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We present our new model for the thermal infrared emission of Saturn’s rings based on a multilayer
approximation. In our model, (1) the equation of classical radiative transfer is solved directly for both
visible and infrared light, (2) the vertical heterogeneity of spin frequencies of ring particles is taken
into account, and (3) the heat transport due to particles motion in the vertical and azimuthal directions
is taken into account. We adopt a bimodal size distribution, in which rapidly spinning small particles
(whose spin periods are shorter than the thermal relaxation time) with large orbital inclinations have
spherically symmetric temperatures, whereas non-spinning large particles (conventionally called slow
rotators) with small orbital inclinations are heated up only on their illuminated sides. The most important
physical parameters, which control ring temperatures, are the albedo in visible light, the fraction of fast
rotators ( f fast) in the optical depth, and the thermal inertia. In the present paper, we apply the model
to Earth-based observations. Our model can well reproduce the observed temperature for all the main
rings (A, B, and C rings), although we cannot determine exact values of the physical parameters due to
degeneracy among them. Nevertheless, the range of the estimated albedo is limited to 0–0.52 ± 0.05,
0.55 ± 0.07–0.74 ± 0.03, and 0.51 ± 0.07–0.74 ± 0.06 for the C, B, and A rings, respectively. These lower
and upper limits are obtained assuming all ring particles to be either fast and slow rotators, respectively.
For the C ring, at least some fraction of slow rotators is necessary ( f fast � 0.9) in order for the fitted
albedo to be positive. For the A and B rings, non-zero fraction of fast rotators ( f fast � 0.1–0.2) is favorable,
since the increase of the brightness temperature with increasing solar elevation angle is enhanced with
some fraction of fast rotators.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Saturn’s rings have been observed by spacecraft (Pioneer 11,
Voyager 1 and 2, and Cassini) and by Earth-based telescopes in
the last several decades in various wavelengths from ultraviolet to
radio. Although our understanding of the rings has been tremen-
dously improved, the rings are still covered under a lot of myster-
ies. For example, we do not know their origin, age, and formation
mechanism of many of the observed structures. Ring particle prop-
erties such as the albedo and size distribution are relatively well
determined, although they are still model-dependent. The compo-
sition of ring particles is mostly (>90%) H2O ice (Cuzzi et al., 2002;
Poulet et al., 2003), but we do not why it is so dominant.

In order to clarify these problems, the recent observations by
Cassini (Porco et al., 2005; Esposito et al., 2005; Flasar et al., 2005)
are invaluable. For interpretation of observations, better models
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are urgently needed. In the modeling of the thermal emission of
rings, which we will focus on in the present paper, less progress
has been made compared to photometric modeling. The difficulty,
which complicates modeling of the thermal emission, is that the
thermal response to heat sources (e.g., the Sun), unlike responses
in other wavelengths, can not be modeled only with an instan-
taneous snapshot of a ring, as the thermal energy is transported
by the azimuthal, vertical, and spin motion of particles. Therefore,
thermal modeling must be directly coupled with dynamics of rings
(Cuzzi et al., 1984; Spilker et al., 2003).

The spin frequency of ring particles is a very important factor. If
a particle’s spin period is much shorter than the thermal relaxation
time, the particle radiates the thermal emission over its whole sur-
face area. On the other hand, the thermal emission is mainly from
the face illuminated by a heat source if the spin period is long
enough. Thus, fast spinning particles are colder than slow rotators
when viewed from a direction close to the dominant heat source,
as it is the case for Earth-based observations. The heat transport
due to the vertical motion of particles is expected to decrease the
temperature gradient in the vertical direction, and it is particularly
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important for optically thick rings (Cuzzi et al., 1984). Besides the
effect of eclipse cooling and subsequent heating (Froidevaux et al.,
1981; Ferrari and Leyrat, 2006), the azimuthal motion of particles
needs to be taken into account in thermal modeling as the energy
flux from Saturn depends on the azimuthal angle.

There are two main types of models used for investigating the
thermal response of rings, namely the monolayer model and the
multilayer model. The former type of models (Froidevaux, 1981;
Ferrari and Leyrat, 2006) explicitly include the effect of finite size
of particles, which is important if the particle size is comparable
to the mean free path of a photon (i.e., the distance between par-
ticles). The intensity due to multiply scattered light is smaller in a
monolayer disk as compared with that in a multi-layered ring. The
monolayer-like compaction, indeed, can account for many optical
photometric properties in the A- and B-rings (Dones et al., 1993;
Salo and Karjalainen, 2003). However, the monolayer models are
limited to a single layer of uni-sized particles and neglect the con-
tribution from small particles which spread more extensively in
the vertical direction.

On the other hand, the multilayer models (Kawata and Irvine,
1975; Kawata, 1983) solve the classical radiative transfer equations
(e.g., Chandrasekhar, 1960). Therefore, this type of models are suit-
able for vertically extended particles layers, but neglect the effects
of compaction of particles. Considering the extended size distri-
bution suggested from various observations (Marouf et al., 1983;
Zebker et al., 1985; French and Nicholson, 2000), the cross section
of vertically extended small particles is significant (see Morishi-
ma and Salo, 2006). Even if the fraction of small particles is
small, their contribution is expected to become more important as
the observer elevation angle, |B|, decreases (Salo and Karjalainen,
2003).

Estimations of the ratio of the width to the height of wakes in
the A and B rings from Cassini observations (Colwell et al., 2006,
2007; Hedman et al., 2007), combined with the gravitational wake
theory (Salo, 1992b, 1995), suggest the thickness of the ring to be
of the order of 10 m. This is comparable to the largest particle size
(French and Nicholson, 2000). Therefore, the actual rings resemble
a monolayer for the largest particles, but are better represented by
multilayers for small particles spreading more extensively in the
vertical direction.
Dynamical studies support these pictures. They suggest that
large particles spinning slowly concentrate near the midplane of
the ring whereas small particles spinning rapidly spread more ex-
tensively in the vertical direction (Salo, 1987; Richardson, 1994;
Ohtsuki, 2005, 2006a, 2006b; Ohtsuki and Toyama, 2005; Morishi-
ma and Salo, 2006). It has been also shown that the spin periods
of the largest particles are always comparable to the orbital period
while the spin period is roughly proportional to the particle size
for cases with an extended size distribution.

In order to reflect the ring features obtained from various ob-
servations and dynamical studies, we introduce a new thermal
model, taking into account the following three effects, which were
not included in the previous models appropriately: (1) the equa-
tion of classical radiative transfer is solved directly for both visible
and infrared light, without any arbitrary approximation concerning
the directions of rays, (2) the vertical heterogeneity of spin fre-
quencies of ring particles is taken into account, and (3) the heat
transport due to the vertical and azimuthal motion of particles
is taken into account. Since we will assume homogeneity in the
planar directions, it suffices to solve a one-dimensional radiative
transfer equation in the vertical direction. As we solve the equation
of classical radiative transfer, we adopt a multilayer approximation,
in which the ring thickness is assumed to be much larger than the
size of particles. We thus ignore the effects of compaction of par-
ticles. The effect needs to be included in future work.

Since most of thermal infrared data for Saturn’s rings have been
obtained by Earth-based observations, previous models mainly fo-
cused on the dependence of the temperature on the solar elevation
angle B ′ . The brightness temperature of Saturn’s B ring at ∼20 μm
increases with the solar elevation angle from 74 K for |B ′| = 6.5◦
to ∼95 K for |B ′| ∼ 26◦ (see Table 1). The A ring temperature has
a similar dependence. We call these rather strong increases of the
temperatures the thermal tilt effect (the tilt effect in optical wave-
lengths is also seen in the B ring but not in the A ring; Esposito
and Lumme, 1977). Models based on a monolayer approximation
(Froidevaux, 1981; Ferrari and Leyrat, 2006) can apparently well
explain the thermal tilt effect for the A and B rings in particu-
lar with slowly spinning particles. The monolayer approximation
might be appropriate if the total cross section of small particles is
negligible and ring particles are very dissipative.
Table 1
Observed brightness temperatures for the A, B, C rings, and Saturn’s disk center.a

References |B ′|
(deg)

B B ′
|B ′ |

(deg)

α�
(deg)

a�
(AU)

λ

(μm)
Obs.
date

Tb (K)

A B C Disk

Morrison (1974) 26.5 26.3 5.4 9.03 20.0 Oct-72, Sep-73 96 ± 3 (95.5) 92 ± 2
Rieke (1975) 26.5 26.0 4.3 9.02 22.5 Nov-73 88.4 ± 1 (86.9) 91.5 ± 1 (90.0) 80.6 ± 1 (79.3) 93.0
Murphy (1973) 26.4 26.4 6.1 9.04 17–25 Aug, Sep-72 89 ± 3 (84.0) 94 ± 2 (88.5) 89 ± 4 (84.0) 97.3 ± 2
Murphy et al. (1972)b 24.8 9.07 17–25 93 (87.7) 97.3 ± 2
Leyrat et al. (2008)c 21.9 23.0 6.1 9.07 19.5 Apr-05 84 (80.5) 90 (86.0) 85 (81.4) 96
Ferrari et al. (2005)d 21.6 20.4 4.2 9.16 20.5 Mar-00 81.0 ± 0.3 (77.3) 89.5 ± 0.3 (85.0) 86.0 ± 0.3 (81.8) 97.0
Ferrari et al. (2005)d 19.0 20.9 6.2 9.22 20.5 Jul-99 82.0 ± 0.3 (77.1) 88.5 ± 0.3 (82.8) 86.5 ± 0.3 (81.0) 99.0
Nolt et al. (1978) 16.3 17.8 3.4 9.14 22.7 Mar-77 82.0 (83.5) 84.0 (85.6) 81.0 (82.4) 89.9
Sinton et al. (1980) 16.2 17.9 4.0 9.14 18.1 Mar-77 81 (83.7) 80 (82.6) 88.5
Nolt et al. (1980) 11.8 11 3 9.21 20 Jan-78 77.5 ± 3 (79.3) 89.4
Sinton et al. (1980) 11.5 11.2 1.1 9.22 25 Feb-78 75 (80.3) 78 (83.8) 85
Froidevaux (1981) 10.0 12.8 6.3 9.25 16–26 May-78 75.5 (75.5) 78.6 (78.6) 83.3 (83.3) 92
Nolt et al. (1980) 6.5 4.2 5.1 9.31 20 Jan-79 74 ± 3 (75.9) 85 (87.5) 89.4
Froidevaux et al. (1981)e 2.8 2.8 9.24 45 ± 11 Sep-79 62 ± 3 (60.9) 94.4 ± 3
Froidevaux and Ingersoll
(1980)e

2.8 −1.0 9.24 45 ± 11 Sep-79 54 ± 3 (53.2) 94.4 ± 3

Tokunaga et al. (1980)f 0.9 −1.7 5.7 9.42 19.8 Jan-80 56.0 ± 0.9 (56.5) ?

a B ′ is the solar elevation angle, B is the elevation angle of the observer (or the Earth), α� is the solar phase angle, a� is the heliocentric distance, and λ is the wavelength.
The temperatures in parentheses are normalized to Saturn’s disk center brightness temperature of Tdisk,st = 92 K at a� = 9.25 AU.

b Data in Murphy (1973).
c Tb’s at 80,000, 100,000, and 130,000 km.
d Heliocentric distances from the ring node (http://pds-rings.seti.org/).
e Pioneer observations.
f Disk temperature is unknown and the normalization of the ring temperature is done only for the heliocentric distance.
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Kawata (1983) found that the vertically homogeneous multilay-
ers produced a much less steep increase in the temperature with
B ′ than the observed thermal tilt effect for the A and B rings. In
order to explain the observed thermal tilt effect, he proposed the
vertical heterogeneity of particles’ albedo AV in visible light and
particle spins. At small B (� B ′ for Earth-based observations) an
observer mainly sees vertically extended small particles with cold
temperatures due to high AV, whereas large particles concentrated
near the disk midplane with warmer temperatures due to smaller
AV start to be visible as B increases. The vertical segregation of
large and small particles itself is dynamically reasonable as we
mentioned above, and different physical properties with different
size of particles might be somewhat probable, such as roughness in
shape (Nicholson et al., 2005). However, Kawata’s model requires
extremely large contrast in the albedo (AV ∼ 0.0–0.4 and 0.9 for
large and small particles, respectively, for the B ring) to reproduce
the observed tilt effect. This seems improbable because ring parti-
cles are likely to have surface frost layers (Froidevaux et al., 1981;
Poulet and Cuzzi, 2002; Poulet et al., 2003) and the surface ma-
terials are likely to be exchanged between particles by frequent
mutual collisions.

