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Abstract

We investigate the spin rates of moonlets embedded in planetary rings, subject to collisions with surrounding small particles, using three:
body integrations including friction and spins. All successive impacts of the particle with the moonlet are followed, including a possible
sliding phase after the initial inelastic rebounds. Two methods for treating impacts, (1) as instantaneous velocity changes and (2) using al
impact force model, are applied after Salo (1995, Icarus 117, 287). Conducting a series of integrations with various initial summed spin
velocity of the moonlet and the patrticle, we determine the equilibrium spin rate for which the averaged torque vanishes. This equilibrium
spin rate corresponds to the final spin rate of the moonlet if the moonlet is much larger than the surrounding particles; it also corresponds tt
the mean spin rate for a ring composed of identical particles. We find that the equilibrium spin rate is enhanced by sliding orbits as comparec
with the spin rate determined by considering only the first impacts of the particles with the moonlet. If the random velocities of incident
particles are small enough, the resulting equilibrium spin rate of the moonlet can be larger than the synchronous rotatiorpraté, for
whererp denotes the sum of radii of the colliding pair normalized by their mutual Hill radius. In this special case aggregates without internal
strength may become rotationally unstable. However, the equilibrium spin rate decreases with increasing random velocity, and aggregates a
always rotationally stable in the more likely case where the relative velocities are comparable to the mutual escape velocity. We also compar
our results with the mean spin rates found in previdsbody simulations, and find a good agreement for optically thin rings; however the
spin rates for optically thick rings are significantly larger than those predicted by our three-body calculations.
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1. Introduction Unfortunately, observation of these hypothetical moon-
lets is quite difficult, because their expected size is under
Planetary rings, such as Saturn’s rings, provide good local the resolution limit of Voyager cameras (L0 km), and be-
laboratories for studying the dynamics of flat collisional sys- Cause their t'otal cross section is much smaller than thgt of the
tems. In most parts of the rings, tidal force of the planet pre- smalle_r particles. Using g.round based stellar occultation ob-
vents ring particles from accreting into larger bodies. How- Servations, French and Nicholson (2000) estimated the upper
ever, numericalV-body simulations suggest formation of limit for particle radius in the Saturn’s A (and B) ring to be

apparently stable aggregates (moonlets) in outer parts of Satfoughly 20 m. However, a single power law distribution of
urn’s A ring, if the internal density of particles is hot much particles sizes was assumed, which might not be applicable

smaller than that of solid ice (Salo 1992, 1995; Karjalainen 'O moonlets made by runaway growth (see Barbara and Es-

and Salo, 2001). Existence of moonlets is suggested also inpOSito’ 2002).‘ He'nce, the exis.tence of moonlets with size of
Saturn’s F ring by Barbara and Esposito (2002), who showed 10?f Th_l km is stil coln;roverc;sﬁ. " f di
that a moonlet collision model can consistently reproduce ere are moonlets an € accretion of surrounding

the localized brightenings seen in the Voyager images andpartICIeS onto them continues, there would be no fings in
during the ring plane crossing observations. these regions. Thus, there needs to be some mechanisms

which break these moonlets, perhaps implying a balance
between continuous accretion and breakup processes (e.g.,
* Corresponding author. Weidenschilling et al., 1984). Other possibility is that large
E-mail address: ryuji.morishima@oulu.fi (R. Morishima). moonlets clear gaps around them and thus avoid further ac-
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cretion: the minimum size of a moonlet to be able to open a very small time intervals (so-called “sliding phase”: see Pe-
gap is estimated to be roughly 1 km (Spahn and $esfin, tit and Hénon, 1987; Wisdom and Tremaine, 1988).

2000; Daisaka et al., 2001; Sréavic et al., 2002). Even in Salo (1987b) performed numerical simulations of the col-
this case, one needs an explanation for why other particleslisional evolution of ring particles, including spins of parti-
do not continue to form other stable moonlets. cles (and thus also frictional force). He obtained ratios of

Besides its internal density, the spin rate of a moonlet is the kinetic energy of spin motions to that of the random mo-
an important factor affecting its stability against the subse- tions, as well as determined the dispersion and the mean spin
guent break up. Although there are many formulations re- of the particles, but only in the case where the self-gravity of
lated to the so-called classical Roche limit, a model of Harris particles was neglected. Also some theoretical calculations
(1996) is quite simple to understand. He considered a solid, exist for the spin evolution of ring particles (Salo, 1987a;
strengthless, spinning, and self-gravitating prolate ellipsoid Araki, 1991; Hameen-Anttila and Salo, 1993). According to
and derived a simple expression for the distamgg inside these studies, the particles’ mean spin acquires a nonzero
which the disrupting centrifugal and tidal forces overcome Vertical component, of about 0.3 times the orbital frequency,

the self-gravitating force (see also Davidsson, 1999), depending only little on various parameters (optical depth,

elasticity model), consistent with numerical results in Salo
derit 204/ p 13 (1987b). However, in these theoretical studies, self-gravity
R, <1/f _ (a)/a)c)z) ’ 1) of particles was included only approximately (the mean ver-

. ) tical gravitational field and the scattering by binary encoun-
where R, and p, are the radius and density of the planet, iers) 5o that the effects of accretion and multiple impacts
p is the density of the bodyf > 1 is the axis ratio of the  \yere not included.
ellipsoid,w is the spin frequency of the body, and stands In subsequent loca¥ -body simulations with self-gravitat-
for the surface orbit frequency of the bodyg(= 47 /3Gp). ing particles by Salo (1995), some runs included friction
Equation (1) suggests that an aggregate becomes more easilyng spins of particles, and it was found that the vertical
unstable §c;it is larger) with an increased absolute value of component of the mean spin is much larger than the above
the spin frequency. theoretical expectation. Examples of aggregate formation

Besides rotational instability, mutual collisions of moon- \yere also given in Salo (1995), but the longterm stability or
lets offer a plausible mechanism for their breakup (Barbara spin evolution of aggregates was not studied in detail. The
and Esposito, 2002). Also in this case, the pre-impact spin ysed local method, with periodic boundary conditions, is not
state is an important factor affecting the collision outcomes \e|| suited for this purpose. Namely, if the conditions for
(Leinhardt et al., 2000). aggregate formation are satisfied, then most of the mass be-

Main factor to determine the spin rate of a moonlet, comes rapidly contained in one or few aggregates, and there
whether it is a strengthless aggregate or a cohesive bodyare little further collisions by small particles, in compari-
having a non-zero yield strength, is likely to be the col- son to a realistic ring where a continuous flow of particles
lisions and/or accretion of surrounding particles. Also for s supplied by the surrounding regions. Also, to study the
the moonlets in gaps, like Pan in the Encke gap (Showalter, subsequent evolution of the aggregate in a realistic manner,
1991), their rotation is likely to be determined by accretion the supply of new particles would need to correspond to a
processes of small particles, since the time scale to reachhon-perturbed ring region, violating the strict periodicity as-
synchronous tidal locking is very long for such small bod- sumed in the code. Thus, the existing local simulations (Salo
ies. If more moonlets will be found, whether these reside in 1992, 1995; Karjalainen and Salo, 2003, in preparation) have
gaps or not, and their spin states can be clarified (though itlimitations in their relevance to the evolution of spin rates of
is questionable if this is possible even by the Cassini mis- the aggregates.
sion), this will help to constrain many physical parameters  On the other hand, three-body calculations provide an
for the moonlets and small ring particles, such as the inter- easier way to investigate the effects of collisions and self-
nal densities and the coefficient of restitution, by comparing gravity of particles, at least in the low optical depth limit.
with theoretically expected values. In this case, the flow of particles is a given keplerian flow,

There are many studies about the collisional evolution and each particle-moonlet interaction is treated separately
of spins of celestial bodies. A lot of studies have addressedfrom all others. Using numerical calculations of three-body
the problem of how planetary spins are determined by plan- problem, Petit and Hénon (1987) examined the sliding phase
etesimal accretion, usually assuming a perfect accretionand the evolution of the velocity dispersion of particles by
(e.g., Ida and Nakazawa, 1990; Lissauer and Kary, 1991;inelastic collisions and gravitational encounters. However,
Dones and Tremaine, 1993; Ohtsuki and Ida, 1998). In the they did not include friction nor spins of the particles. Oht-
case of planetary rings, however, the accretion probability of suki (1993) examined the capture probability of colliding
colliding particles becomes small due to the planetary tide particles with various normal and tangential restitution co-
(Ohtsuki, 1993). In this case, the spin rate of a moonlet is de- efficients. He did not consider spins of particles, in other
termined by inelastic rebounds of small particles, including words, the particles were assumed to keep the synchronous
multiple hits of the same particle, possibly occurring with rotation, with no exchange of energy between random mo-
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tions and spin motions. Thus, the evolution of spins was not examine the spin rate of the moonlet determined by the
clarified. collisions of ring particles, subject to the tidal field and

In the present paper, conducting three-body orbital inte- the moonlet’s gravity. To describe the motion of these bod-
grations including spins and friction, we examine the col- ies, we adopt the Hill's approximation which assumes that
lisional evolution of spin rates of moonlets embedded in a the masses of the ring particles and the moonlet are much
swarm of smaller particles. Actually, the method to obtain smaller than the planet’s mass and that their random veloci-
the final spin rates of moonlets is completely the same as thatties are much smaller than the keplerian velocity around the
to obtain the mean spin rate for a ring of identical particles, planet. We adopt a rotating local Cartesian coordinate with
so that we can compare our results with those obtained bythe origin at the center of the moonlet, with thexis point-
previousN-body simulations. We also calculate the capture ing radially outward from the planet, theaxis pointing in
probability of colliding particles, in a similar fashion as Oht- the orbital direction, and the-axis pointing in the direction
suki (1993). Further, we also calculate the sliding probability perpendicular to the orbital plane according to the right-hand
representing the rate of temporally (but not permanently) rule. The equations describing the relative motion between a
captured orbits. Throughout our calculations, we compare ring particle and the moonlet are given by Hill's equation
the two different methods for treating collisions used in Salo (e.g., Petit and Hénon, 1986; Nakazawa and Ida, 1988):
(1995).

