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Abstract. We have studied the coexistence of several modes
with different pattern speeds in barred galaxies, by a simulation
survey exploring a wide range of initial conditions. The high
resolution two-dimensional experiments cover the dynamical
evolution for about one Hubble time. A remarkable feature of
these simulations is that in many cases the spiral structure is
clearly visible in the stellar component for several gigayears
and weakens so slowly that it can take more than 10 gigayears
to become indiscernable even in the direct density plots.

We confirm Sellwood and Sparke’s (1988) results that the
pattern speed of the spiral arms may differ from that of the
bar. However, we find several different variations. There are
systems where the bar and the spiral structure are clearly coro-
tating, whereas in others they have different pattern speeds but
are probably connected by a non-linear mode coupling as was
suggested by Tagger et al. (1987). We have also found models
with separate pattern speeds, but without evident mode cou-
pling. Several simultaneous spiral modes can also coexist in the
disk, even overlapping in radius. Sometimes the systems have
separate inner and outer spirals, the inner corotating with the
bar and the outer having a lower pattern speed.

We conclude that similar variation can exist in real
galaxies. Some morphological features, like distinct spiral
structures with large size differences, can be best explained by
separate coexisting patterns. However, there are cases where
most of the disk is dominated by one mode. For example,
galaxies with well developed outer rings are probably genuine
examples of corotating features. It is also possible that in
the presence of two or more modes, the appearance of the
spiral structure changes considerably in a time scale of about
one gigayear while the Hubble type of the galaxy stays the same.
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1. Introduction

The connection between bar and spiral arms has been a subject
of debate. In principle, three different scenarios are possible:
corotating bar and spiral arms, independent bar and spiral arms
possessing different pattern speeds, and also a case where the
pattern speeds are different, but the features are still connected
by non-linear mode coupling.

There is intuitive evidence for corotating bar and two-armed
spiral structures: the spiral arms usually start from the ends of the
bar. The intimate bar – spiral connection is also supported by the
observations that the fraction of grand design spirals is higher in
early type barred galaxies as compared to non-barred ones, and
that the size of the two armed spiral in galaxies correlates with
the size of the bar (Elmegreen & Elmegreen 1989, 1995). Also
the shapes of the outer ring structures fit well with the shapes
of periodic orbits near the outer Lindblad resonance (OLR) in
barred potentials (Buta & Crocker 1991; Buta 1995). Indeed, in
early gas dynamical simulations, where analytical bar potential
was used (e.g. Sanders & Huntley 1976), a two armed response
to this perturbation, a bar driven spiral, was formed. General gas
dynamical simulations can also reproduce outer rings (Schwarz
1981; Combes & Gerin 1985; Byrd et al. 1994). However, these
simulations neglect several effects, e.g. self gravitation, so that
the assumed bar properties (the pattern speedΩb, the amplitude
Ab) are not necessarily consistent with the rotation curve.

Usually when individual barred galaxies have been mod-
elled by gas dynamical simulations (with the pattern speed of
the bar as an unknown parameter to be deduced), corotation of
patterns has been assumed. Although in some cases the spiral
response to imposed bar or bar+oval potential, which has been
deduced from the observations, has not corresponded with the
observations (e.g. Hunter et al. 1988), models which include
also the corotating spiral potential have produced an acceptable
fit (Lindblad & Kristen 1996; Lindblad et al. 1996; Salo et al.
1999).

On the other hand, if the scheme of bar-driven spiral struc-
ture is accepted, it is hard to explain why there are multi-armed
barred galaxies, even some where multi-arm structure starts near
the ends of the bar. Also flocculent barred galaxies exist (Buta
1995). Sometimes the spiral arms do not start from the ends of
the bar but exhibit a clear phase difference. Moreover the ab-
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sence of rings in many barred galaxies requires an explanation
(Sellwood & Wilkinson 1993).

The second possibility, that bars and spiral arms can be inde-
pendent features, was demonstrated by the simulations of Sell-
wood & Sparke (1988, note also that Sellwood 1985 shows a
case with different pattern speeds). Their power spectrum of
the Fourierm = 2 component of the disk surface density shows
different patterns speeds for the bar and the spiral arms. They
also showed that while the spiral rotates with a lower pattern
speed, in most times it still can appear to be connected to the
bar.

Although Sellwood and Sparke considered separate pattern
speeds being evidence against the dominance of bar-driven spi-
ral structure, an alternative has been suggested: a non-linear
mode coupling (Tagger et al. 1987; Sygnet et al. 1988). In this
scenario the corotation (CR) of the inner mode (bar) and the
inner Lindblad resonance (ILR) of the outer mode (spiral) over-
lap in radius, which results in a transfer of energy and angular
momentum between the modes. Masset & Tagger (1997) pre-
sented a simulation that seems to confirm this: clear signs of
mode coupling between a bar and a spiral (predicted resonance
overlapping, strong beat waves) were present, whereas in a sim-
ulation where the bar formation was prevented by a high central
mass concentration, also the outer mode more or less disap-
peared. They propose that mode coupling is a general situation
in barred galaxies, a suggestion that we are going to re-examine
critically.

Elmegreen et al. (1992a) found that the spiral structure of
many galaxies has a prominentm = 3 component. Based on
their resonance radii determinations, Elmegreen et al. proposed
that thism = 3 component is a beat mode formed by the nor-
mal m = 2 component andm = 1 component (asymmetry of
the two-armed spiral), all having the same pattern speed. They
further suggested that this process could produce multi-armed
spirals.

In addition to the main bar component, many nuclear bars
have been observed (see e.g. Buta & Crocker 1993; Wozniak et
al. 1995; Friedli et al. 1996). Friedli & Martinet (1993) showed
that at least some of these small scale bars have higher pattern
speed than the main bar.

In the current study we have made a large series (about 100
models) of two dimensional N-body simulations, with a wide
range of parameters, to address the connection of bar and spiral
arms. Our simulations cover the evolution of about one Hub-
ble time. We have used the amplitude spectrum to measure the
pattern speeds of the modes and the beat modes, in order to
identify possible resonance overlappings. We have also recon-
structed the spatial shapes of the individual modes in some of
our models, using Fourier decompositions of the surface density
from different time steps. Applying this method clearly shows
that the modes are either bars/ovals or spirals.

In Sect. 2 we describe the simulation code and summarise
the main components of our models. In Sect. 3 we present in
detail few models which will highlight the different situations
seen in our simulations. We will also shortly present some pa-

rameter dependencies we have observed. The discussion and
conclusions are presented in the last two sections.

2. Methods

The simulation program uses a two dimensional logarithmic
polar grid to calculate the potential. The standard grid geometry
has 144 radial and 108 azimuthal cells, whereas some tests were
done with both higher and lower resolutions. For comparison
we have repeated some simulations with a cartesian potential
grid.

The motion of particles is integrated with a time-centered
leap frog. The 15 Gyrs simulations are made by using 60 000
time steps. This corresponds to about 150 time steps per rotation
period at the distance of one disk scale length while the mini-
mum number of steps per rotation period (very near the center)
is about 40. The relative change in total angular momentum dur-
ing whole simulation is always less than5 × 10−5 and the total
energy is conserved within few percents. Besides stars there is
a component of dissipatively colliding test particles, typically
30 000, that we use to model the behaviour of the gas. For more
details on the code, see Salo (1991).