In Kawata’s model (Kawata and Irvine, 1975; Kawata, 1983), he
considers only averaged temperatures for the illuminated and unil-
luminated hemispheres, and the equator which distinguishes these
two hemispheres is assumed to be always parallel to the orbital
plane in order to simplify the calculation of the mutual heating
flux. The latter would not be a good approximation for slowly
rotating particles, since the Sun does not illuminate the Saturn’s
rings vertically. In addition, the multiple scattering of visible light
is ignored in his model.

In the present paper, we will investigate whether our model,
which includes three new effects explained above (full radiative
transfer calculation of multiple scattering and mutual heating, dis-
tribution of spins, and heat transfer via particle motions), can
reproduce the observed thermal tilt effect without the vertical het-
erogeneity of the albedo. In our subsequent paper (Morishima et
al., in preparation), we will apply our model to the observations
by the Cassini composite infrared spectrometer (CIRS; Flasar et al.,
2005; Spilker et al., 2006). In Section 2, we explain our model. The
properties of ring temperatures with various parameters are shown
in Section 3. In Section 4, we fit our model temperatures to the ob-
served temperatures. Unfortunately, we can not obtain exact values
of physical parameters, such as the albedo, fraction of fast rotators,
and thermal inertia, due to degeneracy among them. Alternatively,
we derive possible combinations of these physical parameters. In
Section 5, some additional constraints on the physical parameters
from other observations and models are discussed. Our conclusions
are given in Section 6.

2. A model

2.1. Assumptions

In our model, we introduce following assumptions:

1. We adopt a multilayer approximation, in which the energy
transfer by light is described by the equation of classical ra-
diative transfer (e.g., Chandrasekhar, 1960). This is valid when
the distance between particles is much larger than the parti-
cles size (See Section 1 for more details).

2. We consider locally uniform rings in the horizontal directions
and apply the plane-parallel approximation. The distribution
of orbital inclinations of particles in each size is given by the
Rayleigh distribution, which corresponds to the Gaussian dis-
tribution of the spatial density of ring particles in the vertical
direction. These assumptions are valid for optically thin rings
(Lissauer and Stewart, 1993; Ohtsuki and Emori, 2000). For op-
tically thick rings, in fact, the distribution deviates from the
Rayleigh distribution (Wisdom and Tremaine, 1988; Salo, 1991;
Richardson, 1994; Ohtsuki and Emori, 2000) and rings are no
longer uniform in the horizontal directions because of self-
gravitational wakes or axisymmetric oscillations caused by vis-
cous overstability (Salo, 1992b, 1995; Salo et al., 2001).

3. We consider visible and infrared light integrated over wave-
lengths in each range when we solve the equation of radiative
transfer. Since the emission from the Sun is dominated by
visible light, we can treat the Planck function for the Sun’s
temperature as the intensity of visible light. Similarly, we can
treat the Planck function for the temperature of Saturn or ring
particles as the intensity of infrared light. We assume the in-
frared albedo to be zero, so we do not consider the scattered
infrared light. The actual value of the infrared albedo is likely
to be ∼0.1 (Irvine and Pollack, 1968; Kawata and Irvine, 1975;
Hudgins et al., 1993; Vokrouhlický et al., 2007).

4. We represent a size distribution of ring particles by a bi-
modal distribution consisting of fast spinning small particles
and non-spinning large particles. We conventionally call them
fast and slow rotators, respectively. The scale height of small
particles is larger than that of large particles. The thermal
structure of a fast spinning particle is assumed to be spher-
ically symmetric.

2.2. Vertical structure of a ring

First we consider the vertical structure of a ring for the case of
single-sized particles. The formulation will be easily extended to
the case of the bimodal size distribution. The Rayleigh distribution
function f (i) of the orbital inclination i is given by

f (i) = 2i

〈i2〉 exp

(
− i2

〈i2〉
)

, (1)

where 〈i2〉 represents the mean square value of i of particles, and
the distribution function is normalized as

∫ ∞
0 f (i)di = 1. Assuming

〈i2〉1/2 � 1, the equations for particle motion in the azimuthal and
vertical directions are given by

φp(t) = ΩKt + φp(t = 0),

zp(t) =
{

ai sin(φp(t) − �p) (for the A and C rings),

±ai| sin(φp(t) − �p)| (for the B ring),
(2)

where φp(t) and zp(t) are the azimuthal and vertical positions of
the particle at the time of t (we set φp = 0 at the midnight in the
Saturn’s shadow, and zp > 0 for the side illuminated by the Sun),
ΩK is the orbital frequency of the particle, a is the distance of the
particle from the Saturn’s center, and �p is the longitude of as-
cending node. Ring particles are assumed to distribute randomly
with respect to �p. For the optically thick B ring, the sinusoidal
vertical motion is hindered by frequent mutual impacts. To model
this effect, we assume that the particles are not able to penetrate
through the ring but instead rebound at the midplane. We call this
the bouncing model. In practice, we replace each particle with a
pair of particles whose inclinations are the same but the sign of
vertical coordinates are opposite. We briefly examined vertical mo-
tion of ring particles using our N-body code (Morishima and Salo,
2006), and found this kind of behaviors of particles, although the
actual motion was more complicated.

The Rayleigh distribution of the orbital inclination corresponds
to the Gaussian distribution for the spatial density of particles ρ
as a function of the vertical position z:

ρ(z) = Σ√ e−(z/h)2
, (3)
πh
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where Σ = ∫ ∞
−∞ ρ(z)dz is the surface density of the ring and h =

a〈i2〉1/2 is the scale height of the ring. Using the normal optical
depth of the ring τ = Σκ , where κ is the opacity assumed to be
constant, the normal path optical depth to the vertical location z
is given by

ξ(z) ≡ κ

∞∫
z

ρ(z)dz = τ

2
erfc(z/h), (4)

where erfc(z/h) is the complementary error function. In order to
obtain the value of this function, we use the fitting function given
in Press et al. (1986; Chap. 6.2).

For the case of the bimodal size distribution, where we assume
that the distribution of the orbital inclination in each size is given
by the Rayleigh distribution, ξ(z) is given by the summation of the
normal path optical depths of fast and slow rotators, ξfast(z) and
ξslow(z):

ξ(z) = ξfast(z) + ξslow(z)

= τfast

2
erfc(z/hfast) + τslow

2
erfc(z/hslow). (5)

Here, τfast and τslow represent the total optical depths of fast
spinning particles and slowly spinning particles, respectively (τ =
τfast + τslow), and hfast and hslow represent the scale heights of
these particle groups. The optical depth fraction of small particles
f fast = τfast/τ and the ratio of the scale height hr = hfast/hslow are
treated as parameters.

Dynamical studies suggest that the ratio of the scale height of
the smallest particles to that of the largest particles is typically
2–3 regardless of the width of the size distribution (Salo, 1992a;
Ohtsuki, 1999; Morishima and Salo, 2006). In most cases, we adopt
hr = 3, although we examine the dependence of the ring bright-
ness temperature on hr (Fig. 11). Fig. 1 shows the vertical profile
of a ring for the case of τ = 1.5, f fast = 0.5, and hr = 3. In this fig-
ure, the optical depths of fast and slow rotators per unit length,

Fig. 1. Vertical profiles of the products of the particle spatial density and opacity for
the slow and fast rotators, (κρ)slow and (κρ)fast in units of h−1

slow and the normal
pass optical depth ξ to the vertical location z (dξ/dz = (κρ)slow + (κρ)fast). Here
the optical depth τ is 1.5, the fraction of fast rotators f fast is 0.5, and the scale
height ratio hr is 3.
(κρ)fast and (κρ)slow, are shown. For the case of fast rotators, we
have

(κρ)fast = dξfast/dz = τfast/
(√

πhfast
)

exp
(−(z/hfast)

2),
and a similar expression is given for slow rotators. Fast rotators
are vertically extended so the solar ray is dominantly obscured by
fast rotators at z/hslow > 1, in particular, if the solar elevation is
low. On the other hand, slow rotators are more concentrated near
the midplane. Therefore, an observer mainly sees fast rotators at
a small elevation angle, whereas a larger fraction of slow rotators
can be seen from an observer at a high elevation angle.

2.3. Radiative transfer

In this section, we derive the intensities due to various heat
sources and their solid angles. The intensities and solid angles are
used for the calculation of the energy flux to ring particles. The
physical temperature of ring particles necessary for the calculation
of the intensity due to the mutual heating is obtained by solving
the thermal diffusion equation (Section 2.4). The intensities due to
the mutual heating and the ring particle temperature are simul-
taneously solved in iterative procedures (Section 2.5). Using the
particle temperatures after convergence, we calculate the observed
ring temperatures (Section 2.3.3).

2.3.1. Equation for radiative transfer
The intensity is obtained by solving the equation of radiative

transfer (Chandrasekhar, 1960):

μ
dIk(ξ, s, φ)

dξ
= Ik(ξ, s, φ) − Sk(ξ, s, φ), (6)

where μ = s · nz with the normal direction of the ring plane nz

(note that we defined ξ in Eq. (4) so that it increases with de-
creasing z), s is the unit vector pointing toward the direction of
the ray, φ is the azimuthal location in a ring with φ = 0 being
the midnight, S is the source function, and the subscript k is V for
visible light and IR for infrared light.

The general solution of the equation of radiative transfer is

I+k (ξ, s, φ) = Ik(τ , s, φ)e−(τ−ξ)/μ

+
τ∫

ξ

Sk(ξ
′, s, φ)exp

(
− ξ ′ − ξ

μ

)
dξ ′

μ
(for 0 < μ < 1),

I−k (ξ, s, φ) = Ik(0, s, φ)e−ξ/|μ|

+
ξ∫

0

Sk(ξ
′, s, φ)exp

(
− ξ − ξ ′

|μ|
)

dξ ′

|μ|
(for −1 < μ < 0), (7)

where the first term in the right hand side is the intensity from
outside of the ring and the second term is the intensity from sur-
rounding particles. In visible light, the first term corresponds to the
direct sunlight ISun,V and the sunlight reflected by Saturn ISat,V and
the second term corresponds to the multiply scattered light ISca,V.
Similarly, in infrared light, the first and second terms correspond
to the infrared light from Saturn ISat,IR and the mutual heating be-
tween ring particles IMut,IR, respectively.

If a heat source is a black body with a surface temperature T ,
the intensity emitted from the source, I0, is given by the product
of the emissivity and the Planck function IB(T ), which is integrated
over the all wavelengths,

I0 = ε IB(T ) = ε
σSBT 4

, (8)

π
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Fig. 2. Geometry of a portion of Saturn’s ring and definitions of unit vectors and angles.
where σSB is the Stefan–Boltzmann constant. We assume that the
emissivities of the Sun and Saturn are unity. In most cases in this
paper, the emissivity for ring particles is assumed to be unity as
well, but we discuss the dependence of ring temperatures on the
emissivity in Section 3.4. The values of ε for the actual rings are
likely to be close to unity (Altobelli et al., 2008).

2.3.2. Heat sources
2.3.2.1. Direct sunlight ISun,V The direct sunlight and the sunlight
reflected by Saturn and other ring particles are eliminated in Sat-
urn’s shadow. The azimuth angle at the boundary between the
Saturn shadow and illuminated morning side φb is given by

cos2 φb = (1 − (rs,eq/a)2)(1 − εs cos2 B ′)2

(1 − εs cos2 B ′)2 − sin2 B ′ , (9)

where rs,eq and εs are the equator radius and the oblateness of
Saturn assumed to be 60,300 km and 0.1, respectively, and B ′ is
the solar elevation angle. Taking the shadowing of other particles
into account, the intensity of the direct sunlight ISun,V at ξ(z) is
given by

ISun,V(ξ, s�, φ) =
{

IB(T�)exp (−ξ/|μ�|) (for cosφ � cosφb),

0 (for cosφ > cosφb),
(10)

where T� is the surface temperature of the Sun and s� is the
direction of solar ray (see Fig. 2 for definition of vectors) and μ� =
(−s�) · nz = sin B ′ .

