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Formation of Isolated Narrow Ringlets by a Single Satellite
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The generation of the density wave trains at the satellite
resonance zones of the dense planetary rings is qualitatively
understood (e.g., F. Shu, 1984, in Planetary Rings, pp. 513-561,
Univ. of Arizona Press, Tucson, AZ), but the optically thin C-
ring and the Cassini Division behave drastically differently: in
some of the resonance locations isclated narrow ringlets are
found, often embedded in a gap (G. L. Tvler et al., 1983, Icarus
54, 160-188). According to our numerical N-body simulations
a single satellite can create a narrow ringlet with sharp outer
and inner edges. In the experiments with a bimodal size distri-
bution the large particles become more efficiently confined, in
agreement with the observations where the fraction of small
particles is found to be enhanced at the ringlet edges (Tyler et
al. 1983).
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Even if the rings of Saturn consist of thousands of smaller ringlets,
there are only few truly isolated ringlets with adjacent empty gaps (optical
depth 7 0.01), located in the low-density C-ring and the Cassini Division
(7= 0.1) (Tyler ef al. 1983). Many of these narrow ringlets {with typical
widths of a few tens of kilometers) are found in the isolated resonance
locations of different satellites, Their edges are extremely sharp: in several
cases T drops to zero within radial distance of 1 km. For example, the
Prometheus 2:1 inner Lindblad resonance {(2:1 TLR) is located at the
distance of 88,713.7 km. At the same radius a ringlet is found, embedded
in an empty gap (also the Mimas 3:1 inner vertical resonance falls at
the ringlet, but its strength is an order of magnitude weaker) (Porco and
Nicholson 1987, Rosen et al. 1991}, There exists also resonances without
ringlets and ringlets without any connection to the known satellite reso-
nances (Cuzzi er al. 1984).

The standard theoretical explanation for the resonance features relics
on the satellite torque exerted on the resonance zone: at the ILR angular
momenlum is removed from the ring, leading to opening of a gap just
outside the ILR, provided that the satellite torque exceeds the viscous
torque due collisions which tend to smooth all density variations
{Goldreich and Tremaine 1978). The extreme sharpness of the inner gap
boundary resuits from the reversal of viscous flux near the ring edge due
1o satellite-induced streamline distortion (Borderies er af. 1989), However,
the formation of an isolated ringlet with a sharp inner and outer edge is
moere problematic, as the standard theory provides no mechanism to
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prevent the diffusion of the inner edge. For example, in the case of
Saturn’s F-ring and the narrow uranian rings, pairs of confining shep-
herding satellites have been evoked (Goldreich and Tremaine 1979), the
sharp inner edge being explained by the other Lindblad resonance (OLR)
of another satellite orbiting interior to the ringlet. This explanation is
clearly not applicable for Saturn’s C-ring ringlets where several isolated
ringlets without shepherding moons are found at ILR locations.

As an adequate theoretical explanation for the ringlets is missing we
turn into numerical simulations. This allows, in addition to the study of
the ringlet formation, also an extension of the theoretical linear torque
estimates for the highly nonlinear density variations. In the present Note
we concentrate on the 2:1 ILR and study it in terms of direct three-
dimensional collisional simulations, both with identical particles and with
a bimodal size distribution. As self-gravity is not likely 10 be important
in the C-ring {Salo 1992), we use massless test particles. Schwarz {1981)
has also simulated 2:1 ILRs: compared to his experiments, the present
simulations have about 50-fold duration, employ an accurate calculation
of the individual impacts between finite size particles, and usc simulation
paramcters obtained by careful scating of the physical satellite-ring pa-
rameters.

In the simulations isolated ringlets with adjucent gaps form just inside
the 2:1 ILR location for sufficiently large satellites (Fig. 1). The limiting
satellite mass for the gap formation agrees with the standard linear theory
(Goldreich and Tremaine 1982; see also Hinninen and Salo 1992). Ini-
iially, spiral density wakes appear at the resonance, increasing gradually
in strength and finally transforming to a narrow steady-state ringlet,
embedded in a practically empty gap. At the ringlet stage, velocity disper-
sion has atlained a constant value,

The initial and final density profiles of the simulation of Fig, 1 are
plotted at Fig. 2a, Besides the sharp edges of the ringlet, a typical feature
is the more prominent outer gap than the inner one, Figure 2b displays
the final density profile of the simulation with a bimodal size distribution.
The population of the larger particles has formed a ringlet, while the
smaller ones have become more dispersed, leading to a relative cxcess
of smaller particles at the ringlet edges. Similar excess has been observed
at the narrow ringlets of the C-ring (Tyler er af. 1983).