Our mass models consist of three main components: self
gravitating disk, analytical bulge, and analytical halo. The disk
surface density profile follows an exponential law:

Σ(r) = Σce
−r/rd , (1)

whereΣc is the central surface density,r the distance from the
center andrd the scale length, equal to 3 kpc. We have also made
simulations using Toomre disks for comparison and the overall
results were essentially similar. The initial extent of the disk is
usually 9 scale lengths or 27 kpc, except for some tests with
truncation at a smaller distance. Most of the simulations were
done with N = 200 000 particles and the most important ones
were also ran with 500 000 particles. To further check the effect
of the particle number, one mass model was tested by several
experiments with N between 32 000 and 1.25 million particles.

Several different values of the initial Toomre’sQT- param-
eter, between 1 and 2, are used, the standard being 1.5. In some
models the Toomre parameter was not constant throughout the
disk but had a radial dependence:

Q(r) = Qd + (Qc − Qd) e−(r/rq)2 , (2)

whereQd is the value in the outer disk,Qc the central value
andrq defines the radius inside which the transition takes place
smoothly. A very similar profile was used by Bertin et al. (1989)
in their study of global spiral structures using the modal ap-
proach.

The gravitational softeningε is usually 375 pc or1/8 of the
disk scale length. Values1/16 and1/4 scale length were also
used to test the effect of this parameter. In order to suppress
possible two-body relaxation effets (see White 1988) we have
not used shorter softening lengths, even though this would be
tempting when modelling the nuclear region. Another reason
is that in two-dimensional simulations the softening parameter
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Models I & IV
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Model II
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Model III
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Model V

0 5 10 15 20 25 30
R [kpc]

0

50

100

150

200

250

C
IR

C
U

LA
R

 V
E

LO
C

IT
Y

 [k
m

s-1
]

Fig. 1. The initial rotation curves of
models I-V, shown by solid curves.
Dotted, dashed and dash dotted lines
distinguish the contributions from
the disk, bulge and halo, respec-
tively.

acts also as a thickness correction (Sellwood 1987) and sim-
ulations with very small softening would thus correspond to
unrealistically thin disk.

The bulge components are modelled as analytical Plummer
spheres, with a circular velocity curve:

vb(r) =

√
GMbr2

(r2 + r2
b)3/2 , (3)

whereG is the gravitation constant,Mb the mass andrb the
scale length of the bulge. In few models we used bulges which
were composed of two Plummer spheres with different scale
lengths.

For the halo, when present, we use an isothermal sphere with
a smooth transition to constant core density. This has a rotation
curve:

vh(r) = v∞

√
r2

(r2 + r2
c )

, (4)

wherev∞ is the asymptotic velocity in the infinity andrc the
scale of the constant density core. With previously introduced
components, we can construct very different models ranging
from disk dominated systems to halo dominated ones. The initial
rotation curves of the models presented in the next section are
shown in Fig. 1. The random velocities of the initial state are
created with epicyclic approximation including correction for
the asymmetric drift.

We study the morphological evolution from images showing
the disk surface density in logarithmic scale. The pattern speed
evolution is studied by the amplitude spectra of the Fourier de-
composition of the disk surface density in polar coordinates
(r, θ):

Σ(r, θ) = Σ0(r)

[
1 +

∞∑
m=1

Am(r) cos (m(θ − θm(r)))

]
, (5)

whereAm(r) andθm(r) are the Fourier amplitude and phase
angle, respectively. The amplitude spectra (see e.g. Sellwood &
Athanassoula 1986; Masset & Tagger 1997) are formed using
data from 2.5 gigayear intervals. These intervals are long enough
to give a good resolution (about1.26kms−1kpc−1 for m = 2
modes) of pattern speeds and short enough to show the evolution
of individual modes. In these simulations, them = 2 modes are
the strongest ones, but we have also paid attention to evolution
of other modes. We estimated the noise level of the amplitude
spectra by making a simulation with 200 000 massless particles
moving in the halo potential. The highestm = 2 peak was about
0.03 (0.02 form = 4), whereas more typical values were around
0.01. We have adopted 0.03 as a lowest contour level in them =
2 amplitude spectra we show here. However, when tabulating
the pattern speeds of different modes, we counted features even
below this level, because some of them are evidently real (they
are present in several time intervals).

To identify the possible resonances related to modes, we
have calculated the circular frequencyΩ and the epicyclic fre-
quencyκ from an axisymmetrized rotation curve and overplot-
ted curves showingΩ, Ω ± κ/m. In the case ofm = 2 modes,
we have also plotted theΩ − κ/4-curve to determine the radius
of inner 4/1-resonance. The axisymmetrized rotation curve is
calculated from the radial forces in the middle of the time in-
terval. We have also used the Fourier components in making
animations of the density distribution. This is far more econom-
ical than saving either the particle positions or surface densities
for several hundred time steps. We have found these animations
very useful because the individual snapshots of density distri-
bution can sometimes be misleading.
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We have predicted the wave frequenciesωbeat and the az-
imuthal wave numbersmbeat of the beat modes from the corre-
sponding term of the parent modes using the following selection
rules (Tagger et al. 1987; Masset & Tagger 1997):

{
ωbeat = ωparent1 ± ωparent2
mbeat = mparent1 ± mparent2,

(6)

where the pattern speedΩbeat = ωbeat/mbeat. In this study we
usually display pattern speed instead of wave frequency, except
in the case ofm = 0 modes.

Sellwood & Athanassoula (1986) studied the shape of the
modes in their simulations by using spatial and temporal Fourier
analysis of the disk surface density distribution in terms of loga-
rithmic spiral decomposition. We do the same but construct the
actual shapes of the modes in a bit more straightforward way.
First we determine the pattern speed of each mode by using the
amplitude spectrum. Then we use this pattern speed to rotate
the Fourier phase angles in different time steps so that the ori-
entation of the mode should be the same. Then we calculate the
perturbed density (m = 2 andm = 4 components) at each time
step in a polar grid having 30 radial and 100 azimuthal cells. The
final mode shape is acquired by summing the perturbed density
tables and dividing the resulting table by the number of used
time steps. This procedure gives the shape of the mode if the
number of used data sets is high enough and the time interval
is so long that the amplitude of ghost images produced by other
modes are suppressed. To meet these conditions we took data
from 101 time steps in a 2.5 gigayear interval. Naturally, the
pattern speed of the mode must be practically constant during
this interval.

There are three evident shortcomings in the present sim-
ulations. First, the three dimensional evolution, especially the
possible formation of a boxy bulge (Combes & Sanders 1981;
Raha et al. 1991) is neglected. The additional slow-down pro-
cess of the bar rotation due to the interaction with halo particles
(Little & Carlberg 1991; Debattista & Sellwood 1997) is also
out of scope of present experiments. The third missing process is
the formation of massive central concentration as a result of gas
flow to the center (Friedli & Benz 1995; Norman et al. 1996),
which can lead to a destruction of the bar.

3. Results

We have searched through a large parameter space and have
chosen five models to characterize different evolutionary trends
we have observed. The fundamental parameters of the presented
models are listed in Table 1. We will first concentrate on the
evolution of these models and analyse the dynamics behind that.
Then we will make remarks on various parameter dependencies
we found when making the survey. Finally we will construct the
shapes of individual modes in two of the simulations and also
briefly study the evolution of the gas component in our models.

Table 1. Fundamental model parameters. Masses are in units of
1010M�, and radii in kiloparsecs. Halo masses are for inside 5 disk
scale lengths, 15 kpc, andrc ≈ 1.9 kpc. The last column shows the
radial force due to disk divided by the total radial force at the distance
of two disk scale lengths.