Onhtsuki (2003a, 2003b) also address the same topic ofy — 2y + 3x — 3_’3‘
this paper, and his and our studies are complementary to r

each other. Taking into account the Rayleigh distribution of .. _ _ . Yy

orbital eccentricities and inclinations of impacting particles, r3’

he estimated not only the systematic (averaged) component, 3z

but also the random component of the moonlet spin, which * = IR (2)

arises from the collisions of large impactors; this is not con- 2,2, 2112 , .
sidered in the present paper studying just the systematicwherer _ .(x Ty +z ) ..T.he a.bove equ.atlons arevyntten
pa non-dimensional form: time is normalized by the inverse

component. The reader is recommended to read these paper i :
P pap of the keplerian angular velocity of the moonkt!, and

as well. . . . . :
In the present study, we assume that the moonlet and coI-Iength is nomalized by the Hill radius given by
liding particles are spherical and do not have surface irregu- m 1/3
. X L ; 1+m2
larity, and that there is no sticking force between contacting Ry =ah =a <ST) , 3)
%

bodies. As a result, the sliding phase plays a significant role

in determining the final spin of a moonlet. Hence, we make wherea is the semimajor axis of the moonlét,is the re-

a special effort to investigate the sliding phase as accuratelyduced Hill radius,M,, m1, andmy are the masses of the

as possible. It should be noted, however, that the assump-planet, the moonlet, and the ring particle, respectively. In the

tion of spherical particles without surface irregularity is a following, we use normalized quantities unless otherwise in-

highly idealized model. Hence, one should be careful when dicated.

applying the results in the present paper to realistic rings.  The relative strength of the gravity to the tidal force of the

Nevertheless, it is clear that one needs first to understand theplanet is characterized by parameter, defined as the sum

ideal case before continuing to the more realistic (and thus of the radii of the moonlet and the particle, normalized by

more complex) case. the Hill radius. For Saturn’s rings,

In Section 2, we describe our methods for calculating col- _us 1

lisions. In Section 3, we describe the basic orbital behavior o1t re=0.77 Dp a

of particles in the sliding phase. In Section 4, we show the P 1riz= 900 kg nr3 18 m

dependence of the moonlet spin on various parameters, like 1+ (D)3

the strength of gravity and friction. In Section 5, we compare X AL 3

our results with those of Ohtsuki (2003a, 2003b), discuss A+

briefly the stability of rubble pile aggregates, and moreover wherer; andrz are the physical radii of the moonlet and the

compare our results with those obtained in earNebody small particle normalized bRy, p is the internal density

simulations. Finally, our conclusions are given in Section 6. of the small particlesy = m2/m1, and D denotes the vol-
ume filling factor of the moonlet. The valye= 900 kg nT3
corresponds to the density of non-porous solid ice, while

(4)

2. Methods the density of the aggregat®p, may be smaller due to
voids. Figure 1 illustrates the dependencegdn a for Sat-
2.1. Hill’sequations urn’s rings, for various values qof, D, andu. We conduct

our calculations for a wide range of non-dimensional radii,
Consider a moonlet experiencing collisions with sur- 0.5 < rp < 2.0, covering well the tidal environment in plan-
rounding ring particles and orbiting around a planet. We etary rings.
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om0 kg m . 20 K=107.D=074 When the particle is far enough from the moonlet, the typical
i a0 kg time step is~.10‘2, whereas it is shortened ;910—4 near
o m10°D=074 o450 kg m™ the moonlet in order not to miss any collisions. Details of
--.u=107",0=0.74 5\ --.p=300 kg m treating the collisions are explained in the next subsection.
15¢ (= w100 5 Each orbital integration is continued until the particle goes

far away from the moonlet{| > |yo| with ¢ > 0), or until
the Jacobi energ¥ becomes negative, as adopted in Oht-
suki (1993), where is the energy integral of Eq. (2) given
by

l2,.2,.29 3, 1, 39
E=Z - = -

2(x +y°+2%) S¥ 5 45 (6)
Small particles colliding with the moonlet have initially pos-

itive values ofE, but if E becomes negative after some col-

C B A F C B A F 1c1 H H
- > e |ISIOI’]S. the partlclle can not escape from the moonlet. Strictly
0.0l e 00 e s.peaklng,.negatNE doe; not always guar.antee the capture_,
60 80 100 120 140 160 60 80 100 120 140 160 since we include the spins of small particles and the addi-
a (1000 km) a (1000 km)

tional pressure force at the time of impact. However, we find
Fig. 1. Dependence of thg parameter on the semimajor axior Saturn's that an e_scape of a particle after its Jacobi e”ergy becomes
rings, with various values of the mass ratipthe volume filling factor of negative is very rare, and therefore use the conditioa 0

the moonletD, and the internal density of particles The locations of main for the capture. It is clear that the capture is not possible if
rings are also shown. If the aggregate is composed of identical particles, therp > 1, in which case all the points on the surface of the

typical volume filling factor found inv-body simulations is about 0.7, very ape
close to the maximum packing limit of identical sphereg(3+v/2) = 0.74 moonlet extend beyond the Hill's surface ¢ 0 even for a

(Salo, 1995). In the case of size distributidh,can reach even 0.8. zero relative veloc!ty). o
In order to obtain accurate results, we need to divide the

orbital parameter space into a fine grid. In the case of
i =0, we sample the impact parameter with = 0.003. In
the case oé £ 0, we adoptAb = 0.1 and use divisions of
and) as(2r /A1, /AL) = (40, 20). Using these divisions

When the ring particle is far from the moonlet and thus
their mutual gravity is negligible, the solution of Eqg. (2) is
given by the epicyclic motion,

x=b—ecoqt —1), of parameters, we find about a few hundreds and five thou-
3 _ sands colliding orbits in each parameter setdee i =0

y= _Eb(t —¢) + 2esin(r — 1), ande # 0, respectively. Additional tests with a finner grid

z=isini — ), (5) indicate that our results are not significantly changed.

where¢ defines the origin of time (we chooge= 0 and 2.2. Treatment of impacts
thus the possible impacts occur neat 0),b = (a2 —a)/Rny
stands for the impact parameter, i.e., difference in the ini-
tial semimajor axis (wherez is the semimajor axis of the
small particle),e = e*/h, i =i*/h for the reduced eccen-
tricity and the reduced inclination (wheeé andi* are the

Two different methods are used in the calculations of
impacts, following Salo (1995): in the first method, the lo-
cations of impact points are searched and the corresponding
T Ry ] instantaneous velocity changes are calculated, whereas, in
eccentricity and the inclination in the ordinary use)and  {he second method, particle orbits are integrated through
» for the longitude of pericenter, and the longitude of as- j540ts. including additional visco-elastic forces arising be-
cending node, respectively (see Nakazawa and Ida, 1988y een the slightly overlapping particle and moonlet. The

for details). We set the initial azimuthal distance|as| = latter method has significant advantages A6body simu-
max40, 20e) which is large enough for neglecting the mu- |4ti0ns of dense self-gravitating systems (e.g., Salo, 1995:
tual gravity. We mainly show the results for the case of gy et al., 2001), although it uses more CPU time relative

e =i =0, butalso discuss the cases with different values of y, e first method in three-body calculations. We briefly de-
e (< 3.5), with fixede/i = 2. This range oé covers well the scribe both methods in the following.

: i di ian — /o2 12 i . : L .
plausible range of velocity dispersian = ve“ 4%, since In terms of the relative velocity = (x, y, z), the velocity

the escape velocity of the moonlet equalgc = /6/rp; differenceu at the contact point is given by
thee/i ratio approximates that found in low optical depth

rings dominated by gravitational encounters (Ida, 1990; 4, — y — rp(@wp — N) x n, (7)
Ohtsuki, 1999). .

We numerically integrate Eqg. (2) using a fourth-order with
variable time-step Runge—Kutta method and calculate the ri@1 + rowz

torque exerted on the moonlet by the collisions of particles. ®P = o ’ (8)
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wheren is the unit vector pointing to the direction of the time step, and continue the integration with the Runge-Kutta
center of the small particley:, w2, wp are the spin angular  method. If we simply change the velocity after finding an
velocity vector of the moonlet, that of the small particle, and overlap, without using the above way for correcting to the
the averaged spin vector in the inertial (not rotating) coordi- more accurate impact time, this easily leads to an error that
nate system, respectively, aid is the unit vector in the the particle sinks deeper into the moonlet.

direction. Note that in Eq. (7)pp — N represents the spin In the sliding phase, we sat to unity if the perpendicular
vector in the rotating coordinate system and that the com- component of impact velocity is smaller thap¢it = 0.01,
ponents of the inertial spin vectar, need to be expressed as adopted in previous studies (Wisdom and Tremaine, 1988;
with respect to the instantaneous axis directions of the ro- Ohtsuki, 1993; Salo, 1995). We find that we can not exclude
tating system. Therefore, the equatorial componenwpf  errors caused by sinking of the small particle into the moon-
change even between collisions as let without this treatment. Note, however, that the efficiency
of friction depends omp ¢rit (See Appendix A).