The solid angle of the Sun Ω� seen from ring particles at a�
from the Sun is given by∫

Sun

dΩ = Ω� = πr2�
a2�

, (11)

where r� is the solar radius. Since the solid angle of the Sun is
small enough, the Sun can be treated as a point source. The so-
called solar flux is defined as IB(T�)Ω� , which we use 16.2 W m−2

at 9.25 AU after Froidevaux (1981).

2.3.2.2. Thermal and visible radiation from Saturn, ISat,IR and ISat,V
Since Saturn, unlike the Sun, cannot be treated as a point source,
we need to divide the surface of Saturn into facets, and then in-
tegrate the intensity over the surface seen from ring particles. The
solid angle of a surface facet of Saturn measured from its center
is defined to be dωS. The solid angle of the facet measured from a
ring particle is then given by

dΩS(sS) =
{

r2
S |nS · sS|dωS/d2

S (for nS · sS > 0),

0 (otherwise),
(12)

where rS is the distance between Saturn’s center and a facet on
the surface (i.e., Saturn’s radius), nS is the unit vector normal to
the Saturn’s facet, sS is the unit vector pointing toward the particle
from the facet, and dS is the distance between the particle and the
facet (see Fig. 2). The thermal intensity emitted from the surface
of Saturn is given by

ISat0,IR = IB(TS), (13)

where TS is the surface temperature of Saturn assumed to be 95 K.
Assuming a Lambertian surface for Saturn, the intensity of the re-
flected sunlight is given as

ISat0,V(sS) =
⎧⎨
⎩

AS|nS · (−s�)|Ib(T�)Ω�/π

(for nS · (−s�) > 0),

0 (otherwise),

(14)

where AS is the Bond albedo of Saturn, which is taken as 0.34
(Mullin, 1984). Using Eqs. (13) and (14), the intensities, ISat,IR and
ISat,V, from a facet on Saturn to a particle at ξ are given by

ISat,IR(ξ, ss, φ) = ISat0,IR exp

(
− ξns

|μS|
)

, (15)

ISat,V(ξ, ss, φ) = ISat0,V exp

(
− ξns

|μS|
)

, (16)

where μS = (−sS) · nz , and ξns = ξ or τ − ξ for facets locating on
the northern/southern hemisphere of Saturn.

2.3.2.3. Multiple scattering of visible light ISca,V In Eq. (7), the source
function for visible light is given by

SV(ξ ′, s, φ) = AV

∫
4π

IV(ξ ′, si, φ)PV(s, si)
dΩi

4π
, (17)

where AV, IV, PV are the particle bond albedo, the intensity, and
the spherical scattering phase function in visible light, respectively,
si is the unit vector pointing toward the direction of the incident
ray, and dΩi is its solid angle. The bond albedo is defined as

AV =
∞∫

0

Aλ IB,λ(T�)dλ
/ ∞∫

0

IB,λ(T�)dλ, (18)

where Aλ is the particle albedo for a given wavelength λ and
IB,λ(T�) is the solar intensity per wavelength (i.e., the Planck func-
tion at the surface temperature of the Sun, T�). Strictly speaking,
multi-wavelength calculations are necessary to estimate the inten-
sity of scattered light very accurately, since Aλ strongly depends
on λ (e.g., Porco et al., 2005). But that is beyond the scope of the
present paper. We assume that PV is represented by the Lambert
sphere phase function (e.g., Salo and Karjalainen, 2003):

PV(α) = 8 [
sinα + (π − α) cosα

]
, (19)
3π



A multilayer model for temperatures of Saturn’s rings 639
where the phase angle is given as α = s ·(−si). In fact, the particles
in Saturn’s rings are likely to be more strongly backward scattering
than implied by the Lambert sphere phase function (Dones et al.,
1993), so this effect should be investigated in future work.

Substituting Eq. (17) into Eq. (7), and taking the heat sources
outside of the ring in visible light into account, we can obtain
IV by an iterative procedure as follows. Replacing IV and SV in
Eq. (17) by the intensity of nth order scattered light, IV,n , and
the corresponding source function, SV,n , for the next order, respec-
tively, we obtain the relation between IV,n and IV,n+1 as

IV,n+1(ξ, s, φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ∫
ξ

SV,n(ξ ′, s, φ)exp

(
− ξ ′ − ξ

μ

)
dξ ′

μ

(for 0 < μ < 1),

ξ∫
0

SV,n(ξ ′, s, φ)exp

(
− ξ − ξ ′

|μ|
)

dξ ′

|μ|
(for − 1 < μ < 0).

(20)

The source function in the beginning of iteration, SV,0, is ob-
tained by substituting Eqs. (10)–(12), and (16) into Eqs. (17)

SV,0(ξ
′, s, φ) = AV

4π

(
PV(s, s�)ISun,VΩ�

+
∫

PV(s, sS)ISat,VdΩS

)
. (21)

It should be noted that substituting Eq. (21) into Eq. (20), the first
term in the right hand side is analytically integrable with respect
to ξ ′ . The total intensity of the scattered visible light ISca,V is given
by

ISca,V(ξ, s, φ) =
∑
n=1

IV,n(ξ, s, φ). (22)

The iteration is taken place until ISca,V sufficiently converges
(IV,n/ISca,V < 10−3) for all ξ , s, and φ. The maximum n necessary
for the convergence is ∼20 for τ = 1.5 and AV = 1. The maximum
n decreases with decreasing τ and AV.

2.3.2.4. Mutual heating IMut,IR As we mentioned in the beginning
of Section 2.3, the temperatures of ring particles are obtained by
solving the thermal diffusion equation. Details of the calculations
are given in Section 2.4. Assuming that the temperatures of ring
particles are already given, we here describe the method to obtain
the intensity due to the mutual heating.

The intensity emitted from a particle to a certain direction is
obtained by integrating the emission over the hemisphere of the
particle as

S ′
IR(ξ, s, i,�p, φp) = 1

π

∫
for (np·s)�0

ε IB
(
Tp(ξ,np, i,�p, φp)

)

× (np · s)dΩ, (23)

where Tp(ξ(zp),np, i,�p, φp) is the surface temperature of a par-
ticle’s facet, and np is the unit vector normal to the facet. The
contribution from a particle to the thermal emission of an ensem-
ble of particles at a certain height, which corresponds to the source
function in infrared light in Eq. (7), is proportional to the inverse
of the vertical velocity of the particle. With this weight, the source
function is then obtained by averaging the temperature over parti-
cles with various i’s and �p’s at φp = φ

S IR(ξ, s, φ) =∫ 2π
0 d�p/(2π)

∫ ∞
0 di/|żp(ξ, i)| f (i)S ′

IR(ξ, s, i,�p, φp)δ(φ − φp)∫ 2π
0 d�p/(2π)

∫ ∞
0 di/|żp(ξ, i)| f (i)δ(φ − φp)

,

(24)
where f (i) is the distribution function of the orbital inclination i
(see Eq. (1)), and δ(x) is unity for x = 0 and 0 otherwise. Ideally,
we need to use temperatures of particles when they are exactly at
φp = φ. In actual simulations with a limited number of particles,
however, we use a Gaussian-type function, exp [−((φ − φp)/�φ)2],
instead of δ(x) for fine sampling with respect to ξ . Unless both φ

and φp are either in the shadow of Saturn or in the azimuthal re-
gion under the direct solar illumination, the exponential function
is set to be zero. We can usually adopt a large value of �φ (we
use �φ = 20◦ in the present paper) for observations of the west
ansa from the Earth, as the variation of the temperature (or S IR)
with respect to φ is not large. On the other hand, �φ needs to
be smaller for a good resolution with respect to φ, if the temper-
ature variation is large like the case of particles near the shadow
boundary. This requires, however, a large number of particles in
simulations.

In order to examine the effect of particle’s motion, we also con-
sider the static case and the case with vertical motion only at
a fixed φ. If particles are static (żp = φ̇p = 0), we can omit the
averaging over i and �p (Eq. (24)) so the source function is ob-
tained by replacing Tp(ξ(zp),np, i,�p, φp) by Tp(ξ(zp),np, φp) in
Eq. (23). In the case of the vertical motion only, we can omit the
averaging over �p in Eq. (24), with δ(φ − φp) = 1.

For the case of bimodal size distribution, the source function
for slow and fast spinning particles, S IR,slow and S IR,fast, are in-
dividually calculated at a given vertical location using Eqs. (23)
and (24). Then, with the weight of the cross section at a given
height, (κρ)slow(ξ) and (κρ)fast(ξ) (see Fig. 1), the averaged source
function is obtained by

S IR(ξ, s, φ)

= (κρ)slow(ξ)S IR,slow(ξ, s, φ) + (κρ)fast(ξ)S IR,fast(ξ, s, φ)

(κρ)slow(ξ) + (κρ)fast(ξ)
. (25)

Finally, the thermal intensity from background particles is ob-
tained from Eq. (25) as

IMut,IR(ξ, s, φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ∫
ξ

S IR(ξ ′, s, φ)exp

(
− ξ ′ − ξ

μ

)
dξ ′

μ

(for 0 < μ < 1),

ξ∫
0

S IR(ξ ′, s, φ)exp

(
− ξ − ξ ′

|μ|
)

dξ ′

|μ|
(for − 1 < μ < 0).

(26)

For the convenience of later use, we also define the ring physical
temperature as

TR(ξ, s, φ) =
(

π S IR(ξ, s, φ)

σSBε

)1/4

. (27)

2.3.3. Observed effective and brightness temperatures
There are two types of observed temperatures (Spilker et al.,

2005, 2006): the brightness temperature Tb is obtained by di-
rectly converting the observed intensity with the Planck function
at a certain wavelength, whereas the effective temperature Teff
is derived by fitting a ring spectrum to the Planck function in
a certain range of wavelength with a scaling factor. The former
is usually used for Earth-based observations (Froidevaux, 1981;
Kawata, 1983; Lynch et al., 2000; Ferrari et al., 2005), and we also
use it in the present paper. On the other hand, the latter is often
used for observations by spacecraft (Hanel et al., 1981, 1982; Flasar
et al., 2005; Spilker et al., 2005, 2006) and we will use it in our
subsequent paper (Morishima et al., in preparation), in which we
apply our model to Cassini observations.



640 R. Morishima et al. / Icarus 201 (2009) 634–654
We assume that there is no scattering in thermal infrared light
and that Saturn is not on the line of sight seen from the observer.
The observed intensity is obtained from Eqs. (7) as

I+IR,λ(no, φ) =
τ∫

0

S IR,λ(ξ
′,no, φ)exp

(
− ξ ′

μo

)
dξ ′

μo

(for 0 < μo < 1),

I−IR,λ(no, φ) =
τ∫

0

S IR,λ(ξ
′,no, φ)exp

(
−τ − ξ ′

|μo|
)

dξ ′

|μo|
(for −1 < μo < 0), (28)

where no is the unit vector pointing toward the observer, S IR,λ is
the λ-dependent source function in thermal infrared obtained from
Eqs. (23) and (24) with replacing ε and IB(T ) by the λ-dependent
emissivity and Planck function, ελ and IB,λ(T ), respectively, and
μo = no ·nz = sin B , where B is the elevation angle of the observer.
We assume that ελ is independent of λ.

Using the observed intensity, the brightness temperature Tb is
given by

IIR,λ(no, φ) = IB,λ

(
Tb(no, φ)

)
. (29)

The dependence of IB,λ(T ) on T is strong around 20 μm, where
most Earth-based observations have been carried out, and with a
typical ring temperature, ∼90 K,

d ln IB,λ(T )

d ln T
= γ

eγ

eγ − 1
� γ

= hPc

λkBT
= 8.0

(
λ

20 μm

)−1( T

90 K

)−1

, (30)

while d ln IB(T )/d ln T = 4. In the above, hP is the Planck con-
stant, c is the speed of light, and kB is the Boltzmann con-
stant. In the present paper, we will concentrate our attention
on 20 μm observations as previous models (Froidevaux, 1981;
Kawata, 1983). However, we will discuss the dependence of Tb on
λ in Section 3.4.