Model Md Mb Rb Mh
Frdisk
Frtot

I & IV 4.8 1.9 0.6 6.0 0.46
II 7.5 1.6 0.6 0.0 0.77

III 7.5 1.6 3.0 0.0 0.78
V 4.8 1.9 0.3, 0.6 6.0 0.46

3.1. Pattern speed multiplicities

We have identified three basic types of pattern speed multi-
plicities in our simulations: 1) bar and spiral arms with different
pattern speeds, 2) corotating bar and spiral arms and 3) a nuclear
bar rotating faster than the main bar. The type 1) has two vari-
ants: systems where the modes are coupled and systems where
they seem to be independent. The type 3) is usually associated
with either type 1) or type 2) structure, but not vice versa; nu-
clear bars are not present in all models. In the next subsections
we present few examples showing these phenomena.

3.1.1. Model I

Model I consists of a Plummer bulge, an exponential disk and a
halo. The contribution of the bulge and the halo to the rotation
curve is about the same as that of the disk in the distance of
about 8 kpc (see Fig. 1), otherwise it is higher.

Fig. 2 shows the morphological evolution of this model. In
the beginning of the simulation there is a transient multiarmed
spiral in the outer disk while the bar is forming in the inner
parts. At about the same time as the bar reaches its maximum
strength (T ≈ 5 Gyrs), a two armed spiral component is seen.
During the further evolution of the system, the bar grows until
it stabilizes and the spiral structure weakens so that it cannot
anymore be seen in direct density plots.

The pattern speeds and amplitudes of various features can
be seen in the amplitude spectra of Fig. 3. The evolution after
the bar formation (atT ≈ 4.0 Gyrs) can be divided to different
stages. In the first stage (5.0–7.5 Gyrs) the pattern speed of the
bar is decreasing and the evolution of the system is fast. In
the second stage (7.5–10.0 Gyrs) the pattern speed of the bar
has become almost constant and there are several spiral modes
with lower pattern speed than that of the bar. In the last stage,
towards the end of the simulation, the spiral modes, except one,
become very weak (and in still longer simulations even this
mode disappears).

We try to recognize the possible mode couplings using the
circular and epicycle frequencies determined by the linear ap-
proximation. One of the spiral modes (S3 in the figure), with
pattern speed9.9 kms−1kpc−1, has its ILR relatively close to
the corotation of the bar and so is an example of a mode that
might be coupled with the bar via the mechanism suggested by
Tagger et al. (1987). Later, this mode becomes stronger and the
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Fig. 2. The evolution of Model I.
The disk surface density is shown in
logarithmic scale. The innermost ar-
eas are presented as contours and the
outer disk as shades of grey. Time
in gigayears is shown in upper left
corner of each frame. The width of
the frames is54 kpc = 18 disk
scale lengths. Rotation of the disk
is counter clock-wise.
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T= 5.0 Gyrs  m=2 
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T= 7.5 Gyrs 
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T= 10.0 Gyrs
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T= 12.5 Gyrs

B

S1

S2
S3

S4

Fig. 3. The amplitude spectra of
m=2 Fourier component of Model
I in 2.5 gigayear time intervals cen-
tered on times T = 5.0, 7.5, 10.0 and
12.5 gigayears. The bar and the dif-
ferent spiral modes are indicated in
T = 7.5 Gyrs frame by B and S1 - S4,
as in the text. The contour levels are
0.03, 0.06 (drawn with thicker line),
0.12, 0.24 and 0.48. The full lines
show theΩ andΩ±κ/2 curves and
the dashed line theΩ − κ/4 curve,
calculated from the radial forces at
the middle of the indicated time in-
terval.

situation indeed resembles the non-linearly coupled system of
Masset & Tagger (1997).

The ILR – CR mode coupling looks at first very appealing
although it does not explain the intermediate modes, one of
which (S2) is initially even stronger than the suspected coupled
mode. The complexity of the situation becomes more evident
when comparing in more detail the resonance radii ot the modes,
shown in Table 2. The ILR (more exactly the outer ILR) of the
boosted mode at T = 7.5 gigayears is almost 20% outside the CR
of the bar. However, due to the strength of the bar, the epicycle
approximation is not very precise and so the overlapping may
actually be closer.

A very interesting phenomenon is seen when comparing
the inner 4/1 and corotation resonance radii of different modes,
namely ther4/1 of a slower mode seems to be very close to
rCR of a faster mode (B – S1, S1 – S2 and S2 – S3). At T=12.5
gigayears the fastest of the intermediate modes (S1) falls below
the lowest contour level of Fig. 3, but it can still be found if
a lower cut-off level is used. An alternative to the CR – 4/1
coupling is that the bar feeds two spiral modes (S2, S3) through
CR – ILR coupling, one having ILR inside the corotation and
the other outside it. In addition to previously discussed modes,
by T = 10 Gyrs there is also a mode, S4, with pattern speed of
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Table 2. Them = 2 modes, their resonance radii and maximum am-
plitudes in Model I for different time intervals. The pattern speedsΩp

are in kms−1kpc−1 and radii in kiloparsecs. The modes are identified
as B (bar) and S (spiral).

T Mode Ωp rILR r4/1 rCR rOLR Amax

7.5 B 33.2 2.3 4.7 6.6 10.0 1.00
S1 22.4 3.4 6.6 9.2 14.4 0.08
S2 14.8 5.5 9.3 13.5 20.0 0.26
S3 10.0 7.8 13.2 18.8 27.5 0.19

10.0 B 32.0 2.4 4.8 6.8 10.3 0.85
S1 22.3 3.4 6.7 9.2 14.7 0.06
S2 14.9 5.4 9.5 13.2 19.9 0.11
S3 10.0 7.4 13.1 18.8 27.3 0.26
S4 4.9 12.9 24.5 33.0 51.1 0.10

12.5 B 32.0 2.4 4.8 6.8 10.4 0.93
S1 22.3 3.4 6.6 9.4 14.6 0.014
S2 15.3 5.4 9.2 12.8 19.6 0.07
S3 9.9 7.9 13.0 19.0 27.8 0.41

about5 kms−1kpc−1, which has a CR – ILR overlapping with
S2. This mode disappears later.

3.1.2. Models II and III

Model II does not have a halo and to keep its inner rotation curve
closely similar to that of Model I, the disk mass is higher. The
importance of the disk/halo mass ratio is demonstrated by Fig. 4
that shows the time evolution of the density distribution and
Fig. 5 that shows the amplitude spectra. Although the rotation
curves and hence the circular and the epicycle frequency curves
are quite similar to Model I, the pattern speed of the bar is
dramatically lower. Another difference is that the slower modes,
which are present outside the OLR of the bar, are very weak
and even the strongest one weakens below the lowest contour
value of Fig. 5 by 10 Gyrs. Therefore, one mode dominates this
system and reaches even beyond its OLR. Inside the corotation
resonance it has a bar shape and further out the Fourier phase
angles turn so that it forms a spiral. As can be seen from Table 3,
there are fewer resonance overlappings than in Model I and
most of them are probably coincidental. The closest of these
overlappings is the OLR – ILR overlapping between the bar
and the mode S2 byT = 5 Gyrs.

Model III resembles Model II so that it has no halo and the
total mass of the disk is larger than in Model I. The scale length
of the bulge is now larger and so the inner rotation curve is
shallower than in previous models. The evolution of this model
is very similar to Model II and is not shown here. As in the
previous cases, the bar pattern speed is not the only one present
but there are slower modes in the outer disk. In this case, only
one of them is above the lowest contour level of the amplitude
spectrum, shown in Fig. 6. The resonance radii, calculated from
the epicycle approximation, do not support mode coupling, at
least not in the form favoured by Masset & Tagger (1997): as
can be seen from Fig. 6, the inner Lindblad resonance of the
outer mode is outside the outer Lindblad resonance of the bar.

Table 3. Them = 2 modes, their resonance radii and maximum am-
plitudes in Model II for different time intervals.

