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Spin rates of small moonlets embedded in planetary rings
I. Three-body calculations
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Abstract

We investigate the spin rates of moonlets embedded in planetary rings, subject to collisions with surrounding small particles, us
body integrations including friction and spins. All successive impacts of the particle with the moonlet are followed, including a
sliding phase after the initial inelastic rebounds. Two methods for treating impacts, (1) as instantaneous velocity changes and (2
impact force model, are applied after Salo (1995, Icarus 117, 287). Conducting a series of integrations with various initial sum
velocity of the moonlet and the particle, we determine the equilibrium spin rate for which the averaged torque vanishes. This eq
spin rate corresponds to the final spin rate of the moonlet if the moonlet is much larger than the surrounding particles; it also corre
the mean spin rate for a ring composed of identical particles. We find that the equilibrium spin rate is enhanced by sliding orbits as
with the spin rate determined by considering only the first impacts of the particles with the moonlet. If the random velocities of
particles are small enough, the resulting equilibrium spin rate of the moonlet can be larger than the synchronous rotation rate,rp ∼ 1,
whererp denotes the sum of radii of the colliding pair normalized by their mutual Hill radius. In this special case aggregates withou
strength may become rotationally unstable. However, the equilibrium spin rate decreases with increasing random velocity, and agg
always rotationally stable in the more likely case where the relative velocities are comparable to the mutual escape velocity. We als
our results with the mean spin rates found in previousN-body simulations, and find a good agreement for optically thin rings; howeve
spin rates for optically thick rings are significantly larger than those predicted by our three-body calculations.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Planetary rings, such as Saturn’s rings, provide good l
laboratories for studying the dynamics of flat collisional s
tems. In most parts of the rings, tidal force of the planet p
vents ring particles from accreting into larger bodies. Ho
ever, numericalN -body simulations suggest formation
apparently stable aggregates (moonlets) in outer parts o
urn’s A ring, if the internal density of particles is not mu
smaller than that of solid ice (Salo 1992, 1995; Karjalain
and Salo, 2001). Existence of moonlets is suggested al
Saturn’s F ring by Barbara and Esposito (2002), who sho
that a moonlet collision model can consistently reprod
the localized brightenings seen in the Voyager images
during the ring plane crossing observations.

* Corresponding author.
E-mail address: ryuji.morishima@oulu.fi (R. Morishima).
0019-1035/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2003.10.003
-

Unfortunately, observation of these hypothetical mo
lets is quite difficult, because their expected size is un
the resolution limit of Voyager cameras (∼ 10 km), and be-
cause their total cross section is much smaller than that o
smaller particles. Using ground based stellar occultation
servations, French and Nicholson (2000) estimated the u
limit for particle radius in the Saturn’s A (and B) ring to b
roughly 20 m. However, a single power law distribution
particles sizes was assumed, which might not be applic
for moonlets made by runaway growth (see Barbara and
posito, 2002). Hence, the existence of moonlets with siz
100 m–1 km is still controversial.

If there are moonlets and the accretion of surround
particles onto them continues, there would be no ring
these regions. Thus, there needs to be some mecha
which break these moonlets, perhaps implying a bala
between continuous accretion and breakup processes
Weidenschilling et al., 1984). Other possibility is that la
moonlets clear gaps around them and thus avoid furthe

http://www.elsevier.com/locate/icarus
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cretion: the minimum size of a moonlet to be able to ope
gap is estimated to be roughly 1 km (Spahn and Sremčevíc,
2000; Daisaka et al., 2001; Sremčevíc et al., 2002). Even in
this case, one needs an explanation for why other part
do not continue to form other stable moonlets.

Besides its internal density, the spin rate of a moonle
an important factor affecting its stability against the sub
quent break up. Although there are many formulations
lated to the so-called classical Roche limit, a model of Ha
(1996) is quite simple to understand. He considered a s
strengthless, spinning, and self-gravitating prolate ellips
and derived a simple expression for the distanceacrit inside
which the disrupting centrifugal and tidal forces overco
the self-gravitating force (see also Davidsson, 1999),

(1)
acrit

R∗
=

(
2ρ∗/ρ

1/f − (ω/ωc)2

)1/3

,

whereR∗ andρ∗ are the radius and density of the plan
ρ is the density of the body,f � 1 is the axis ratio of the
ellipsoid,ω is the spin frequency of the body, andωc stands
for the surface orbit frequency of the body (ω2

c = 4π/3Gρ).
Equation (1) suggests that an aggregate becomes more
unstable (acrit is larger) with an increased absolute value
the spin frequency.

Besides rotational instability, mutual collisions of moo
lets offer a plausible mechanism for their breakup (Barb
and Esposito, 2002). Also in this case, the pre-impact
state is an important factor affecting the collision outcom
(Leinhardt et al., 2000).

Main factor to determine the spin rate of a moon
whether it is a strengthless aggregate or a cohesive
having a non-zero yield strength, is likely to be the c
lisions and/or accretion of surrounding particles. Also
the moonlets in gaps, like Pan in the Encke gap (Showa
1991), their rotation is likely to be determined by accret
processes of small particles, since the time scale to r
synchronous tidal locking is very long for such small bo
ies. If more moonlets will be found, whether these resid
gaps or not, and their spin states can be clarified (thou
is questionable if this is possible even by the Cassini m
sion), this will help to constrain many physical paramet
for the moonlets and small ring particles, such as the in
nal densities and the coefficient of restitution, by compa
with theoretically expected values.

There are many studies about the collisional evolu
of spins of celestial bodies. A lot of studies have addres
the problem of how planetary spins are determined by p
etesimal accretion, usually assuming a perfect accre
(e.g., Ida and Nakazawa, 1990; Lissauer and Kary, 19
Dones and Tremaine, 1993; Ohtsuki and Ida, 1998). In
case of planetary rings, however, the accretion probabilit
colliding particles becomes small due to the planetary
(Ohtsuki, 1993). In this case, the spin rate of a moonlet is
termined by inelastic rebounds of small particles, includ
multiple hits of the same particle, possibly occurring w
ly

very small time intervals (so-called “sliding phase”: see
tit and Hénon, 1987; Wisdom and Tremaine, 1988).

Salo (1987b) performed numerical simulations of the c
lisional evolution of ring particles, including spins of par
cles (and thus also frictional force). He obtained ratios
the kinetic energy of spin motions to that of the random m
tions, as well as determined the dispersion and the mean
of the particles, but only in the case where the self-gravit
particles was neglected. Also some theoretical calculat
exist for the spin evolution of ring particles (Salo, 198
Araki, 1991; Hämeen-Anttila and Salo, 1993). According
these studies, the particles’ mean spin acquires a non
vertical component, of about 0.3 times the orbital frequen
depending only little on various parameters (optical de
elasticity model), consistent with numerical results in S
(1987b). However, in these theoretical studies, self-gra
of particles was included only approximately (the mean v
tical gravitational field and the scattering by binary enco
ters), so that the effects of accretion and multiple impa
were not included.

In subsequent localN -body simulations with self-gravita
ing particles by Salo (1995), some runs included frict
and spins of particles, and it was found that the vert
component of the mean spin is much larger than the ab
theoretical expectation. Examples of aggregate forma
were also given in Salo (1995), but the longterm stability
spin evolution of aggregates was not studied in detail.
used local method, with periodic boundary conditions, is
well suited for this purpose. Namely, if the conditions
aggregate formation are satisfied, then most of the mas
comes rapidly contained in one or few aggregates, and t
are little further collisions by small particles, in compa
son to a realistic ring where a continuous flow of partic
is supplied by the surrounding regions. Also, to study
subsequent evolution of the aggregate in a realistic man
the supply of new particles would need to correspond
non-perturbed ring region, violating the strict periodicity a
sumed in the code. Thus, the existing local simulations (S
1992, 1995; Karjalainen and Salo, 2003, in preparation) h
limitations in their relevance to the evolution of spin rates
the aggregates.

On the other hand, three-body calculations provide
easier way to investigate the effects of collisions and s
gravity of particles, at least in the low optical depth lim
In this case, the flow of particles is a given keplerian flo
and each particle-moonlet interaction is treated separa
from all others. Using numerical calculations of three-bo
problem, Petit and Hénon (1987) examined the sliding ph
and the evolution of the velocity dispersion of particles
inelastic collisions and gravitational encounters. Howe
they did not include friction nor spins of the particles. O
suki (1993) examined the capture probability of collidi
particles with various normal and tangential restitution
efficients. He did not consider spins of particles, in ot
words, the particles were assumed to keep the synchro
rotation, with no exchange of energy between random
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tions and spin motions. Thus, the evolution of spins was
clarified.

In the present paper, conducting three-body orbital i
grations including spins and friction, we examine the c
lisional evolution of spin rates of moonlets embedded i
swarm of smaller particles. Actually, the method to obt
the final spin rates of moonlets is completely the same as
to obtain the mean spin rate for a ring of identical partic
so that we can compare our results with those obtaine
previousN -body simulations. We also calculate the capt
probability of colliding particles, in a similar fashion as Oh
suki (1993). Further, we also calculate the sliding probab
representing the rate of temporally (but not permanen
captured orbits. Throughout our calculations, we comp
the two different methods for treating collisions used in S
(1995).