The effective temperature Teff is derived from the ring spectrum
IIR,ν (where ν is the wave number) such that

IIR,ν (no, φ) = β IB,ν

(
Teff(no), φ

)
, (31)

where IB,ν is the wave-number dependent Planck function
(IB,ν dν = −IB,λ dλ) and β is a scaling factor. For each spectrum,
β and Teff are simultaneously derived as the values minimize the
weighted residuals R(Teff, β) between the spectrum and a theoret-
ical spectrum defined by Eq. (31)

R(Teff, β) =
∑
ν

[(
IIR,ν − β IB,ν (Teff)

)
/σν

]2
, (32)

where σν is the instrument noise equivalent spectral radiance.
Three effects are taken into account by the β factor (Altobelli
et al., 2007): (1) the geometrical filling factor, which is given by
β f = 1 − exp (−τ/|μo|) in the multilayer approximation, (2) the
infrared emissivity ε , and (3) the scalar factor βc that can occur
from observing a system comprised of particles at more than one
temperature. Then, the β factor is given as

β = β f βcε. (33)

Since β f (or the optical depth) and ε are given parameters in our
numerical simulations, βc and Teff are simultaneously derived from
Eq. (32), assuming σν = 1. The spectral region between 100 and
400 cm−1 (100–25 μm) is used following the analysis of the CIRS
data (Spilker et al., 2006). This range well encompasses the wave-
length of the peak intensity.
2.4. Heat balance for a particle

Because of motion of a particle in the vertical and azimuthal
directions, the energy flux to the particle changes with time. In or-
der to follow the change of the particle temperature Tp(ξ(zp),np, i,
�p, φp) with time, we numerically solve the thermal diffusion
equation (Aumann and Kieffer, 1973):

∂Tp

∂t
= K

ρpC

1

r2

∂

∂r

(
r2 ∂Tp

∂r

)
, (34)

where K is the thermal conductivity, ρp is the internal density, and
C is the heat capacity of the particle. We use the Crank–Nicholson
method for numerical calculations of the diffusion equation (Press
et al., 1986, Chap. 19.2).

The time in the diffusion equation can be normalized by the
inverse of the frequency of the illumination change ω−1 = Ω−1

K .
The length can be normalized by the thermally affected skin depth
ls(ω) given by

ls(ω) =
√

K

ρpCω
= Γ

ρpC
√

ω

� 1.3 × 10−3
(

Γ

6 J m−2 K−1s−1/2

)(
ρp

450 kg m−3

)−1

×
(

C

760 J kg−1 K−1

)−1(2π/ω

10 h

)1/2

m, (35)

where Γ = √
ρpC K is the thermal inertia. In the above, we used

plausible values for physical parameters, although they still have
some uncertainties. Because of voids, ρp is likely to be smaller
than that for the density of solid ice (900 kg m−3), but N-body
simulations using too small ρp (say, <300 kg m−3) cannot re-
produce wake structures seen in the A and B rings (Salo, 1995,
Salo et al., 2001). The substituted value of C (= 760 J kg−1 K−1)
is a typical value for water ice around 100 K (Schulman, 2004).
The thermal inertia of particles in Saturn’s rings estimated from
the rate of temperature increase in the post-eclipse heating is
2–30 J m−2 K−1 s−1/2 (Froidevaux et al., 1981; Ferrari et al., 2005;
Leyrat et al., 2008). The thermal conductivity K estimated from the
above ρp, C , and Γ is 10−5–10−3 W m−1 K−1, which is consistent
with the value for the ice frost (Kouchi et al., 1992). The orbital
period is about 10 h at the location of the B ring. Taking these ex-
pected values into account, ls(ΩK) is likely to be even smaller than
the size of the smallest ring particles (∼ cm; French and Nichol-
son, 2000). Therefore, we only calculate the thermal evolution of
the surface layer of a particle with a sufficiently large thickness
7ls(ΩK), assuming R � ls, where R is the particle radius (strictly
speaking, this assumption would not be appropriate for the small-
est particles).

Then, we give the inner boundary condition for Eq. (34) as

∂Tp

∂r

∣∣∣∣
r=R−7ls

= 0. (36)

The boundary condition at the surface of the particle is given as

K
∂Tp

∂r

∣∣∣∣
r=R

= F total − εσSBT 4
p , (37)

where F total is the total radiation flux received at the surface of the
particle.

The total radiation flux F total in Eq. (37) consists of the direct
solar radiation FSun,V, the thermal radiation from Saturn FSat,IR, the
reflected sunlight by Saturn FSat,V, the heating by nearby particles
FMut,IR, and the multiple scattering of visible light by neighboring
particles FSca,V:

F total = FSun,V + FSat,V + FSca,V + FSat,IR + FMut,IR. (38)
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Any flux in the right-hand side of Eq. (38) received by a certain
facet of the particle at the vertical location zp, where the path
optical depth is ξ(zp(t)), and the azimuthal location φp(t) = φ is
obtained by integrating the intensity of a heat source Ik over its
solid angle as

Fk(ξ,np, φ) = 1

4
(1 − Ak)

∫
heat source

Φ(np, s)Ik(ξ, s, φ)dΩ, (39)

where Ak is the particle Bond albedo (AV is from Eq. (18) and
AIR = 0), the subscript k is V for visible light or IR for infrared light,
Φ(np, s) is the spin function defined below, and dΩ is the solid
angle of the heat source seen from the particle. The spin function
is given as

Φ(np, s) =
⎧⎨
⎩

Max(−4 cos (np · s),0)

(for non-spinning particles),

1 (for fast spinning particles).

(40)

The spin function is normalized as
∫

Φ dΩ = 4π and the factor
1/4 in Eq. (39) comes from the normalization.

For the case of the direct sunlight, since the solid angle of the
Sun is small enough, we can put Φ and ISun,V outside of the inte-
grand in Eq. (39). Then, FSun,V is obtained from Eqs. (10) and (11)
as

FSun,V(ξ,np, φ) = 1

4
(1 − AV)Φ(np, s�)Isun,v(ξ, s�, φ)Ω�. (41)

The fluxes from Saturn are obtained by integrating the intensity
over the solid angle of Saturn using Eqs. (12), (15), and (16):

FSat,IR(ξ,np, φ) = 1

4

∫
Φ(np, sS)ISat,IR(ξ, ss, φ)dΩS, (42)

FSat,V(ξ,np, φ) = 1

4
(1 − AV)

∫
Φ(np, sS)ISat,V(ξ, ss, φ)dΩS. (43)

Similarly, the flux due to multiple scattering of visible light FSca,V
and the mutual heating flux FMut,IR can be obtained by substitut-
ing Eqs. (22) and (26) into Eq. (39), respectively.

When we solve the thermal diffusion equation, the total flux
FTotal is interpolated between mesh points with respect to z
and φ. At the mesh points of the shadow boundaries (φ = φb and
2π − φb), we calculate FTotal for both the cases with and without
the fluxes in visible light. Then, the interpolation is independently
done in the shadow of Saturn and the azimuthal region directly
illuminated by the Sun.

If the energy flux to a particle is periodic as in the present case,
the temperature of the particle will be periodic as well after it
reaches to its thermal equilibrium state. In the thermal equilibrium
state, the energy flux to the particle balances with the thermal flux
emitted by the particle when averaged over the orbital period. It
should be noted that the surface temperature variation with time
only depends on the thermal inertia Γ in such a case, as long as
R � ls. The time necessary to reach to the thermal equilibrium
state is characterized by the thermal relaxation time τrel given by
(Farinella et al., 1998)

τrel = Γ

εσSBT 3
p
√

ω
,

= 1.1 × 104ε−1
(

Γ

6 J m−2 K−1s−1/2

)

×
(

Tp

90 K

)−3(2π/ω

10 h

)1/2

s. (44)

The possible range of Tp for Saturn’s rings is 40–130 K: the mini-
mum value is the case with the thermal emission from Saturn only
at the location of the A ring while the maximum value is the case
of the subsolar point of a non-spinning particle with AV = 0 and
without any shadows. Therefore, τrel can be shorter or longer than
the orbital period (τorb = 2π/ΩK) for high and low Tp, respec-
tively. Besides the condition from τrel, at least a few orbital periods
are necessary for the thermal equilibrium over an orbital period.
After some numerical experiments, we found that the following
integration time T int is necessary for the thermal equilibrium:

T int = Max
(
5τorb,2τrel(Tp,mean)

)
, (45)

where Tp,mean is the temperature averaged over ξ and ss at the
west ansa (φ = 270◦). Ideally, the temperature used for the esti-
mation of τrel should be the minimum temperature with respect
to ξ, ss, and φ, but such a severe condition is usually unnecessary.

We found that the time step size should be smaller than at least
∼0.03τrel(Tp,max) for the stability of the Crank–Nicholson method,
where Tp,max is the maximum temperature with respect to ξ, ss,
and φ. In addition, for a good accuracy, the time step size should
be preferably smaller than the thermal diffusion time

τdiff = (�r)2/
[

K/(ρpC)
] = τorb

[
�r/�s(ΩK)

]2
/(2π)

for one mesh size �r (we adopt �s/�r = 10). In practice, we adopt
the following time step size �t in our simulations

�t = Min
(
0.001τorb,0.02τrel(Tp,max)

)
. (46)

2.5. Numerical procedure

The numerical procedure to obtain the intensities of rings and
the physical temperatures of particles is schematically summarized
in Fig. 3. The physical parameters which control the thermal field
of the ring (S IR(ξ ′,no, φ)) are as follows: the distance from the
Saturn center a, the optical depth τ , the fraction of fast spinning
particles in the optical depth f fast(= τfast/τ ), the ratio of the scale
height between fast and slow spinning particles hr, the albedo in
visible light AV, the thermal inertia Γ , the emissivity ε , and the
solar elevation angle B ′ .

With these input parameters, we first calculate the direct so-
lar illumination ISun,V, and the fluxes from Saturn, ISat,V and ISat,IR
(Sections 2.3.2.1 and 2.3.2.2). Using ISun,V and ISat,V for the initial
source function in visible light, the iteration procedure in each az-
imuthal location gives the intensity due to the multiple scattering
light ISca,V (Section 2.3.2.3). Note that the above four intensities
(intensities except IMut,IR) are given as a function of the vertical
and azimuthal positions and the normal direction of a facet on a
ring particle, and do not change regardless of whether particles
move or not. Using these four intensities, the temporary energy
flux to ring particles Ftotal is calculated from Eq. (39).

Next we calculate the intensity due to mutual heating IMut,IR
for the case of static particles (żp = φ̇p = 0 or K = 0). In the case
of K = 0, the temperature is simply obtained by

Tp(ξ ′,no, φ) = [
F total(ξ

′,no, φ)/(εσSB)
]1/4

(see Eq. (37)). The temporary intensity IMut,IR and flux FMut,IR
are then calculated from Tp in the procedure described in Sec-
tion 2.3.2.4 and Eq. (39). Adding the temporary FMut,IR to other
four fluxes, we obtain the updated F total and Tp. This procedure is
repeated until FMut,IR and Tp converge. The converged FMut,IR and
Tp are used as initial guesses in the iteration procedure for moving
particles.

Using these initial guesses, we solve the thermal diffusion equa-
tion for a moving particle with given i and �p (Section 2.4).
Once the particle reaches to its thermal equilibrium state, in which
the illumination flux balances with the radiating flux when av-
eraged over the orbital period, Tp becomes completely periodic
with the orbital period. Using Tp’s of particles with various i’s
and �p’s after they reach to the thermal equilibrium state, we
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Fig. 3. Flow chart for the numerical procedure to obtain observed ring temperatures. We assume that the albedo in thermal light is zero so the scattered thermal light is
ignored.
calculate a new source function in infrared light S IR(ξ ′,no, φ)

and new FMut,IR(ξ ′,no, φ), following the procedure described in
Section 2.3.2.4. Using the updated flux, we solve the tempera-
ture evolution of particles again. This procedure is repeated until
FMut,IR(ξ ′,no, φ) converges.

We adopt the condition of the convergence in both cases of
moving and static particles as |�FMut,IR|/FMut,IR < 5 × 10−3 for all
ξ,np, and φ, where �FMut,IR is the deviation of FMut,IR from the
last iteration. This guarantees an error due to iteration to be less
than ∼0.2 K. For static particles, we usually need a much larger
number of iterations than that in the case of moving particles (typ-
ically ∼50 and 5 for the former and latter cases, respectively, for
τ = 1.5). This follows from the inefficient heat transport due to
the thermal radiation only. Note that, however, the computational
time required in numerical calculations for static particles is much
shorter than for moving particles, because most of the time is con-
sumed in solving the thermal diffusion equation for the latter case.