T Mode Ωp rILR r4/1 rCR rOLR Amax

5.0 B 16.0 5.5 8.6 10.5 14.2 0.71
S1 7.4 10.6 14.3 18.2 26.0 0.059
S2 4.9 14.2 19.0 24.9 34.0 0.079
S3 3.8 16.7 23.2 30.7 40.2 0.051

7.5 B 13.6 6.6 9.6 11.8 16.1 0.67
S1 7.4 10.9 14.5 18.2 25.7 0.024
S2 4.9 14.3 19.3 24.4 33.8 0.042

10.0 B 12.3 7.2 10.3 12.7 17.2 0.66
S1 7.4 11.0 14.4 17.9 25.2 0.022
S2 4.9 14.2 18.9 24.1 33.9 0.040
S3 3.8 16.7 23.6 30.1 41.1 0.028

12.5 B 11.7 7.6 10.7 13.1 17.6 0.48
S4 6.2 12.2 16.3 20.4 28.8 0.027
S3 3.7 17.1 23.3 29.8 40.7 0.028

Table 4. Them = 2 modes, their resonance radii and maximum am-
plitudes in Model III for different time intervals.

T Mode Ωp rILR r4/1 rCR rOLR Amax

5.0 B 16.2 3.9 8.8 10.5 13.9 0.93
S1 12.4 8.0 10.5 12.6 17.0 0.023
S2 4.4 15.4 20.6 26.5 35.9 0.12

7.5 B 14.7 6.5 9.3 11.2 14.8 0.77
S3 8.6 10.3 13.2 16.2 21.9 0.015
S2 4.5 14.5 20.7 25.9 35.6 0.096

10.0 B 14.8 6.9 9.3 11.3 14.9 1.0
S4 3.8 17.1 22.9 28.8 39.9 0.067

12.5 B 14.1 7.3 9.6 11.5 15.3 0.67
S3 8.7 10.1 13.2 16.1 21.7 0.022
S4 3.8 16.8 22.9 29.1 39.5 0.034

The spiral structure is clearly formed from two parts (see the
ΩB contours in Fig. 6): the inner pattern corotating with the bar
dominates even beyond its OLR, while the slower one appears
only in the outermost disk.

The differences between Model I and models II and III can
be partly explained by the difference ofQT -parameter in the
domain of the spiral structure. ByT = 10 GyrsQT is around
3 in Model I whereas in models II and III the outer disk is so
heated thatQT ≥ 5. This will efficiently suppress the outer
modes. The other reason is that because the pattern speed of the
bar is lower, the domain of the bar mode becomes so large that
there is simply less space available for the slower modes.

3.1.3. Models IV and V

Many of our simulations have nuclear bars in their early evolu-
tion. Often these features disappear when the main bar forms:
the nuclear bar becomes aligned with the main bar and rapidly
loses its identity. In cases where the nuclear bar survives the
formation of the main bar, two different scenarios are seen. In
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Fig. 4. The evolution of Model II.
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Fig. 5. The amplitude spectra of
Model II. The contour levels are the
same as in Fig. 3.

some models (e.g. Model I, except with twice the standard soft-
ening parameter) the patterns speed of the nuclear bar decreases
rapidly after the formation of the main bar until it stabilizes, in
other models (e.g. both of the models shown here) the pattern
speed is not affected by the main bar.

Fig. 7 shows the evolution of Model IV. In this model the
initial mass distribution is the same as in Model I, but the central
parts are hotter. This is done by changing the Toomre parameter
smoothly from 3.0 to 1.5 within the innermost 4.5 kpc, beyond
which it has the same constant value as in Model I. This delays
the formation of the main bar, and when it forms, it is longer and

its pattern speed is about 16% lower. This is in accordance with
Athanassoula and Sellwood (1986) who found that the growth
rate of the bar modes correlates strongly with the central value
of QT but only weakly with the value in the outer disk. The
nonequality of the pattern speeds of the nuclear and the main
bars is clearly demonstrated by the changes in the relative posi-
tion angle (Fig. 11). The closest of the resonance overlappings
are the several CR – 4/1 ones, the CR – ILR between the nu-
clear bar and the spiral mode S3 and the CR – OLR between the
main bar and S9. What is very significant, there seems to be no
resonance overlappings between the nuclear and the main bar.
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Fig. 6. The amplitude spectrum of Model III atT = 10.0 Gyrs. The
contour levels are the same as in Fig. 3.

Table 5.Them = 2 modes, their resonance radii and maximum ampli-
tudes in Model IV for different time intervals. NB refers to the nuclear
bar.

T Mode Ωp rILR r4/1 rCR rOLR Amax

7.5 NB 71.3 0.9 2.1 3.3 5.5 0.27
S1 44.7 1.7 3.3 5.2 8.1 0.11
B 30.3 2.4 4.9 7.4 11.2 0.12

S2 22.3 3.0 6.7 9.7 14.3 0.026
S3 19.7 3.4 7.6 10.8 15.8 0.040
S4 16.0 4.3 9.3 12.7 18.5 0.045
S5 12.5 6.0 11.3 15.4 22.7 0.056

10.0 NB 71.2 1.0 2.2 3.3 5.4 0.15
B 28.3 2.6 5.4 7.7 11.7 0.47

S3 19.7 3.5 7.7 10.5 16.1 0.042
S6 18.4 3.7 7.9 11.3 17.1 0.045
S7 14.8 4.9 9.5 13.4 19.7 0.063
S8 7.4 10.1 17.5 23.9 36.0 0.15

12.5 NB 72.6 0.9 2.2 3.2 5.3 0.12
B 27.2 2.6 5.7 8.0 12.0 0.62

S3 19.7 3.6 7.7 10.4 16.1 0.038
S9 17.3 4.1 8.5 11.6 17.8 0.043

S10 8.7 8.6 15.2 20.9 31.1 0.072
S8 7.5 10.0 17.4 23.4 35.5 0.13

Another simulation with a nuclear bar, Model V, is shown
Fig. 9. This model differs from Model I so that its bulge is formed
by two parts each having half of the mass of the bulge in Model
I. The particle numberN is larger, 500, 000, to give better
resolution. The scale lengths of the bulge components are 600
and 300 pc. Norman et al. (1996) also used combination of two
Plummer bulges, but the other of their bulges had variable scale
length mimicking gas flow to the center. In this model we are in-
terested in the effect of pre-existing central mass concentration.
The model developes a complex nuclear structure. First there
seems to be a nuclear spiral (not discernable in Fig. 9). Then it
evolves to a nuclear bar or an elongated nuclear ring. At about
T = 7.5 Gyrs a small bar forms. It is considerably weaker than
the bar in the previous models. At some stages (see Table 6),
there are altogether eight modes present in the disk. Thus, there
is a complicated network of possible resonance overlappings.

Table 6. Them = 2 modes, their resonance radii and maximum am-
plitudes in Model V for different time intervals.

