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Simulations of dense planetary rings
IV. Spinning self-gravitating particles with size distribution
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Abstract

Previous self-gravitating simulations of dense planetary rings are extended to include particle spins. Both identical particles as well as systems
with a modest range of particle sizes are examined. For a ring of identical particles, we find that mutual impact velocity is always close to the
escape velocity of the particles, even if the total rms velocity dispersion of the system is much larger, due to collective motions associated to
wakes induced by near-gravitational instability or by viscous overstability. As a result, the spin velocity (i.e., the product of the particle radius
and the spin frequency) maintained by mutual impacts is also of the order of the escape velocity, provided that friction is significant. For the size
distribution case, smaller particles have larger impact velocities and thus larger spin velocities, particularly in optically thick rings, since small
particles move rather freely between wakes. Nevertheless, the maximum ratio of spin velocities between the smallest and largest particles, as well
as the ratio for translational velocities, stays below about 5 regardless of the width of the size distribution. Particle spin state is one of the important
factors affecting the temperature difference between the lit and unlit face of Saturn’s rings. Our results suggest that, to good accuracy, the spin
frequency is inversely proportional to the particle size. Therefore, the mixing ratio of fast rotators to slow rotators on the scale of the thermal
relaxation time increases with the width of the particle size distribution. This will offer means to constrain the particle size distribution with the
systematic thermal infrared observations carried by the Cassini probe.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This is the fourth paper describing our systematic study of
the dynamics of dense planetary rings via local N -body simu-
lations (see Salo, 1991, 1992a, 1995). In the present paper, we
focus on the spin state of ring particles and the effect of friction
on dynamical behavior of rings, based on simulations with spin-
ning and self-gravitating particles with size distribution. The
local kinetic steady-state of rings is determined by the balance
between viscous gain from the tidal field and energy loss by
inelastic collisions (e.g., Stewart et al., 1984). Friction modi-
fies this balance since it enhances collisional dissipation and
enables the transfer between the kinetic and rotational (spin)
energies (e.g., Salo, 1987a; Araki, 1988). Similarly, there is
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a transfer of these energies between different sized particles,
driving the system toward energy equipartition, although the
complete equipartition is prevented by the dissipative nature
of impacts (e.g., Salo, 1992a; Ohtsuki, 1999, 2005). Inclusion
of self-gravity also modifies the steady-state, both via gravita-
tional scattering in pairwise encounters and by increased vis-
cosity induced by collective gravity wakes.

As long as we consider intrinsic evolution of rings, both ran-
dom and spin energy can be scaled by (rΩ)2, where r and Ω

stand for the particle radius and the orbital frequency, respec-
tively. In the equilibrium state these scaled energies depend on
five factors: (1) the elasticity of impacts represented by the co-
efficient of normal restitution εn, (2) the amount of friction in
terms of the tangential restitution coefficient εt or the friction
coefficient kf, (3) the optical depth τ , (4) the strength of self-
gravity via the rp-parameter representing the ratio of physical
radius to the Hill radius of the particle, and (5) the width of the
size distribution W = rmax/rmin, where rmax and rmin represent
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the maximum and minimum radii of particles, respectively. We
systematically examine the dependence of ring structure and
spin state on these parameters, focusing on the effects of the
friction and the width of the size distribution. Some prelimi-
nary results have already been reported in Morishima and Salo
(2004b).

There exists numerous previous studies modeling the dy-
namics of planetary rings, and some of them have included
the spins of particles and their size distribution. In the early
studies, rings were mainly modeled based on the Boltzman-
n’s equation. In the pioneering works—for rings with identical,
non-self-gravitating, and frictionless particles—Goldreich and
Tremaine (1978) and Hämeen-Anttila (1978) described the evo-
lution of the tri-axial velocity dispersion ellipsoid and derived
the critical coefficient of restitution, εcrit, for which the viscous
heating balances the collisional dissipation, as a function of τ .
The slight difference of these two works results from the de-
tails of the averaging techniques for the collisional term (see
reviews by Stewart et al., 1984, and by Salo, 2000). The model
of Goldreich and Tremaine (1978) was later extended to in-
clude the effect of finite size of particles and the spin degree of
freedom, both by Shukhman (1984) and by Araki (Araki and
Tremaine, 1986; Araki, 1988, 1991). The model by Hämeen-
Anttila (1978) was also extended to include the effect of finite
size of particles, size distribution, and gravitational encounters
between particle pairs in Hämeen-Anttila (1983, 1984) and later
also their spins, in Salo (1987a) and Hämeen-Anttila and Salo
(1993).

The evolution of orbital elements of ring particles were also
calculated by using sets of three-body orbital integrations for
interacting pairs (Petit and Hénon, 1987; Ohtsuki, 1999). Re-
cently, based on three-body problem, the spin rate of a moonlet
embedded in a swarm of much smaller ring particles is inves-
tigated by Morishima and Salo (2004a) and Ohtsuki (2004a,
2004b). Further, Ohtsuki (2005) investigated spin rate of ring
particles with a broad size distribution by solving an evolu-
tion equation for rotational energy. These calculations, using
three-body integrations, may be more precise than the above
mentioned treatments based on the Boltzmann’s equation, but
are limited to an only optically thin case, τ � 1. The analytic
and numerical models based on the Boltzmann’s equation or
three-body integrations agree well with the results of N -body
simulations described in the following, as long as the optical
depth of a ring is sufficiently small so that collective motions
due to ring self-gravity can be neglected.