Ohtsuki (2003a, 2003b) also address the same top
this paper, and his and our studies are complementa
each other. Taking into account the Rayleigh distribution
orbital eccentricities and inclinations of impacting particl
he estimated not only the systematic (averaged) compo
but also the random component of the moonlet spin, wh
arises from the collisions of large impactors; this is not c
sidered in the present paper studying just the system
component. The reader is recommended to read these p
as well.

In the present study, we assume that the moonlet and
liding particles are spherical and do not have surface irre
larity, and that there is no sticking force between contac
bodies. As a result, the sliding phase plays a significant
in determining the final spin of a moonlet. Hence, we m
a special effort to investigate the sliding phase as accur
as possible. It should be noted, however, that the assu
tion of spherical particles without surface irregularity is
highly idealized model. Hence, one should be careful w
applying the results in the present paper to realistic ri
Nevertheless, it is clear that one needs first to understan
ideal case before continuing to the more realistic (and
more complex) case.

In Section 2, we describe our methods for calculating
lisions. In Section 3, we describe the basic orbital beha
of particles in the sliding phase. In Section 4, we show
dependence of the moonlet spin on various parameters
the strength of gravity and friction. In Section 5, we comp
our results with those of Ohtsuki (2003a, 2003b), disc
briefly the stability of rubble pile aggregates, and moreo
compare our results with those obtained in earlierN -body
simulations. Finally, our conclusions are given in Section

2. Methods

2.1. Hill’s equations

Consider a moonlet experiencing collisions with s
rounding ring particles and orbiting around a planet.
t

t

rs

-

-

e

examine the spin rate of the moonlet determined by
collisions of ring particles, subject to the tidal field a
the moonlet’s gravity. To describe the motion of these b
ies, we adopt the Hill’s approximation which assumes
the masses of the ring particles and the moonlet are m
smaller than the planet’s mass and that their random ve
ties are much smaller than the keplerian velocity around
planet. We adopt a rotating local Cartesian coordinate
the origin at the center of the moonlet, with thex-axis point-
ing radially outward from the planet, they-axis pointing in
the orbital direction, and thez-axis pointing in the direction
perpendicular to the orbital plane according to the right-h
rule. The equations describing the relative motion betwe
ring particle and the moonlet are given by Hill’s equat
(e.g., Petit and Hénon, 1986; Nakazawa and Ida, 1988):

ẍ = + 2ẏ + 3x − 3x

r3 ,

ÿ = − 2ẋ − 3y

r3 ,

(2)z̈= − z − 3z

r3
,

wherer = (x2+y2+z2)1/2. The above equations are writte
in a non-dimensional form: time is normalized by the inve
of the keplerian angular velocity of the moonletΩ−1, and
length is normalized by the Hill radius given by

(3)RH = ah= a
(
m1 +m2

3M∗

)1/3

,

wherea is the semimajor axis of the moonlet,h is the re-
duced Hill radius,M∗, m1, andm2 are the masses of th
planet, the moonlet, and the ring particle, respectively. In
following, we use normalized quantities unless otherwise
dicated.

The relative strength of the gravity to the tidal force of
planet is characterized byrp parameter, defined as the su
of the radii of the moonlet and the particle, normalized
the Hill radius. For Saturn’s rings,

rp = r1 + r2 = 0.77

(
Dρ

900 kgm−3

)−1/3(
a

108 m

)−1

(4)× 1+ (Dµ)1/3
(1+µ)1/3 ,

wherer1 andr2 are the physical radii of the moonlet and t
small particle normalized byRH, ρ is the internal density
of the small particles,µ = m2/m1, andD denotes the vol
ume filling factor of the moonlet. The valueρ = 900 kgm−3

corresponds to the density of non-porous solid ice, w
the density of the aggregate,Dρ, may be smaller due t
voids. Figure 1 illustrates the dependence ofrp ona for Sat-
urn’s rings, for various values ofρ, D, andµ. We conduct
our calculations for a wide range of non-dimensional ra
0.5 � rp � 2.0, covering well the tidal environment in pla
etary rings.
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Fig. 1. Dependence of therp parameter on the semimajor axisa for Saturn’s
rings, with various values of the mass ratioµ, the volume filling factor of
the moonletD, and the internal density of particlesρ. The locations of main
rings are also shown. If the aggregate is composed of identical particle
typical volume filling factor found inN -body simulations is about 0.7, ver
close to the maximum packing limit of identical spheres,π/(3

√
2)= 0.74

(Salo, 1995). In the case of size distribution,D can reach even 0.8.

When the ring particle is far from the moonlet and th
their mutual gravity is negligible, the solution of Eq. (2)
given by the epicyclic motion,

x = b− e cos(t − τ ),
y = −3

2
b(t − φ)+ 2e sin(t − τ ),

(5)z= i sin(t − λ),
whereφ defines the origin of time (we chooseφ = 0 and
thus the possible impacts occur neart = 0),b= (a2−a)/RH
stands for the impact parameter, i.e., difference in the
tial semimajor axis (wherea2 is the semimajor axis of th
small particle),e = e∗/h, i = i∗/h for the reduced eccen
tricity and the reduced inclination (wheree∗ and i∗ are the
eccentricity and the inclination in the ordinary use),τ , and
λ for the longitude of pericenter, and the longitude of
cending node, respectively (see Nakazawa and Ida, 1
for details). We set the initial azimuthal distance as|y0| =
max(40,20e) which is large enough for neglecting the m
tual gravity. We mainly show the results for the case
e = i = 0, but also discuss the cases with different value
e (� 3.5), with fixede/i = 2. This range ofe covers well the
plausible range of velocity dispersionvr = √

e2 + i2, since
the escape velocity of the moonlet equalsvesc = √

6/rp;
the e/i ratio approximates that found in low optical dep
rings dominated by gravitational encounters (Ida, 19
Ohtsuki, 1999).

We numerically integrate Eq. (2) using a fourth-ord
variable time-step Runge–Kutta method and calculate
torque exerted on the moonlet by the collisions of partic
,

When the particle is far enough from the moonlet, the typ
time step is∼ 10−2, whereas it is shortened to∼ 10−4 near
the moonlet in order not to miss any collisions. Details
treating the collisions are explained in the next subsect
Each orbital integration is continued until the particle go
far away from the moonlet (|y|> |y0| with t > 0), or until
the Jacobi energyE becomes negative, as adopted in O
suki (1993), whereE is the energy integral of Eq. (2) give
by

(6)E = 1

2

(
ẋ2 + ẏ2 + ż2) − 3

2
x2 + 1

2
z2 − 3

r
+ 9

2
.

Small particles colliding with the moonlet have initially po
itive values ofE, but if E becomes negative after some c
lisions the particle can not escape from the moonlet. Stri
speaking, negativeE does not always guarantee the captu
since we include the spins of small particles and the a
tional pressure force at the time of impact. However, we
that an escape of a particle after its Jacobi energy beco
negative is very rare, and therefore use the conditionE < 0
for the capture. It is clear that the capture is not possib
rp > 1, in which case all the points on the surface of
moonlet extend beyond the Hill’s surface (E > 0 even for a
zero relative velocity).

In order to obtain accurate results, we need to divide
orbital parameter space into a fine grid. In the case ofe =
i = 0, we sample the impact parameter with#b= 0.003. In
the case ofe �= 0, we adopt#b= 0.1 and use divisions ofτ
andλ as(2π/#τ,π/#λ)= (40,20). Using these divisions
of parameters, we find about a few hundreds and five th
sands colliding orbits in each parameter set fore = i = 0
ande �= 0, respectively. Additional tests with a finner gr
indicate that our results are not significantly changed.

2.2. Treatment of impacts

Two different methods are used in the calculations
impacts, following Salo (1995): in the first method, the
cations of impact points are searched and the correspon
instantaneous velocity changes are calculated, wherea
the second method, particle orbits are integrated thro
impacts, including additional visco-elastic forces arising
tween the slightly overlapping particle and moonlet. T
latter method has significant advantages forN -body simu-
lations of dense self-gravitating systems (e.g., Salo, 1
Salo et al., 2001), although it uses more CPU time rela
to the first method in three-body calculations. We briefly
scribe both methods in the following.

In terms of the relative velocityv = (ẋ, ẏ, ż), the velocity
differenceu at the contact point is given by

(7)u = v − rp(ωp − N)× n,

with

(8)ωp = r1ω1 + r2ω2

r
,

p
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wheren is the unit vector pointing to the direction of th
center of the small particle,ω1, ω2, ωp are the spin angula
velocity vector of the moonlet, that of the small particle, a
the averaged spin vector in the inertial (not rotating) coo
nate system, respectively, andN is the unit vector in thez
direction. Note that in Eq. (7),ωp − N represents the spi
vector in the rotating coordinate system and that the c
ponents of the inertial spin vectorωp need to be expresse
with respect to the instantaneous axis directions of the
tating system. Therefore, the equatorial components oωp
change even between collisions as

(9)
dωp

dt
= ωp × N .

2.2.1. Instantaneous impact model
In the first method, the post-collisional velocity diffe

enceu′ is given by (Salo, 1987a; Richardson, 1994)

(10)u′ = −εnun + εtut,

whereεn andεt stand for the normal and tangential resti
tion coefficients (εt = 1 corresponds to a frictionless impa
note that ourεt was denoted by(1− β) in Salo (1987a) and
by (1 − εt) in Salo (1995), respectively), andun = (u · n)n
andut = u − un are the normal and tangential compone
of the pre-collisional velocity difference at the contact po
respectively.