@ =wp x N. 9)
di 2.2.2. Force model
2.2.1. Instantaneousimpact model In this method, the normal force exerted between the
In the first method, the post-collisional velocity differ- overlapping particle and the moonlet is given by the lin-
enceu’ is given by (Salo, 1987a; Richardson, 1994) ear visco-elastic model of Dilley (1993), and the tangential
force is also included. The additional translational acceler-
u' = —enun + ey, (10) ation vaqq arising between the overlapping, colliding pair is
whereen, ande; stand for the normal and tangential restity- modeled as
tion coefficients £t = 1 corresponds to a frictionless impact: . 2 o
note that oue; was denoted byl — 8) in Salo (1987a)and ~ "2d4= _§<n B 1-|-—azf"I>’ (14)
by (1 — &) in Salo (1995), respectively), angy = (u - n)n with

andu; = u — up are the normal and tangential components

of the pre-collisional velocity difference at the contact point, 2 £

respectively. =y -e0s -3 £20 (15)
The changes of the relative velocity and the spin vectors 0, & <0,

are derived from the conservation of linear and angular mo-

where& = rp — |r| is the penetration deptli; denotes the

mentum as coefficient of friction, andny = uy/|ut| is the unit vector
v —v=—(1+en)un— o (1— ey, (11) pointing in the tangential direction. I.n .the abovg, is the
1+« undamped frequency of the harmonic impact force, ared
1 the characteristic time of damping, respectively. The equa-
L — =—01- 12 . . R
"P@p T PP = 7Y a( eun X ut, (12) tion for the averaged spin motion is given by

wherev’ andwj, are the relative velocity and the averaged d (rowp)
spin vector after the impact, respectively, angs the effec- =

. il -~ . dr 1

tive moment of inertia of the colliding pair, whose moments . ta ) ) .

of inertia areJ; = am1R12 andJo = apm2R22, defined by whereq is the factor defined in Eq. (13). Note that the spin
evolution of the moonlet and the small particle can be ob-

1 _ _mim2 < 1 n 1 > (13) tained by multiplying with the same mass coefficients as in
o  mit+mp\miu1  moa the case of Eq. (12).

In what follows, we assume that both the particle and the The attractive characteristic of the linear force model is
moonlet have a homogeneous internal mass distribution, sothat the parametersp ands can be tied to the normal resti-
thate; = ap = & = 2/5. Changes in the spin velocity of the tution coefficients,, and the duration of the impact (Salo,
moonletriw1 and in the spin velocity of the small particle  1995). The solution of Eq. (15) fdr> 0 is given by

r2wz are obtained by multiplying Eq. (12) with/(1 + w)

tén x m, (16)

and 1/ (1+ w), respectively. Thus, the collision outcome for & = @e"/zs sin(wmt), a7
an arbitrary mass ratia can be obtained by one orbital cal- @m
culation. wherewn, is the modified frequency given by
If we find overlapping of the small particle and the moon-
let during the integration, we go back one step, to the time wm = ,/wg —1/(25)2. (18)

before the impact, and analytically estimate the location and
velocity of the impact using a second-order Taylor expan-
sion for the particles’ mutual separation. Then changing the
velocity and the spin vectors following Egs. (11) and (12), £ () wm) ot 20ms

we extrapolate the position and velocity to the end of this én= TTE0) =e ’ (19)

Using the above equations, the normal restitution coefficient
is described as
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where the impact starts= 0 and finishes = n/wm. We ing phase is strongly overestimated compared with the case
adoptwg = 200, which is the same value as used in Salo of ¢; being fixed.

(1995). In fact, the impact duration(Tk / (2wp), whereTk In numerical integrations using the force model, we find
(= 2m) is the orbital period) derived from this value of the thatalarge relative error occursaawhen|u;| ~ 0, in which
frequency is much longer than realistic collision timeJ s, case the numerical time step is automatically shortened too
in the dimensional form), but we checked that results do not much. This follows from the discontinuity of tangential force
differ from those obtained by using a higher value«gf at lut| ~ 0. In order to avoid this discontinuity, we replace

This scaling of the impact duration to be longer than the nt = ut/|ut| bY ut/utcrit if |ut| < utcrict = 0.001. However,
physical impact duration is very convenient as it allows the the results are not sensitive to the exact choice gf.

use of larger integration steps. Aftep is fixed, the damp-

ing parametes is determined by the desired via Egs. (18)  2.3. Method for obtaining the equilibrium spin rate

and (19).

If we include the gravity term ;}3 from Eq. (2) into Using the two types of impact methods described above,
Eq. (15), a constant term/@pr)Z is added to the solu- We calculate the torque exerted on the moonlet by the col-
tion Eq. (17). Note that this term is generally negligible for lisions of small particles. This is obtained by evaluating the
the first hit of each particle. However, when the normal com- SPin changeAwp in each orbital integration and averaging
ponent of the impact velocity is reduced by several impacts, it over all impacting orbits. In the case that the particle es-
the gravity term can become significant, and Eq. (19) be- capes from the moonlet, this change is obtained simply from
comes a wrong description fef, since the solution of re- the difference.betv.veen the final and initia}. _Howe\{er, if
mains slightly positive, which means the sliding phase. This the small particle is captured, we put the final spin veloc-
is the one of fundamental differences from the instantaneous!ty @S @p = N, instead of using the instantaneous value at
method, in which the sliding phase is always described by athe time Whep thle. numerical mtegratpn is termlnated. This
sequence of small impacts. However, as in this case no enlreatment is Just|f|ed, a#d/-body experiments indicate that
ergy is lost via inelasticity, this corresponds to setiing- 1 theT captured particles eventuglly accumulate at the subplanet
in the instantaneous impact method when< un crit. points(x, y, z) = (£rp, 0, 0), with u = v = 0, which accord-

The other important difference is the way of describing N9 {0 EQ. (7) impliesop =N. S
friction. Comparing the normal and tangential components Conducting the-calculatlons.v.wth various initial spin rates
of velocity change in each impact for both impact models, @pini» We determine the equilibrium spin ratay,eq for

the relation between the friction coefficiefitand the tan-  Which the averaged torque vanish¢ap) = 0). It should
gential restitution coefficient; is given by be noted that the equatorial components of the averaged

torque must vanish whesp ini x = wp,ini,y = 0, because of
(L—&p) |ul the symmetry of the distribution of impacting particles with
O e lunl (20)  respect toz andz, so that we only need to consider the
component of the averaged torque. In the following, we omit
Thus, ifet is constants can not be a constant and vice versa, the subscript from thez components of spins, in order to
and either one should have an impact-angle dependence. Thavoid complicated expressions (e @pyeq= Wp.eqz)-
laboratory experiments of ice particle collisions by Supul-  In the equilibrium state, the following equation is satis-
ver et al. (1995) showed that the value fis about 0.9 fied:
for glancing 1 cms? impacts, also suggesting that be-
comes smaller for more perpendicular impacts. This seems’p®p.eq= r'1{®1) + r2{wz), (21)
to be consistent witft; rather thane; being constant. Un-  where (1) and (wy) represent the averaged spin angular
fortunately, since they did not clearly show the impact-angle velocities of the moonlets and the incoming particles (con-
dependence of ice particle collisions (they only showed that sider averaging over a lot of moonlets independently sur-
for rubber ball collisions), we do not know how accurately rounded by small particles, or equivalently, time averaging
¢ is constant; there is also a possibility that neittyemor e about one moonlet). If there are enough mutual collisions be-
is independent of impact angle. In any case, the experimentsween small particlesws) is expected to be less than unity
by Supulver et al. (1995) suggest that the valué a$ small (e.g., Salo, 1987b), and as we show laigfeq is also of
(<0.1). order of unity. Thus, if we consider the case> r, the
Taking into account the above uncertainties we think that second term in the right-hand side of Eq. (21) is negligible,
it is worth compare both methods, with a range of different so that we can treaby, ¢q itself as the equilibrium (or time
friction parameters, and study the differences in the implied averaged) spin rate of the moonlet;). On the other hand,
spin states in the rings. It should also be noted that for the ini- if we consider collisions of identical particles; (= r, and
tial impact in each encounter, the average valugegf |un| (w1) = (w2)), one can immediately find thai, eq represents
is expected to be about unity, whereas in the sliding phase(w) also in this case. Thus, we can also check our 3-body
this value becomes much larger than unity. Thereforey if ~ results by comparing wititv-body simulations of identical
is constant, the strength of friction((1 — &t)) in the slid- particle systems.
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3. Sliding phase lates due to the exchange between the spin energy and the

translational kinetic energy, but on the averagdecreases
Before studying the dependence of the equilibrium spin with time due to frictional energy loss. With decreasikig

rate on various parameters like the strength of gravity and the time averaged value éfincreases. Finally, the sliding

friction, we describe the typical orbital and spin evolution, direction around the moonlet switches to the prograde direc-

focusing on the sliding phase. Figure 2 shows (a) an ex- tion (9 > 0), after that the particle escapes from the moonlet

ample of colliding orbit including the sliding phase and almostimmediately. It should be noted that the spin experi-

