) ~ 06 (18) given in the previous Section (see Kify. 3). In this way we get re-

sults that can be compared to the particular solutions ofEq. (7,
for a given value of the constant restitution, equilibrium exisfEll) that fulfill the additional requiremenfs {14) br{15), respec-
only for one particular value of the optical depth. Practicallyively. The difference as compared to an critieahat corre-
in the simulations we fix the optical depth via box size, partickponded to an infinite calculation region can be expected to be
diameter and particle number. Then we adjust the coefficientfairly small: For example, for = 1.0 additional simulations
restitution so that a finally constant temperature evolves.  showed that = 0.830 is definitely unstable. A choice of these

If we take for a givenr an e that is too high, the simu- runs is shown in Fid.]5.
lated system is unstable since it constantly heats up (sd€ Fig. 4) We obtain the vertical stratification in the simulation box,
If € is too low the system cools down monotonically, until aby dividing it into layers parallel to the midplane, and then
equilibrium is reached that is established by nonlocal transpdgtermining the particle number and velocity ellipsoid within
processes, which are not considered in this paper. each layer. The shown scalar temperature is defin€fl &s

In principle, we could vary the coefficient of restitution ins Tr((v, — ua ) (vg — ug)), and the equilibrium velocity disper-
simulations and try to find-7 pairs that are as close as possiion we observe is anisotropic (see Elg. 6).
ble to the limit of stability. However, this poses some practical For nearly elastic collisionse(> 0.8), we find for both
difficulties. Firstly, as we approach very close to the critical theoretical ansatzes good agreement with the simulated density
the equilibrium temperature rises strongly, and at some point efiles, while the agreement of the temperature profiles is not
validity of the local simulation method becomes questionablelad, at least near the ring plane. When the collisions get more
the implied mean free path between impacts becomes compamnalastic ¢ < 0.7), the hydrodynamic equations overestimate
ble to the extent of the calculation region. Secondly, our succéiss ring thickness and finally fail to produce even qualitatively
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z [m] z [m]
L2 af; ‘ is invalid, we obtain density profiles that are in good agree-
Lop @/&\yfméﬁed ] . j .1 ment with the simulations for all values of the restitution we
H viscosit . . . . . . .
s °~5’ei%.1%2 IR " s o ; . ¢ | Investigated. In the inelastic case the kinetic balance laws lead
LT e \ S Co, .o to a slightly thinner ring as the simulations but the agreement
0.4r / S 1 - - —-—— o~ E .
¢ A #G\ - remains good.
02r : Bl : ) )
0.0 o S 0 : Both ansatzes fail to model the simulated temperature pro-
S0 mse E’m] 50 100 1o e [Om] 50 100 filesin the deeply inelastic case. The theoretical vertical energy
balance is achieved for too low temperatures. The reason for
12 ‘ ‘ ‘ 3 ‘ ‘ : this might be in both cases an overestimation of viscous heat-
_ _triaxial .__hydrodynamic : . . . . . .
1ot Mﬂoﬁified ] o j ing. In the hydrodynamic description this is a consequence of
F viscosit) H . . . . .
o ’i%.%5 JEEIA 7 s? 0, : K % the rgstrlcnon 01_‘ the V|_sc03|ty (as given by_E{B. (_5))_to the nearly
Lo o S Co i g0 elastic case. This implies that for lowethe viscosity in[(7) may
Ez $ A S N have to be corrected to smaller values. The triaxial balance law,
S . A\ 1 H . . .
00 o S 0 onthe other hand, is based on the assumptionéhdependent
-100 -50 E) ] 50 100 -100 50 E) : 50 100 temperature anisotropy Simon & Jenkins (1994). However, in
z |m z | m

the simulations we find that for largethe radial component of
Fig. 5. Density and Temperature profiles from simulations (diamondgje velocity dispersion becomes more and more dominant, see
for several values of the coefficient of restitutioand optical depth. Fig[8. Thus, in contrast to the simulations the theoretical heating

Theoretical solutions of the hydrodynamic (solid;> 0) and triaxial - contribution 7 to the triaxial energy balance is overestimated
(dashedz < 0) equations are overplotted. Also shown is a squtioBy this assumption

of the hydrodynamic equations with a modification of viscosity (dash-
dottedz > 0), as given by Eq[(13). For these curves the marks on the
positive z-axis of the right-hand side frames denote the points whéeDiscussion

Eqg. (I3) has actually been applied and where inequBlily (10) gets false . R
respectively. For — 5.0 and4.0 the density profile of the modified " the present work we study the vertical stratification of a plan-

hydrodynamic treatment is indistinguishable from the hydrodynanfi¢ary ring in the framework of a hydrodynamic description of
one. the granular particle ensemble that constitutes the ring. As a
consequence of the balance between energy input, driven by
the planet’s gravity and the cooling due to inelastic collisions, a
correct results. Here, the transport coefficients cease to givelanetary ring is characterized by a non-uniform distribution of
satisfactory description of the transport processes in the ritige stationary temperature and density profile. In our approach
However, if we replace in({7) the viscosityby n* given by we assume that this system can be described locally in terms
Eq. ([33), in the outer layers of the ring where conditibnl (1®f an isotropic Gaussian phase space distribution plus correc-
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tions that are linear in the thermodynamic forces, i.e. the spatiiSect. 3, the velocity independent restitution does not lead to

derivatives of density, mean velocity, and temperature, that @acmodel of a planetary ring that has a stable equilibrium state.

count for the non-equilibrium state of the system. This treatmeTtis drawback is removed when the coefficient of restitution

allows a consistent description of the fluxes of mass, momérecomes a monotonically decreasing function of the impact ve-

tum and energy in terms of transport coefficients that are relatedity. The corresponding extensions of the kinetic theory of

linearly to the corresponding thermodynamic forces. We invegranular matter, in particular the calculation of the necessary

tigate the vertical components of the associated hydrodynaroierections to the distribution function and the transport coeffi-

balance laws and solve them numerically. cients, are subject of our ongoing and future work.
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the derivation of the triaxial balance equations Simon & Jenkiforgado, W. A. M., Oppenheim, I., 1997, Phys. Rev. E 55, 1940
(1992) for reasons of simplicity. Our findings however point &ao, Y., 1955, J. Appl. Mech. 26, 1083
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in general the restitution is a function of the imzZhang, C., 1993, Ph.D. thesis, Cornell University

pact velocity. As pointed out in the considerations
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