Once the thermal field (S IR) converges, we can obtain the ob-
served brightness and effective temperatures with a given solar
phase angle α� (or a saturnocentric longitude of the observer) and
observer elevation angle B (Eqs. (29) and (32) in Section 2.3.3).
Note that we consider only the case with α� = 0 (thus B = B ′) in
the present paper except when obtaining unlit side temperatures.

Besides physical parameters listed in the beginning of Sec-
tion 2.5, there are some other numerical parameters in our simu-
lations. In a standard case, we used following parameters: the grid
number for z (−9 � z/hslow � 9) is 600, the grid number for φ is
10, the number of rays for radiative transfer (thus number of parti-
cle facets) is 60, the grid number for i (0 < ai/h � 3) is 20 for each
of slow and fast rotators, the grid number for �p (0 � �p < 2π)

is 20, and the mesh number for the surface layers of each parti-
cle is 70. The facets of a pentakis dodecahedron (with 60 faces)
is used so that solid angles of all facets are equal. For the case of
the bouncing model, we double the number of particles. From the
calculations with different numbers of grids or particles, the nu-
merical error in the brightness temperature is estimated to be less
than 1 K in most cases. Note that finer grids in the z direction are
required in the case of smaller B ′ as we need to accurately solve
the thermal structure of thin and warm upper layers of the ring.
3. Dependence of ring temperatures on various physical
parameters

In this section, we show some basic properties of ring temper-
atures in cases with various physical parameters. The precise data
fit to the observed temperatures will be done in Section 4.

3.1. Effect of particle motion

Fig. 4 shows an example of trajectories of particles on the Tp
vs. z/hfast plane for the case of the B ring-like parameters: τ = 1.5,
f fast = 1.0, AV = 0.7, a = 100,000 km, with B ′ = 2◦ . Only particles’
vertical motion is taken into account at the west ansa, and their
azimuthal motion is not included (see Section 2.3.2.4). Note that
here all particles are assumed to be fast rotators for simplification
so there is no dependence of Tp on the normal direction of the
facet. As shown in the figure, trajectories are closed after particles
reach to its thermal equilibrium state, in which the illumination
flux balances with the radiation flux when averaged over the or-
bital period. In Fig. 4, we also plot the vertical profile of the ring
physical temperature, TR(z) (Eq. (27)), in the first iteration and that
after convergence. One can see the heat transport from warmer
parts to colder parts and that the heat transport is less efficient for
the bouncing model than the standard model with the sinusoidal
vertical motion. The temperature is coldest around the midplane,
since particles with small i’s are concentrated near the midplane
and the direct solar illumination can hardly reach to them.

The dependence of the observed brightness temperature Tb,v
on thermal inertia Γ is shown in Fig. 5 (the subscript v de-
notes the case with vertical motion only). Since the Sun’s illu-
mination mostly attenuates around the vertical location where
ξ(z)/ sin |B ′| ∼ 1 for the optically thick rings, only upper layers
with large z/hfast are directly heated by the Sun (see Fig. 4). From
the Earth, we mainly observe these heated layers. Since ring parti-
cles transfer thermal energy from the illuminated side to the unil-
luminated side, the temperature observed from the Earth decreases
with increasing efficiency of the heat transport (i.e. larger Γ ). The
cooling of the upper layers is more enhanced for smaller |B ′| ow-
ing to the increase of the shadowed layers, where the Sun’s illumi-
nation cannot directly reach.
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Fig. 4. Particle trajectories on the Tp vs. z/hfast plane for τ = 1.5, AV = 0.7, f fast =
1.0, a = 100,000 km, Γ = 6 J m−2 K−1 s−1/2, and B ′ = 2◦ . Upper panel: Particle ver-
tical motion is standard sinusoidal (see Eq. (2)), and the cases for ai/hfast = 1.0 and
2.0 are shown. Lower panel: Particles are assumed to bounce at the midplane of
the ring, and two trajectories with the same ai/hfast (= 1.0) but different signs of
z are shown. The long-dashed line in each panel is the temperature profile of the
ring with static particles used as an initial guess for the iteration for moving parti-
cles and the short-dashed line is the temperature profile with the vertical motion
of particles converged after the iteration. Trajectories shown here are obtained with
using the thermal flux from static particles (or in the first iteration).

Fig. 5. Brightness temperature as a function of the solar elevation angle for differ-
ent values of the thermal inertia, Γ . The numbers indicate values of the thermal
inertia in units of J m−2 K−1 s−1/2. Here all particles are assumed to be fast rota-
tors ( f fast = 1.0). The particle motion only in the vertical direction is taken into
account at φ = 270◦ . For the B ring, the vertical motion is given by the bounc-
ing model, whereas the standard sinusoidal motion is assumed for the C and A
rings (see Eq. (2)). The filled dots are observed temperatures from Table 1 (see Sec-
tion 4.1).

Fig. 6. Effect of the bouncing motion. The deviation of the brightness temperature
for the case of the bouncing model from that for the case with the standard sinu-
soidal motion is shown. The numbers indicate values of the thermal inertia in units
of J m−2 K−1 s−1/2. Only the vertical motion is taken into account at φ = 270◦ (the
west ansa) with f fast = 1.0.

The temperature drop due to the vertical heat transport de-
pends on τ . For the C ring, the vertical heat transport is insignif-
icant, since the sunlight reaches to any vertical location and the
temperature variation in the vertical direction is small, except at
very small |B ′|. With increasing optical depth, the temperature
drop due to the vertical motion increases even for larger |B ′|, as
long as particles follow the sinusoidal motion. However, the pre-
vention of the sinusoidal motion due to mutual collisions also in-
creases with optical depth. Note that we adopt the bouncing model
for the B ring but not for the A ring. As a result, the temperature
drop due to the vertical motion is larger in the A ring than the
optically thicker B ring.

The effect of the bouncing at the midplane is more clearly
shown in Fig. 6. The figure shows the difference in the bright-
ness temperatures between the bouncing model and the standard
model with the sinusoidal motion. As can be seen, the devia-
tion increases with increasing τ/ sin |B ′|, except for very large
τ/ sin |B ′|, since the effect of the vertical heat transport is more
enhanced with increasing attenuation of the direct illumination ex-
cept upper layers. When τ/ sin |B ′| is very large (>10), the ring
physical temperature around the midplane is so low that the di-
rectly illuminated upper layers can cool significantly even when
the vertical motion of particles is restricted to z > 0. Therefore,
the deviation in Fig. 6 does not increase any more at very large
τ/ sin |B ′|.

The effect of the azimuthal motion of particles is insignif-
icant as compared with that of the vertical motion, at least,
for the ring temperature at the west ansa seen form the Earth.
Fig. 7 shows the difference in the brightness temperatures be-
tween the case including the azimuthal motion Tb and the case
with vertical motion only Tb,v. There are two factors causing
the difference. The first one is the eclipse cooling, which de-
creases the ring temperature. This effect is small at the west
ansa because of the subsequent heating of particles emerging
from the Saturn’s shadow. However, if the thermal relaxation
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Fig. 7. Effect of azimuthal motion. Difference in brightness temperature between
the case with the vertical motion only and from the case including the azimuthal
motion is shown. The numbers indicate values of the thermal inertia in units of
J m−2 K−1 s−1/2. All particles are assumed to be fast rotators.

time is not short enough in case with a large Γ , as com-
pared with the duration of the heating, the temperature drop
due to the eclipse cooling cannot be ignored even at the west
ansa.

The second factor is the asymmetry of the fluxes from Saturn.
For the case of Fig. 7, in which we assume all particles to be fast
rotators, the asymmetry of the Saturn’s flux is caused by the re-
flected sunlight, which is largest at the noon (φ = 180◦). This effect
slightly increases Tb at the west ansa, and the contribution from
the flux from Saturn is more important at smaller |B ′|. As can be
seen in Fig. 7, the first factor is more important (positive values of
Tb,v − Tb) at large |B ′| while the second factor is relatively more
important at smaller |B ′|. When the solar elevation is close to its
maximum, |B ′| ∼ 26◦ , the A ring is outside of Saturn’s shadow at
any azimuthal position and the contribution from Saturn’s flux is
negligible relative to the direct solar flux. As a result, the differ-
ence Tb,v − Tb becomes nearly zero. This result also proves the
accuracy of our numerical simulations, as Tb,v and Tb are obtained
by different procedures.

3.2. Effect of vertical heterogeneity of spins of ring particles

Fig. 8 shows the brightness temperature, Tb, with various val-
ues of the fraction of fast rotators, f fast. In principle, Tb decreases
with increasing f fast for all the rings, as we anticipated. Another
important fact is that Tb tends to converge to the case of f fast =
1.0 at small |B ′|, unless f fast = 0.0.

In order to understand the behavior of Tb shown in Fig. 8, we
made two supplementary figures, Figs. 9 and 10. Fig. 9 shows the
vertical profile of the ring physical temperature, TR (Eq. (27)), with
various values of |B ′| for the case of f fast = 0.2 and s = −s�: the
ring temperature here is obtained from the averaged emission of
ring particles towards the direction of the Sun. At very small |B ′|,
only the upper most layers are directly heated by the Sun and the
ring temperature is coldest around the midplane, similarly to the
case shown in Fig. 4. With increasing |B ′|, the direct sunlight starts
to reach to the midplane where slow rotators concentrate. This
Fig. 8. Brightness temperature as a function of solar elevation angle for different
values of the fraction of fast rotators, f fast , between 0.0 to 1.0 with the interval of
0.2. The numbers indicate values of f fast . The thermal inertia is 6 J m−2 K−1 s−1/2.

Fig. 9. Vertical profile of the ring temperature, TR, at the subsolar point. The solar
elevation angle B ′ is from 2 to 26◦ for the bottom to top lines with the interval of
four degrees. Here Γ = 6 J m−2 K−1 s−1/2 and f fast = 0.2.

makes TR near the midplane highest, and the observed brightness
temperature significantly increases.

Therefore, the degree of temperate increase with increasing |B ′|
depends on how large a fraction of slow rotators can be illu-
minated by the Sun and seen from the observer. We define the
effective fraction of fast rotators, f fast,eff, to be the fraction of
fast rotators to the normal path optical depth ξ(z) at z where
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Fig. 10. Effective fraction of fast rotators (Eq. (47)) seen from the Earth for different
values of f fast (the number next to each line) between 0.0 to 1.0 with the interval
of 0.2.

ξ(z)/ sin |B ′| = 1 (see Eqs. (4) and (5) for the definition of ξ(z)):

f fast,eff(τ , B ′) =

⎧⎪⎪⎨
⎪⎪⎩

ξfast(z)

ξ(z)

(
with

ξ(z)

sin |B ′| = 1

)
,

f fast

(
for

τ

sin |B ′| < 1

)
.

(47)

This quantity roughly represents the fraction of fast rotators seen
from the observer, and the fraction illuminated by the Sun can be
obtained by replacing B ′ by B . Fig. 10 shows f fast,eff as a function
of B ′ . If τ/ sin |B ′| < 1 due to small τ and/or large B ′ , the observer
can see all particles ( f fast,eff = f fast). On the other hand, when
τ/ sin |B ′| > 1, f fast,eff increases to unity with decreasing sin |B ′|,
unless f fast = 0. When τ/ sin |B ′| is only slightly larger than unity,
f fast,eff becomes smaller than f fast, since the observer can see most
of slow rotators but not fast rotators in the unilluminated side. This
explains the dip at |B ′| ∼ 4◦ for the C ring.

The value of B ′ at which Tb( f fast < 1) converges to Tb( f fast = 1)

in Fig. 8 is almost the same as the B ′ value at which f fast,eff con-
verges to unity in Fig. 10. Therefore, the behavior of Tb seen in
Fig. 8 can be explained by the effective fraction of fast rotators,
f fast,eff, seen from the observer. For the A and B rings, the tem-
perature increase with increasing B ′ is most strongly enhanced for
small f fast(> 0). For the optically thin C ring, both fast and slow
rotators can be seen regardless of |B ′|, except for very small |B ′|.
Therefore, the temperature curve of the C ring in Fig. 8 shifts by a
nearly constant amount with changing f fast for all |B ′|’s.