(b) the corresponding evolution of physical quantities as ences a large jump shortly before escape. Qualitatively same

functions of time, obtained by the instantaneous impact results are obtained also when using the force model, or with

model. After some large rebounds, the particle in Fig. 2 different strengths of friction.

starts to slide on the moonlet in the retrograde directios (

0, where we adopt cylindrical coordinatés6); (x, y) = 3.1. Analytic solution for sliding motion

(r cosd, r sind)), as seen in the rotating frame. During the

sliding phase, the relative tangential velocity at the contact The basic behavior in Fig. 2 can be easily understood

point,ug = ré — r,(wp — 1), remains small because the spin by the analytical solution of the sliding phase, derived by

rate more or less compensates the rotation eage-(1 ~ 6). Petit and Hénon (1987). Introducing cylindrical coordinates
This happens unless the friction strength- £ (or ¢ for and neglecting friction, the equation of motion in the two-
the force model) is too small. The Jacobi integabscil- dimensional case is written as
. . 3
3 ' ' ' T F=r92+2r9+3r00529——2+)/,
r
2F P .. 2 3 .
9=——r(9+1)—§sm29, (22)
r

where y denotes the radial acceleration due to the pres-
N sure force between contacting particles. In the sliding phase,
’ r ~ rp, and thus* = i = 0. Therefore we need only study
the behavior ob with time. Multiplying Eq. (22) by and
integrating, we obtain

3co%6 +C, (23)

where the constant of integrati@n is related to the Jacobi
integral asC = 2(E + 3/rp — 9/2)/r5. If C is positive, the

g“ i : W i solution corresponds to a retrograde < 0) or prograde
=) | ; (6 > 0) revolution around the moonlet. ¢ is negative (but
= 21 ] C > —3), it describes an oscillation arousd= 0 or r, 6
S OF WNWWWW\M . obtaining both negative and positive values. In FigC2s
® i ] positive at first, which corresponds o> 0.75, and the par-
Al } ticle revolves around the moonlet in a retrograde direction.
3 o M . After C becomes negative, the type of motion is changed. If
=3F | the gravity is sufficiently strong so that the particle can keep
g ] ] its sliding motion, it starts to oscillate on the moonlet. But
A | W ; in the case of Fig. 2, the particle escapes practically imme-
0 diately afterC becomes negative.
-5 0 5 10 15 This escape can be understood by estimating the radial
/T« acceleration. Substituting Eq. (23) into Eq. (22), the condi-
®) tion for maintaining the sliding phasé & 0 for y =0) is

Fig. 2. (a) A typical example of a collision orbit including a sliding phase, ~written as

shown in the rotating Hill frame, for the case«ofi =0,b=2.3,rp = 0.8,

andwyp inj = 1.0. The method of instantaneous velocity change in impactsis g co2 9 +C+2V3¢c020+C < — (24)
used withen = 0.5 andet = 0.9. Note that the particle performs several tens rp

of retrograde revolutions around the moonlet, as seen in the rotating frame,

before the final escape. (b) Corresponding evolution of various quantities as The left-hand side attains its maximum wher= 0 or .

a function of time (normalized by the orbital peri@i (= 2r)). In order Thus, puttingC = 0, the condition for keeping the retrograde
from the top panel, the spin ratep, the angular velocity of mutual revo- rotation around the moonlet becomes

lution 6, the relative tangential velocity at the contact point including the

spin velocityug = r6 — rp(wp — 1), and the Jacobi integral are shown,

3 1/3
respectively. rp <rp1= (6—72«/§) =1.058 (25)
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On the other hand, the condition for maintaining the sliding
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first impacts forb = 1.85-2.0 and fob = 2.2—2.45. These

phase after the type of motion is changed from the retrogradeorbits experience a cascade of consecutive impacts, that is,

rotation to the oscillation is given by

3 13
m<rp2=|—— =0.682
P='h2 <6+2J§>

Since the value of, = 0.8 of Fig. 2 is between these two
limiting values, the sliding phase can be maintained dur-
ing the retrograde rotation, but not after the sigroabe-

(26)

comes positive, leading to an escape. It should be noted tha

Egs. (25) and (26) are the conditions for the particle not to

separate from the moonlet, whereas a separation does not’

always result in escape. In practice we find that in order to

actually an escape from the moonlet after the retrograde evo- .

lution, the value of, must be larger than about 0.76 (this
is almost independent of the strength of friction), which is
slightly larger than ».

In Appendix A, we explain the effect of the friction on
the sliding phase in detail, including analytical estimates for
the energy dissipation.

3.2. Contribution of diding orbitsto averaged torque

the sliding phase, and finally escape from the moonlet. The
occurrence of the sliding phase is also confirmed by the fi-
nal value of E which is smaller than that corresponding to
C =0. From these results, it is expected that the equilibrium
spin ratewp eq is much larger than that obtained by consid-
ering only the first impacts, because of the sliding orbits.

As we showed in Fig. 249 becomes very small during

lthe sliding phase unless the strength of friction is too small.

Thus, the spin in the sliding phase is approximately given by
p— 1 6. From Egs. (23) and (24), the condition for the
particle to escape from the moonlet is found 43 2 26 —

C > 3/r3. Thus, the value of at the time of escapéeso is
given by

-1+ ,/142(C+3/rf)
5 ,
where the sign ofjesc is always positive in the case of
e =1 =0. The value of” at the time of escaping depends on
the history until the escape. If the particle initially revolves
around the moonlet in a retrograde directidhdecreases
gradually, so that the value @f at the time of escaping is

(27)

Oesc™

Next we study what fraction of particles in the parame- roughly 0. This leads téesc= Awp = 1.28 for the parame-
ter space experience the sliding phase, and how they affecters used in Fig. 3rp = 0.8 andap,ini = 1.0). This value of

the equilibrium spin rate of the moonlet. Figure 3 shows the
final values of the spin changewp and the Jacobi integral
E, as functions ob, respectively, obtained by using the in-

Auwp is roughly consistent, although slightly larger than that
shown in Fig. 3. This overestimation is due to approxima-
tionswp — 1~ 6 andC = 0. In fact, the latter approximation

stantaneous impact model. Adopted parameters are the sami$ Pad especially for orbits withh = 1.85-2.0, since they

as those in Fig. 2. It can be easily recognized that the fi-

nal spin changes are much larger than those obtained due t

1.5

1.0F

3 os5f

0.0

=1
1.6

1.8 2.0 2.2

b

2.4 2.6

Fig. 3. Final values of the spin changevy, (solid curve in the upper panel)
and the Jacobi integrad (solid curve in the lower panel), as a functiontof

The case withe =i =0, rp = 0.8, wp jnj = 1.0, en = 0.5, andet = 0.9 is
studied. A dashed curve in the upper panel represents the change of spi
after the first impact: if it overlaps with the final value of the spin change,
it means that this orbit leads to an escape immediately after the first re-

bound, whereas orbits which experience the sliding phase have much Iarger(Awp>(e’ 2 wp,ini) =

final spin changes than those obtained due to first impacts. A horizontal
dot-dashed line in the lower panel represents the valuge obrresponding

to C = 0. Note that the final values @ for orbits with the sliding phase
are negative £ < 0.75 forrp = 0.8).

loose much energy by large inelastic rebounds, and do not

&xperience any retrograde revolution around the moonlet. It

should be noticed that there also exist some captured orbits
(E < 0) for b ~ 1.9: for these orbits\wp = 0.

4. Equilibrium spin rate of moonlets

Now we study the equilibrium spin rate of the moonlet.
If the averaged spin changawyp) is positive, the torque ex-
erted on the moonlet is also positive so that the spin rate
of the moonlet increases and vice versa. With changing the
initial spin ratewp inj, we can obtain the equilibrium spin
rate wp eq for which the torque vanishegAwp) = 0). The
collision rate Pcoi(e, i) of small particles per unit surface
number density onto the moonlet is given by (e.g., Ida and
Nakazawa, 1989)

dtdi

3
PCOl(e5i)=/pC0|(eai5baTa)\')ibdb (27_[)2

where pcol = 1 for collision orbits and otherwise 0. Using

(28)

this collision rate, the averaged final spin is given as

1
—/Awp(e,i,b,r,k,wp,ini)
Peol

X PCOl(e’ ia b5 T, )")
3 drdi

X — W (29)

2



338

0.6 T T
y=1.05-0.58x
Wpe=1.81

0.4

<Aw,>

Fig. 4. Averaged spin changéwp) (symbols) as a function afy, i;, to-
gether with a corresponding linear fit, in the casecef i =0, rp = 0.8,

en = 0.5, andet = 0.9. The equilibrium spin rate of the moonlet, for which
(Awp) =0, corresponds to 1.81.