Figure 3 displays the decrease of the ring angular momentum 7 (dashed
lines show A7 multiplied by £}, the angular frequency at the resonance
radius}, its slope being proportional to the instantanecus satellite torque.
The two different stages of the evolution are visible: (1) during the spiral
wake stage the satellite exerted torque is propertional to T, ~ (M./
M,)?7,, while (2) when the wake transforms to a ringlet, there is an
abrupt change in the slope. to T, ~ M /M,7 with ¢ = 1.5. The observed
wake stage torque has the same optical depth and satellitc mass depen-
dence as predicted by the standard formula (Goldreich and Tremaine
1982) of lingar 7, although its magnitude is about two-fold as compared
to linear theory. On the other hand, the 7% dependence of the ringlet
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FIG. 1. Time evolution of a collisional ring with 2000 spherical,

frictionless, and massless particles with a radius o = 0,001 and an initial
optical depth 7, = 0.01. The ring is perturbed with a satellite of mass
ps = MJ/M, = 8871 X 1073 on a circular orbit, 2:1 ILR falling on the
unit distance. The satellite position is marked by the cross, but not in
correci radial scale. The initial width of the system is 0.05: in the plot
the ring width is multiplied by a factor of two. The integration algorithm
(Hinninen and Salo 1992, Hinninen 1993) is based on Aarseth’s N-body
integrator {Aarseth 1985) which uses a fourth-order force polynomial
and an individual time-siep scheme in the integration of particle orbits.
The standard impact model is used with the Bridges er al (1984) ve-
locity-dependent coefficient of restitution for ice particles e(v) = (v,/
v.) *?¥ where v, is the perpendicular component of the relative velocity
and the constant v, = 0.01 em/sec. In the numerical experiments the par-
ticle size is necessarily much larger than true size, if realistic values of
optical depth are simulated. Therefore, to be able to compare the results
to realistic systems, various parameters have been appropriately scaled.
First of all, we want to maintain the relative importance of the finite par-
ticle size in determining the unperturbed equilibrium velocity dispersion.
This is achieved by adjusting the parameter v, so that e{}/v., where {)
is angular frequency at 2:1 ILR, is constant {Sale 1991). For 1-m par-
ticles in the C-ring at the Prometheus 2:1 ILR, we thus adopt v, =
4.2891 x 107* Similarly, to keep the ratio between satellite induced ve-
locities and nonperturbed velocities constant, satellite mass is scaled pro-
portional to v, (or o)) (Hidnninen and Salo 1994), Therefore the simu-
lation mass w, = 8.871 X 107° corresponds to the physical mass p,, =
1.0 % 1079,

torque is weaker than the theoretical nonlinear estimate ~r3 (Borderies
et al. 1984). The difference during the wake stage follows from the density
perturbation being already quite substantial and continuously increasing:
the difference with the linear theory vanishes with small satellite masses
generating only negligible density enhancement. The reduced torque at
the ringlet stage, as compared to that at the wake stage, follows from
the negative torque being partially compensated by the positive torque
exerted on the inner half of the ringlet (Hanninen and Salo 1994).
Figure 3 shows also the evolution of the ring total energy (solid line),
following closely the AT curve. This coupled evolution can be under-
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stood as follows. The work (negative in ILR) done by the satellite is
related to the torque by dE /dt = Q. T,, where (1, stands for the satellite
angular frequency. Conservation of the Jacobi constant for the individual
orbits between the impacts requires that the satellite-induced increase
of the random kinetic energy, dEy,/dt, is related to the work by Dermott
(1984), dEvin/dr = (1 — £2/Q,) dE/dt. I the collisional dissipation exactly
cancels the induced eccentricities (as is observed in the present simula-
tions during the ringlet stage as the velocity dispersion stays constant),
dE nldt + dEy/dt = 0, this leads to dissipation rate,
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FIG. 2. (a) Radial density profile of the ring at the beginning (t =
0 T, dashed line) and at the end (¢ = 800 T,,; solid line) of the
simulation of Fig. 1. {b) Density profile at the end {t = 800 T,,) of a
simulation with a bimodal size distribution (300 large particles with o =
0.002 and 2000 particles with o = 0.001), The solid line stands for the
distribution of the large particles and the dashed line for the distribution
of the small ones. The initial optical depth of the both populations is
T, = 0.01.
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FIG, 3. The observed change in the ring total angular momentum

Al multiplied by £2 (dashed line), its slope being proportional to instanta-
neous satellite torque, displayed together with the curnulative change in
the ring total energy AE (solid line). In the initial state / = 2000 and
E = —1000. In (a) the angular momentum change is compared between
different satellite masses (the satellite masses are gy, = 0.5 X 1079,
1.0 % 107%, 1.5 % 1079, and 2.0 X 10-%) with same initial 7, = 0.01. In
(b) the comparison is done between different initial optical depths
(1, =0.005, 0.0, and 0.02), but for the same satellite mass p,, =2 X 107°.

and to total energy decrease,

(_ig = dEs ¥ dECnII =
dr  dt dt

0r,. (2)

For the final ringlet stage the slopes of the angular momentum and energy
curves are practically equal, indicating a balance between the energy
dissipation and external torque (notice that since most of the particles
are at the dense ringlet, dissipation and torque outside the ringlet are
insignificant). On the other hand, during the wake stage when the ringlet
is still forming, |dE/dt| < |QT,| as collisional dissipation is unable to
balance the work connected to the satellite torque.