The changes of the relative velocity and the spin vec
are derived from the conservation of linear and angular
mentum as

(11)v′ − v = −(1+ εn)un − α

1+ α (1− εt)ut,

(12)rpω
′
p − rpωp = 1

1+ α (1− εt)n × ut,

wherev′ andω′
p are the relative velocity and the averag

spin vector after the impact, respectively, andα is the effec-
tive moment of inertia of the colliding pair, whose mome
of inertia areJ1 = α1m1R1

2 andJ2 = α2m2R2
2, defined by

(13)
1

α
= m1m2

m1 +m2

(
1

m1α1
+ 1

m2α2

)
.

In what follows, we assume that both the particle and
moonlet have a homogeneous internal mass distributio
thatα1 = α2 = α = 2/5. Changes in the spin velocity of th
moonletr1ω1 and in the spin velocity of the small partic
r2ω2 are obtained by multiplying Eq. (12) withµ/(1 + µ)
and 1/(1+µ), respectively. Thus, the collision outcome f
an arbitrary mass ratioµ can be obtained by one orbital ca
culation.

If we find overlapping of the small particle and the moo
let during the integration, we go back one step, to the t
before the impact, and analytically estimate the location
velocity of the impact using a second-order Taylor exp
sion for the particles’ mutual separation. Then changing
velocity and the spin vectors following Eqs. (11) and (1
we extrapolate the position and velocity to the end of
time step, and continue the integration with the Runge-K
method. If we simply change the velocity after finding
overlap, without using the above way for correcting to
more accurate impact time, this easily leads to an error
the particle sinks deeper into the moonlet.

In the sliding phase, we setεn to unity if the perpendicula
component of impact velocity is smaller thanun,crit = 0.01,
as adopted in previous studies (Wisdom and Tremaine, 1
Ohtsuki, 1993; Salo, 1995). We find that we can not excl
errors caused by sinking of the small particle into the mo
let without this treatment. Note, however, that the efficie
of friction depends onun,crit (see Appendix A).

2.2.2. Force model
In this method, the normal force exerted between

overlapping particle and the moonlet is given by the
ear visco-elastic model of Dilley (1993), and the tangen
force is also included. The additional translational acce
ation v̇add arising between the overlapping, colliding pair
modeled as

(14)v̇add= −ξ̈
(
n − α

1+ α+fnt

)
,

with

(15)ξ̈ =

−ω2

0ξ − ξ̇

s
, ξ � 0,

0, ξ < 0,

whereξ = rp − |r| is the penetration depth,+f denotes the
coefficient of friction, andnt = ut/|ut| is the unit vector
pointing in the tangential direction. In the above,ω0 is the
undamped frequency of the harmonic impact force, ands is
the characteristic time of damping, respectively. The eq
tion for the averaged spin motion is given by

(16)
d(rpωp)

dt
= − 1

1+ α+f ξ̈n × nt,

whereα is the factor defined in Eq. (13). Note that the s
evolution of the moonlet and the small particle can be
tained by multiplying with the same mass coefficients a
the case of Eq. (12).

The attractive characteristic of the linear force mode
that the parametersω0 ands can be tied to the normal res
tution coefficientεn, and the duration of the impact (Sa
1995). The solution of Eq. (15) forξ � 0 is given by

(17)ξ = ξ̇ (0)

ωm
e−t/2s sin(ωmt),

whereωm is the modified frequency given by

(18)ωm =
√
ω2

0 − 1/(2s)2.

Using the above equations, the normal restitution coeffic
is described as

(19)εn = − ξ̇ (π/ωm)

˙ = e−π/2ωms ,

ξ(0)
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where the impact startst = 0 and finishest = π/ωm. We
adoptω0 = 200, which is the same value as used in S
(1995). In fact, the impact duration (∼ TK/(2ω0), whereTK

(= 2π) is the orbital period) derived from this value of th
frequency is much longer than realistic collision time (< 1 s,
in the dimensional form), but we checked that results do
differ from those obtained by using a higher value ofω0.
This scaling of the impact duration to be longer than
physical impact duration is very convenient as it allows
use of larger integration steps. Afterω0 is fixed, the damp-
ing parameters is determined by the desiredεn via Eqs. (18)
and (19).

If we include the gravity term 3/r2
p from Eq. (2) into

Eq. (15), a constant term 3/(rpω0)
2 is added to the solu

tion Eq. (17). Note that this term is generally negligible
the first hit of each particle. However, when the normal co
ponent of the impact velocity is reduced by several impa
the gravity term can become significant, and Eq. (19)
comes a wrong description forεn since the solution ofξ re-
mains slightly positive, which means the sliding phase. T
is the one of fundamental differences from the instantane
method, in which the sliding phase is always described b
sequence of small impacts. However, as in this case no
ergy is lost via inelasticity, this corresponds to settingεn = 1
in the instantaneous impact method whenun< un,crit.

The other important difference is the way of describ
friction. Comparing the normal and tangential compone
of velocity change in each impact for both impact mode
the relation between the friction coefficient+f and the tan-
gential restitution coefficientεt is given by

(20)+f = (1− εt)
(1+ εn)

|ut|
|un| .

Thus, ifεt is constant+f can not be a constant and vice ver
and either one should have an impact-angle dependence
laboratory experiments of ice particle collisions by Sup
ver et al. (1995) showed that the value ofεt is about 0.9
for glancing 1 cms−1 impacts, also suggesting thatεt be-
comes smaller for more perpendicular impacts. This se
to be consistent with+f rather thanεt being constant. Un
fortunately, since they did not clearly show the impact-an
dependence of ice particle collisions (they only showed
for rubber ball collisions), we do not know how accurate
+f is constant; there is also a possibility that neither+f norεt
is independent of impact angle. In any case, the experim
by Supulver et al. (1995) suggest that the value of+f is small
(< 0.1).

Taking into account the above uncertainties we think
it is worth compare both methods, with a range of differ
friction parameters, and study the differences in the imp
spin states in the rings. It should also be noted that for the
tial impact in each encounter, the average value of|ut|/|un|
is expected to be about unity, whereas in the sliding ph
this value becomes much larger than unity. Therefore,εt
is constant, the strength of friction (∝ (1 − εt)) in the slid-
-

e

ing phase is strongly overestimated compared with the
of +f being fixed.

In numerical integrations using the force model, we fi
that a large relative error occurs inut when|ut| ∼ 0, in which
case the numerical time step is automatically shortened
much. This follows from the discontinuity of tangential for
at |ut| ∼ 0. In order to avoid this discontinuity, we repla
nt = ut/|ut| by ut/ut,crit if |ut| < ut,crit = 0.001. However,
the results are not sensitive to the exact choice ofut,crit.

2.3. Method for obtaining the equilibrium spin rate

Using the two types of impact methods described ab
we calculate the torque exerted on the moonlet by the
lisions of small particles. This is obtained by evaluating
spin change#ωp in each orbital integration and averagi
it over all impacting orbits. In the case that the particle
capes from the moonlet, this change is obtained simply f
the difference between the final and initialωp. However, if
the small particle is captured, we put the final spin vel
ity as ωp = N , instead of using the instantaneous value
the time when the numerical integration is terminated. T
treatment is justified, asN -body experiments indicate th
the captured particles eventually accumulate at the subp
points(x, y, z)= (±rp,0,0), with u = v = 0, which accord-
ing to Eq. (7) impliesωp = N .

Conducting the calculations with various initial spin ra
ωp,ini , we determine the equilibrium spin rateωp,eq for
which the averaged torque vanishes (〈#ωp〉 = 0). It should
be noted that the equatorial components of the avera
torque must vanish whenωp,ini,x = ωp,ini,y = 0, because o
the symmetry of the distribution of impacting particles w
respect toz and ż, so that we only need to consider thez-
component of the averaged torque. In the following, we o
the subscriptz from thez components of spins, in order
avoid complicated expressions (e.g.,ωp,eq≡ ωp,eq,z).