We assume that distributions of small particles with respect
to b, 7, andx are uniform.
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sliding orbits, the sliding probabilit¢s|iq is given by

. 1 .
Csnd(e,l,wp,ini)=—/ps|id(e,t,b, T, A, Wp,ini)

Peol
3 dtdi

% > i
2 (2m)?’
wherepgiq is 1 for sliding orbits and otherwise 0.
Further, we define the averaged spin changes for sliding
and non-sliding orbits, which are also helpful for under-
standing the following results. The averaged spin change of

sliding orbits{Awp)siid is defined as

(31)

(Awp)siid(e, i, wp,ini)

= </Awp(e,i,b,t,k,wp,ini)psnd(e,i,b,t,k,wp,ini)

3 dtdi
X — -
2 (2m)?
3 drdi\"!
X (/pslid(eai5ba T,)&,wp,ini)ébdb W) . (32)

Figure 4 shows an example of the averaged spin changeReplacing psiia by pnon-siie, Which is O for sliding (and

(Awp) as afunction of the initial spin ratep inj. The instan-

also for captured) orbits and otherwise 1, the averaged spin

taneous impact method was used, with the same parameterghange for non-sliding orbit&Awp)non-siid can be obtained

asusedinFig. 2 =i =0,rp=0.8,e=0.9, andep = 0.5.

We obtain the equilibrium spin ratep ¢q~ 1.8 at the zero
point, by a linear interpolation using the nearest two points.
In the same manner, we obtain the equilibrium spin rate also

in other cases. In most of the cases, there is only one equilib-

rium solution. However, there are a few special cases which
have two stable equilibrium solutions (see Appendix B).

As shown in Section 3.2 (see Fig. 3), the equilibrium spin
rate is affected by the fraction of sliding and captured orbits
relative to the total number of collision orbits. Therefore, to
help to understand the dependence of the spin rate on variou
parameters, we define the capture and sliding probabilities.
For the capture probabilit¢cap the definition introduced in
Ohtsuki (1993) is used:

. 1 .
Ccap(E, 15 Cl)p,ini) =— / Pcap(e, i,b,T, A, wp,ini)
Peol

3 drdi

X — W , (30)

2
where peap is 1 for collision orbits with finalE < 0, and
otherwise 0. In order to define the sliding probability in the
same manner, we need an exact definition for sliding orbits.
In the present paper, we treat orbits Wity > #im and final
E > 0 (thus excluding orbits that are eventually captured) as
sliding orbits, wheregjig andzim are the total duration of the
sliding phase and the limiting time, respectively. The slid-
ing phase corresponds f@n| < uncrit for the instantaneous
model and t& > 0 for the force model. We adopt the limit-
ing time asim = 77/(2+/3) ~ 0.9, which corresponds to the
quarter of the period of an infinitesimal oscillation around
the subplanet points (see Eq. (A.5)). Using this definition of

S

in the same manner.
4.1. Dependence of spin rate on rp

Figure 5a shows the equilibrium spin raigeq as a func-
tion of rp for the casen = 0.5 ande =i = 0. We compare
the results for four different cases: for two different impact
methods with two different strengths of frictiosy & 0.5 and
0.9 for the instantaneous impact method, @pe- 0.1 and
0.4 for the force method, respectively). To aid understand-
ing of this figure, we also show the equilibrium spin rate
obtained by considering only the first impact of each parti-
cle with the moonlet, as would be appropriate in the case of
instantaneous sticking. In addition, Fig. 5b shows the slid-
ing and capture probabilities. For the case of large enough
rp (~ 2.0), the colliding particles escape immediately after
the first impact, so that the equilibrium spin rate is almost
the same as that obtained by the first impacts only. Further
more, this value is very close to the theoretical valyé 1
obtained for the zero random velocity case when neglecting
the mutual gravity and thus also multiple impacts and the
possible sliding phase and/or capture (Salo, 1987a; Ohtsuki,
2003a, 2003b)

On the other hand, although the obtained equilibrium spin
rate depends on the impact method and the strength of fric-
tion, the equilibrium spin for, ~ 1 is much larger than that
promoted by first impacts only. This follows because signif-
icant fraction of colliding particles experiences the sliding
phase which enhances the torque, as we showed in Fig. 3.
Forrp > 0.8, the sliding probability increases with decreas-
ing rp, and alsofescand Awp of the sliding orbits increase
(see Eqg. (27)). Hence, the equilibrium rotation rate increases
with decreasingp. Forry < 0.7, most of the colliding orbits
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Fig. 5. (a) The equilibrium spin rate of the moonlet as a functionpah

the case ot = 0.5. Four different cases are shown: two different impact
methods with two different strength of frictios; = 0.5 and 0.9 for the in-
stantaneous method, afd= 0.1 and 0.4 for the force method, respectively.
The equilibrium spin rate obtained by considering only the first impacts is
also shown. The statistical errors estimated by simulations using different
grids in the impact parametér(but with the same\b), are smaller than the
size of each mark. Fof ~ 1, the equilibrium spin rate is enhanced by par-
ticles experiencing the sliding phase, while fgr< 0.7, wp ~ 1 due to the
captured orbits. Two stable equilibrium solutions exist aroge: 1.2 for

et = 0.9: the lower values are represented by the dashed curve. (b) Capture
and sliding probabilities corresponding to parameters of (a), but only for
et = 0.9 (these probabilities are almost independent of the impact method
and the strength of friction). The dashed curve shows the capture probabil-
ity obtained in Ohtsuki (1993) for the frictionless case with= 0.5.

are captured, and there are no sliding orbits. It means that
all of the colliding orbits which experience a sliding phase
longer thanyi, are captured finally. Thus, the equilibrium
spin rate is mainly determined by captured orbits and almost
equals the synchronous rotation rate.

As compared with Ohtsuki (1993), our capture probabili-
ties for the cases of, = 0.7 and 0.75 are significantly larger.
Since friction was not included in his numerical calculations,
the Jacobi energies of the sliding orbits remained constant
during the sliding phase. Thus, some of the orbits were able
to continue their sliding motions indefinitely with positive

Jacobi energies, and therefore were not counted as captured

orbits in his paper. Since we include friction, however, the
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friction. For the case of, < 0.6, the capture probabilities in
the present paper are well consistent with those in Ohtsuki
(1993). This suggests that for sma}l the Jacobi energies
of the colliding particles become typically negative already
before they start the sliding motion.

4.2. Dependence on the collisional method and friction

An interesting feature seen in Fig. 5 was that whereas
for the force model an increased strength of friction leads to
largerwp, the opposite was true for the instantaneous impact
model, givingwp,eq(st = 0.9) > wp eq(et = 0.5). This is fur-
ther illustrated in Fig. 6, showing the equilibrium spin rate
wp,eq @s a function of 1- ¢ (for the instantaneous impact
model) and’s (for the force model,) in the case o= i =0,
rp = 1.0, anden = 0.5. One of the most important charac-
teristics of this figure is thabp eq Obtained by the instanta-
neous model is generally larger than that by the force model.
Also, wp,eq S€ems indeed to have a peak aroundsl = 0.1
for the instantaneous impact model whereggq increases
monotonically with¢s for the force model.

In order to understand the difference between the impact
methods, we examine the dependences of the characteristics
of sliding and non-sliding orbits on the impact method and
the strength of friction. Figures 7a and 7b sh@wp)siig
and (Awp)non-siid as functions of 1- ¢ and ¢z, for the pa-
rameter values of Fig. 6. We compare the results for two
different values ofvp jnj = 0.5 and 1.5, the equilibrium spin
rate falling between these values. If we assume, like in Sec-
tion 3.2, thatC = 0 andug = rp(6 — (wp — 1)) = O (cor-
responds to strong friction) at the time of the escape after
the sliding phase, thefAwp)siid should be about 1.32 and
0.32 forwp,inj = 0.5 and 1.5, respectively. Indeed, when the
strength of friction is increasedA wp)siic becomes close to
these estimated values. For the case of weaker frictign,
is less enhanced at the time of the escape, since the spin
rate can not adjust quickly enough to kegp~ 0, resulting
in smaller{Awp)siig- Thus, if the spin evolution of moonlet
were determined only by sliding orbits, the equilibrium spin
ratewp, eqwould increase with increasing the strength of fric-

15 T T
Inst. model
1.0 b
36
0.5F Force model _
L 7 = 1.0
0.0 . L
0.001 0.010 0.100 1.000

L,1—€,

Jacobi energies of these orbits can decrease during the slidrig. 6. Dependence of the equilibrium spin raig eq on the strength of
ing phase and become finally negative. Hence, our capturethe friction 1— et and¢; for the two different impact methods. The used

probabilities become larger than those in the case without

parameters arg = 1.0 andep = 0.5.
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1.5T T T
Solid:  <Aw,>

1132 value ofwyp at the time of escape, and thus, leads to smaller
Dashed: <Aw,> wnsia