The effect of vertical heterogeneity of particle spins depends
on the scale height ratio, hr = hfast/hslow. Fig. 11 shows the devia-
tion of Tb(hr) from Tb(hr = 3). If the observer can see all particles
(τ/ sin |B ′| < 1 or f fast,eff = f fast), Tb(hr) does not depends on hr.
If τ/ sin |B ′| > 1, Tb(hr) increases with decreasing hr, as the ob-
server can see larger fraction of slow rotators at a certain sin |B ′|.
When τ/ sin |B ′| is very large, the dependence of Tb(hr) on hr be-
comes weak, since the observer can see only fast rotators in the
upper layers. Overall, the dependence of Tb on hr is not large, as
long as hr > 2, which is suggested from dynamical simulations (e.g.
Morishima and Salo, 2006).
Fig. 11. Dependence of brightness temperature on scale height ratio hr = hfast/hslow.
The deviation of Tb from the case of hr = 3 is shown. The numbers indicate values
of hr . Here Γ = 6 J m−2 K−1 s−1/2 and f fast = 0.2.

Fig. 12. Effect of different heat sources. The number next to each line indicates con-
tributions from different heat sources: (1) FSun,V, (2) FSun,V + FSat,IR , (3) FSun +
FSat,IR + FSat,V, (4) FSun + FSat,IR + FSat,V + FMut,IR , and (5) FSun + FSat,IR + FSat,V +
FMut,IR + FSca,V. Here FSun,V is the direct illumination flux from the Sun, FSat,IR

and FSat,V are the fluxes from Saturn in infrared and visible light, and FMut,IR and
FSca,V are the fluxes from surrounding particles in infrared and visible light. Curves
marked with (2) and (3) are top of each other as FSat,V is very small. We adopt
Γ = 6 J m−2 K−1 s−1/2 and f fast = 0.2.

3.3. Contributions from different heat sources

The contributions to the brightness temperature from different
heat sources are shown in Fig. 12. The curve marked with (1) cor-
responds to the case with the direct solar illumination (FSun,V)
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Fig. 13. Effect of different heat sources for various optical depths. The number next
to each line indicates contributions from different heat sources in a similar manner
as in Fig. 12.

only, while the curves with (2), (3), (4), and (5) correspond to the
cases with two (FSun,V + FSat,IR), three (FSun,V + FSat,IR + FSat,V), four
(FSun,V + FSat,IR + FSat,V + FMut,IR), and all five (FSun,V + FSat,IR +
FSat,V + FMut,IR + FSca,V) heat sources. The contribution from Sat-
urn is relatively more important for small B ′ and a. For optically
thick rings, like the A and B rings, the contributions from the mu-
tual heating and the multiple scattering of visible light are large, in
particular, for large |B ′|. These contributions significantly enhance
the increase of Tb with |B ′|. The multiple scattering effect is ig-
nored in Kawata (1983), but it is clearly important for the A and B
rings.

Fig. 13 shows the dependence of Tb on τ for the case with var-
ious heat sources. If the elevation angles of the Sun and observer
are small (B ′ = B = 2◦), Tb always decreases with decreasing τ
due to the effect of mutual shadowing and vertical heat trans-
port. However, the contributions from FSca,V and FMut,IR increase
with increasing τ . Also, in contrast to the solar illumination, the
illumination from Saturn always takes place from a large effective
elevation angle, so that it is not severely attenuated even for large
τ . When the elevation angles of the Sun and observer are large
(B = 26◦), Tb increases with increasing τ at small τ because the
geometric filling factor increases with increasing τ . At larger τ , Tb
starts to decreases with τ if we ignore mutual heating and multi-
ple scattering, due to the effects of mutual shadowing and vertical
heat transport as in the case of small B ′ . If we take both the mu-
tual heating and the multiple scattering into account, however, Tb
increases with τ .

The contributions from various heat sources were shown in
a secondary way in Figs. 12 and 13 through their effect on Tb.
Figs. 14–16 directly show the energy flux from various heat sources
received by a particle as a function of the vertical coordinate z. For
the case of slow rotators, each energy flux varies with the normal
direction of the particle facet, and the fluxes received at the subso-
lar point and anti-subsolar point are chosen as extreme examples.
As can be expected, the direct solar illumination is usually the
most dominant heat source at large z, except for the anti-subsolar
point for the slow rotators. The direct solar illumination rapidly
attenuates with decreasing z, in particular, for large τ or small B ′ .
The second most important flux is the mutual heating, or in
the case of small τ and a, the thermal emission from Saturn. In
Figs. 14–16, we show the sum of the thermal emission from Saturn
and the reflected sunlight by Saturn, but the former is one order
of magnitude larger than the latter at the west ansa. Although the
precise method to obtain the energy flux received by a ring parti-
cle is described in Section 2, let us roughly estimate the thermal
fluxes from Saturn and surrounding particles in order to under-
stand the dependence of these fluxes on the distance from Saturn
and the optical depth. The thermal flux received by a particle is
represented by the product of the solid angle of the heat source
normalized by 4π , the thermal flux emitted by the heat source
σSBT 4, and the spin function Φ (see Eqs. (39) and (40)). The solid
angle of Saturn, ΩS, seen from a particle at a is given by

ΩS

4π
= 1

2

(
1 −

√
1 −

(
rS,eq

a

)2
)

1 − εS√
1 − (rS,eq/a)2[1 − (1 − εS)2]

. (48)

Note that ΩS = 2π at a = rS,eq and ΩS = πr2
S,eq(1 − εS) for

a � rS,eq. The geometrical filling factor of surrounding particles
seen from a particle at ξ toward a certain direction is given by
1 − exp(−ξ/μ) for the upper layers and 1 − exp(−(τ − ξ)/|μ|)
for the lower layers. Then, the solid angle of surrounding particles
ΩR(ξ) seen from the particle is given by averaging the geometrical
factor over μ as

ΩR(ξ)

4π
= 1

2

0∫
−1

[
1 − exp

(
−τ − ξ

μ

)]
dμ

+ 1

2

1∫
0

[
1 − exp

(
− ξ

μ

)]
dμ

= 1 + 1

2

[
(τ − ξ)E1(τ − ξ)

+ ξ E1(ξ) − e−(τ−ξ) − e−ξ
]
, (49)

where E1(ξ) is the first order exponential integral.
For the case of the C ring (a = 80,000 km and τ = 0.08),

ΩS/(4π) = 0.15 and ΩR/(4π) = 0.17 and 0.19 at ξ = 0 and τ/2.
Since the surface temperature of Saturn TS (= 95 K) and the ver-
tically averaged temperature of surrounding particles 〈TR〉 ∼ 90 K
(see Fig. 9) are similar as well as the solid angles, both fluxes to
a fast rotator (Φ = 1) take similar values. The flux σSBT 4

S ΩS/(4π)

is estimated to be 0.7 W m−2 with TS = 95 K and ΩS/(4π) = 0.15
for the case of fast rotators and is consistent with our detailed
numerical calculations. For slow rotators, we need to take the fac-
tor due to the spin function into account (i.e. the direction of
the heat sources seen from a facet on a particle). At large z, the
mutual heating flux of slow rotators at the subsolar/anti-subsolar
point is usually smaller/larger than that for fast rotators, since the
solid angle of surrounding particles seen from the facet at the
subsolar/anti-subsolar point is relatively smaller/larger (the solid
angle is normalized by 2π for a facet on the slow rotator).

For the A and B rings, the flux from Saturn becomes smaller as
its solid angle is smaller. On the other hand, the mutual heating
flux is significantly larger than that for the C ring. At sufficiently
large τ , ΩR/(4π) = 0.5 and 1 at ξ = 0 and τ/2. In this case, if
the vertically averaged temperature of surrounding particles is as
warm as the particle temperature at certain ξ , the contribution of
the mutual heating at ξ exceeds, at least, half of the total flux for
fast rotators. Indeed, this situation occurs for the B ring at B ′ =
26◦ (see also Fig. 9). For B ′ = 2◦ , the contribution of the mutual
heating is much lower than that for B ′ = 26◦ , because of the low
〈TR〉.
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Fig. 14. Energy fluxes from different heat sources received by a particle at the vertical location z for the C ring. The parameters are τ = 0.08, AV = 0.3, a = 80,000 km, and
f fast = 0.2. The solar elevation angle B ′ is 2◦ for the left panels and 26◦ for the right panels. The cases for the subsolar point (top panel) and the anti-subsolar point (middle
panel) for slow rotators, and the case of fast rotators (bottom panel) are shown. Only the vertical motion is taken into account at φ = 270◦ (the west ansa).

Fig. 15. Same as Fig. 14 but for the case of the B ring. The parameters are τ = 1.5, AV = 0.7, a = 100,000 km, and f fast = 0.2.
The scattered light is dominated by the first order scattered
light which illuminates mainly the night-side hemispheres of par-
ticles. Therefore, its direct contribution is small at the subsolar
point of slow rotators. However, since the night-side hemispheres
of slow rotators are heated up by the scattered light, the effect of
the mutual heating on the subsolar point increases. This is why
the observed Tb is significantly enhanced by the scattered light in
Figs. 12 and 13. For the case of fast rotators, the flux due to the
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Fig. 16. Same as Fig. 14 but for the case of the A ring. The parameters are τ = 0.5, AV = 0.6, a = 130,000 km, and f fast = 0.2.
first order scattered light can heat up entire surfaces by their fast
spins. The mutual heating flux for fast rotators is approximately
enhanced by a factor of (Fext + FSca,V)/Fext by the scattered light,
where Fext = FSun,V + FSat,V + FSat,IR.

Some discussion for the contribution of each heat source for a
monolayer model can be found in Ferrari and Leyrat (2006).

3.4. Dependence on albedo, emissivity, and wavelength

If we extract the dependence of the fluxes on the albedo and
emissivity, the energy balance equation at the particle surface
(Eq. (37)) can be approximately rewritten as

K
∂Tp

∂r

∣∣∣∣
r=R

= −ε

(
1 − ΩR

4π

)
σSBT 4

p

+ (1 − AV)(cSun,V + cSat,V + AVcSca,V) + FSat,IR, (50)

where cSun,V, cSat,V, cSca,V are factors for the fluxes other than the
albedo (e.g., FSun,V = (1 − AV)cSun,V). In the above, we ignore the
scattered light larger than the first order and the temperature of
surrounding particles is assumed to be the same as the particle in
question (thus, here ΩR is interpreted as the effective solid angle
of surrounding particles with the same temperature). Since the di-
rect solar illumination is, in principle, the dominant heat source,
Tp and Tb increase with decreasing AV (Fig. 17). In the case of
AV = 1.0, the particle temperature is determined by Saturn’s in-
frared flux and Tb decreases with increasing B ′ , as a larger fraction
of cold particles near the midplane are visible. Except for the case
of AV ∼ 1.0, Tp monotonically increases with increasing B ′ and the
dependence of Tb on B ′ are similar for different AV’s.

The reduction of ε has an effect similar to the decrease of AV. If
(1− AV)/ε takes the same value, Tp, determined by the direct solar
illumination only, takes the same value as well for static parti-
cles. For moving particle, Tp slightly deviates for cases of different
values of ε even with the same (1 − AV)/ε , because the ther-
mal conduction term is relatively more important for smaller ε .
Fig. 17. Dependence of brightness temperature on albedo AV (the number next to
each line). Here Γ = 6 J m−2 K−1 s−1/2 and f fast = 0.2.

The deviation of the temperature due to this effect is very small
though. Fig. 18 shows Tb and Teff for the case of ε = 0.5 and 1.0
and both cases take the same (1 − AV)/ε . All the heat sources are
included in the simulations. For the case of ε = 1.0, Tb at 20 μm
and Teff fitted from the spectrum between 25–100 μm almost co-
incide if the geometric filling factor β f = 1 − exp(−τ/| sin B ′|) is
nearly unity (for the case of the B-ring two lines are indistinguish-
able for all B ′ due to large τ ). For ε = 0.5, Teff is larger than that
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Fig. 18. Dependence of brightness temperature (solid lines) and effective tem-
perature (dashed lines) on emissivity. Two different cases of ε = 0.5 and 1.0
(the number next to each line) with a fixed (1 − AV)/ε are shown. Here Γ =
6 J m−2 K−1 s−1/2 and f fast = 0.2.

for ε = 1.0, whereas Tb is lower than that for ε = 1.0. This is ex-
plained as follows. The dependence of Teff and Tb on AV and ε are
given as (see Eq. (50) and Section 2.3.3):

T 4
eff ∼ T 4

p ∝
(

1 − AV

ε

)
(cSun,V + csat,V + AVcSca,V) + FSat,IR

ε
, (51)

T γ
b ∼ β f εT γ

p . (52)

If (1 − AV)/ε takes the same value, the thermal flux from Saturn
and the flux due to the multiple scattering relatively increases with
decreasing ε: the former is important for the C ring and the latter
for the B and A rings. Therefore, Tp itself is higher for smaller ε
with a fixed (1 − AV)/ε . On the other hand, Tb is proportional to
ε1/γ if Tp is constant. Thus, Tb decreases with decreasing ε , even
though Tp slightly increases. It is found from Eqs. (51) and (52)
that if (1 − AV)/ε1−4/γ takes the same value, Tb also takes similar
values to first order.