In the equilibrium state, the following equation is sat
fied:

(21)rpωp,eq= r1〈ω1〉 + r2〈ω2〉,
where 〈ω1〉 and 〈ω2〉 represent the averaged spin angu
velocities of the moonlets and the incoming particles (c
sider averaging over a lot of moonlets independently
rounded by small particles, or equivalently, time averag
about one moonlet). If there are enough mutual collisions
tween small particles,〈ω2〉 is expected to be less than un
(e.g., Salo, 1987b), and as we show laterωp,eq is also of
order of unity. Thus, if we consider the caser1 � r2, the
second term in the right-hand side of Eq. (21) is negligib
so that we can treatωp,eq itself as the equilibrium (or time
averaged) spin rate of the moonlet〈ω1〉. On the other hand
if we consider collisions of identical particles (r1 = r2 and
〈ω1〉 = 〈ω2〉), one can immediately find thatωp,eq represents
〈ω1〉 also in this case. Thus, we can also check our 3-b
results by comparing withN -body simulations of identica
particle systems.
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3. Sliding phase

Before studying the dependence of the equilibrium s
rate on various parameters like the strength of gravity
friction, we describe the typical orbital and spin evolutio
focusing on the sliding phase. Figure 2 shows (a) an
ample of colliding orbit including the sliding phase a
(b) the corresponding evolution of physical quantities
functions of time, obtained by the instantaneous imp
model. After some large rebounds, the particle in Fig
starts to slide on the moonlet in the retrograde direction (θ̇ <

0, where we adopt cylindrical coordinates(r, θ); (x, y) =
(r cosθ, r sinθ)), as seen in the rotating frame. During t
sliding phase, the relative tangential velocity at the con
point,uθ = rθ̇ − rp(ωp − 1), remains small because the sp
rate more or less compensates the rotation rate (ωp − 1� θ̇ ).
This happens unless the friction strength 1− εt (or +f for
the force model) is too small. The Jacobi integralE oscil-

(a)

(b)

Fig. 2. (a) A typical example of a collision orbit including a sliding pha
shown in the rotating Hill frame, for the case ofe= i = 0,b = 2.3,rp = 0.8,
andωp,ini = 1.0. The method of instantaneous velocity change in impac
used withεn = 0.5 andεt = 0.9. Note that the particle performs several te
of retrograde revolutions around the moonlet, as seen in the rotating f
before the final escape. (b) Corresponding evolution of various quantiti
a function of time (normalized by the orbital periodTK (= 2π)). In order
from the top panel, the spin rateωp, the angular velocity of mutual revo
lution θ̇ , the relative tangential velocity at the contact point including
spin velocityuθ = rθ̇ − rp(ωp − 1), and the Jacobi integralE are shown,
respectively.
,

lates due to the exchange between the spin energy an
translational kinetic energy, but on the averageE decrease
with time due to frictional energy loss. With decreasingE,
the time averaged value oḟθ increases. Finally, the slidin
direction around the moonlet switches to the prograde d
tion (θ̇ > 0), after that the particle escapes from the moo
almost immediately. It should be noted that the spin exp
ences a large jump shortly before escape. Qualitatively s
results are obtained also when using the force model, or
different strengths of friction.

3.1. Analytic solution for sliding motion

The basic behavior in Fig. 2 can be easily underst
by the analytical solution of the sliding phase, derived
Petit and Hénon (1987). Introducing cylindrical coordina
and neglecting friction, the equation of motion in the tw
dimensional case is written as

r̈ = rθ̇2 + 2rθ̇ + 3r cos2 θ − 3

r2 + γ,

(22)θ̈ = −2ṙ

r
(θ̇ + 1)− 3

2
sin 2θ,

where γ denotes the radial acceleration due to the p
sure force between contacting particles. In the sliding ph
r ≈ rp, and thusṙ = r̈ = 0. Therefore we need only stud
the behavior ofθ with time. Multiplying Eq. (22) byθ̇ and
integrating, we obtain

(23)θ̇ = ±
√

3 cos2 θ +C,
where the constant of integrationC is related to the Jacob
integral asC = 2(E + 3/rp − 9/2)/r2

p. If C is positive, the

solution corresponds to a retrograde (θ̇ < 0) or prograde
(θ̇ > 0) revolution around the moonlet. IfC is negative (bu
C > −3), it describes an oscillation aroundθ = 0 or π , θ̇
obtaining both negative and positive values. In Fig. 2,C is
positive at first, which corresponds toE > 0.75, and the par
ticle revolves around the moonlet in a retrograde direct
After C becomes negative, the type of motion is change
the gravity is sufficiently strong so that the particle can k
its sliding motion, it starts to oscillate on the moonlet. B
in the case of Fig. 2, the particle escapes practically im
diately afterC becomes negative.

This escape can be understood by estimating the r
acceleration. Substituting Eq. (23) into Eq. (22), the con
tion for maintaining the sliding phase (r̈ < 0 for γ = 0) is
written as

(24)6 cos2 θ +C ± 2
√

3 cos2 θ +C < 3

r3
p
.

The left-hand side attains its maximum whenθ = 0 or π .
Thus, puttingC = 0, the condition for keeping the retrogra
rotation around the moonlet becomes

(25)rp< rp,1 =
(

3√
)1/3

= 1.058.

6− 2 3
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On the other hand, the condition for maintaining the slid
phase after the type of motion is changed from the retrog
rotation to the oscillation is given by

(26)rp< rp,2 =
(

3

6+ 2
√

3

)1/3

= 0.682.

Since the value ofrp = 0.8 of Fig. 2 is between these tw
limiting values, the sliding phase can be maintained d
ing the retrograde rotation, but not after the sign ofθ̇ be-
comes positive, leading to an escape. It should be noted
Eqs. (25) and (26) are the conditions for the particle no
separate from the moonlet, whereas a separation doe
always result in escape. In practice we find that in orde
actually an escape from the moonlet after the retrograde
lution, the value ofrp must be larger than about 0.76 (th
is almost independent of the strength of friction), which
slightly larger thanrp,2.

In Appendix A, we explain the effect of the friction o
the sliding phase in detail, including analytical estimates
the energy dissipation.

3.2. Contribution of sliding orbits to averaged torque

Next we study what fraction of particles in the param
ter space experience the sliding phase, and how they a
the equilibrium spin rate of the moonlet. Figure 3 shows
final values of the spin change#ωp and the Jacobi integra
E, as functions ofb, respectively, obtained by using the i
stantaneous impact model. Adopted parameters are the
as those in Fig. 2. It can be easily recognized that the
nal spin changes are much larger than those obtained d

Fig. 3. Final values of the spin change#ωp (solid curve in the upper pane
and the Jacobi integralE (solid curve in the lower panel), as a function ofb.
The case withe = i = 0, rp = 0.8, ωp,ini = 1.0, εn = 0.5, andεt = 0.9 is
studied. A dashed curve in the upper panel represents the change o
after the first impact: if it overlaps with the final value of the spin chan
it means that this orbit leads to an escape immediately after the firs
bound, whereas orbits which experience the sliding phase have much
final spin changes than those obtained due to first impacts. A horiz
dot-dashed line in the lower panel represents the value ofE corresponding
to C = 0. Note that the final values ofC for orbits with the sliding phase
are negative (E < 0.75 for rp = 0.8).
t

t

t

e

o

r

first impacts forb = 1.85–2.0 and forb = 2.2–2.45. These
orbits experience a cascade of consecutive impacts, th
the sliding phase, and finally escape from the moonlet.
occurrence of the sliding phase is also confirmed by th
nal value ofE which is smaller than that corresponding
C = 0. From these results, it is expected that the equilibr
spin rateωp,eq is much larger than that obtained by cons
ering only the first impacts, because of the sliding orbits.

As we showed in Fig. 2,uθ becomes very small durin
the sliding phase unless the strength of friction is too sm
Thus, the spin in the sliding phase is approximately given
ωp − 1 � θ̇ . From Eqs. (23) and (24), the condition for t
particle to escape from the moonlet is found as 2θ̇2 + 2θ̇ −
C > 3/r3

p. Thus, the value oḟθ at the time of escape,̇θesc, is
given by

(27)θ̇esc�
−1±

√
1+ 2

(
C + 3/r3

p

)
2

,

where the sign ofθ̇esc is always positive in the case o
e= i = 0. The value ofC at the time of escaping depends
the history until the escape. If the particle initially revolv
around the moonlet in a retrograde direction,C decreases
gradually, so that the value ofC at the time of escaping i
roughly 0. This leads tȯθesc=#ωp = 1.28 for the parame
ters used in Fig. 3 (rp = 0.8 andωp,ini = 1.0). This value of
#ωp is roughly consistent, although slightly larger than t
shown in Fig. 3. This overestimation is due to approxim
tionsωp −1 � θ̇ andC = 0. In fact, the latter approximatio
is bad especially for orbits withb = 1.85–2.0, since they
loose much energy by large inelastic rebounds, and do
experience any retrograde revolution around the moonle
should be noticed that there also exist some captured o
(E < 0) for b� 1.9: for these orbits#ωp = 0.

4. Equilibrium spin rate of moonlets

Now we study the equilibrium spin rate of the moonl
If the averaged spin change〈#ωp〉 is positive, the torque ex
erted on the moonlet is also positive so that the spin
of the moonlet increases and vice versa. With changing
initial spin rateωp,ini , we can obtain the equilibrium spi
rateωp,eq for which the torque vanishes (〈#ωp〉 = 0). The
collision ratePcol(e, i) of small particles per unit surfac
number density onto the moonlet is given by (e.g., Ida
Nakazawa, 1989)

(28)Pcol(e, i)=
∫
pcol(e, i, b, τ, λ)

3

2
b db

dτ dλ

(2π)2

wherepcol = 1 for collision orbits and otherwise 0. Usin
this collision rate, the averaged final spin is given as

(29)

〈#ωp〉(e, i,ωp,ini)= 1

Pcol

∫
#ωp(e, i, b, τ, λ,ωp,ini)

× pcol(e, i, b, τ, λ)

× 3
b db

dτ dλ

2
.

2 (2π)
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Fig. 4. Averaged spin change〈#ωp〉 (symbols) as a function ofωp,ini , to-
gether with a corresponding linear fit, in the case ofe = i = 0, rp = 0.8,
εn = 0.5, andεt = 0.9. The equilibrium spin rate of the moonlet, for whic
〈#ωp〉 = 0, corresponds to 1.81.

We assume that distributions of small particles with resp
to b, τ , andλ are uniform.