It is well known that an unperturbed ring experiences radial spreading
due to collisional diffusion (Brahic 1977). On the macroscopic level this
follows from the conservation of ringlet’s angular momentum while its
total energy decreases. Assume a narrow ringlet with a uniform surface
density, mean distance &, and width W << 7. The ringlet energy and
angular momentum are £ = —GM M /(2d) and I = VGM,aMg(1 +
1/32(W/a)?), respectively, where Mg is the ringlet mass and G stands
for the gravitational constant. These equations hold also for a gaussian
surface density profile if W2 is replaced by 128%(a), where 8(a) stands
for the dispersion of semimajor axis. Defining f. = 1AI/AE, the changes
in @ and W arc connected by

AW _8a 3 [W\?
'Aaf—w(fc*l“l—ﬁ(g) ) (3)

For a nonperturbed ringlet f, = 0, s0 that

8ada
dr . W dr (@)

As datde = 2a*/(GM ,M ) dE/4dt is negative, narrow ringlets should ex-
pand rapidly.

Both the rapid initial contraction of the system during the wake stage,
and the apparent confinement of the final ringlet can be qualitatively
understood with the help of Eq. (3). During the wake stage the observed
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fo = L1, which value inserted into Eq. (3) implies AW =~ Aa(a/W), in
accordance with the rapid contraction. However, this is just a macroscopic
interpretation for what is observed; in the microscopic level the most likely
explanation is the reversal of the angular momentum flux in collisions, due
to the strong streamline perturbation, turning the viscous expansion into
contraction with the approximately same time scale (see eg. Borderies
et al. 1984},

During the final ringlet stage, the observed values f, = 0.99 = 001
which indicates a strongly reduced expansion rate as compared to the
expansion of a similar isolated ringlet. Within the accuracy attainable in
the present simulations, this agrees with the observed practically constant
ringlet width. Formally, £, of exactly unily in Eq. (3) would imply a slow
contraction, but as f, is a zero-order quantity and (W/7)? ~ MM,
(identifying W with the width of the resonance zone), neglecting fi — 1
with respect to (W/&)? is not justified, as noted by Goldreich (1994,
private communication). Again, this interpretation in terms f, = 1 is just
a qualitative description of the observed macroscopic behavior. In the
microscopic level the observed confinement most probably follows from
the angular momentum luminosity L ;{a} vanishing throughout the entire
ringlet once it has attained a large enough optical depth (Goldreich 1994;
see also Borderies et a/. 1984, and Goldreich and Porco 1987).

In the case of a bimodal size distribution the particle populations
interact with e¢ach other, the large particles supplying random kinctic
energy to the smaller ones. Figure 4 displays the cumulative AE and QAT
in the experiment with a bimodal size distribution, already studied in
Fig. 2b. Due to the collisions with the large particles, the population of
the smaller particles is not able to balance its energy loss against the
satellite-exerted torque, and thus their f. < 1. The larger particles, on
the other hand, have a much better balance (f, =~ 1}, because the collisions
with the small particles have only a weak effect on their energy budget.
This offers a qualitative macroscopic interpretation for the observed
expansion and contraction of the smaller and larger partictes, respectively.

According 1o above numerical experiments a single satellite can create
and maintain a narrow isolated ringlet in its ILR, However, due to the
inward drift caused by the collisional dissipation, this offers only a tempo-
rary mechanism for the confinement. The time scale for the drift across
the resonance zone Ty =~ W, /&, where W, = V' M,/M,a stands for
the width of the resonance zone. Now @ = E o @.c?, where the impact
frequency w, is proportional to 7 and the velocity dispersion ¢ to o. For
the simulation with M /M, = 8.87 x 1075, r, = 0,01, and ofe = 0.001
the observed drift speed yields Ty, = 2100 orbital periods. Scaling to
realistic satellite masses (MJ/M, = 1 X 10°%), particle sizes (¢ = | m),
and optical depths (g = 0.1) gives Ty, = 7 ¥ 10° orbital periods, or about
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FIG. 4. The observed change in the ring angular momentum Af
{multiplied by £2; dashed line) and total energy AE (solid line) is displayed
for the simulation with a bimodal size distribution (sce Fig. 2b).
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8 X 10° years for the Prometheus 2:1 ILR ringlet. This is comparable to
the estimated time scale for the recession of Prometheus from the A-
ring outer boundary to its present location (Borderies er al. 1984), In
Saturn’s C-ring the gradual drift from the resonance could also be affected
by the mass flow from the unperturbed region: modeling this diffusion
is, however, outside the scope of the present simulations. As the simulated
mechanism also works for OLRs, the narrow core of Saturn’s F-ring
might also be confined solely by Prometheus, the inner more massive
and closer satellite. The same type of mechanism might also be at work
in the uranian ring system.
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