The dependence of Tb on the wavelength λ is shown in Fig. 19.
With increasing λ, Tb decreases, and this trend is stronger for opti-
cally thinner rings. This is explained by the effect of the geometric
filling factor, β f . Equation (52) suggests that Tb ∼ β

1/γ
f Tp. Since γ

decreases with increasing λ (Eq. (30)), the decrease of Tb due to
the effect of β f is larger for larger λ. Even without the effect of β f ,
Tb slightly increases with decreasing λ, since larger weights are
put on particles with high Tp in the integrating procedure to ob-
tain the observed intensity (Eq. (28); S IR,λ ∝ T γ

p ). This causes weak
λ-dependence of Tb even for the B ring, where β f � 1 for any |B ′|.

We also plot Teff and βc in Fig. 19. As we explained in Sec-
tion 3.1, Teff monotonically increases with increasing B ′ . We find
that βc usually takes values between 0.9 and 1.0 and gradually
increases with increasing B ′ . The βc factor represents the temper-
ature variation of particles and facets seen from the observer: βc
increases to unity as the variation becomes smaller. The temper-
ature variation in the vertical direction is large at small B ′ . With
increasing B ′ , the temperature variation becomes smaller as the
direct solar illumination reaches deeply and βc approaches close
to unity for all the rings.
Fig. 19. Dependence of brightness temperatures (solid lines) on wavelength. The
number next to each line indicates the wavelength in units of μm. The effective
temperature (short-dashed line) and the scaling factor βc (long-dashed line) multi-
plied by a factor 100 are also shown. Here Γ = 6 J m−2 K−1 s−1/2 and f fast = 0.2.

4. Fitting to observed temperatures

As we have shown in Section 3, the main parameters control-
ling the brightness temperature of a ring are the albedo for visible
light AV, the fraction of fast rotators f fast, the thermal inertia Γ ,
the optical depth τ , the distance from the Saturn center a, emis-
sivity ε , and the ratio of the scale height of the fast rotators to that
for the slow rotators hr. We assume that ε = 1 and hr = 3: for both
parameters, deviations from actual values are expected to be small
as ε ∼ 0.9 (Altobelli et al., 2008) and hr ∼ 3 from dynamical simu-
lations (e.g., Morishima and Salo, 2006). The optical depth τ is well
determined by previous observations, such as those by the Voyager
photopolarimeter subsystem (PPS; Esposito et al., 1983) as a func-
tion of a except for dense parts (τ > 2.0). In fact, in rings with
wakes, the (normal) optical depth τ is a function of the elevation
angle of the observer (Colwell et al., 2006, 2007), as predicted by
Salo et al. (2004). In the present paper, however, we ignore the ef-
fect of wakes, as mentioned in Section 2.1, and adopt the optical
depths obtained by the Voyager observations as nominal values.

Then, we focus on the following three unknown parameters,
f fast, AV, and Γ . Unfortunately, we cannot determine them ac-
curately when using only data from Earth-based observations be-
cause there is a tradeoff relation in these parameters. For example,
with increasing both f fast and AV, observed temperatures similarly
decrease. Therefore, in the present paper, we attempt to obtain
possible combinations of f fast, AV, and Γ which satisfy the obser-
vational data. In order to save the computational time, we consider
only three cases of Γ = 2, 6, and 20 J m−2 K−1 s−1/2. Note that
the lower and upper limits obtained by previous works are about
Γ = 2 and 30 J m−2 K−1 s−1/2, respectively (Froidevaux et al., 1981;
Ferrari et al., 2005; Leyrat et al., 2008), and the difference between
results for 20 and 30 J m−2 K−1 s−1/2 is expected to be small.

4.1. Infrared data

The observational data used for the fit are tabulated in Table 1.
Except for the Pioneer data at ∼45 μm, the data at ∼20 μm are
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chosen, since there are a largest number of observations at this
wavelength as compared with those in other wavelengths. All the
data are normalized to Saturn’s disk center brightness tempera-
ture of Tdisk,st = 92 K at a� = 9.25 AU, following Nolt et al. (1978)
and Froidevaux (1981). Note that the brightness temperature is not
necessarily the same as the effective temperature TS = 95 K. The
standard disk temperature Tdisk,st(a�) at a� according to the ef-
fective temperature relation is given as

Tdisk,st(a�) =
[

0.5

(
9.25 AU

a�

)2

+ 0.5

]1/4

Tdisk,st(9.25 AU), (53)

where equal solar and internal energy sources are assumed. Using
Tdisk,st(a�), the brightness temperature of a ring at a� is normal-
ized as

IB,λ

(
Tb(a�), λ

) = IB,λ

(
Tb,obs(a�), λ

) IB,λ(Tdisk,st(a�), λ)

IB,λ(Tdisk(a�), λ)
, (54)

where IB,λ(T , λ) is the Planck function and Tb,obs is the actual
observed brightness temperature before the normalization. Then,
Tb(a�) is normalized to 9.25 AU, according to the expected depen-
dence on a� as

Tb(9.25 AU) = Tb(a�)

(
a

9.25 AU

)1/2

. (55)

The brightness temperatures after the normalization are indicated
in parentheses next to the actual observed brightness temperatures
before the normalization in Table 1. After the normalization, we
simply assume the error bar size to be 2 K for all the data after
Froidevaux (1981). Without the above normalization, the scatter of
the raw data is too large to constrain physical parameters accu-
rately in data fitting.

The observed brightness temperatures are already plotted in
previous figures (filled circles) and Fig. 18 is a good example to
explain. For the A and B rings, Tb monotonically increases with in-
creasing |B ′| (the thermal tilt effect). On the other hand, Tb for
the C ring decreases with increasing |B ′| except for very small |B ′|.
This is because of the small geometric filling factor of the C ring.
It is expected, however, that Teff of the C ring monotonically in-
creases with increasing |B ′| as well as those for the A and B rings.

There are some other observations not listed in Table 1. In
particular, data from Pioneer (Froidevaux and Ingersoll, 1980) and
Voyager (Hanel et al., 1981, 1982) are very attractive to analyze,
as these were obtained at small |B ′|. Note that there are very
few data from Earth-based observations at small |B ′|, perhaps be-
cause small opening of rings makes accurate observations difficult.
However, we avoided the data obtained at observational geome-
tries which are very different from the Earth based observations.
Interpretations of these data are more complicated. One lit-side
data for the A ring, which we take from the Pioneer observation,
has a nearly same geometry of the Earth based observation (see
Froidevaux, 1981). We also use the unlit side temperature of the A
ring. The effective temperature is used only for this case. Since the
elevation angle of the spacecraft was really small for the unlit side
observation (|B| < 1◦), it mostly observed vertically extended fast
rotators. Therefore, the phase angle dependence is expected to be
very small.

4.2. Results

Figs. 20–22 show the albedo obtained by the χ -square fitting
as a function of the fraction of fast rotators f fast for three different
values of Γ (the upper panels). In the lower panels, the standard
deviation for the fitting to the observed temperatures is shown.
In all the rings, the fitted albedo decreases with increasing f fast
and Γ . The temperatures of the ring particles at large z, which
Fig. 20. Upper panel: Fitted albedo in visible light as a function of the fraction of
fast rotators f fast for the case of the C ring. The results for three different Γ ’s are
shown. The error bar size is 0.02–0.04 (not shown). The region between two hor-
izontal dashed lines indicate the range of the albedo obtained from optical and
near-infrared observations (see Section 5.1). The dots with error bars are the values
of AV and f fast estimated by Leyrat et al. (2008). They use a data set by Voyager
IRIS and adopt the mono-size ( f fast = 0) and bimodal size approximations. The cross
marks are the values of AV estimated in Froidevaux (1981) for the cases of f fast = 0
and 1. Lower panel: Standard deviation in the χ -square fitting to the observed tem-
peratures.

Fig. 21. Same as Fig. 20, but for the case of the B ring. The error bar size is 0.01–
0.03. The value for f fast = 1 estimated in Froidevaux (1981) is less than 0.05 (outside
of the range of this figure).

are primarily observed from the Earth, decreases due to vertical
motion of ring particles and the eclipse cooling, and both effects
are more enhanced with larger Γ .

If all the ring particles are slow rotators ( f fast = 0), the esti-
mated albedo AV is 0.52 ± 0.05, 0.74 ± 0.03, and 0.74 ± 0.06 for
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Fig. 22. Same as Fig. 20, but for the case of the A ring. The error bar size is 0.02–
0.05. The value for f fast = 1 estimated in Froidevaux (1981) is less than 0.05 (outside
of the range of this figure).

the C, B, and A ring, respectively. On the other hand, if all the
ring particles are fast rotators ( f fast = 1), the estimated albedo is
0, 0.55 ± 0.07, and 0.51 ± 0.07 for the C, B, and A ring. Here, the
error size comes from the fitting error and the uncertainty of Γ

between 2 and 20 J m−2 K−1 s−1/2. Since the actual value of f fast
is expected to be somewhere between 0 and 1, the actual albedo
would be somewhere between the above estimated values.

Since the standard deviation σ takes similar minimum values
for a wide range of f fast, we cannot really clarify which f fast is
most probable. However, in some ranges of f fast, σ takes larger
values, so these ranges are likely to be excluded. For the case of
the C ring, some fraction of slow rotators is necessary ( f fast � 0.9),
otherwise the brightness temperature can not be as warm as ob-
served even for AV = 0. For the case of the B ring, some fraction
of fast rotators is necessary ( f fast � 0.1–0.2) in order to reproduce
the steep dependence of Tb on B ′ . Similarly to the B ring, inter-
mediate values of f fast are preferred for the A ring. The standard
deviation for the A ring with Γ = 20 J m−2 K−1 s−1/2 is larger than
the cases with smaller Γ . This comes from the unlit side temper-
ature which is much warmer than the observed temperature for
large Γ (see below).

Fig. 23 shows the best-fit brightness temperature for the two
examples with f fast = 0.2 and 0.8. The thermal inertia adopted is
6 J m−2 K−1 s−1/2 and the values of the albedos in Figs. 20–22 are
used. As expected from similar values of σ shown in Figs. 20–22,
the lines of two cases of f fast are almost indistinguishable. For the
case of the B and A rings, we also plot the unlit side temperatures
from our simulations and observations (Table 1).

For the case of the B ring, the unlit temperature from our simu-
lation (∼51 K) is always smaller than the observed value (∼56 K).
Since the heat transport is efficiently prevented in the bouncing
model and the direct solar illumination does not reach to the unlit
side at very small B ′ , the unlit temperatures from our simulations
is mostly determined by the thermal flux from Saturn. The higher
observed temperature probably indicates that the solar illumina-
tion leaks to the unlit side through optically thinner parts of the
ring. Note that Saturn’s disk temperature for this observation is not
Fig. 23. Examples of best-fit curves. Two cases of f fast = 0.2 (solid curve) and 0.8
(dashes curve) are shown. The thermal inertia is Γ = 6 J m−2 K−1 s−1/2 and the val-
ues of the albedo shown in Figs. 20–22 are adopted. Horizontal lines are unlit side
temperatures from simulations while open circles are from observations (Table 1).

shown in Tokunaga et al. (1980) so the normalization to the disk
temperature is not done. The observed value might be smaller af-
ter the normalization.