Figure 4 shows an example of the averaged spin ch
〈#ωp〉 as a function of the initial spin rateωp,ini . The instan-
taneous impact method was used, with the same param
as used in Fig. 3:e= i = 0, rp = 0.8, εt = 0.9, andεn = 0.5.
We obtain the equilibrium spin rateωp,eq ≈ 1.8 at the zero
point, by a linear interpolation using the nearest two poi
In the same manner, we obtain the equilibrium spin rate
in other cases. In most of the cases, there is only one eq
rium solution. However, there are a few special cases w
have two stable equilibrium solutions (see Appendix B).

As shown in Section 3.2 (see Fig. 3), the equilibrium s
rate is affected by the fraction of sliding and captured or
relative to the total number of collision orbits. Therefore
help to understand the dependence of the spin rate on va
parameters, we define the capture and sliding probabil
For the capture probabilityCcap the definition introduced in
Ohtsuki (1993) is used:

(30)

Ccap(e, i,ωp,ini)= 1

Pcol

∫
pcap(e, i, b, τ, λ,ωp,ini)

× 3

2
b db

dτ dλ

(2π)2
,

wherepcap is 1 for collision orbits with finalE < 0, and
otherwise 0. In order to define the sliding probability in t
same manner, we need an exact definition for sliding or
In the present paper, we treat orbits withtslid> tlim and final
E > 0 (thus excluding orbits that are eventually captured
sliding orbits, wheretslid andtlim are the total duration of th
sliding phase and the limiting time, respectively. The s
ing phase corresponds to|un|< un,crit for the instantaneou
model and toξ > 0 for the force model. We adopt the limi
ing time astlim = π/(2√

3)∼ 0.9, which corresponds to th
quarter of the period of an infinitesimal oscillation arou
the subplanet points (see Eq. (A.5)). Using this definition
s

-

s
.

sliding orbits, the sliding probabilityCslid is given by

(31)

Cslid(e, i,ωp,ini)= 1

Pcol

∫
pslid(e, i, b, τ, λ,ωp,ini)

× 3

2
b db

dτ dλ

(2π)2
,

wherepslid is 1 for sliding orbits and otherwise 0.
Further, we define the averaged spin changes for sli

and non-sliding orbits, which are also helpful for und
standing the following results. The averaged spin chang
sliding orbits〈#ωp〉slid is defined as

〈#ωp〉slid(e, i,ωp,ini)

=
(∫

#ωp(e, i, b, τ, λ,ωp,ini)pslid(e, i, b, τ, λ,ωp,ini)

× 3

2
b db

dτ dλ

(2π)2

)

(32)×
(∫

pslid(e, i, b, τ, λ,ωp,ini)
3

2
b db

dτ dλ

(2π)2

)−1

.

Replacingpslid by pnon-slid, which is 0 for sliding (and
also for captured) orbits and otherwise 1, the averaged
change for non-sliding orbits〈#ωp〉non-slid can be obtained
in the same manner.

4.1. Dependence of spin rate on rp

Figure 5a shows the equilibrium spin rateωp,eq as a func-
tion of rp for the caseεn = 0.5 ande = i = 0. We compare
the results for four different cases: for two different imp
methods with two different strengths of friction (εt = 0.5 and
0.9 for the instantaneous impact method, and+f = 0.1 and
0.4 for the force method, respectively). To aid understa
ing of this figure, we also show the equilibrium spin ra
obtained by considering only the first impact of each pa
cle with the moonlet, as would be appropriate in the cas
instantaneous sticking. In addition, Fig. 5b shows the s
ing and capture probabilities. For the case of large eno
rp (∼ 2.0), the colliding particles escape immediately af
the first impact, so that the equilibrium spin rate is alm
the same as that obtained by the first impacts only. Fur
more, this value is very close to the theoretical value/4
obtained for the zero random velocity case when neglec
the mutual gravity and thus also multiple impacts and
possible sliding phase and/or capture (Salo, 1987a; Oht
2003a, 2003b)

On the other hand, although the obtained equilibrium s
rate depends on the impact method and the strength of
tion, the equilibrium spin forrp ∼ 1 is much larger than tha
promoted by first impacts only. This follows because sig
icant fraction of colliding particles experiences the slid
phase which enhances the torque, as we showed in F
For rp > 0.8, the sliding probability increases with decre
ing rp, and also,̇θesc and#ωp of the sliding orbits increas
(see Eq. (27)). Hence, the equilibrium rotation rate incre
with decreasingrp. Forrp< 0.7, most of the colliding orbits
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Fig. 5. (a) The equilibrium spin rate of the moonlet as a function ofrp in
the case ofεn = 0.5. Four different cases are shown: two different imp
methods with two different strength of friction:εt = 0.5 and 0.9 for the in-
stantaneous method, and+f = 0.1 and 0.4 for the force method, respective
The equilibrium spin rate obtained by considering only the first impac
also shown. The statistical errors estimated by simulations using diffe
grids in the impact parameterb (but with the same#b), are smaller than the
size of each mark. Forrp ∼ 1, the equilibrium spin rate is enhanced by p
ticles experiencing the sliding phase, while forrp < 0.7, ωp ∼ 1 due to the
captured orbits. Two stable equilibrium solutions exist aroundrp = 1.2 for
εt = 0.9: the lower values are represented by the dashed curve. (b) Ca
and sliding probabilities corresponding to parameters of (a), but only
εt = 0.9 (these probabilities are almost independent of the impact me
and the strength of friction). The dashed curve shows the capture prob
ity obtained in Ohtsuki (1993) for the frictionless case withεn = 0.5.

are captured, and there are no sliding orbits. It means
all of the colliding orbits which experience a sliding pha
longer thantlim are captured finally. Thus, the equilibriu
spin rate is mainly determined by captured orbits and alm
equals the synchronous rotation rate.

As compared with Ohtsuki (1993), our capture probab
ties for the cases ofrp = 0.7 and 0.75 are significantly large
Since friction was not included in his numerical calculatio
the Jacobi energies of the sliding orbits remained cons
during the sliding phase. Thus, some of the orbits were
to continue their sliding motions indefinitely with positiv
Jacobi energies, and therefore were not counted as cap
orbits in his paper. Since we include friction, however,
Jacobi energies of these orbits can decrease during the
ing phase and become finally negative. Hence, our cap
probabilities become larger than those in the case with
d

-

friction. For the case ofrp � 0.6, the capture probabilities i
the present paper are well consistent with those in Oht
(1993). This suggests that for smallrp the Jacobi energie
of the colliding particles become typically negative alrea
before they start the sliding motion.

4.2. Dependence on the collisional method and friction

An interesting feature seen in Fig. 5 was that wher
for the force model an increased strength of friction lead
largerωp, the opposite was true for the instantaneous imp
model, givingωp,eq(εt = 0.9) > ωp,eq(εt = 0.5). This is fur-
ther illustrated in Fig. 6, showing the equilibrium spin ra
ωp,eq as a function of 1− εt (for the instantaneous impa
model) and+f (for the force model,) in the case ofe= i = 0,
rp = 1.0, andεn = 0.5. One of the most important chara
teristics of this figure is thatωp,eq obtained by the instanta
neous model is generally larger than that by the force mo
Also,ωp,eq seems indeed to have a peak around 1− εt = 0.1
for the instantaneous impact model whereasωp,eq increases
monotonically with+f for the force model.

In order to understand the difference between the im
methods, we examine the dependences of the characte
of sliding and non-sliding orbits on the impact method a
the strength of friction. Figures 7a and 7b show〈#ωp〉slid
and 〈#ωp〉non-slid as functions of 1− εt and+f , for the pa-
rameter values of Fig. 6. We compare the results for
different values ofωp,ini = 0.5 and 1.5, the equilibrium spi
rate falling between these values. If we assume, like in S
tion 3.2, thatC = 0 anduθ = rp(θ̇ − (ωp − 1)) = 0 (cor-
responds to strong friction) at the time of the escape a
the sliding phase, then〈#ωp〉slid should be about 1.32 an
0.32 forωp,ini = 0.5 and 1.5, respectively. Indeed, when t
strength of friction is increased,〈#ωp〉slid becomes close to
these estimated values. For the case of weaker frictionωp
is less enhanced at the time of the escape, since the
rate can not adjust quickly enough to keepuθ ∼ 0, resulting
in smaller〈#ωp〉slid. Thus, if the spin evolution of moonle
were determined only by sliding orbits, the equilibrium sp
rateωp,eqwould increase with increasing the strength of fr

Fig. 6. Dependence of the equilibrium spin rateωp,eq on the strength of
the friction 1− εt and+f for the two different impact methods. The us
parameters arerp = 1.0 andεn = 0.5.
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Fig. 7. (a) Averaged spin change for sliding (〈#ωp〉slid: solid curves) and
non-sliding orbits (〈#ωp〉non-slid: dashed curves) as a function of 1− εt ,
shown for two different values ofωp,ini = 0.5 and 1.5. Instantaneous impac
method is used. Indicated values 1.32 and 0.32 are the theoretical max
values of the averaged spin change forωp,ini = 0.5 and 1.5, respectively
(see Eq. (27)). (b) Same as (a) but using the force method.

tion. On the other hand,〈#ωp〉non-slid becomes smaller wit
increasing friction forωp,ini � ωp,eq. Also in the case of the
force model, similar trends of〈#ωp〉slid and 〈#ωp〉non-slid
are seen.