N -body simulations complementing the analytical studies
have also been conducted by several authors. In the early simu-
lations, azimuthally complete rings were followed in an inertial
coordinate system (Trulsen, 1972; Brahic, 1977; Lukkari, 1978;
Hämeen-Anttila and Lukkari, 1980; Salo, 1985). Salo (1987b)
included particle spins to N -body simulations and confirmed
the consistency with his own theoretical work (Salo, 1987a)
based on Hämeen-Anttila’s formalisms. However, because of
the limited number of particles, these early simulations were
not able to treat high optical depth rings nor the realistic ring
self-gravity.
On the other hand, the local simulation method, which
was first developed by Wisdom and Tremaine (1988); see
also Toomre and Kalnajs (1991), utilizing a coordinate sys-
tem co-rotating with a ring, opened the way to treat dense
rings with a fixed optical depth by applying periodic bound-
ary condition. Later, this method have been used by many
authors (Salo, 1991, 1992a, 1992b, 1995; Salo et al., 2001;
Richardson, 1994; Mosqueira, 1996; Daisaka and Ida, 1999;
Ohtsuki and Emori, 2000; Daisaka et al., 2001; Karjalainen
and Salo, 2004; Ohtsuki and Toyama, 2005). In particular, ex-
tending the seminal work by Wisdom and Tremaine (1988),
Salo (1991, 1992a) examined the effects of size distribution
while still neglecting self-gravity and particle spins. In Salo
(1992b), self-gravity of particles was first introduced in local
simulations. The most prominent result obtained for dense self-
gravitating rings was the formation of trailing particle wakes
in systems near the threshold of gravitational instability (Salo,
1992b, 1995; Richardson, 1994; Daisaka and Ida, 1999). These
wakes are analogues to Julian and Toomre (1966) stellar dy-
namical wakes excited around massive orbiting bodies (see
also Huber and Pfenniger, 2001); the main difference is the
dissipative nature of ring particles, making it possible for the
wakes to attain a statistical steady-state. Convincing evidence
for such structures has now been obtaining by the various
measurements carried out by Cassini (Collwell et al., 2005;
Nicholson et al., 2005; Ferrari et al., 2005). Later it was also
shown that the strong increase in viscosity associated to self-
gravity can promote viscous overstability (Salo et al., 2001;
Daisaka et al., 2001), leading to systematic axisymmetric os-
cillations. Gravity wakes, as well as overstable oscillations,
significantly enhance the velocity dispersion of ring particles.
However, the particle spin state and the effect of size distribu-
tion have not yet been studied in detail for dense self-gravitating
rings, although some studies briefly discussed these factors
(Richardson, 1994; Salo, 1992b, 1995). Recently, Ohtsuki and
Toyama (2005) has studied spin state of ring particles and their
results are in principle consistent with ours, although the pa-
rameter they use and their method of analysis are somewhat
different from ours.

The other important factor affecting ring dynamics is satel-
lite perturbations. These perturbations maintain gaps, excite
density and bending waves in rings and also confine isolated
ringlets. Related to the formation mechanisms of these struc-
tures, there are many theoretical studies (e.g., Goldreich and
Tremaine, 1982, and references therein; Shu et al., 1985),
N -body simulations (Hänninen and Salo, 1992, 1994, 1995;
Mosqueira, 1996; Lewis and Stewart, 2000, 2005; Seiss et
al., 2005), kinematic models based on three-body integrations
(e.g., Spahn et al., 1994) and hydrodynamic models (Spahn and
Sremčević, 2000; Sremčević et al., 2002). Regardless of the na-
ture of the formed structures, the velocity dispersion of ring
particles is significantly enhanced by satellites. However, it has
not yet been clarified whether the spin velocity dispersion is en-
hanced by satellite perturbations as well. Although we do not
include satellite perturbations in our present simulations, we
can gain some insight of the spin state under satellite perturba-
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tions, through an analysis of the spins in wakes and oscillations
induced by intrinsic instabilities.

Besides the effect on the dynamical behavior of rings, the
spin state is one of the important factors determining the ther-
mal infrared emission from the rings: a faster particle spin
should result in a smaller temperature difference between the
illuminated and unilluminated sides of the particle (e.g., Cuzzi
et al., 1984). Thermal emission from rings was modeled by
Kawata and Irvine (1975) and Kawata (1983) assuming a
multilayer ring model, and by Aumann and Kieffer (1973),
Froidevaux (1981), and Leyrat et al. (2003) for a monolayer
model. In the former model the ring is assumed to be much
thicker than the particle size whereas the ring thickness is the
same as the particle size for the latter model. Both type of mod-
els seem to prefer slowly rotating particles, though there is a
trade-off relation between the deduced spin rate and the as-
sumed particle albedo. Previously, most of thermal infrared data
were obtained by Earth-based observations. Therefore, early
modeling studies concentrated on the temperature dependence
on the ring opening angle, rather than that on the solar-phase an-
gle: however, it is the latter which has a more direct connection
with the spin state of ring particles. Currently the Cassini space
probe is monitoring ring temperatures with various solar-phase
angles. One of the central goals in this paper is to provide the-
oretical predictions concerning the dynamically plausible ring
structure and particle spin states, useful for modeling of thermal
infrared emission. Incorporation of both dynamical and thermal
models is likely to be necessary for the proper interpretation of
the observational data obtained and to-be-obtained by Cassini.

In Section 2, our simulation method is introduced. Results
from dynamical simulations are shown in Section 3, while some
implications to thermal observations are discussed in Section 4.
Section 5 summarizes our conclusions.

2. Methods

The simulation method we use in the present study is the
same as in Salo (1995) and Salo et al. (2001). We apply the
local rotating coordinate system, and the linearized equation
of motion (Hill’s equation) is solved with periodic boundary
conditions taking into account the differential shear in the ra-
dial direction. For self-gravity, forces from nearby particles
(usually within a distance of 10 particle radii) are calculated
directly while a three-dimensional FFT method is utilized for
forces from more distant particles (except when using the in-
stantaneous impact method explained below, in which case di-
rect calculation of self-gravity is used for all particles). For a
more detailed description of the local method, see the refer-
ences mentioned above.