For the case of the A ring, the unlit side temperature and
the lit side temperature at low B ′ from our best fit curve Γ =
6 J m−2 K−1 s−1/2 are slightly higher than the observed value by
Pioneer (∼53 K and ∼61 K, respectively). The temperatures of the
both sides strongly depend on Γ , when B ′ is small (note that
we apply the sinusoidal vertical motion for the A ring). With in-
creasing Γ (i.e. more efficient vertical heat transport) the lit/unlit
side temperature decreases/increases. In particular, the increase
of the unlit side temperature is large. This makes the slightly
larger standard deviation (and error bar size) in Fig. 22 for Γ =
20 J m−2 K−1 s−1/2 than those for smaller Γ ’s. The number of the
data is not sufficient for the A ring and the standard deviation is
large, as compared with those for the B and C rings. Further ob-
servations with wide range of B ′ are necessary for more accurate
determination of physical parameters.

5. Constraints from other observations and models

5.1. Albedo from optical and near-infrared observations

The albedo in optical and near-infrared wavelengths strongly
depends on wavelength. The albedo AV we used in this paper is
the one averaged over wavelength (Eq. (18)). We here calculate
the value of AV using Aλ directly obtained from optical and near-
infrared observations. For the optical observations, we use Aλ in
five different bands (338, 451, 568, 650, and 862 nm) from Fig. 3
of Porco et al. (2005). We linearly interpolate the Aλ values be-
tween different bands. For λ < 338 nm, we linearly extrapolate
using Aλ=338 nm and Aλ=451 nm and set Aλ = 0 if Aλ < 0. For
the near-infrared observations, we use the spectra shown in Figs. 3
and 5 of Poulet et al. (2003), provided that their spectra (I/F )(λ)

are proportional to Aλ (i.e. the single scattering is assumed to
be dominant). We assume that Aλ is constant between 862 nm
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and 1000 nm and (I/F )(λ) at 1000 nm is scaled to the value of
Aλ=862 nm from Porco et al. (2005). The integration over wave-
length is done up to 5 μm. The solar intensity is negligible for
further longer wavelengths.

The averaged value is AV = 0.29 ± 0.01, 0.67 ± 0.06, and 0.48 ±
0.06 for the C, B, and A rings, respectively. The errors come from
variation due to different locations and from the rough interpo-
lation of the albedo over wavelengths (0.01 for the latter). We
excluded the albedos for the outer C ring and the innermost B
ring, as these values are very different from those for most other
parts of the C and B rings, respectively. For the C ring, we used
only one set of albedos at 81,000 km (see Figs. 3 and S2b of Porco
et al., 2005).

The evaluated ranges of AV are plotted in Figs. 20–22. Provided
that the probable range of the thermal inertia Γ is between 2 and
20 J m−2 K−1 s−1/2, the possible range of the fraction of fast rota-
tors, f fast, is 0.5–0.75, 0–1.0, and 0.7–1.0 for the C, B, and A rings,
respectively. We took into account the error size of the albedo we
estimated. Since the value of f fast for the B ring sensitively de-
pends on AV and Γ , f fast cannot be constrained as long as there
are some uncertainties in AV and Γ . Nevertheless, since the stan-
dard deviation in Fig. 21 suggests that some fraction of fast rotators
is necessary for the B ring, at least some fraction of fast rotators is
expected for all the rings.

5.2. Relation between the thermal inertia and the fraction of fast
rotators

We have treated the thermal inertia Γ and the fraction of fast
rotators f fast as independent parameters so far. However, they are
not independent of each other if the size distribution of ring par-
ticles and their spin frequencies are given. Or if Γ and f fast are
evaluated independently, the size and spin distributions of ring
particles can be constrained. In the following, we derive an ap-
proximate relation between Γ and f fast.

When the spin period of a ring particle τspin is sufficiently
shorter/longer than the thermal relaxation time τrel (Eq. (44)), the
particle is assumed to be a fast/slow rotator. In actual rings, the
spin distribution is not bimodal but continuous. Dynamical simu-
lations suggest that the spin period of the largest particle (with
size Rmax) is about the orbital period, τorb, while the spin pe-
riod is roughly proportional to the particle size for particles with
an extended size distribution (Salo, 1987; Ohtsuki, 2005, 2006b;
Morishima and Salo, 2006):

τspin(R) = τorb
R

Rmax
. (56)

In order to relate the actual continuous size distribution with the
bimodal size distribution, we approximately regard particles with
spin period shorter/longer than the thermal relaxation time to be
fast/slow rotators. The critical size, Rcrit, of a particle whose spin
period is equal to the thermal relaxation time (τspin(Rcrit) = τrel) is
given by

Rcrit

Rmax
=

(
Γ

εσSBT 3
p

)2 1

2πτorb
. (57)

Assuming that the particle number density n(R) per unit size
is given by a power-law distribution as n(R) ∝ R−q(Rmin � R �
Rmax), where Rmin is the minimum size of particles, the fraction
of fast spinning particles is given as

f fast =
∫ Rcrit

Rmin
n(R)R2 dR∫ Rmax

Rmin
n(R)R2 dR

= (Rcrit/Rmax)
3−q − (Rmin/Rmax)

3−q

3−q
. (58)
1 − (Rmin/Rmax)
Fig. 24. Fraction of fast rotators as a function of thermal inertia with given physical
temperatures (Eqs. (57) and (58)). The size distribution (Rmin/Rmax and q) is from
French and Nicholson (2000).

Equations (57) and (58) indicate that f fast increases with increasing
Γ and deceasing Tp and τorb, for given Rmin/Rmax and q.

Using the values of Rmin/Rmax and q estimated in French and
Nicholson (2000), we plot the value of f fast as a function of Γ

in Fig. 24. The probable range of Tp is chosen for each ring from
Fig. 9. Since Tp decreases with decreasing B ′ , f fast is actually not
constant but increases with decreasing B ′ . The data used for the
fitting in Section 4 are, however, mainly obtained at somewhat
large B ′ , where variation of Tp with B ′ is not very large, and the
dependence of Tb on f fast is small at small B ′ . Therefore, the as-
sumption of a constant f fast is likely to be reasonable, although
this may turn out to be incorrect if we have a sufficient number of
accurate data at small B ′ in future.

If we assume the values of f fast estimated in Section 5.1, Fig. 24
suggests 1.5 J m−2 K−1 s−1/2 < Γ < 8 J m−2 K−1 s−1/2 for the C ring
and Γ > 7 J m−2 K−1 s−1/2 for the A ring. Since the large Γ is not
preferred from the unlit side temperature (Fig. 22), the value of Γ

is restricted in a narrow range around ∼10 J m−2 K−1 s−1/2. These
values of Γ for the C and A rings are roughly consistent with
previous observations (2–30 J m−2 K−1 s−1/2), although our estima-
tions of Γ here are quite indirect.

5.3. Comparison with monolayer models

Leyrat et al. (2008) applied their monolayer model developed in
Ferrari and Leyrat (2006) to three different sets of mid-infrared ob-
servations for the C ring: two by Earth-based instruments (CAMI-
RAS and VISIR) and one by Voyager IRIS. For all the three sets,
they applied the model with the mono-size approximation while
they also applied the bimodal size approximation, similarly to ours,
for the Voyager IRIS data. For the case of the mono-size approxi-
mation, their best-fit spin rate is about half of the synchronous
rotation rate and the fitted albedo AV is 0.25+0.08

−0.01 , 0.24±0.01, and

0.37+0.08
−0.18 for CAMIRAS, VISIR, and Voyager IRIS, respectively. They

found that a better fit to the Voyager IRIS data can be obtained
with a bimodal size approximation, in particular, at high phase an-
gles. Their estimated fraction of fast rotator, f fast, is 0.45+0.43

−0.16 while
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the fitted albedo AV = 0.15+0.29
−0.06 is lower than that estimated in

the mono-size approximation.
Their estimated parameters from the Voyager IRIS data are

overplotted in Fig. 20. For the mono-size approximation, we set
f fast = 0 as their estimated spin rate is very low. We find that
AV from our model is larger than their estimates. For optically
thin rings like the C ring, the difference between the monolayer
and multilayer models is expected to be small. A part of the dif-
ference might be caused by the difference between non-spinning
particles adopted in our model and actual slowly rotating parti-
cles in their model. The illuminated hemisphere for a non-spinning
particle is effectively heated up while even rotation as slow as syn-
chronous helps to cool the hemisphere. One needs to be careful
for the meaning of f fast for the bimodal size distribution, since
the value depends on how the spin states of slow and fast rotators
are defined. Since the observational geometries for the Earth-based
observations and those for Voyager observations are very different,
that might also cause some difference in AV.

The values of the albedo estimated from their Earth-based ob-
servations are too low as compared with those obtained from our
data fit. That is probably because they used the brightness temper-
atures without the normalization shown in Section 4.1. Since their
observed brightness temperatures of rings and Saturn’s disk are
both high, the normalized brightness temperatures of the rings be-
come much lower. This makes their estimated albedos lower than
ours.

We also plot the values of AV estimated by the monolayer
model of Froidevaux (1981). He uses a set of data obtained in
Earth-based observations similar to those used in this paper. For
the case of the C ring, his estimated AV’s are similar to ours (he
suggests AV < 0.35 for f fast = 1, but the lower limit is not clear).
On the other hand, AV’s for the A and B rings from his estimation
(AV < 0.05 for f fast = 1 for both the A and B rings; falling outside
the range shown in Figs. 21 and 22) are lower than ours for both
f fast = 0 and 1. These deviations for the A and B rings are perhaps
because of the larger contributions due to the multiple scattering
and the mutual heating in our model. Another reason causing the
difference may be new data not used in Froidevaux (1981), in par-
ticular, for the A ring, which has a small number of observational
data. The recent observations by Ferrari et al. (2005) and Leyrat et
al. (2008) (|B ′| ∼ 20◦) show relatively lower temperatures for the
A and B rings than those in previous observations, after we apply
the normalization in Section 4.1 (see Fig. 23).

6. Summary

We have developed a new model of the thermal infrared bright-
ness of Saturn’s rings based on classical radiative transfer, taking
into account the vertical heterogeneity of spin frequencies of ring
particles and the heat transport due to vertical and azimuthal mo-
tion of particles. In the present paper, we have applied our model
to Earth-based observations. We have shown that the temperature
increase with the solar elevation angle (the thermal tilt effect) is
enhanced due to the vertical heat transport, the vertical hetero-
geneity of spins, and the mutual heating and multiple scattering
of visible light for the A and B rings. We found that our model can
well reproduce observed temperatures of Saturn’s main rings with-
out the vertical heterogeneity of the albedo in visible light, which
was proposed in the previous multilayer model (Kawata, 1983).

Unfortunately, since there is degeneracy among the albedo, the
fraction of fast rotators, and the thermal inertia, we can not pre-
cisely constrain these parameters. However, the range of the esti-
mated albedo is limited to 0–0.52 ± 0.05, 0.55 ± 0.07–0.74 ± 0.03,
and 0.51 ± 0.07–0.74 ± 0.06 for the C, B, and A rings, respectively.
These lower and upper limits are obtained by assuming all ring
particles are fast and slow rotators (non-spinning particles), re-
spectively. The quoted errors of the limits correspond to values
obtained for different values of the thermal inertia. For the C ring,
some fraction of slow rotators is necessary ( f fast � 0.9) in order for
the fitted albedo to be positive, whereas the A and B rings prefer
non-zero fraction of fast rotators ( f fast � 0.1–0.2), which enhances
the dependence of the observed brightness temperature on the so-
lar elevation angle.

If we adopt the albedo values obtained by optical and near-
infrared observations, the fraction of fast rotators is estimated to
be 0.5–0.75, 0–1.0, and 0.7–1.0 for the C, B, and A rings, respec-
tively. Further, if we assume the size distribution estimated from
optical observations and spin distribution from dynamical simu-
lations, the thermal inertia Γ is estimated to be smaller than
1.5 J m−2 K−1 s−1/2 < Γ < 8 J m−2 K−1 s−1/2 for the C ring and
Γ ∼ 10 J m−2 K−1 s−1/2 for the A ring. However, these estimations
for the fraction of fast rotators and the thermal inertia are quite
indirect and more straitforward estimations using observed tem-
peratures at various solar phase angles and azimuthal locations
are necessary. Such measurements of ring temperatures are already
obtained by the Cassini CIRS (e.g., Spilker et al., 2005, 2006), and
we will apply our model to these observational data in our subse-
quent works.
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