Thus, the strength of friction for which the largest va
of ωp,eq is obtained is determined by the balance betw
these two contributions. For the instantaneous impact mo
ωp,eq attains maximum for 1− εt � 0.1, for which value
the contribution to the torque from non-sliding particles
small whereas〈#ωp〉slid is large. For the force model, th
increase of〈#ωp〉slid with +f is stronger, andωp,eq simply
becomes larger with increasing friction, the contribution
non-sliding particles being less important.

It is also evident from Fig. 7 that the smaller value
ωp,eq for the force model in comparison to the instantane
model is due to a typically smaller value of〈#ωp〉slid. In the
force model, the strength of friction is proportional to t
mechanical pressure between the slightly overlapping s
particle and moonlet. Hence, the effect of friction is dim
ished immediately before escaping, which induces a sm
,

value ofωp at the time of escape, and thus, leads to sma
ωp,eq.

4.3. Dependence on εn

Although the normal coefficient of restitution is an imp
tant parameter affecting the orbits of small particles,ωp,eq is
insensitive toεn, unlessεn is close to unity, or unless th
effect of friction is very strong. This can be seen in Fig
where we plotωp,eq as a function ofεn, comparing the sam
four different cases as in Fig. 5. We also show the slid
probability which is found to depend strongly onεn. If the
effect of friction is weak,ωp,eq is determined almost sole
by sliding orbits even if their fraction is not so large. Sin
the value of〈#ωp〉slid does not change so much for differe
values ofεn, ωp,eq is insensitive toεn. However, if friction
is strong enough, the contribution from non-sliding orb
becomes important, so thatωp,eq decreases with decrea
ing sliding probability. Ifεn is close to unity, most particle
escape after the first rebound, and there are only few
ing orbits. Thereforeωp,eq becomes small, being practical
identical to that obtained by considering just the first
pacts, shown in Fig. 5. However, the case ofεn close to
unity is of a limited interest, as in this case the expected
locity dispersion is so high that no formation aggregate
expected (Salo, 1992, 1995).

In the present paper, we assume thatεn is constant, al-
though generally it is expected to depend on the impac
locity. Typical collision velocity of small particles onto th
moonlet is likely to be at least of the order ofrp. In dimen-
sional form, this velocity corresponds to� 0.1 cms−1 for
moonlets with 10 m radii in Saturn’s outer A ring. Accordi
to laboratory experiments of collisions between ice parti
with frosted surfaces, the value ofεn for this impact velocity
is about 0.5 (Bridges et al., 1984), whereasεn is about 0.8
for impacts with frost-free surfaces (Supulver et al., 199
For the latter case, one can find that the enhancement o

Fig. 8. Dependence ofωp,eq on εn for the case ofe = i = 0 andrp = 1.0.
Four different cases are shown:εt = 0.5 and 0.9 for the instantaneou
method, and+f = 0.1 and 0.4 for the force method, respectively. The s
ing probability for the case ofεt = 0.9 andωp,ini = 1.0 (dashed curve) is
also shown (being almost similar for all four cases and for differentωp,ini ).
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rates by sliding orbits is less effective from Fig. 8. Ho
ever, if we consider 100 m-sized moonlets, thus impacts w
� 1 cms−1, εn is smaller than 0.5 regardless of the surfa
conditions. In this case, the equilibrium spin rate is alm
the same as for a fixedεn � 0.5

4.4. Dependence on the random velocity

So far, we have discussed the results only for the c
e = i = 0. However, if there are large aggregates in rin
the random velocity of small particles,vr = √

e2 + i2, is en-
hanced due to gravitational scatterings by these aggreg
The magnitude of the velocity may depend on the abunda
of moonlets, as well as on the optical depth of the ring
aggregates are common,vr is expected to be of the orde
of the escape velocity of these aggregates,vesc = √

6/rp.
On the other hand, if there are only few moonlets and
optical depth is large, then the energy dissipation in
mutual collisions of small particles between the enco
ters with the moonlets is likely to reducevr to a much
smaller value thanvesc. For the case of identical particle
without aggregates,vr is also expected to be near the e
cape velocity of the small particles, although the exact va
depends on collisional parameters such asεn (Salo, 1995;
Ohtsuki, 1999).

Figure 9 showsωp,eq as a function ofe, for a fixed ra-
tio e/i = 2, in the case ofrp = 1.0, εt = 0.9, andεn = 0.5.
Note thate = 2.19 corresponds tovr = vesc in this case. In
the figure,ωp,eq decreases monotonically withe. In order
to understand this result, we also plot the sliding proba
ity Cslid and the averaged spin change of sliding partic
〈#ωp〉slid for the caseωp,ini = 1.0. As shown by Fig. 7a, th
contribution to the torque from non-sliding orbits is fou
to be insignificant for the caseεt = 0.9, so we focus on the
properties of sliding orbits. The figure indicates thatCslid
decreases withe, though it varies very little fore < 1.5. The

Fig. 9. Dependence ofωp,eq on the reduced eccentricitye, with a fixed ra-
tio e/i = 2. The instantaneous method is used withεt = 0.9, εn = 0.5, and
rp = 1.0. The averaged spin velocity for sliding orbits and the sliding pr
ability for the case ofωp,ini = 1.0 are also shown, as well as the spin ra
obtained if only first impacts are used. The equilibrium spin rate decre
with increasinge, since the enhancement by sliding orbits becomes les
fective.
.

decrease ofCslid may reduce theωp,eq. However, a more im
portant point is that〈#ωp〉slid decreases withe, suggesting
that sliding particles can escape with a much smaller v
of θ̇ than that in the two-dimensional case (Eq. (27)). Th
it is this three-dimensional effect which significantly reduc
the equilibrium spin rate. Nevertheless, we find that the s
rate is still enhanced by sliding orbits even for a largee.

Figure 10a showsωp,eq as a function ofrp for the case
of vr = vesc, e/i = 2, andεn = 0.5. We compare the re
sults for the same four different friction cases as stud
in Fig. 5, which was forvr = 0. Further, in Fig. 10b, we
plot Ccap + Cslid andCslid for the corresponding param
ters of Fig. 10a. Compared with the case ofe = i = 0,
now ωp,eq is smaller for allrp, and alsoCcap + Cslid be-
comes smaller. Forrp � 0.7, ωp,eq is almost unity becaus
of the captured orbits, regardless of the friction strength.
largerrp, ωp,eq decreases withrp and depends on the fric
tion strength. For 0.7< rp< 1.2, the dependence ofωp,eq is
similar to that in the case ofvr = 0: ωp,eq for the instan-
taneous impact model is larger than for the force mo
Also, as in Fig. 5,ωp,eq(εt = 0.9) > ωp,eq(εt = 0.5), and
ωp,eq(+f = 0.4) > ωp,eq(+f = 0.1). Since the value ofrp in
most parts of the Saturn’s rings is considered to be wi

(a)

(b)

Fig. 10. (a) Same as Fig. 5 but for the case of non-zero random velo
vr = vesc, with e/i = 2. Error bars are shown only forεt = 0.9 and+f = 0.1.
The equilibrium spin rate is much smaller than that fore= i = 0, but is still
enhanced by sliding orbits as compared with the spin rate obtained by
impacts, forrp ∼ 1. (b) Capture and sliding probabilities corresponding
parameters of (a) withωp,ini = 1.0.
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the above range, the spin rates of embedded moonlets m
constrain the physical parameters, if these rates can be d
mined by observations. Forrp> 1.2,ωp,eq is about the sam
as or slightly smaller than that obtained by considering
impacts only (we confirmed that if we useεn � 1, ωp,eq is
more accurately consistent with that by first impacts).

5. Discussion

5.1. Comparison with Ohtsuki (2003a, 2003b)

Ohtsuki (2003a, 2003b) also address the topic of this
per, and his and our studies are complementary to each o
Taking into account the Rayleigh distribution of orbital e
centricities and inclinations of impact particles, he estima
not only the systematic component but also the random c
ponent of the moonlet spin, which arises from collisions
individual large impactors, not considered in our paper
Ohtsuki (2003a), he obtained analytic results for the n
gravitating limit, and in Ohtsuki (2003b), based on num
cal integrations of colliding orbits, he showed the results
a large range of velocity dispersions but mainly forrp = 1,
and found a good agreement with the analytic results fo
high-velocity limit.

In the case ofe = i = 0, we confirmed that our equilib
rium spin rate forrp = 1, εn = 0.5, andεt = 0.9, is consis-
tent with his results (ωp,eq � 1.4), and that our equilibrium
spin rate approaches to his analytic result (ωp,eq= 1/4) with
increasingrp (note that the self-gravity becomes negli
ble for largerp: see Fig. 5). For the three-dimensional c
with e/i = 2, he used velocity dependentεn (Bridges et al.,
1984), and the effective value ofεn is larger than 0.5 with his
assumed moonlet size (1 m). Therefore, the direct com
ison with our results is difficult. However, our equilibriu
spin rate for largerp is roughly consistent with his analyt
result (ωp,eq= 0.3665: see Fig. 10). He found that the eq
librium spin rate taken into account the Rayleigh distribut
of e andi is roughly equal to the value obtained with a fix
e provided that the fixede � 〈e2〉1/2. Thus, our results fo
the case ofe/i = 2 obtained with neglecting the eccentr
ity distribution may give reasonable estimates even for
general case with a distribution ofe andi.