Wp,eq-

4.3. Dependenceon ep
7032 Although the normal coefficient of restitution is an impor-
tant parameter affecting the orbits of small particlgseq is
insensitive tosp, unlessey is close to unity, or unless the
effect of friction is very strong. This can be seen in Fig. 8
where we plotwp eq as a function ot,, comparing the same
four different cases as in Fig. 5. We also show the sliding
probability which is found to depend strongly en. If the
0.001 0.010 0.100 1.000 L X .
1—e, effect of friction is weakwp eq is determined almost solely
@) by sliding orbits even if their fraction is not so large. Since
————— the value of{ Awp)siig does not change so much for different
Solid:  <Aw,>ue 1132 values ofen, wp eq is insensitive taen. However, if friction
Dashed: <Aw,>nun-sa ] is strong enough, the contribution from non-sliding orbits
becomes important, so thaiy ¢q decreases with decreas-
ing sliding probability. Ife, is close to unity, most particles
escape after the first rebound, and there are only few slid-
ing orbits. Thereforep eq becomes small, being practically
identical to that obtained by considering just the first im-
pacts, shown in Fig. 5. However, the casesgfclose to
unity is of a limited interest, as in this case the expected ve-
locity dispersion is so high that no formation aggregates is
expected (Salo, 1992, 1995).
In the present paper, we assume thais constant, al-
: though generally it is expected to depend on the impact ve-
(b) locity. Typical collision velocity of small particles onto the
_ _ o _ moonlet is likely to be at least of the ordermf In dimen-
Fig. 7. (a) Averaged spin change for sliding\ep)siig: solid curves) and a1 form, this velocity corresponds t00.1 cms2 for
non-sliding orbits (Awp)non-siic- dashed curves) as a function of-Let, . g , . .
shown for two different values afp, jnj = 0.5 and 15. Instantaneous impact moonlets with 10 m_ radiiin Satur_n S outer Aring. 'Accord!ng
method is used. Indicated values 1.32 and 0.32 are the theoretical maximumtO laboratory experiments of collisions between ice particles
values of the averaged spin change dgyi, = 0.5 and 15, respectively with frosted surfaces, the value gf for this impact velocity
(see Eq. (27)). (b) Same as (a) but using the force method. is about 0.5 (Bridges et al., 1984), wheregss about 0.8
for impacts with frost-free surfaces (Supulver et al., 1995).
tion. On the other hand Awp)non-siid becomes smaller with  For the latter case, one can find that the enhancement of spin
increasing friction forwp inj > wp eq- Als0 in the case of the

<AW> o, <AGL> ron-sis

0.5F

<A gy <AW,> pon-sia

force model, similar trends ofAwp)siia and (Awp)non-siid 201
are seen.
Thus, the strength of friction for which the largest value 1 5L

of wp.eq is Obtained is determined by the balance between
these two contributions. For the instantaneous impact model, . I
wp,eq attains maximum for - g =~ 0.1, for which value § 1.01
the contribution to the torque from non-sliding particles is
small whereagAwp)siig is large. For the force model, the

increase of{ Awp)siia With £t is stronger, andyp,eq Simply 0 7 .. Siiding Probabiliy
becomes larger with increasing friction, the contribution of i e
non-sliding particles being less important. 0.0l . \ AT
It is also evident from Fig. 7 that the smaller value of 0.0 0.2 0.4 0.6 0.8 1.0
wp,eq for the force model in comparison to the instantaneous .
model is due to a typically smaller value @kwp)siid- In the Fig. 8. Dependence ap.eq on en for the case of — i — 0 andrp 10,

force model, the strength of friction is proportional to the Four different cases are showsg = 0.5 and 0.9 for the instantaneous
mechanical pressure between the slightly overlapping small method, and; = 0.1 and 0.4 for the force method, respectively. The slid-
particle and moonlet. Hence, the effect of friction is dimin- ing probability for the case oft = 0.9 andwp inj = 1.0 (dashed curve) is
ished immediately before escaping, which induces a smallera!so shown (being almost similar for all four cases and for diffesgyyh;)-
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rates by sliding orbits is less effective from Fig. 8. How- decrease of'sjig may reduce thep ¢q. However, a more im-
ever, if we consider 100 m-sized moonlets, thus impacts with portant point is that Awp)sii¢ decreases witl, suggesting
~1cms, g, is smaller than 0.5 regardless of the surface that sliding particles can escape with a much smaller value
conditions. In this case, the equilibrium spin rate is almost of ¢ than that in the two-dimensional case (Eq. (27)). Thus,

the same as for a fixeg, >~ 0.5 it is this three-dimensional effect which significantly reduces
the equilibrium spin rate. Nevertheless, we find that the spin
4.4. Dependence on the random velocity rate is still enhanced by sliding orbits even for a la¢ge

Figure 10a showsy eq as a function ofp, for the case

So far, we have discussed the results only for the caseof v, = vesg ¢/i = 2, anden, = 0.5. We compare the re-
e =i = 0. However, if there are large aggregates in rings, sults for the same four different friction cases as studied
the random velocity of small particles, = v/e? 4 i2, is en- in Fig. 5, which was fory, = 0. Further, in Fig. 10b, we
hanced due to gravitational scatterings by these aggregatesp|ot Ceap+ Csiig and Cjig for the corresponding parame-
The magnitude of the velocity may depend on the abundanceters of Fig. 10a. Compared with the case ot i = 0,
of moonlets, as well as on the optical depth of the ring. If now wp.eq is smaller for allrp, and alsoCeap + Csiig be-
aggregates are commo, is expected to be of the order comes smaller. For, < 0.7, wp eq is almost unity because
of the escape velocity of these aggregatese = ,/6/rp. of the captured orbits, regardless of the friction strength. For
On the other hand, if there are Only few moonlets and the |argerrp’ Wp.eq decreases Wltlﬂp and depends on the fric-
optical depth is large, then the energy dissipation in the tion strength. For F < rp < 1.2, the dependence af, eq is
mutual collisions of small particles between the encoun- gimilar to that in the case of; = O: wp.eq for the instan-

ters with the moonlets is likely to reducg to a much  taneous impact model is larger than for the force model.
smaller value thaneso For the case of identical particles  a|so, as in Fig. 5,0p.eq(et = 0.9) > wp.eq(er = 0.5), and
without aggregatesyr is also expected to be near the es- wp.eq(l = 0.4) > wpeq(és = 0.1). Since the value of, in

cape velocity of the small particles, although the exact value most parts of the Saturn’s rings is considered to be within
depends on collisional parameters suche@¢Salo, 1995;

Ohtsuki, 1999). 15 ey
. . . UV, = Ves —o Inst, € = 0.9
Figure 9 showsup eq @s a function ok, for a fixed ra- /i = 2 o—a Inst, € = 0.5
tio e/i = 2, in the case ofy = 1.0, &y = 0.9, andep = 0.5. Moy 2 o
Note thate = 2.19 corresponds to; = vesc in this case. In 1.0F ; ’ ]

the figure,wp eq decreases monotonically with In order

to understand this result, we also plot the sliding probabil-
ity Csiig and the averaged spin change of sliding particles o5l
(Awp)siid for the casevp ini = 1.0. As shown by Fig. 7a, the
contribution to the torque from non-sliding orbits is found

Wpeq

to be insignificant for the casg = 0.9, so we focus on the 0.0L."
properties of sliding orbits. The figure indicates tltajiq 04 06 08 10 12 14 16 1.8
decreases with, though it varies very little foe < 1.5. The ,
@)
04 T T T T T
S0lid: Cuopt Cia
o Dashed: C,,
N 0.3F
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3
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s . 0.2F
5 00r e 3 0.1F
<AW,> g
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(b)
Fig. 9. Dependence @p eq on the reduced eccentricigy with a fixed ra- _ _ )
tio ¢/i = 2. The instantaneous method is used witk= 0.9, en = 0.5, and Fig. 10. (a)‘ Same as Fig. 5 but for the case of non-zero random velocity,
rp=1.0. The averaged spin velocity for sliding orbits and the sliding prob- Ur = vesc With ¢/i = 2. Error bars are shown only fer = 0.9 and¢f = 0.1.
ability for the case ofup,ini = 1.0 are also shown, as well as the spin rate The equmbnum‘s_pln ratg is much smaller than thatefgfz =0, butlls still ‘
obtained if only first impacts are used. The equilibrium spin rate decreases &"hanced by sliding orbits as compared with the spin rate obtained by first

with increasinge, since the enhancement by sliding orbits becomes less ef- MPacts, forrp ~ 1. (b) Capture and sliding probabilities corresponding to
fective. parameters of (a) wittwp jnj = 1.0.
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the above range, the spin rates of embedded moonlets mighpoints is given by (Harris, 1996)
constrain the physical parameters, if these rates can be deter- 3

mined by observations. Feg > 1.2, wp eqis about the same g =— — rpa)g — 2rp, (33)

as or slightly smaller than that obtained by considering first p

impacts only (we confirmed that if we usg >~ 1, wpeq is where the first, second, and third terms represent the self
more accurately consistent with that by first impacts). gravity, the centrifugal force, and the tidal force, respec-

tively. Note that dimensionless quantities defined in Sec-
tion 2 are used: e.g., the spin rate is normalized by the

5. Discussion keplerian angular velocity. This equation alsq follows from
Eq. (22), withg = —#, evaluated for = rp with 6 = wp — 1.
5.1. Comparison with Ohtsuki (2003a, 2003b) If g is positive, a spherical aggregate is stable, as all other

locations in its surface feel a weaker disrupting effect than

Ohtsuki (2003a, 2003b) also address the topic of this pa- that in the subplanet points.

per, and his and our studies are complementary to each other. In local N-body simulations, performed for various dis-
Taking into account the Rayleigh distribution of orbital ec- tances and internal densities of particles, aggregate forma-
centricities and inclinations of impact particles, he estimated tion takes place forp < 0.6-0.7 (Salo, 1995; Karjalainen
not only the systematic component but also the random com-and Salo, in preparation). Strictly speaking, this result cor-
ponent of the moonlet spin, which arises from collisions of responds just to thenser of aggregate formation: due to
individual |arge impactorS, not considered in our paper. In limitations mentioned in Intl’OdUCtion,the actual fate and sta-
Ohtsuki (2003a), he obtained analytic results for the non- bility of the aggregates has not been evaluated, as the simula-
gravitating limit, and in Ohtsuki (2003b), based on numeri- tions so far performed lack the effect of continued collisions
cal integrations of colliding orbits, he showed the results for @nd accretion of particles arriving from adjacent unperturbed

a large range of velocity dispersions but mainly fgr=1, ~ 1ing regions. In principle, this subsequent evolution might
and found a good agreement with the analytic results for the €ndanger the stability of the aggregates, if for example their
high-velocity limit. spins would be strongly excited. However, based on the re-