T Mode Ωp rILR r4/1 rCR rOLR Amax

7.5 NB1 150.7 1.2 1.7 2.7 0.090
NB2 110.9 0.8 1.5 2.2 3.6 0.34

B 63.2 1.5 2.6 3.7 5.9 0.20
S1 27.1 2.9 5.5 8.1 12.2 0.36
S2 17.3 4.4 8.4 11.9 17.8 0.12

10.0 NB1 149.0 1.2 1.7 2.7 0.10
NB2 113.5 0.8 1.5 2.2 3.5 0.18

B 59.1 1.5 2.8 4.0 6.2 0.14
S3 49.2 1.7 3.2 4.7 7.3 0.018
S4 40.6 2.0 3.9 5.6 8.8 0.012
S1 25.8 3.0 5.9 8.3 12.7 0.43
S2 17.1 4.7 8.3 11.9 17.8 0.16
S5 12.2 6.3 11.4 15.6 23.1 0.2

12.5 NB1 150.5 1.2 1.7 2.7 0.059
NB2 115.7 0.7 1.5 2.1 3.4 0.13

B1 53.1 1.6 3.0 4.4 6.8 0.24
B2 50.5 1.7 3.2 4.6 7.0 0.29
S1 25.2 3.2 5.8 8.3 13.0 0.27
S2 17.2 4.7 8.2 11.8 17.6 0.25
S5 12.3 6.2 11.1 15.6 23.0 0.14

Most of these are probably coincidental due to large number of
modes. Some of the modes apparently have multiple resonance
overlappings. The overlappings include OLR – CR, CR – 4/1
and CR – ILR. AtT = 12.5 Gyrs, two close modes are seen
in the amplitude spectrum, marked as B1 and B2 in Table 6.
These are not really two different bar modes: the pattern speed
of the bar changes so that it gives this impression. Them = 4
amplitude spectra, which can be calculated using a smaller time
interval due to higher resolution, clearly show that there is only
one mode present.

These models are just two examples of our simulations ex-
hibiting nuclear bars. For example, in a simulation whose ini-
tial state was the same as in Model I except that the Toomre’s
QT-parameter was 2 throughout the disk, a nuclear bar formed
before the main bar. Although Friedli & Martinet (1993) found
that the presense of massive dissipative component was needed
for the formation of the nuclear bar, we did not find that nec-
essary. Also the formation of the nuclear bar before the main
bar is something that did not happen in Friedli and Martinet’s
simulations.

3.2. Evidence of mode coupling

According to Masset & Tagger (1997) the presence of non- lin-
ear mode coupling should be evident from the amplitudes of the
beat modes. In the case of normal beat modes, their amplitudes
should be proportional to the product of the amplitudes of parent
modes. When the process of non-linear coupling is present, the
beat modes are expected to be boosted, having peaks near the
area of resonance overlapping. In the case of twom = 2 modes,
assumed to be in CR – ILR coupling,m = 0 andm = 4 beat
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Fig. 7. The Evolution of Model IV.
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Fig. 8. The amplitude spectra of
Model IV. The contour levels are the
same as in Fig. 3.

modes would be produced. Fig. 12 showsm = 0 andm = 4
spectra of Model I, byT = 12.5 Gyrs. The predicted beat modes
of couplings between the bar and the modes S2 and S3 (see Ta-
ble 2) are clearly present. The wave frequencies of them = 0
beat modes, calculated from the first part of Eq. 6, are44.2 and
33.4 kms−1kpc−1 (B – S3, B – S2). The pattern speeds of the
m = 4 beat modes are23.7 and21 kms−1kpc−1. In Fig. 13 we
show some of these products and the observed amplitudes of
the beat modes in these models. As we can see, in Model I, both
B – S2 and B – S3behave in a similar way. In the inner parts,
the amplitude profile of the beat wave is more or less what is

expected for a non-coupled case, but deviates strongly near the
resonance overlapping area, reaching peak between its ILR and
CR. This suggests that both of the spiral modes are actually in
CR – ILR coupling with the bar. As an additional example in
Fig. 13, there is a clear CR – ILR coupling between bar and S10
in Model IV by T = 12.5 Gyrs.

What happens to the CR – 4/1 couplings between different
modes, the situation is less clear. Them = 0 andm = 4 beat
modes of them = 2 components show no unambiguous signs
of being boosted above normal level. Because them = 4 ILR
of one mode overlaps the corotation of the other mode, one
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Fig. 9. The Evolution of Model V.
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Fig. 10. The amplitude spectra of
Model V. The contour levels are the
same as in Fig. 3. Note that only the
inner parts are shown.

could also expectm = 2 andm = 6 beat modes to be present.
However, they are usually not found or they are so weak, that
there is probably no coupling. A possible exception is the mode
S4 in Model I, which could be them = 2beat mode of them = 4
component of S3 and them = 2 component of S2. However,
there was nom = 6 beat mode of the suspected coupling.

In models II and III the beat modes are hard to find, probably
because in the area were the parent modes overlap, their ampli-
tudes are so weak that the resulting beat modes, even if present,
do not rise over the noise level. One possible example is shown
in Fig. 13, OLR – ILR overlapping of the bar and the mode S2

in Model II, T = 5 Gyrs. Them = 4 beat mode shows a peak
slightly outside the radius where the resonances overlap. If this
coupling is real, it is of different type from that demonstrated
by Masset and Tagger. Another example of apparent coupling
variations is the OLR – CR coupling between the bar and the
mode S9 in Model IV,T = 12.5 Gyrs. In this case the peak
amplitude is slightly inside the overlap area, between the CR
and the OLR of the beat mode.

We have also tried to check what is the role ofm = 1
andm = 3 modes in these models. For the coupling ofm =
1, m = 2 and m = 3 modes with equal pattern speeds (as
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Fig. 11. Zoomed images of the nu-
clear parts in models IV and V. The
horizontal width of the frames is
10 kpc. At least in Model V, there
are three different bar components
present, with clearly different pat-
tern speeds.
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Model I, T= 12.5 Gyrs m=0
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Model I, T= 12.5 Gyrs m=4

Fig. 12. The m = 0 and m = 4 ampli-
tude spectra of Model I atT = 12.5 Gyrs.
The contour levels form = 0 spectrum
are 0.0025, 0.005,0.01 (drawn with a thicker
line) and 0.02 and form = 4 spectrum
they are 0.01, 0.02 (drawn with a thicker
line), 0.04, 0.08 and 0,16. The predicted beat
mode pattern speeds of B – S2 and B –
S3 couplings are shown as dotted lines.Ω
andΩ ± κ/4 curves are shown as continu-
ous lines. Note that features at them = 4
spectrum with pattern speeds of32.0 and
15.3 kms−1kpc−1 are connected to princi-
pally m = 2 modes.

suggested by Elmegreen et al. 1992a) we did not find any clear
evidence. The bars seem to be very symmetrical, so they do not
have significantm = 1 or m = 3 components. The situation is
different with some of the spiral modes. For example, in Model
I (T = 12.5 Gyrs them = 1 amplitude of mode S3 is about
0.05, clearly above the noise level, but considerably less than
the m = 2 amplitude. In addition to cases, where basically
m = 2 modes have also odd components, there are also genuine
m = 1 or m = 3 features in the amplitude spectra, but these
are considerably weaker than the two-fold modes. Usually, we
could not find beat modes of possible couplings between the odd
modes and them = 2 mode, which is not surprising because
the predicted amplitudes are so low. The only clear exception
is shown in the last frame of Fig. 13, which shows them = 5
andm = 1 beat modes of the OLR – ILR coupling between
the bar andm = 3 mode with pattern speed11.5 kms−1kpc−1

in Model I, T = 10 Gyrs. Both of the beat modes have a peak
near the resonance overlapping radius. One should note that the
m = 1 beat mode is retrograde, and its peak is located in the
radius where the pattern speed is equal toΩ − 2κ. This also
coincides with the resonance overlapping.