He also found that the effect of the random componen
ωp,eq can be significant if the velocity dispersion is as la
as the escape velocity and the large impacts are com
In this case, slow rotation of the moonlet in both progr
and retrograde direction would be possible. These large
lisions would also be destructive if the moonlets are rub
pile aggregates as we will discuss below.

5.2. Stability of moonlets

Here we discuss the stability of rotating moonlets w
zero internal strength (rubble pile aggregates). The ac
eration toward the center of the aggregate at the subp
t
r-

r.

.

t

points is given by (Harris, 1996)

(33)g = 3

r2
p

− rpω2
p − 2rp,

where the first, second, and third terms represent the
gravity, the centrifugal force, and the tidal force, resp
tively. Note that dimensionless quantities defined in S
tion 2 are used: e.g., the spin rate is normalized by
keplerian angular velocity. This equation also follows fr
Eq. (22), withg = −r̈ , evaluated forr = rp with θ̇ = ωp −1.
If g is positive, a spherical aggregate is stable, as all o
locations in its surface feel a weaker disrupting effect t
that in the subplanet points.

In localN -body simulations, performed for various d
tances and internal densities of particles, aggregate fo
tion takes place forrp < 0.6–0.7 (Salo, 1995; Karjalaine
and Salo, in preparation). Strictly speaking, this result
responds just to theonset of aggregate formation: due
limitations mentioned in Introduction, the actual fate and
bility of the aggregates has not been evaluated, as the sim
tions so far performed lack the effect of continued collisio
and accretion of particles arriving from adjacent unpertur
ring regions. In principle, this subsequent evolution mi
endanger the stability of the aggregates, if for example t
spins would be strongly excited. However, based on the
sults of the current study this seems not probable: for
typical case ofvr = vesc, the equilibrium spin rateωp,eq we
found is smaller than the synchronous rotation rate for
rp’s (see Fig. 10), whereas according to Eq. (33), the r
tional instability would requireωp greater than 1.96, 1.45
1.0 forrp = 0.8, 0.9, 1.0, respectively (see Fig. 11).

On the other hand, for the case ofvr = 0,ωp,eq may attain
values larger than unity, especially for the instantaneous
pact model withεt ∼ 0.9 (see Fig. 5). In this case alsog may
become positive for some parameter values. Such a sma
locity dispersion could in principle be achieved if the rand
velocities of small particles are sufficiently damped by th

Fig. 11. The minimum spin rate required for the rotational instability o
strengthless aggregate as a function ofrp parameter, for the case off = 1
(dashed curve) andf = 2 (dotted curve). The equilibrium spin ratesωp,eq
for the case ofvr = 0 andvesc (solid curves) obtained by using the insta
taneous method withεt = 0.9 are also shown. The smaller value ofvr and
the larger value off make the moonlet more unstable.
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mutual collisions between encounters with moonlets. T
special situation, that a few moonlets would form in a r
that is otherwise stable against aggregate formation, m
happen if the density of moonlets (or maybe their cores
significantly larger than that of the other particles. Nev
theless, even forvr = 0, if rp is smaller than about 0.8, th
moonlets are always stable (see Fig. 11).

There are also other important effects which tend to br
the aggregates. One is their elongated shape. Generall
gregates forming inN -body simulations do not have a sphe
ical shape but are elongated in the radial direction du
planetary tide (for example, see Salo, 1995, Fig. 17). Th
the gravity term becomes about 1/f times smaller than tha
for the spherical case given by Eq. (33) (Harris, 1996;
also Eq. (1)), assuming that the aggregate is a prolate
with a long/short axes ratiof . For example, usingf = 2 (as
suggested by Fig. 17 of Salo, 1995), the stability criter
for a synchronously rotating aggregate becomesrp < 0.79,
which is a much more stringent condition thanrp < 1 for
a spherical aggregate (Fig. 11). Even in this case, typ
aggregates withrp < 0.7 should remain rotationally stabl
unlessωp is significantly larger than unity. Nevertheles
the spin rates for elongated moonlets have not been c
lated in the present study, and the possibility remains
ωp promoted by impacts and accretion could be significa
different from that for a spherical case. Another related f
tor not considered in the present study is the effect of sur
irregularities: clearly, a rubble pile aggregate can hardly
expected to have a smooth surface. In the non-gravita
case, such irregularities, or deviations from a regular sh
might promote larger spin rates, as suggested by theore
studies and simulations (Salo, 1987a, 1987b). On the o
hand, if we include the mutual gravity, irregularities mig
prevent particles from sliding on the moonlet, which will r
duce the spin rate of the moonlet. Therefore, it is uncer
if these effect promote larger spin rates or not, and fur
studies are required.

Other important effect limiting the growth of aggrega
may be the mutual collisions between large aggregates (
bara and Esposito, 2002). Since the value ofrp is larger
for equal-sized particles, these collisions themselves are
structive, and also they can significantly accelerate the
rates of the aggregates, which may lead to rotational in
bility.

5.3. Comparison of spin rates with N -body simulations

As formulated in Section 2.3, the equilibrium spin ra
ωp,eq also corresponds to thez-component of the mean sp
rate for a collisional ring system composed of identical p
ticles.

The case inN -body simulations to which we can d
rectly compare our three-body results are the systems
small optical depth and rather largerp-value, thus excluding
cases where gravitational wakes or aggregates form. Toy
(2001) (and personal communication with K. Ohtsuki) co
-

-

,
l

-

ducted localN -body simulations for the case ofrp = 1.0 and
τd = 0.005, whereτd denotes the optical depth. He used
instantaneous impact method withεn = 0.5, and examined
the dependence of the mean spin〈ωz〉 on εt. In the equilib-
rium state, the values of〈ωz〉 that he found were about 0.6
and 0.45 forεt = 0.9 and 0.5, respectively. Our results
Fig. 10 forvr = vesc andrp = 1.0 indicate thatωp,eq = 0.65
and 0.58 forεt = 0.9 and 0.5, respectively. Thus, our re
sults are consistent with his, the small differences being
to the fact that the actual equilibrium random velocity
slightly larger than the mutual escape velocity (〈e2〉1/2 � 2.5
in Toyama (2001), in comparison toe = 2.19 for vr = vesc).
The agreement was further confirmed by some additio
N -body simulations performed with the instantaneous
pact method used in Salo (1995). For the above parame
but utilizing more particles (N = 500) and longer duratio
(Tdur = 1000TK) (N = 255 andTdur = 200TK in Toyama,
2001), these new simulations gave〈ωz〉 = 0.56± 0.03 and
0.55±0.05 forεt = 0.9 and 0.5, respectively. Using data o
tained by three-body calculations and assuming an isotr
Gaussian distribution ofvr (which is roughly consistent with
a Rayleigh distribution ofe and i), we also calculated th
spin rates for the same values of the root mean squarevr
as given by theseN -body calculations, yielding about 0.60
and 0.57, respectively. Thus, besides confirming the valid
of Toyama (2001) results, this agreement also shows the
tual consistency of ourN -body and three-body calculation
performed by entirely different codes and methods.

In Salo (1995) some simulations for the identical parti
case included particle spins and friction. The main differe
to Toyama (2001) was that these simulations were perfor
for a larger optical depth. The adopted distancea = 108m
and internal densityρ = 900 kgm−3, correspond torp =
1.22 for an identical particle pair (µ = 1 in Eq. (4)), and
to rp = 0.77 forµ= 0. Using the instantaneous model w
εn = 0.5 andεt = 0.5, it was found that〈ωz〉 = 0.66± 0.09
for τd = 0.4. For the case of such a highτd, gravitational
wakes form and the total velocity dispersion of the s
tem, measuring largely the relative movement of wakes,
much larger than the mutual escape velocity. However, in
wakes, the orbital elements of nearby particles are alig
and the relative velocity inside them remains significan
smaller, still corresponding to almost the mutual escape
locity of individual particles (Salo, 1995; Daisaka and Id
1999). Thus, we compare the results of theseN -body simu-
lation with our present calculations forvr = vesc (Fig. 10).
Our results shows that〈ωz〉 � 0.4 for rp = 1.2, which is
much lower than that obtained in Salo (1995). There ar
least two possible explanations for this discrepancy. On
that the distribution of direction and velocity of impacts
modified in wakes, whereas we assume a uniform distr
tion of orbital elements (τ , λ, andb; see Section 4). Othe
possibility is that wakes act like particle clumps, so that
effective value ofrp becomes smaller for collisions betwe
the clumps and individual particles. Note that〈ωz〉 increases
with decreasingrp. For example, if we assume that the wak
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Fig. 2.
nergy
can be treated as clumps containing 100 individual partic
then usingµ = 0.01 andD = 0.7 in Eq. (4) would give
rp = 1.03. According to Fig. 10, this would already ind
cate〈ωz〉 � 0.6. However, a detailed analysis of collisio
in wakes is required, in order to actually determine wh
explanation, if either of the above, is valid.