Two different methods for treatment of impacts are used
in simulations, like in Salo (1995) (see also Morishima and
Salo, 2004a). Either the impacts are described as instantaneous
velocity changes of colliding bodies (“Instantaneous impact”
method), or the particle motion through the impact is integrated
after defining a model for the forces affecting between partly
penetrating bodies (“Force method”). The force method is much
more favorable in the case of dense self-gravitating systems
where the concept of separate pairwise impacts is no longer
applicable (Salo et al., 2001; Karjalainen and Salo, 2004). On
the other hand, for low optical depth systems, or for non-self-
gravitating systems both methods are applicable: in this case we
mainly use the instantaneous impact method which is faster, and
which has also been used in most previous studies. The differ-
ence between these methods appears also in the current context
of particle spins, which requires the evaluation of the tangential
velocity change for an impacting pair. Consider two spherical
particles with masses m1 and m2, radii r1 and r2, positions R1,
R2, velocities v1, v2, colliding with each other. In terms of the
relative velocity vr = v2 − v1, the velocity difference u at the
contact point is given by

(1)u = vr − [
r1(ω1 − Ω) + r2(ω2 − Ω)

] × n,

where n is the unit vector in the direction of R2 −R1, ω1, ω2 are
the spin angular velocity vectors of the particles in an inertial
(non-rotating) coordinate system, and Ω is the orbital angular
velocity vector of the rotating coordinate system, respectively.

In the first method (“Instantaneous impact method”), the
locations of impacting points are searched and the correspond-
ing instantaneous velocity changes are calculated, based on the
elasticity and friction of the impact. The post-collisional veloc-
ity difference u′ is given by (Salo, 1987a; Richardson, 1994)

(2)u′ = −εnun + εtut,

where εn and εt stand for the normal and tangential restitution
coefficients, and un = (u · n)n and ut = u − un are the normal
and tangential components of the pre-collisional velocity differ-
ence at the contact point, respectively (note that in Salo (1995)
εt was defined in a different manner, corresponding to our cur-
rent 1 − εt). Assuming homogeneous spherical particles, with
the moment of inertia 2/5mir

2
i (i = 1,2), the changes of the

relative velocity and the spin vectors are derived from the con-
servations of linear and angular momenta as

(3)v′
1 − v1 = m2

m1 + m2

[
(1 + εn)un + 2

7
(1 − εt)ut

]
,

(4)r1ω
′
1 − r1ω1 = m2

m1 + m2

5

7
(1 − εt)n × ut,

where v′
1 and ω′

1 are the velocity and the spin vector of the
particle 1 after the impact, respectively. The changes of the ve-
locity and the spin vector of the particle 2 can be obtained by
multiplying Eq. (3) with −m1/m2 and Eq. (4) with m1/m2, re-
spectively.

In the second method (“Force method”), particle orbits are
integrated through impacts, including additional visco-elastic
forces arising between the slightly overlapping particles. The
additional translational acceleration v̇1,add and the spin evolu-
tion are given by

(5)v̇1,add = m2

m1 + m2
ξ̈ (n − kfnt),

(6)
d(r1ω1)

dt
= − m2

m1 + m2

5

2
kfξ̈n × nt,
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with

(7)ξ̈ =
{

−ω2
0ξ − ξ̇

s
(ξ � 0),

0 (ξ < 0),

where ξ = (r1 + r2) − |R2 − R1| is the penetration depth,
kf denotes the coefficient of friction, and nt = ut/|ut| is the
unit vector pointing in the tangential direction. Note that in
Morishima and Salo (2004a), we use differently defined coeffi-
cient of friction �f = 7kf/2. In the above, ω0 is the undamped
frequency of the harmonic impact force, and s is the character-
istic time of damping, respectively. Fixing values of ω0 (we use
ω0/Ω = 200 or 400), we can obtain the desired value of the
normal coefficient of restitution εn with appropriate values of
s (see Salo, 1995; Morishima and Salo, 2004a, in detail). Note
that the evolutions of the velocity and the spin of the particle
2 can be obtained by multiplying the mass coefficients in the
same manner as in the instantaneous impact method. During the
numerical integration for an impact, the normal time step used
for orbital motion (typically 10−3 orbital periods) is divided
into small substeps (typically at least 20 steps for the duration
of the impact). The self-gravitational force are calculated only
in the beginning of the normal step, but extrapolated in sub-
steps using a linear Taylor series expansion. This extrapolation
in substeps is necessary in order to avoid accumulation of nu-
merical errors in the case particle aggregates form (Karjalainen
and Salo, 2004).

Comparing the normal and tangential components of veloc-
ity change in the impact given in Eqs. (3) and (5) the relation
between the friction coefficient kf and the tangential restitution
coefficient εt is obtained as

(8)kf = 2

7

(1 − εt)

(1 + εn)

|ut|
|un| ,

where we assumed that the relative tangential direction nt does
not change during an impact in Eq. (6). Equation (8) suggests
that the relation between kf and εt depends on the impact an-
gle. If we assume that impact directions are random (valid for a
multilayer system with velocity dispersion � rΩ) the averag-
ing over impacts yields (see Appendix A)

(9)
√〈

u2
t
〉/〈

u2
n

〉 = (
14/(9 + 5εt)

)1/2
.

Thus, for frictionless particles the average velocity ratio is
unity, but in the case of εt < 1, the tangential velocities in-
clude a slight enhancement due to spins. Supulver et al. (1995)
showed that the value of εt is about 0.9 for glancing 1 cm s−1

impacts of spherical particles, which indicates kf ∼ 0.02. How-
ever, since in practice deviations from the spherical shape may
also enhance the spin energy (Salo, 1987a, 1987b), the effective
value of εt might in fact be smaller in actual rings (thus a larger
kf is plausible).