In the case of =i = 0, we confirmed that our equilib-  Sults of the current study this seems not probable: for the

fium spin rate forrp = 1, &0 = 0.5, ande; = 0.9, is consis-  tyPical case Oy = vesq the equilibrium spin ratep,eq we

tent with his resultsdip, eq~ 1.4), and that our equilibrium fo!,lnd is smaller than the synchronous rotation rate for all
spin rate approaches to his analytic resufi = 1/4) with ~ 7p'S (See Fig. 10), whereas according to Eg. (33), the rota-
increasingrp (note that the self-gravity becomes negligi- tional instability would requireop greater thgn 1.96, 1.45,
ble for largery: see Fig. 5). For the three-dimensional case 1.0forrp=0.8,0.9,1.0, respectively (see Fig. 11).

with e/i = 2, he used velocity dependent (Bridges et al., On the other hand, for the casewt= 0, wp,eqmay attain -
1984), and the effective value of is larger than 0.5 with his values larger than unity, especially for the instantaneous im-

assumed moonlet size (1 m). Therefore, the direct compar-Pact model witfe; ~ 0.9 (see Fig. 5). In this case alganay
ison with our results is difficult. However, our equilibrium P€come positive for some parameter values. Such a small ve-

spin rate for largey, is roughly consistent with his analytic locity dispersion could in principle be achieved if the random
result (p.eq= 0.3665: see Fig. 10). He found that the equi- velocities of small particles are sufficiently damped by their

librium spin rate taken into account the Rayleigh distribution 3F ' ‘
of e andi is roughly equal to the value obtained with a fixed ff;
e provided that the fixed ~ (¢2)1/2. Thus, our results for . s
the case ot/i = 2 obtained with neglecting the eccentric- 2 e ]
ity distribution may give reasonable estimates even for the =
general case with a distribution efandi. 3
He also found that the effect of the random component on
wp,eq Can be significant if the velocity dispersion is as large Tr ]
as the escape velocity and the large impacts are common.
In this case, slow rotation of the moonlet in both prograde v
and retrograde direction would be possible. These large col- 0 . ’ ,
lisions would also be destructive if the moonlets are rubble- 0.6 0.8 1.0 1.2
pile aggregates as we will discuss below. 7,
5.2. Sability of moonlets Fig. 11. The minimum spin rate required for the rotational instability of a

strengthless aggregate as a functiomgpparameter, for the case gf=1

. . . . (dashed curve) and = 2 (dotted curve). The equilibrium spin rateg eq
Here we discuss the stability of rotating moonlets with o the case ofy = 0 andvesc (solid curves) obtained by using the instan-

zero internal strength (rubble pile aggregates). The accel-taneous method witky = 0.9 are also shown. The smaller valuewpfand
eration toward the center of the aggregate at the subplanethe larger value of make the moonlet more unstable.
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mutual collisions between encounters with moonlets. This ducted localV-body simulations for the case gf = 1.0 and
special situation, that a few moonlets would form in a ring tq = 0.005, wherery denotes the optical depth. He used the
that is otherwise stable against aggregate formation, mightinstantaneous impact method with = 0.5, and examined
happen if the density of moonlets (or maybe their cores) is the dependence of the mean sfin) on ¢;. In the equilib-
significantly larger than that of the other particles. Never- rium state, the values div;) that he found were about 0.60
theless, even for, = 0, if rp is smaller than about 0.8, the and 0.45 forey = 0.9 and 0.5, respectively. Our results in
moonlets are always stable (see Fig. 11). Fig. 10 forvr = vescandrp = 1.0 indicate thatvp ¢q = 0.65
There are also other important effects which tend to break and 0.58 fore; = 0.9 and 05, respectively. Thus, our re-
the aggregates. One is their elongated shape. Generally, agsults are consistent with his, the small differences being due
gregates forming itV -body simulations do not have a spher- to the fact that the actual equilibrium random velocity is
ical shape but are elongated in the radial direction due to slightly larger than the mutual escape velocia?{Y/? ~ 2.5
planetary tide (for example, see Salo, 1995, Fig. 17). Then, in Toyama (2001), in comparison o= 2.19 for vy = vesg.
the gravity term becomes aboutfltimes smaller than that The agreement was further confirmed by some additional
for the spherical case given by Eq. (33) (Harris, 1996; see N-body simulations performed with the instantaneous im-
also Eq. (1)), assuming that the aggregate is a prolate bodypact method used in Salo (1995). For the above parameters,
with a long/short axes rati¢. For example, using = 2 (as but utilizing more particles¥ = 500) and longer duration
suggested by Fig. 17 of Salo, 1995), the stability criterion (Tyyr = 10007k) (N = 255 andTyyr = 2007k in Toyama,
for a synchronously rotating aggregate becomes 0.79, 2001), these new simulations gaje,) = 0.56+ 0.03 and
which is a much more stringent condition than< 1 for 0.55+0.05forg; = 0.9 and 0.5, respectively. Using data ob-
a spherical aggregate (Fig. 11). Even in this case, typical tained by three-body calculations and assuming an isotropic
aggregates withy, < 0.7 should remain rotationally stable, ~Gaussian distribution af, (which is roughly consistent with
unlesswy is significantly larger than unity. Nevertheless, a Rayleigh distribution o andi), we also calculated the
the spin rates for elongated moonlets have not been calcuspin rates for the same values of the root mean squarge of
lated in the present study, and the possibility remains that as given by thes&/-body calculations, yielding about@D
wp promoted by impacts and accretion could be significantly and 057, respectively. Thus, besides confirming the validity
different from that for a spherical case. Another related fac- of Toyama (2001) results, this agreement also shows the mu-
tor not considered in the present study is the effect of surfacetual consistency of ouV-body and three-body calculations,
irregularities: clearly, a rubble pile aggregate can hardly be performed by entirely different codes and methods.
expected to have a smooth surface. In the non-gravitating In Salo (1995) some simulations for the identical particle
case, such irregularities, or deviations from a regular shape,case included particle spins and friction. The main difference
might promote larger spin rates, as suggested by theoreticato Toyama (2001) was that these simulations were performed
studies and simulations (Salo, 1987a, 1987b). On the otherfor a larger optical depth. The adopted distance 108m
hand, if we include the mutual gravity, irregularities might and internal densityy = 900 kgnt3, correspond top =
prevent particles from sliding on the moonlet, which will re- 1.22 for an identical particle pairu(= 1 in Eqg. (4)), and
duce the spin rate of the moonlet. Therefore, it is uncertain to rp, = 0.77 for u = 0. Using the instantaneous model with
if these effect promote larger spin rates or not, and further ¢5 = 0.5 ands; = 0.5, it was found thatw,) = 0.66+ 0.09
studies are required. for tq = 0.4. For the case of such a high, gravitational
Other important effect limiting the growth of aggregates wakes form and the total velocity dispersion of the sys-
may be the mutual collisions between large aggregates (Bar-tem, measuring largely the relative movement of wakes, was
bara and Esposito, 2002). Since the valuerpis larger much larger than the mutual escape velocity. However, in the
for equal-sized particles, these collisions themselves are dewakes, the orbital elements of nearby particles are aligned
structive, and also they can significantly accelerate the spinand the relative velocity inside them remains significantly
rates of the aggregates, which may lead to rotational insta-smaller, still corresponding to almost the mutual escape ve-

bility. locity of individual particles (Salo, 1995; Daisaka and Ida,
1999). Thus, we compare the results of thasbody simu-
5.3. Comparison of spin rates with N-body simulations lation with our present calculations fof = vesc (Fig. 10).

Our results shows thatw;) >~ 0.4 for rp = 1.2, which is

As formulated in Section 2.3, the equilibrium spin rate much lower than that obtained in Salo (1995). There are at
wp,eq also corresponds to thecomponent of the mean spin  least two possible explanations for this discrepancy. One is
rate for a collisional ring system composed of identical par- that the distribution of direction and velocity of impacts is
ticles. modified in wakes, whereas we assume a uniform distribu-

The case inN-body simulations to which we can di- tion of orbital elements#, A, andb; see Section 4). Other
rectly compare our three-body results are the systems withpossibility is that wakes act like particle clumps, so that the
small optical depth and rather larggvalue, thus excluding  effective value ofp becomes smaller for collisions between
cases where gravitational wakes or aggregates form. Toyamahe clumps and individual particles. Note that ) increases
(2001) (and personal communication with K. Ohtsuki) con- with decreasingp. For example, if we assume that the wakes
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can be treated as clumps containing 100 individual particles, agreement with our results if the optical depth adopted in

then usingu = 0.01 andD = 0.7 in Eg. (4) would give N-body simulations is small enough. On the other hand, for

rp = 1.03. According to Fig. 10, this would already indi- the large optical depth case, in which gravitational wakes

cate (w;) >~ 0.6. However, a detailed analysis of collisions form, the simulated mean spin velocity is much larger than

in wakes is required, in order to actually determine which that predicted by our results. There are some plausible expla-

explanation, if either of the above, is valid. nations for this discrepancy, but further studies are required
Richardson (1994) also conducted simulations with al- to clarify which one is correct.

most same conditions as in Salo (1992, 1995), adopting a The next paper in this series will extend our studies to

distribution of particle sizes. He found thab,) is between larger optical depths with various size distributions of ring

about 0.2 and 0.4. This is a number-averaged value for all particles, using localV-body simulations. Especially, the

the particles, so that it actually represents the mean valuedispersion of spin rate, which has not been examined in the

for the smallest particles. On the other hafd,) becomes present paper, will be very important, for the interpretation

larger for larger particles, anfo;) of the largest particles  of the infrared observation data that will be obtained in the

was as large as that obtained in Salo (1995) (see Table 2 ofCassini mission (e.g., Spilker et al., 2002).