3.3. The effect of different model parameters

The five cases presented in detail were chosen to show differ-
ent situations in relation to pattern speeds and so do not form
a systematic sequence. However, during the survey, we made
several simulation subseries on the effect of various model pa-
rameters. In this subsection we present shortly the dependen-
cies we observed. Most of our models form bars. Only systems
with a dominating halo and/or a very hot initial disk can escape
this. This agrees well with the previous studies on bar forma-
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Model IV, T=12.5, B & S10
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Fig. 13. Examples of boosted beat
modes in our models. The prod-
ucts of the amplitudes of the par-
ent modes are shown as continu-
ous lines. In the first five cases the
amplitudes ofm = 4 beat modes
are drawn with dotted andm = 0
modes with dot-dashed line. In the
sixth case, these linestyles are used
for m = 5 andm = 1 modes. The
arrows show the selected resonance
radii of the parent modes.

tion (see e.g. Ostriker & Peebles 1973). In models with a very
strongly concentrated bulge or a high Toomre parameter, the bar
formation was delayed so much that it can take more than 10 gi-
gayears to have a main bar component. An extreme case of this
was achieved when the scale length of the bulge was reduced
to 300 pc, other parameters being like in Model I: no bar com-
ponent was formed during the 15 gigayears of the simulation.
Interestingly, the spiral amplitudes were about as strong as in
Model I, and are present throughout the simulation. However,
one should note that the pattern speeds of the modes are different
from those in Model I. There are several modes present, just as in
Model V that also has a massive central concentration. The res-
onance overlappings include four OLR – CR, two CR – 4/1 and
a CR – ILR overlappings. Some of the mode pairs have double
overlappings. This model seems to indicate that the bar cannot
be crucial for the formation of the outer spiral structures and
that the mode couplings could rather modify the independently
formed modes of the outer disk. This contrasts with Masset &
Tagger’s (1997) results, where the inhibition of bar formation
also dramatically suppressed the outer spiral modes.

Shapes of the bars in our simulations vary from elliptical
or boxy to systems where the bar is narrowest near its center,
thus giving a dumbbell appearance. Sometimes there are narrow
arcs outside the main body of the main bar. These forms might
correspond the so called ansae that are seen in many early type
galaxies. Thus the ansae could be stellar dynamical features as
suggested by Buta (1996).

The formation of the bar induces strong noncircular veloc-
ities and the rotation curves measured in different azimuthal
directions can differ considerably (see e.g. Duval & Athanas-
soula 1983). Therefore, we use axisymmetrical rotation curves,
which are calculated from the radial force. These curves show
clearly the effect of the bar: when the bar forms, the peak of
the azimuthally averaged rotation curve rises and beyond the

end of the bar, the rotation velocity becomes lower than the ini-
tial value. These changes are strongest in the disk dominated
systems, especially in Model III, in which the rotation curve
becomes considerably steeper.

The effect of the softening parameterε was tested by running
Model I with values 187.5, 375 and 750 pc (ε = 1/16, 1/8
and1/4 Rd). With the reducedε, the bar forms faster and is
shorter and its pattern speed is lower than in the other two cases.
Resonance overlappings (CR – ILR, CR – 4/1) are also present
but the slower modes disappear by 10 Gyrs. In the simulation
with largestε, the main bar forms after 10 Gyrs. There are several
modes in this simulation, e.g. a nuclear bar that forms before
the main bar.

In the initial stage the outer truncation of the disk is usually
9 scale lengths, although we have made some simulations with
truncation at 6 and 3 scale lengths, otherwise being similar to
Model I. The models with truncations at 9 and 6 scale lengths
are practically identical, no essential difference in their evolu-
tion was found. On the other hand, the strongly truncated disk
behaves very differently. Its bar has a different shape without a
dumbbell-form. The pattern speed of the bar is higher and there
are only two rather weak slower modes. With the main bar they
form a chain of CR – 4/1 overlappings. The pattern speed effect
is probably explained by having less interaction between the
bar and the outer disk. Combes & Elmegreen (1993) used even
more strongly truncated disks but that is probably not realistic.

The initial pattern speed of the bar seems to be determined
by the degree of central concentration of the bulge so that more
concentrated models have faster bars. This is in agreement with
Sellwood’s simulations (1981), but one should note that this re-
sult fits to disk and halo dominated systems separately: models
with more or less similar inner rotation curves (e.g. models I and
II), but large differences in halo contributions, can have dramat-
ically different bar pattern speeds. In models with larger bulge
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Table 7. Bar pattern speeds and maximum amplitudes in simulations
with different particle numbers N, determined atT = 12.5 Gyrs.

N Ωbar Abar

32 000 39.4 0.54
80 000 32.0 0.68

200 000 32.0 0.93
500 000 32.0 1.07

1 250 000 30.8 1.04

scale lengths, the number of the present modes is smaller than
in Model I. In most occasions they do not have clear resonance
overlappings.

In all models the pattern speeds of the bar components are
declining, but usually this decline slows down considerably dur-
ing the first few gigayears after the bar formation. One should
also note that this often happens while the pattern speeds of the
spiral modes remain constant. According to Sellwood (1981),
the bar slow down process is accompanied by the growth of
the bar. We found it difficult to measure the bar lengths from
isodensity contours or surface density plots. Instead we use the
phase angles of maximum density as found in the Fourier de-
composition. Phase angles are roughly along the bar until very
near the corotation, although there is evident twisting starting
by the inner4/1 -resonance. We estimate that the error marginal
in the definitions of bar length is rather large, about 10%. Mar-
tin (1995) gives the same estimated accuracy in his study on
lengths and axial ratios of the observed bars.

We have measured the relationR = rCR/rbar for several
of our models. The extremes are 1.0 and 1.3, while most of the
values are between 1.1 and 1.2. This relation stays more or less
constant during the simulation, and so the bar follows similar
growth process as noticed by Sellwood (1981). It is possible
that in real galaxies the interaction with halo particles may slow
down the bar rotation rate so much that the bar cannot grow
fast enough to reach the corotation (Little & Carlberg 1991;
Debattista & Sellwood 1997). This is one explanation why the
most favoured value seems to beR ≈ 1.2 (see e.g. Elmegreen
1996). Another possibility is the lack of bar supporting orbits
beyond the inner 4/1-resonance (Patsis et al. 1997).

Also the effect of two simulation method related parame-
ters, the particle number and the grid geometry, was tested. The
Model I simulation was repeated by several particle numbersN
between 32 000 and 1.25 million (the particle number was mul-
tiplied by 2.5 between two successive simulations). The pattern
speeds and the amplitudes of bars in simulations with different
N are listed in Table 7. The bar in 32 K model rotates faster,
apparently due to reduced interaction with the sparsely popu-
lated outer disk. The pattern speed differences in other models
are not significant, whereas the bar strength seems to grow with
particle number. The evolution of theQT -parameter is very
similar in all these simulations, so the heating of the disk is not
due to two-body relaxation effects.

The amplitude spectra of Model I variants with different
N are shown in Fig. 14. The trend is that the slower modes
get stronger when the particle number is increased. This keeps

the chain of CR – 4/1 overlappings unbroken to the end of the
simulation. This behaviour is different from Masset & Tagger’s
(1997) model where doubling the particle number (from 80 000
to 160 000) weakened the intermediate mode. We have also run
Model II with 1.25 million particles. As in the case of Model
I, the increase ofN strengthens the modes which rotate slower
than the bar. However, the bar mode still dominates even beyond
its OLR.

The effect of the grid geometry was tested by reproducing
Model I simulation using a cartesian grid. When the resolution
of this grid was high enough, e.g.256 × 256 with cell width
375 pc, there was no essential difference. However, the situation
changed when twice coarser cartesian grid was used: the bar was
longer, its pattern speed was lower, its shape was different and
the system had a strong nuclear mode. Very similar behaviour
was seen when the resolution of the logarithmic polar grid was
reduced to a corresponding level.