Fig. 1 shows comparison of the instantaneous impact method
and our force method in terms of the velocity dispersion c =
〈v2〉1/2 and the dispersion of spin velocity q = 〈(rω)2〉1/2,
where v is the particle random velocity relative to the system-
atic Keplerian velocity. Here kf used in the force method is
converted into εt by Eq. (8) assuming Eq. (9) holds for the av-
erage |nt|/|un|. For positive values of εt, both methods are very
Fig. 1. Comparison of the instantaneous impact model and the force model. The
translational and spin velocity dispersions, c and q , are shown as functions of
the tangential restitution coefficient εt . For the force model, the friction coeffi-
cient kf is converted into εt by using Eqs. (8) and (9) (note that Eq. (8) is valid
only for positive εt: see the text). The optical depth of the system τ = 1.0 and
the coefficient of normal restitution εn = 0.5. The self-gravity of particles is not
taken into account.

well consistent with each other. The difference becomes evi-
dent for negative εt, where Eq. (8) is no longer applicable since
the friction force vanishes in the force model when ut becomes
zero during an impact, while the post-collisional ut can have
the opposite direction to the pre-collisional direction in the in-
stantaneous impact method. In other words, our force model
cannot produce negative εt. However, it would be possible to
produce a negative εt with our force method, if we hold the di-
rection of the relative tangential velocity nt in Eq. (6) fixed to
its initial value during the impact. Also, Brilliantov et al. (1996)
described a more sophisticated impact model, which can pro-
duce negative, and impact velocity dependent, εt. Nevertheless,
we do not apply it in the present paper as we keep the impact
model as simple and transparent as possible.

Even if friction is not strong, differences between the two
methods appear in some cases. Morishima and Salo (2004a)
showed that the tangential velocity change for the instantaneous
impact model is overestimated compared with the force model
in the sliding phase, where multiple hits occur in a same particle
pair with very small time intervals. This happens in rings with
self-gravitating particles. As we show in the next section, simi-
lar differences owing to impact methods will appear for closely
packed rings even without self-gravity.

3. Simulation results

3.1. Non-self-gravitating identical particles

Since most of previous studies based on the Boltzmann’s
equation treated identical particles, either neglecting altogether
or including only approximately their self-gravity, we start from
a non-self-gravitating identical particle case. Readers interested
in more realistic applications may skip to Section 3.2. Differ-
ences between theoretical predictions and results obtained by
N -body simulations are seen for closely packed rings with high
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(a)

Fig. 2. (a) Dependence of physical properties on the tangential restitution coefficient εt , for the case of non-self-gravitating, identical particles. The instantaneous
impact model is used. The dispersion of random velocity c, the dispersion of spin velocity q , the energy ratio Erot/Ekin, and the z-component of the mean spin
〈ωz〉 are shown for four different cases (for low and moderate optical depth τ , combined with two values of the normal restitution coefficient εn). In the frame of
Erot/Ekin, the dashed curve represents the analytical prediction given by Eq. (14). (b) Continuation to (a). The coefficient of the local viscosity γlocal/ω̃c,eff, the
coefficient of the non-local viscosity γnon-local/ω̃c,eff, the normal component of the mean squared impact velocity 〈u2

n〉, and the effective collision frequency ω̃c,eff
are shown. The dashed line labeled GT represents the expected value of γlocal/ω̃c,eff = 0.045 from Goldreich and Tremaine (1978). The dashed lines denoted by
‘multi’ are the expected values of 〈u2

n〉/c2 = 4/3 and ω̃c,eff = ωc,eff/(Ωτ) 	 3 from the multilayer approximation (c � rΩ).
optical depth τ , and for small coefficient of normal restitu-
tion εn. On the other hand, theoretical predictions are consis-
tent with the behavior of multilayer rings (velocity dispersion
c � rΩ).

Fig. 2a shows the velocity dispersion c, the dispersion of
spin velocity q , the ratio of the rotational energy Erot = q2/5
to the kinetic energy Ekin = c2/2, and the z-component of the
mean spin rate 〈ωz〉 as functions of the tangential coefficient of
friction εt for different τ and εn. The dispersion of the spin ve-
locity increases monotonically with the friction strength 1 − εt,
whereas the velocity dispersion has the minimum for εt ∼ 0.0.
The energy ratio is also a monotonically increasing function of
1 − εt and is almost independent of τ and εn except for the
most closely packed case with τ = 1.0 and εn = 0.1. The mean
spin rate ωz is about 0.2–0.4 and is slightly smaller for larger τ

cases.

3.1.1. Kinetic and rotational energies
In order to discuss the results in Fig. 2a more in detail,

let us introduce a simple kinetic theory. The kinetic energy
of rings is determined by the balance between viscous heat-
ing and collisional damping, whereas some kinetic energy is
transferred to the rotation energy through mutual collisions of
particles. The change rates of Ekin = c2/2 and Erot = q2/5
are given by (e.g., Stewart et al., 1984; Shukhman, 1984;
Araki, 1988)

(10)
dEkin

dt
= 9

4
νΩ2 + �Ekinωc,

(11)
dErot

dt
= �Erotωc,

where ν stands for the ring kinematic viscosity, ωc for the col-
lision frequency, �Ekin and �Erot for the averaged changes
of the kinetic and rotation energies in a collision both due to
the dissipation and the exchange between these energies, re-
spectively. In the multilayer approximation, where the velocity
dispersion is large enough to justify the separate treatment of
the random motion and the motion due to the systematic veloc-
ity field, the energy changes due to random motions are given
by (Appendix A)

(12)

�Ekin = −Ekin

3

[(
1 − ε2

n

) + 4

7
(1 − εt) − 4

49
(1 − εt)

2
]

+ 10
Erot(1 − εt)

2,

147
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(b)

Fig. 2. (continued)
(13)

�Erot = − 5

2
Erot

[
4

21
(1 − εt) − 10

147
(1 − εt)

2
]

+ 10

147
Ekin(1 − εt)

2.