Richardson, 1994). This size dependence is in principle sim-

ple to explain by the, dependence abp, ¢q: the equilibrium

spin ratewp eq decreases withyr (Fig. 9). Because of the  Acknowledgments

partial energy equipartition, smaller particles have a larger

random velocity dispersion than the larger ones. Moreover,  This work is supported by the Academy of Finland and

difference of the normalized velocity is even more pro-  the Oulu University special research-unit grant. We are

nounced. Therefordew;) is expected to be larger for larger  grateful to K. Ohtsuki, R. Karjalainen, and anonymous two

particles. Again, a more detailed analysis\obody experi- referees for providing useful comments.

ments is needed.

) Appendix A. Effect of friction on sliding motion
6. Conclusion

) . ) ) ) o If the particle initially slides in a retrograde direction
Conducting three-body integrations including friction 5,qund the moonlet, the time scale of remaining on the

and spins, we have determined the equilibrium spin rate yoonjet for the particle is determined by the dissipation rate
wp,.eq NOrmalized by the orbital angular velocity. The equi- of ¢ (thus E) in the case ofrp.2 < rp < rp.1. Figure 12

librium spin rate corresponds to the spin rate of the moonlet gj,q\ws the dependence of the duration of the sliding phase
in a equilibrium state if the moonletis much larger than other ., the strength of friction, L & and ¢, for the two dif-
particles, and also corresponds to the mean spinrate in a ringerent impact methods, with parameter values fixed to those
system with identical particles. N . in Fig. 2. This figure shows that the duration of the slid-
We have found thabp eq is enhanced by sliding orbits as  jg phase has a minimum (corresponds to a maximal energy
compared with the mean spin rate determined by consider-gjssipation rate) around -4 & ~ 0.01 for the instantaneous

ing first impacts only. For the case of zero random velocity, impact model and aroungj ~ 0.1 for the force model. On
wp,eq becomes larger than unity fep ~ 1.0 in some range

of the strength of friction. With increasing the relative ran- 1000 i r '
dom velocitywp eq decreases. If the relative random velocity i
is as large as the mutual escape velocityeq is lower than
unity for rp ~ 1.0, but its value is still larger than that ob-
tained by first impacts. For, < 0.7, captures happen after
some collisions, by whichy, ¢q becomes almost unity for all
the cases of collisional parameters.

Based on the obtained data of the equilibrium spin rate, 10
we have discussed stability of rubble pile aggregates. If
the relative random velocity of incident particles is small
enough, aggregates become rotationally unstable.®k0 1 K \ ,
rp < 1.0 in some limited cases of the strength of friction. 0.0001 0.0010 0.0100 0.1000 1.0000
However, it might be rather special situations and aggregates t,1-€,
are stable for larger random velocity. There might be other _ _ .

Fig. 12. Dependence of the duration of the sliding phase on the strength of

mechanisms which break aggregates such as collisions befric'[ion, measured by % ¢ in the instantaneous impact model, and¢byn

tween large aggregates- _ N . the force model. Values of other parameters are the same as those in Fig. 2.
Compared with the mean spin velocities obtained by The longer duration of the sliding phase corresponds to a smaller energy

N-body simulations including spins, we have found a good dissipation rate.

100 ¢

Force model

t ena/ T

Inst. model
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the other hand, the duration of the sliding phase becomesone oscillation period, we obtain
longer for both stronger and weaker friction. The small en-
ergy dissipation in the case of weak friction is quite natural.
On the other hand, how can we understand the small energy
dissipation for the case of strong friction? Apparently, if fric-
tion is strong enough, the spin velocity quickly adjusts so
that the tangential component of relative velocity remains This has the maximum absolute value whtes: +/3/2.5.
small during the S||d|ng phase, resu|ting in small energy dis- Using this value let us calculate the most effective value
sipation. of &. In the case of infinitesimal oscillation arouéid= 0,

Itis possible to estimate analytically the valuespfead- & = 3/r5 — 3rp, equal to 2.3 forrp = 0.8. Since we use
ing to the strongest energy dissipation. Including friction and un.crit = 0.01 in the instantaneous impact model, the colli-
spins, the equations of motion in the sliding phase are, from sion frequency = g/(2un cit) = 115. In this case, the most

21 //3
dr =22 8B (A7)

ar T TN 325224 3

Egs. (11) and (12), and Egs. (14) and (16), given by effective energy dissipation is obtained for1s; = 0.02.

2 This estimate is consistent with the results in Fig. 12, al-
% =—B(0 —(wp—1) - gsin29, (A1) though a bit larger than obtained in orbital integrations. Ex-
jlll : 2 periments with other values af, ¢rit also confirm the valid-
dwp 2B(6 — (wp— D). (A.2) ity of the above approximative treatment. _

dt 2 Unfortunately, it is impossible to derive an analytic solu-

Here, B represents the strength of interaction between the tion of the most effective value of for the force model,

small particle and the moonlet, defined by becauses can not be treated as a constant. But as sug-
201 e) Instantaneous impacts gested by Fig. 12, .the_depen.dence of.er?ergy dissipation on

f= 7 ) .Ig'(t ’ (A.3) Fhe strength of fr|ct|on is quahtauve!y S|m|lgr to that for_the
_7I(9—TJ—1)\’ Force model instantaneous impact model. One interesting feature is that

. . the duration of the sliding phase increases drastically around
wherev = g/(2un crit) represents the collision frequency in  ~0.25

the instantaneous impact model, wigh= 3/rZ — rp6? —

2rpf — 3rpcog 0, which is of order of unity in the retrograde

reVOIUtion if rp ~ 0.8. ASSUming thaﬁ iS constant and us- Append|x B. Mu|tip|em|uti0nsf0r wp eq
ing Egs. (23) and (A.1), we obtain the equation describing ’

energy dissipation as Figure 13a shows a figure similar to Fig. 4 except for the
dC 2 dE . case ofrp = 1.2 instead of 0.8. It is noticeable that there
dr %E =—2p0(6 — (@p— 1). (A.4) are two equilibrium solutionsyp eq = 0.43 and 1.05 (see

) . ] ] also Fig. 5). This phenomenon is caused by the change of
It is rather complicated to derive the general solutions gpital behavior aroundp ini = 1.0. Figure 13b shows or-
(6] 1) aroundd =0, an approximative solution can be 1 2 respectively. The particle starts the sliding motion with
easily obtained. Though this is not the exact solution describ- the retrograde direction. kp,ini is larger than about 1.0,
ing evolution around the mo_onlgt, it helps to understan.d the the small particle can not go beyond the highest potential
dependency of energy dissipation gnAs we showed in  hoint (x, y) = (0, 1.2), and it changes its sliding direction
Fig. 2, the basic motion of the particle is dominated by the {5 the prograde and escapes after that. On the other hand, for
potential, even if there is fr|ct|on,. suggesting that frlctlon_ can smaller value otop ini, the orbit continues sliding phase with
be treated as a small perturbation. In the case of the infini- e retrograde direction beyond the highest potential point
tesimal oscillation, the basic motion is given by and separates from the moonlet near the subplanet point, hit-
6 = ¢1cosv/3r, (A.5) ting th'e moonlet. again before escaping. In the former case
o of orbits, the spin changawp becomes large, due to the
where we have chosen the initial phase angle to be zero ands|iding phase in the prograde direction, whereas this does

tion into Eq. (A.2), we obtain also for othem’s. Hence, the average valyawp) changes
2.58 ] significantly aroundop jnj = 1.0. Similar transitions of or-
wp—1l=c1 25262 + 3(2'5'3 cosv/3r +/3sinv/3r) bital behavior are found for other parameters:jf~ 1.2.

—2581 For example, if we user = 0.5 and same other parame-
+eze ’ (A.6) ters as in Fig. 13b, transition of the orbit behavior happens
wherec; is an integration constant determined by the ini- aroundwp ini = 0.4. However, this value is much smaller
tial conditions. In the above, the exponential term becomes thanwyp eq SO that this transition does not affect for obtaining
small after a certain time, so we neglect this term. Substitut- wp eq. Also for the case of force model, similar transitions
ing Egs. (A.5) and (A.6) into Eq. (A.4), and averaging over are found, but the contribution to the torque from the sliding
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Fig. 13. (a) Same as Fig. 4 but for the casep#= 1.2. Note that there are
two stable equilibrium spin rategyp eq= 0.43 and 105. (b) Examples of
orbits with different values obyp jnj = 0.8 and 1.2, in the case of = 1.2,
e=i=0,b=24,¢=0.9, andep = 0.5.

orbits themselves are not so significant fgr= 1.2. Any-
way, this phenomenon happens only in very limited cases,
and thus does not have a physical significance.
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