We have also tested the effect of the length of the time step
by reproducing some simulations with shorter time steps (0.5
and 0.25 times the original one). Neglecting extreme cases, the
differences are small. Especially, the nuclear bars of Fig. 11 were
still obtained with smaller time steps, showing that they cannot
be artefacts due to integration inaccuracies. The pattern speeds
are approximately the same in simulations with different time
steps, but on few occasions the relative strengths of the modes
can be slightly different.

3.4. Shapes of the modes

We have used Fourier decompositions of the disk surface density
to study the short term evolution of the system. The animations
show that in the presence of several modes, the morphology
can change quickly, e.g. from a situation clearly showing the
domains of different modes (structure within structure) to a mi-
rage of a two-armed grand design structure throughout the disk.
Somewhat similar behaviour is demonstrated by Lin & Low
(1990, Fig. 1).

We have reconstructed the shapes of the modes with the
method described in Sect. 2. Fig. 15 shows the results for 1.25
million particle version of Model I. Mode B has a clear bar shape
with weak spiral outside the bar. S2 and S3 are clearly spiral
shaped and show amplitude modulations. One should note that
this method shows how the the B-mode can have a bar shape
slightly beyond the corotation radius calculated from the linear
approximation. The mode reconstruction gave basically similar
shapes for the modes in the other simulations. The only other
example we show is that of Model II, shown in Fig. 16. This
clearly indicates how the whole disk is dominated by one mode,
which has a bar shape in the inner parts and a trailing spiral shape
in the outer parts. Amplitude modulations are not seen in this
mode.

3.5. Gas morphology

We have also added gas component in the form of uniformly dis-
tributed (inside 9 scale lengths) dissipative test particles to some
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Fig. 14. Comparison of amplitude
spectra of models with different N
for T = 12.5 Gyrs.
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Fig. 15. Shapes of the individual
modes in the 1.25 million particle
version of Model I,T = 12.5 Gyrs.
The contour levels are the same as in
Fig. 3 and correspond the perturbed
density due tom = 2, 4 compo-
nents. The radii of corotation and
inner and outer Lindblad resonances
are shown as dashed lines.
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Fig. 16.The shape of the dominant mode in Model II. The resonance
radii are indicated as in Fig. 15.

of our simulations. The evolution of gas component in models
I – II, IV – V is shown in Fig. 17. Because the test particles
are massless they follow the potential due to stellar distribution.
The features are sharper in gas component. Due to its dissipative
nature the gas response lags and the gas component can gain or
lose angular momentum.

In Model I the gas component forms two parts with different
morphologies. In the inner area, inside the OLR of the bar, the
gas features are corotating with the bar. Most notable detail is
the inner ring surrounding the bar. The outer structure consists
of several tightly wound spiral arms. The inner edge of this
structure resembles outer pseudorings but does not easily fit to
the observed categories of Buta (1995).

The gas morphology of models II and III is so similar that
only Model II is plotted. In the earlier stages both show corotat-
ing two armed spiral structure starting from the end of the bar,
but the radial flow is so strong that most of the gas particles end
up either to the nucleus or to the outer part forming a multiarmed
figure.

Model IV has a beautiful nuclear ring that forms before the
main bar. However it seems to become perpendicular to the
main bar although there is a nuclear bar with a higher pattern
speed inside the nuclear ring, which in principle might distort
its orientation. This model has an inner ring displaying more
complicated structure than that in Model I. The spiral arms seem
to form an outer pseudoring, however its shape is changing and
the classification is uncertain.

Model V has many different pattern speeds in its stellar com-
ponent and hence its gas morphology is very complicated. The
innermost ring is a nuclear ring (actually a double nuclear ring
but the resolution of the figure is not high enough). Although
it is in the area affected by both the nuclear and main bar com-
ponents its orientation with respect to the main bar is almost
constant, only small swinging motion is seen. However, there
are other simulations where the orientation of the nuclear ring

changes constantly, following the nuclear bar. The orbits of the
gas particles forming such ring are probably of the type studied
by Maciejewski & Sparke (1997). Similarly behaving nuclear
ring was also present in the simulations of Friedli & Martinet
(1993) but in their case the nuclear bar is destroyed and the
nuclear ring eventually became perpendicular to the bar. The
next ring in Model V is the inner ring of the main bar compo-
nent. After that comes a ring that is in the distance where one
would expect the outer ring of the main bar to be. However,
this is not an outer ring in this sense: its shape and orientation
with regard to the main bar are changing constantly. The reason
for this is that the ring is affected by two modes with different
pattern speeds. In addition to previously discussed features, the
outermost spiral structure seems to form a pseudoring.

4. Discussion

We have observed several different situations in our models.
There are systems where the spiral structure corotates with the
bar and others where pattern speeds are different. Mode cou-
pling is present in some simulations, especially in systems with
massive halos. The existence of massive halos in the disk areas
of barred galaxies has been questioned by “live halo simula-
tions” (Debattista & Sellwood 1997) so our halo dominated
models may not be realistic. The simulation that Masset & Tag-
ger (1997) give as an example of mode coupled case has the
same problem.

In addition to CR – ILR mode coupling, that seemed to dom-
inate Masset & Tagger’s (1997) simulation example, we have
noticed other possibilities. The most common resonance over-
lapping is CR – 4/1, which sometimes forms chains of different
modes. For an extreme example, in Model I,T = 7.5 Gyrs, there
are three mode pairs having this connection! Although there is
no evidence of CR – 4/1 coupling as boosted beat modes, this
overlapping is so common that we consider unlikely that it is
totally random, i.e. it is related to some physical process.

Masset and Tagger’s simulation also had an intermediate
mode with pattern speed between the pattern speeds of the bar
and the coupled spiral mode. They suggested that this interme-
diate mode could be the subharmonic of them = 4 beat wave
or in OLR – CR coupling with the bar. The latter explanation
could be true for one of the modes in Model I (S1) but nei-
ther can be true for S2 which amplitude is initially higher than
that of the suspected CR – ILR coupled mode. One explanation
could be that the bar can feed two modes via CR – ILR cou-
pling, one with its ILR inside bar’s CR and another with ILR
outside it. Although this resonance overlapping is quite distant
(the difference in resonance radii is about 20%), the presence
of boosted beat modes between the bar and both of the spiral
modes supports mode coupling. Also in Model IV, there is a
clear CR – ILR mode coupling between the bar and one of the
spiral modes.

Besides the previously discussed mode couplings, other res-
onance overlappings are also observed, some of which can be
purely incidental. The cases where we found further support by
peaked beat modes are OLR – ILR coupling and CR – OLR cou-
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Fig. 17. The evolution of the gas
component in models I-II and IV-
V. The particle positions are rotated
so that the bar is horizontal. The
width of the frames is 18 disk scale
lengths.

pling betweenm = 2 modes, and OLR – ILR coupling between
m = 2 andm = 3 modes. In at least one simulation, there was
a temporary double overlapping between two modes (CR – 4/1
and OLR – CR). Some simulations, e.g. Model III, had multi-
ple pattern speeds without any obvious resonance overlappings
between major modes. Furthermore, we did not find any clear
evidence of mode coupling process involvingm = 1 or m = 3
modes with same pattern speeds, as suggested by Elmegreen et
al. (1992a).

The simulations cover the evolution for about one Hubble
time and different stages can be determined according to which
modes are dominating in the disk. For example, it takes several
gigayears to reach strong mode coupling. This also means that

strictly speaking our models are valid only for genuinely isolated
galaxies. It has been shown that encounters can provoke bar
formation (e.g. Noguchi 1987, 1996; Salo 1991) but their effect
on the evolution of a multi patterned system is not clear and
should be studied. According to Elmegreen et al. (1992b) the
interactions can destroy outer rings and in M 51 -type systems
they can be responsible for most of the observed spiral structure
(Toomre & Toomre 1972; Salo & Laurikainen 1993).