Richardson (1994) also conducted simulations with
most same conditions as in Salo (1992, 1995), adopti
distribution of particle sizes. He found that〈ωz〉 is between
about 0.2 and 0.4. This is a number-averaged value fo
the particles, so that it actually represents the mean v
for the smallest particles. On the other hand,〈ωz〉 becomes
larger for larger particles, and〈ωz〉 of the largest particle
was as large as that obtained in Salo (1995) (see Table
Richardson, 1994). This size dependence is in principle
ple to explain by thevr dependence ofωp,eq: the equilibrium
spin rateωp,eq decreases withvr (Fig. 9). Because of th
partial energy equipartition, smaller particles have a la
random velocity dispersion than the larger ones. Moreo
difference of the normalized velocityvr is even more pro
nounced. Therefore,〈ωz〉 is expected to be larger for larg
particles. Again, a more detailed analysis ofN -body experi-
ments is needed.

6. Conclusion

Conducting three-body integrations including fricti
and spins, we have determined the equilibrium spin
ωp,eq normalized by the orbital angular velocity. The eq
librium spin rate corresponds to the spin rate of the moo
in a equilibrium state if the moonlet is much larger than ot
particles, and also corresponds to the mean spin rate in a
system with identical particles.

We have found thatωp,eq is enhanced by sliding orbits a
compared with the mean spin rate determined by cons
ing first impacts only. For the case of zero random veloc
ωp,eq becomes larger than unity forrp ∼ 1.0 in some range
of the strength of friction. With increasing the relative ra
dom velocity,ωp,eq decreases. If the relative random veloc
is as large as the mutual escape velocity,ωp,eq is lower than
unity for rp ∼ 1.0, but its value is still larger than that o
tained by first impacts. Forrp < 0.7, captures happen aft
some collisions, by whichωp,eq becomes almost unity for a
the cases of collisional parameters.

Based on the obtained data of the equilibrium spin r
we have discussed stability of rubble pile aggregates
the relative random velocity of incident particles is sm
enough, aggregates become rotationally unstable for 0.8<
rp < 1.0 in some limited cases of the strength of frictio
However, it might be rather special situations and aggreg
are stable for larger random velocity. There might be o
mechanisms which break aggregates such as collision
tween large aggregates.

Compared with the mean spin velocities obtained
N -body simulations including spins, we have found a go
f

-

agreement with our results if the optical depth adopte
N -body simulations is small enough. On the other hand
the large optical depth case, in which gravitational wa
form, the simulated mean spin velocity is much larger t
that predicted by our results. There are some plausible e
nations for this discrepancy, but further studies are requ
to clarify which one is correct.

The next paper in this series will extend our studies
larger optical depths with various size distributions of r
particles, using localN -body simulations. Especially, th
dispersion of spin rate, which has not been examined in
present paper, will be very important, for the interpretat
of the infrared observation data that will be obtained in
Cassini mission (e.g., Spilker et al., 2002).
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Appendix A. Effect of friction on sliding motion

If the particle initially slides in a retrograde directio
around the moonlet, the time scale of remaining on
moonlet for the particle is determined by the dissipation
of C (thusE) in the case ofrp,2 < rp < rp,1. Figure 12
shows the dependence of the duration of the sliding p
on the strength of friction, 1− εt and +f , for the two dif-
ferent impact methods, with parameter values fixed to th
in Fig. 2. This figure shows that the duration of the s
ing phase has a minimum (corresponds to a maximal en
dissipation rate) around 1− εt ∼ 0.01 for the instantaneou
impact model and around+f ∼ 0.1 for the force model. On

Fig. 12. Dependence of the duration of the sliding phase on the streng
friction, measured by 1− εt in the instantaneous impact model, and by+f in
the force model. Values of other parameters are the same as those in
The longer duration of the sliding phase corresponds to a smaller e
dissipation rate.
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the other hand, the duration of the sliding phase beco
longer for both stronger and weaker friction. The small
ergy dissipation in the case of weak friction is quite natu
On the other hand, how can we understand the small en
dissipation for the case of strong friction? Apparently, if fr
tion is strong enough, the spin velocity quickly adjusts
that the tangential component of relative velocity rema
small during the sliding phase, resulting in small energy
sipation.

It is possible to estimate analytically the value ofεt lead-
ing to the strongest energy dissipation. Including friction a
spins, the equations of motion in the sliding phase are, f
Eqs. (11) and (12), and Eqs. (14) and (16), given by

(A.1)
d2θ

dt2
= −β(

θ̇ − (ωp − 1)
) − 3

2
sin2θ,

(A.2)
dωp

dt
= 5

2
β
(
θ̇ − (ωp − 1)

)
.

Here,β represents the strength of interaction between
small particle and the moonlet, defined by

(A.3)β =
{ 2

7ν(1− εt), Instantaneous impacts,

−2
7

ξ̈ +f
|θ̇−(ωp−1)| , Force model,

whereν = g/(2un,crit) represents the collision frequency
the instantaneous impact model, withg = 3/r2

p − rpθ̇
2 −

2rpθ̇−3rp cos2 θ , which is of order of unity in the retrograd
revolution if rp � 0.8. Assuming thatβ is constant and us
ing Eqs. (23) and (A.1), we obtain the equation describ
energy dissipation as

(A.4)
dC

dt
= 2

r2
p

dE

dt
= −2βθ̇

(
θ̇ − (ωp − 1)

)
.

It is rather complicated to derive the general solutio
for θ and ωp, but if we consider infinitesimal oscillatio
(|θ | � 1) aroundθ = 0, an approximative solution can b
easily obtained. Though this is not the exact solution desc
ing evolution around the moonlet, it helps to understand
dependency of energy dissipation onβ . As we showed in
Fig. 2, the basic motion of the particle is dominated by
potential, even if there is friction, suggesting that friction c
be treated as a small perturbation. In the case of the in
tesimal oscillation, the basic motion is given by

(A.5)θ̇ = c1 cos
√

3t,

where we have chosen the initial phase angle to be zero
c1 is the amplitude of the oscillation. Substituting this so
tion into Eq. (A.2), we obtain

ωp − 1 = c1 2.5β

2.52β2 + 3

(
2.5β cos

√
3t + √

3 sin
√

3t
)

(A.6)+ c2e−2.5βt ,

wherec2 is an integration constant determined by the
tial conditions. In the above, the exponential term beco
small after a certain time, so we neglect this term. Subst
ing Eqs. (A.5) and (A.6) into Eq. (A.4), and averaging ov
one oscillation period, we obtain

(A.7)

2π/
√

3∫
0

dC

dt
dt = −c2

1
2π√

3

3β

2.52β2 + 3
.

This has the maximum absolute value whenβ = √
3/2.5.

Using this value let us calculate the most effective va
of εt. In the case of infinitesimal oscillation aroundθ = 0,
g = 3/r2

p − 3rp, equal to 2.3 forrp = 0.8. Since we use
un,crit = 0.01 in the instantaneous impact model, the co
sion frequencyν = g/(2un,crit)= 115. In this case, the mo
effective energy dissipation is obtained for 1− εt = 0.02.
This estimate is consistent with the results in Fig. 12,
though a bit larger than obtained in orbital integrations.
periments with other values ofun,crit also confirm the valid-
ity of the above approximative treatment.

Unfortunately, it is impossible to derive an analytic so
tion of the most effective value of+f for the force model,
becauseβ can not be treated as a constant. But as s
gested by Fig. 12, the dependence of energy dissipatio
the strength of friction is qualitatively similar to that for th
instantaneous impact model. One interesting feature is
the duration of the sliding phase increases drastically aro
+f ∼ 0.25.

Appendix B. Multiple solutions for ωp,eq

Figure 13a shows a figure similar to Fig. 4 except for
case ofrp = 1.2 instead of 0.8. It is noticeable that the
are two equilibrium solutionsωp,eq = 0.43 and 1.05 (see
also Fig. 5). This phenomenon is caused by the chang
orbital behavior aroundωp,ini = 1.0. Figure 13b shows or
bits of particles for two different values ofωp,ini = 0.8 and
1.2, respectively. The particle starts the sliding motion w
the retrograde direction. Ifωp,ini is larger than about 1.0
the small particle can not go beyond the highest poten
point (x, y) = (0,1.2), and it changes its sliding directio
to the prograde and escapes after that. On the other han
smaller value ofωp,ini , the orbit continues sliding phase wi
the retrograde direction beyond the highest potential p
and separates from the moonlet near the subplanet poin
ting the moonlet again before escaping. In the former c
of orbits, the spin change#ωp becomes large, due to th
sliding phase in the prograde direction, whereas this d
not happen for the latter case. The same phenomenon o
also for otherb’s. Hence, the average value〈#ωp〉 changes
significantly aroundωp,ini = 1.0. Similar transitions of or-
bital behavior are found for other parameters ifrp ∼ 1.2.
For example, if we useεt = 0.5 and same other param
ters as in Fig. 13b, transition of the orbit behavior happ
aroundωp,ini = 0.4. However, this value is much small
thanωp,eq so that this transition does not affect for obtaini
ωp,eq. Also for the case of force model, similar transitio
are found, but the contribution to the torque from the slid
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Fig. 13. (a) Same as Fig. 4 but for the case ofrp = 1.2. Note that there ar
two stable equilibrium spin rates,ωp,eq= 0.43 and 1.05. (b) Examples o
orbits with different values ofωp,ini = 0.8 and 1.2, in the case ofrp = 1.2,
e= i = 0, b = 2.4, εt = 0.9, andεn = 0.5.

orbits themselves are not so significant forrp = 1.2. Any-
way, this phenomenon happens only in very limited ca
and thus does not have a physical significance.
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