In the equilibrium state (d/dt = 0), from �Erot = 0 the en-
ergy ratio can be obtained as (see also Salo, 1987a, 1987b; their
β ≡ 1 − εt)

(14)
Erot

Ekin
= 2(1 − εt)

14 − 5(1 − εt)
.

This equation suggests that the energy equipartition between
rotation and random motion is achieved for εt = −1. Equa-
tion (14) is shown in Fig. 2a as a dashed curve and found to be
a very good approximation except for the most closely packed
case. This special case will be discussed later. In the equilib-
rium state, �Ekin can be also written in a simpler form

(15)�Ekin = −Ekin

3

[(
1 − ε2

n

) + 2

7

(
1 − ε2

t

)(
1 + 5

2

Erot

Ekin

)]
.

The similar equations were also derived by Araki (1988). Sub-
stituting Eq. (14) into Eq. (15), it is found that |�Ekin/Ekin|
becomes maximum for εt 	 −0.30 with fixed εn. Indeed, the
velocity dispersion usually has a minimum around this value of
εt in Fig. 2a.

Though the dependences of the kinetic and rotational en-
ergies on εt and εn in Fig. 2a can be roughly explained by
Eqs. (14) and (15), we need to take into account the functional
dependencies of viscous gain in order to discuss the energy
balance more accurately. For example, Eq. (15) suggests that
the energy dissipation due to friction becomes zero both for
εt = 1.0 and −1.0, while the velocity dispersion for εt = −1.0
is always higher than that for εt = 1.0. Further, if we com-
pare the cases with the different sets of (εn, εt) which give
the same value of |�Ekin/Ekin| in Eq. (15), the velocity dis-
persion decreases with εn (for example, compare the cases of
(εn, εt) = (0.1,1.0) and (0.5,0.5) in Fig. 2a). These facts sug-
gest that the viscosity normalized by the collision frequency is
an increasing function of 1 − εt and εn.

In the non-self-gravitating case, the viscosity is composed
of the local and non-local viscosities ν = νlocal + νnon-local (in
the self-gravitating case, the gravitational viscosity is added to
them; see Daisaka et al., 2001). The former one originates from
momentum flow via random motion of particles whereas the lat-
ter is related to the momentum transfer across particles during
collisions of finite sized particles. The form of the local viscos-
ity is expected to be (Goldreich and Tremaine, 1978)

(16)νlocal = γlocal
c2

Ω

τ

1 + τ 2
,

and the expected form of the non-local viscosity is (Stewart et
al., 1984; Daisaka et al., 2001)

(17)νnon-local = γnon-localr
2τΩ,
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where γlocal and γnon-local are numerical factors expected to be
about 0.15 and 1.0, respectively. Substituting Eqs. (15)–(17)
into Eq. (10) and divided by the collision frequency ωc, which
is proportional to τ in the non-self-gravitating case, the kinetic
energy balance equation in the equilibrium state becomes

0 = 9

4

γlocal

ω̃c

c2

1 + τ 2
+ 9

4

γnon-local

ω̃c
(rΩ)2

(18)− c2

6

[(
1 − ε2

n

) + 2

7

(
1 − ε2

t

)(
1 + 5

2

Erot

Ekin

)]
,

where ω̃c = ωc/(Ωτ) is the normalized collision frequency.
Note that the basic τ dependence of c in Fig. 2a can be un-
derstood by the local viscosity form in this equation.

The dependence of the factors γlocal/ω̃c and γnon-local/ω̃c on
1−εt and εn are examined in the same simulations of Fig. 2a us-
ing the method to obtain the viscosities described in Salo et al.
(2001). The results are shown in Fig. 2b. When calculating the
factors for the viscosities, we use the ‘effective’ collision fre-
quency ω̃c,eff = ω̃c × (3〈u2

n〉)/(4c2) instead of ω̃c itself, in order
to avoid overestimation due to multiple hits, which take place
between a same particle pair with very small time interval, and
which have only a small effect on momentum transfer. Without
multiple hits, 〈u2

n〉/c2 is expected to equal 4/3 from theoretical
predictions (Hämeen-Anttila, 1983; see also Appendix A), and
this is confirmed from our simulations with multilayer systems
(the factor is also is shown in Fig. 2b). In Fig. 2b, γlocal/ω̃c,eff is
almost independent of εt but becomes larger with εn, whereas
γnon-local/ω̃c,eff clearly increases with both 1 − εt and εn.

The physical meaning of the εn and εt dependence of the
local viscosity is unclear (most likely they just reflect the mod-
ified properties of the steady-state depending on the amount
of dissipation), but the dependence of the non-local viscosity
is consistent with the theoretical prediction: the non-local vis-
cosity is directly connected with collisional velocity changes
in the direction of the orbital motion of the local coordi-
nate (see Wisdom and Tremaine, 1988; Salo et al., 2001) and
γnon-local/ω̃c,eff is expected to be proportional to [(1 + εn) +
ct (1 − εt)] (see Eq. (3)), where ct is a numerical factor order
of unity. Again, since the viscosity normalized by the collision
frequency is an increasing function of 1 − εt and εn the velocity
dispersion for larger 1 − εt and εn becomes larger if the energy
dissipation |�Ekin/Ekin| is the same.