Outer ring structures and their resemblance with bar related
periodic orbits near OLR has been considered a strong evidence
for corotating bar and spiral structures. On the other hand it has
been suggested that these rings could be transient features (Sell-
wood &Wilkinson 1993). The strength of the resonance expla-
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nation weakens when we consider that there are several strongly
barred galaxies without these rings. An explanation could be that
the timescale for outer ring formation is relatively long, several
gigayears, or depends on the gas distribution. Another possi-
bility is that the formation of resonance rings is inhibited by
additional non-corotating spiral modes.

In these simulations the explanation based on long time scale
is at least partly valid. The outer rings we get (mainly in the gas
component), form in timescales of more than one gigayear. What
comes to pattern speeds, outer rings habit areas where two pat-
terns may be present. In simulations where a strong pattern with
lower frequency is present, the morphology does not resemble
R1 outer rings (which major axis is perpendicular to the bar, see
e.g. Buta & Crocker 1991) and is more open resembling some-
timesR′

2 pseudorings (which major axis is parallel to the bar).
However, on most occasions the shape does not fit Buta’s outer
ring morhologies. The formation of outer rings, especially of
theR1-type, thus most probably requires that the inner pattern
is clearly stronger than the outer one in the vicinity of OLR. This
means that N-body models are quite different from test particle
simulations (e.g. Schwarz 1981; Byrd et al. 1994). It is clear
that the latter type of simulations with analytical potentials with
just one pattern speed present may overestimate the efficiency
of the ring formation process.

A very interesting feature in the gas component of models
II and III is that the two armed structure starting from the ends
of the bar corotates with the bar whereas the multi-armed shape
marks the area where lower mode becomes considerable. This
is in accordance with the results of Elmegreen & Elmegreen
(1995), who found that the size of the bar correlates with the size
of the domain of the two-armed part of galaxies. It seems that
the radius where two-armed phase ends is roughly twice the half
length of the bar. Outside this area, galaxies often have multi-
armed structure. The radius where the two armed spiral ends
can be interpreted as the outer limit of the corotating spiral. In
systems dominated by one mode this should happen near OLR.
However, when other modes are present, this could happen even
closer to the ends of the bar. Some systems have different spiral
structures: inner and outer ones. When there are several modes
present at the same radius, the structure can be very complicated,
even incoherent. An example of this could be the outer disk of
Model I. Such a situation was anticipated by Sygnet et al. (1988).

Examples of real multi-patterned galaxies could be NGC
1068 and NGC 1566 (Bosma 1992). Both of these galaxies
have spiral structures in different radial scales. Another inter-
esting case is NGC 1398. Moore & Gottesman (1995) tried
several models to fit the observed morphological features with
specific resonances. They got best fit when the spiral structure
(or in this case the outer spiral) had a lower pattern speed than
the bar so that there was a resonance overlapping in the sense
that the corotation of the spiral coincided with the OLR of the
bar. Elmegreen & Elmegreen (1995) list this galaxy of having
small bar (Rbar/R25 = 0.21) and give the end of the two- armed
phase of the spiral structure at the distance0.33 R25. This cor-
responds with the small inner spiral structure just in the vicinity
of an inner ring. On the other hand Buta (1995) has classified

this galaxy having a double outer pseudoringR1R
′
2 that is usu-

ally thought to form in the OLR of the bar. In the rectified V
-band image in Moore & Gottesman (1995) one can hardly see
R′

2 component; the outermost part of the spiral does not seem
to form a pseudoring. If the bar reaches close to corotation as
Moore and Gottesman suggest, then this could be an observed
example of a galaxy with two different spiral structures resem-
bling thus our simulations. The complicated structure near the
suggested OLR of the bar (see Figs. 13 and 14 in Moore &
Gottesman 1995) could be related to interaction of two modes.
The gas component of Model V has two outer pseudorings, re-
lated to different modes. This is exactly what is observed in
galaxy NGC 2273 (van Driel & Buta 1991). The coexistence
of several modes with different pattern speeds could also ex-
plain observations of galaxies with misaligned structures like
the strange system ESO 565-11 (Buta et al. 1995).

In addition to bar/spiral pattern speed multiplicity, there can
be nuclear bars with higher pattern speeds than the main bars.
This is strongly supported by the observations: the orientations
of the nuclear bars relative to the main bars seem to be random
(Friedli & Martinet 1993). If they were connected solely to the
ILR of the main bar, the orientation would be nearly perpendic-
ular. When our simulations have nuclear bars they usually form
before the main bars. Examples of this kind of behaviour could
be NGC 4553 and NGC 7702, both having a nuclear bar but not a
clear main bar (Buta 1991; Buta & Crocker 1991). If the nuclear
bar survives the formation of the main bar, it can have a CR-ILR
resonance overlapping with the main bar, but not necessarily: in
some of our simulations there is no clear resonance overlapping
between the bar components. Unlike Friedli & Martinet (1993),
we did not find the presence of massive dissipative component
necessary for the formation of the nuclear bars.

5. Conclusions

Our main conclusions are as follows:

1) The relation between the bar and the spiral structure is com-
plicated and there is probably no unique way to explain the
morphology of barred spiral galaxies. The spiral arms can coro-
tate with the bar or have a lower pattern speed. Also mixed
cases where the inner part of the spiral corotates and outer part
is slower may exist.
2) Although mode coupling is present in many cases, it is hardly
a universal situation in barred galaxies. Often there are no evi-
dent resonance overlappings and curiously, the most usual over-
lapping seems to be CR – inner 4/1, not CR – ILR that has been
previously proposed. Frequently there are many modes present
and they can form a temporary chain of CR – inner 4/1 couplings.
However, there is no further evidence for this mode coupling in
the form of boosted beat modes. On the other hand, such are
present in the CR – ILR, CR – OLR and OLR – ILR couplings.
There is also one case with OLR – ILR coupling betweenm = 2
andm = 3 modes. Mode coupling seems to be strongest when
halo contribution to the rotation curve is large. However, ac-
cording to Debattista & Sellwood (1997) such models may not
be realistic for barred galaxies.
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3) The strong two-armed spirals that begin from the ends of the
bar in grand design galaxies and weaker two armed structures
in the central parts of multi-armed barred galaxies are probably
in most cases corotating with the bar. The end of the two-armed
structure may happen in the distance where the outer mode be-
comes so strong that no coherent pattern can exist. Galaxies with
prominent outer rings are systems where one mode dominates
over most of the disk and the outer patterns do not interfere too
much. This might happen more easily in the galaxies with rela-
tively large bars and OLR near the edge of the stellar disk. This
is the case in our disk dominated models.
4) The existence of two or more modes may explain why many
barred galaxies do not have outer rings or pseudorings. This
can also explain the existence of multi-patterned galaxies. A
special case of this phenomenon could be the galaxies with
misaligned structures. Modeling attempts should be done for
apparently multi-patterned galaxies to confirm the suspected
existence of separate pattern speeds in these systems. Different
pattern speeds may explain difficulties in identifying features
with certain resonances and might also be responsible for some
difficulties in modelling of individual galaxies.
5) Nuclear bars usually form before the main bar and they have
higher pattern speeds. In some models they slow down and be-
come part of the main bar, but there are also models where they
survive for several gigayears.

For the limitations of these models (no 3D evolution, an-
alytical halo, no self-gravitating gas component), our results
are preliminary. We are going to study the generality of these
conclusions by including the effect of the above mentioned pro-
cesses.
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