Three-body orbital integrations, which allow to examine ring
viscous properties with a fixed velocity dispersion, will be an-
other and more convenient way to discuss the dependence of
the viscosity on εt and εn (Tanaka et al., 2003, Ohtsuki et al., in
preparation).

3.1.2. The critical value of εn for thermal instability
If εn is larger than a critical value εn,crit(εt, τ ), the veloc-

ity dispersion diverges because the viscous heating always ex-
ceeds the collisional damping. This condition was discussed
by many previous works both for the non-friction case (e.g.,
Goldreich and Tremaine, 1978; Stewart et al., 1984; Salo, 1995;
Ohtsuki, 1999; Schmidt et al., 1999) and for the friction case
(Araki, 1988, 1991; Salo, 1987a). If the velocity dispersion is
Fig. 3. The critical value of the coefficient of normal restitution as a function
of εt for τ = 0.05 and 0.40. Solid curves show analytic solutions which assume
the Goldreich and Tremaine value εn,crit = 0.627 for εt = 1.0 and τ → 0. Di-
amonds denote the maximum εn’s for which the simulated velocity dispersion
remains below 25 rΩ , with the accuracy up to a second decimal place. The
actual critical value of εn is slightly higher (by about 0.01).

large enough, the non-local viscosity is negligible compared
with the local viscosity. Thus the critical value can be obtained
from Eq. (18) as

εn,crit(εt, τ ) =
(

1 − 27

2(1 + τ 2)

γlocal

ω̃c

(19)+ 2

7

(
1 − ε2

t

)(
1 + 5

2

Erot

Ekin

))1/2

.

For non-friction particles Goldreich and Tremaine (1978) ob-
tained the critical value is 0.627 for τ = 0, which gives
γlocal/ω̃c = 0.045. Assuming that this value is fixed, we plot
εn,crit as a function of εt for τ = 0.05 and 0.40 in Fig. 3.

In order to confirm the validity of these curves, in other
words, to check how closely γlocal/ω̃c remains constant for
different εt and τ in the case c � rΩ , we performed local sim-
ulations to obtain εn,crit with varying εn. However, this leads
to practical difficulties, since the validity of the local simu-
lation method becomes questionable when the excursions of
particles become comparable to the simulation box size (the ve-
locity dispersion attains larger and larger steady-state values as
εn approaches εn,crit). Therefore, instead of trying to obtain the
precise values of εn,crit, we search εn which gives a velocity dis-
persion of about 25rΩ , as done in Schmidt et al. (1999). This
value should be large enough to neglect the contribution from
the non-local viscosity. The actual εn,crit would then be slightly
larger than these values obtained in simulations. We find that
Eq. (19) fits surprisingly well the values obtained in simulations
both for τ = 0.05 and 0.40 (within 0.01 except for the case of
εt = −1.0 and τ = 0.05). This result suggests that γlocal/ω̃c can
be treated as a constant for multilayer rings.

We also find that the obtained εn,crit for τ = 0.05 is well
consistent with those obtained by Araki (1988) for τ → 0.0 (the
difference caused by slightly different τ of 0.05 is quite small)
rather than Araki (1991); the latter one includes the effect of
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the volume filling factor while the former one neglected it (see
Fig. 3 of Araki, 1991). This seems to suggest that the treatment
of the filling factor in Araki (1991) is not very accurate for low
filling factors.

By using a velocity-dependent εn instead of varying εn in
different simulations, we can also obtain an approximate εn,crit:
in this case the system attains a steady-state where the aver-
age dissipation in impacts balances the viscous gain. Therefore,
the weighted average value 〈εnu2

n〉/〈u2
n〉 gives a quite similar

value from the theoretical prediction. This is true as long as the
equilibrium velocity dispersion is large, whereas a very inelas-
tic velocity dependent εn gives a smaller 〈εnu2

n〉/〈u2
n〉, in order

to compensate for the energy input by the non-local viscosity
(Salo, 1987a, 2000).

3.1.3. Closely packed ring
Now let us return to the behavior of the most closely packed

case in Fig. 2 (with εn = 0.1 and τ = 1.0). In such closely
packed rings, collisions are no longer random but multiple col-
lisions occur for a same particle pair with very small time
intervals, or one particle may hit other two particles alterna-
tively. The spin velocity changes take place in the same sense in
all these subsequent multiple collisions, so that spin velocities
are enhanced in comparison to theoretical predictions assum-
ing random impact directions. However, when using the force
model instead of the instantaneous model, the enhancement is
strongly suppressed (Fig. 4). The reason for this is that during
multiple collisions the normal component of impact velocity re-
mains usually small, so that the tangential force is limited in the
force model. In this respect, the force model appears to be more
realistic.

3.1.4. Mean spin rate
The planar components of mean spin rate become zero

due to the symmetry in the vertical (z) direction, but 〈ωz〉
is not canceled out. In theoretical predictions, 〈ωz〉 is esti-
mated to approach about 0.3–0.4Ω (Salo, 1987a; Araki, 1991;
Ohtsuki, 2004a) and to be almost independent of εn and εt. Our
results are more or less the same (Fig. 2a). However, 〈ωz〉 for
the most closely packed case is a little bit smaller. In fact, this
suggests that during multiple collisions mentioned above, the
mutual rotation for a colliding pair in the retrograde direction is
more preferable than the prograde direction, since the Coriolis
force acts as an attractive force for a retrograde rotation. Since a
collision in a retrograde direction reduces ωz, the average value
becomes smaller. In Fig. 4, the decrease of 〈ωz〉 with τ can be
clearly seen even for the more elastic case (εn = 0.5) or for the
force model, because multiple collisions happen more often for
larger τ .
Fig. 4. Comparison of the instantaneous impact model (open symbols) and the force model (filled symbols) for εt = 0.5. The velocity dispersion c, the energy ratio
Erot/Ekin, and the z-component of the mean spin 〈ωz〉 are shown as functions of optical depth τ , for εn = 0.1 and 0.5 (squares and diamonds, respectively). The
spin dispersion obtained by the instantaneous impact model is greatly enhanced for closely packed systems (i.e., cases with high τ and small εn).
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3.2. Self-gravitating identical particles

Once we include the self-gravity of particles, the velocity
dispersion is enhanced by mutual gravitational scatterings. Fur-
ther, gravitational wakes or/and oscillations caused by viscous
overstability add large systematic motions to the random veloci-
ties for optically thick rings (Salo, 1995; Daisaka and Ida, 1999;
Salo et al., 2001). Though the dispersion of spin velocity is en-
hanced for the self-gravity case, the large systematic motions
do not have much extra effect on the spin dispersion.

The strength of mutual gravity force of each ring particle pair
is characterized by the ratio of the sum of the particle radii to
the Hill radius (Ohtsuki, 1993): rp = (r1 + r2)/rHill with rHill =
a(m1 + m2)

1/3/(3M∗)1/3, where a is the semimajor axis of the
particles, and M∗ is the mass of the planet. For Saturn’s rings

(20)rp = 0.77

(
ρ

900 kg m−3

)−1/3(
a

108 m

)−1 1 + μ1/3

(1 + μ)1/3
,

where ρ is the density of the particles and μ = m2/m1. The
self-gravitational force gets stronger relative to the tidal force
with decreasing rp, and mutual accretion becomes possible for
rp < 1. In most of the self-gravitating simulations, we use a =
108 m and ρ = 900 kg m−3 as standard values (rp = 1.22 for
identical particles). However, note that the same ring structure
is obtained for the same rp value: for example, a = 1.26×108 m
and ρ = 450 kg m−3.
Fig. 5 shows the equilibrium properties for self-gravitating
rings with identical particles as functions of εt. The velocity
dispersion for optically thin rings is in principle of the order of
the escape velocity of a particle vesc = √

2Gm/r . In terms of
rΩ , this gives

(21)
vesc

rΩ
= 3.64

(
ρ

900 kg m−3

)0.5(
a

100,000 km

)1.5

.

On the other hand, the velocity dispersion for optically thick
rings is much larger than the escape velocity. Previous studies
suggest that when wakes are made by near-gravitational insta-
bility the Toomre parameter Q is always about 1–2 (Salo, 1995;
Daisaka and Ida, 1999; Salo et al., 2001), where Q is defined
as (Toomre, 1964)

(22)Q = κcr

3.36GΣ
,

where the epicyclic frequency κ equals Ω in a Keplerian ve-
locity field and cr stands for the radial velocity dispersion. We
find that cθ 	 0.5cr is always satisfied, where cθ stands for the
velocity dispersion in the orbital direction, whereas the veloc-
ity dispersion in the perpendicular direction cz to the orbital
plane is smaller than those of planar components. Therefore,
using Eq. (22) and considering only the planar components, the
typical velocity dispersion for optically thick rings with gravi-
Fig. 5. The same as Fig. 2a but for rings with self-gravitating particles. The cases for τ = 0.05 (open diamond) and 0.5 (filled diamond) are shown, respectively, with
εn = 0.5, a = 100,000 km, and ρ = 900 kg m−3. For τ = 0.5, the local dispersions of velocity and spin velocity are calculated using the 10 nearest neighboring
particles; these are denoted by filled squares. For τ = 0.05 there is no difference between local and total values.
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tational wakes is given by

(23)
cwake

rΩ
= 7.94

(
ρ

900 kg m−3

)(
a

100,000 km

)3(
τ

0.5

)
,

where we adopt Q = 2. The velocity dispersion for τ = 0.5 in
Fig. 5 is similar to the expected value.

It should be noted that c for τ = 0.5 becomes larger with en-
ergy dissipation rate (with εt decreases from unity), which is
opposite to the case of τ = 0.05. Since the tendency of group-
ing of particles increases for larger energy dissipation, the effect
of self-gravity is enhanced for rings with large τ (the tendency
in Fig. 5 may not be clear due to our short simulation period
∼15TK and to temporal fluctuation of velocity dispersion, al-
though this period is long enough to obtain the equilibrium local
velocity dispersion as we will see below). The same effect can
be obtained by reducing εn (Salo, 1995).

The self-gravity enhances the spin velocity dispersion com-
pared with non-self-gravitating cases. This is because impact
velocity is increased due to enhanced velocity dispersion and
due to the acceleration before collisions. However, in contrast
to the behavior of velocity dispersion, the dispersion of spin
velocity is not strongly dependent on the optical depth. This
suggests that the mutual impact velocity is only weakly depen-
dent on the optical depth of rings. In order to confirm this fact,
we calculated the local dispersions of translational and spin ve-
locities using the 10 nearest neighbors, as done by Salo (1995)
and Daisaka and Ida (1999). The results are shown by dashed
curves in Fig. 5. We find that the local velocity dispersion for
τ = 0.5 is surprisingly consistent with the (total) velocity dis-
persion for τ = 0.05. It means that while the mutual relative
velocity between different wakes is much larger than the es-
cape velocity of a particle, in each wake the relative velocity of
particles always remain close to the escape velocity. The local
spin velocity dispersion is also slightly smaller than the total
dispersion because impacts tend to align the spin axes of collid-
ing pairs. However, the difference is not very significant.

The energy ratio Erot/Ekin for optically thin cases is well
consistent with the analytic prediction given by Eq. (14). For
larger optical depth cases, Erot/Ekin is much smaller than the
analytic prediction due to enhanced velocity dispersion. How-
ever, if we again use the local velocity dispersions instead of
the total dispersions, similar agreement is obtained as for the
optically thin cases. We only show the case of εn = 0.5 in
Fig. 5. On the other hand, for εn = 0.1 the Erot/Ekin obtained
by using local dispersions for τ = 0.5 is significantly enhanced
compared to the analytic prediction. The mechanism of this en-
hancement is exactly the same as that explained in the context
of the non-gravitating case with τ = 1.0 and εn = 0.1 (see Sec-
tion 3.1).

The z component of mean spin rate 〈ωz〉 for the optically
thick case is much larger than in the optically thin case. This
enhancement is related to gravitational wakes (details will be
discussed in connection to Fig. 7). For τ = 0.5, there is a strong
reduction in 〈ωz〉 for εt = −1.0 (Fig. 5), in which case the lo-
cal velocity dispersion remains so large that global collective
motions are less enhanced.
Fig. 6 shows dependences of the dispersions of velocity and
spin velocity on the optical depth τ and the semimajor axis a,
obtained by using the force model with kf = 0.1. We use a fixed
value a = 100,000 km for the τ dependence and a fixed value
τ = 0.5 for the a dependence. In the left frame of Fig. 6 the
total velocity dispersion increases significantly with τ , whereas
the local velocity dispersion remains comparable to the escape
velocity, as we explained in connection to Fig. 5. As a result, the
spin velocity dispersion is also the order of the escape velocity.

In the right frame for the a dependence, we normalize the
dispersions by the escape velocity vesc instead of rΩ , in order
to clarify the difference between the total and local disper-
sions more clearly. The dispersions decrease with increasing
distance for small a, whereas opposite trend appears for larger
a. Impacts in a differentially rotating system always maintain a
certain minimum velocity dispersion ∼ 2rΩ (e.g., Salo, 1995;
Ohtsuki, 1999), which is larger than vesc and cwake (Eqs. (21)
and (23)) for small a. Since Ω decreases with a the velocity
dispersions decreases for small a. On the other hand, the self-
gravity determines the dispersions for larger a. For optically
thick cases like τ = 0.5 in Fig. 6, the total velocity dispersion
follows cwake, which increases strongly with a (see Eq. (23)).
Interestingly, the local velocity dispersion and the spin disper-
sion (both local and total) also increase with a, although the
magnitude of the increase is much smaller than that for the to-
tal velocity dispersion. This suggests that local motion inside
wakes is not completely independent of the relative motions
of the wakes. In a single gravitational wake, collision veloc-
ity might be very close to the escape velocity. However, wakes
also collide with each other, especially in the case of strong
self-gravity (large a), where the wakes become increasingly
irregular. That is probably the reason why the local velocity dis-
persion exceeds the escape velocity for larger a (we confirmed
that enhancement of the local velocity dispersion in larger a

cannot be seen for small τ cases). Altogether, Erot/Ekin ob-
tained by using local dispersions is quite insensitive to τ and a,
and is close to the analytical prediction.

Fig. 7 shows dependences of the z-components of mean spin
rate 〈ωz〉 on optical depth τ and semimajor axis a, obtained in
the simulations of Fig. 6. As one can see, 〈ωz〉 increases with τ

and a. This enhancement was already found by Salo (1995) and
Ohtsuki and Toyama (2005), but the mechanics has not been
clarified. Morishima and Salo (2004a) suggested enhancement
of 〈ωz〉 in terms of sliding of particles on large clumps tempo-
rally made in wake structures. However, it is expected that slid-
ing on such a rough surface may not be efficient as compared
with that on a spherical surface assumed in Morishima and Salo
(2004a). Here we propose another mechanism to enhance 〈ωz〉.
In gravitational wakes, particles move coherently and collec-
tively and the local shear rate −dvy/dx is reduced compared
to the Keplerian shear rate, where vy denotes the velocity of
the guiding center of the particle motion in the orbital direction
and x points the radial direction. Because impacts with large
shear velocities bring small or negative angular momentum to
colliding particles and vise versa, 〈ωz〉 in fact increases with
decreasing the local shear rate. This is also suggested by the an-
alytic solution of 〈ωz〉, derived with neglecting the self-gravity,
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Fig. 6. Dependence of the velocity dispersion c and the spin velocity dispersion q on the optical depth τ (left frame), and on the saturnocentric distance a (right
frame). The force model is used with kf = 0.1, εn = 0.5, and ρ = 900 kg m−3. The local dispersions obtained by using the 10 nearest neighboring particles are
shown by open diamond symbols. In the left frame a = 100,000 km is assumed and the dispersions are normalized by rΩ . In the right frame τ = 0.5 is assumed
and the dispersions are normalized by the escape velocity vesc.

Fig. 7. Dependence of the z-component of the mean spin 〈ωz〉 (square symbols) on the optical depth τ (left frame), and on the distance a (right frame). The
simulation parameters are the same as those of Fig. 6. The local shear rate s (diamond symbols) obtained by using the 10 nearest neighboring particles, and the
analytic prediction of the z-component of the mean spin (dashed curves) given by Eq. (24) are also shown.
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as a function of the local shear rate (Salo, 1987a, see also Ap-
pendix B):

(24)〈ωz〉ana = 6

5

(
1 − s

2

)
Ω,

where s = −(1/Ω)dvy/dx denotes the normalized shear rate.
For the case of the Keplerian shear rate (s = 3/2), this equation
gives 〈ωz〉 = 0.3Ω .

We have also calculated the local shear rate in simulations,
using again the 10 nearest neighbors around each particle, like
we did in order to estimate the local velocity dispersion. In
Fig. 7 we over-plot the local shear rate s and 〈ωz〉ana obtained
by substituting s into Eq. (24). We find excellent agreement be-
tween 〈ωz〉 and 〈ωz〉ana except for large a. For large a, transient
large clumps are formed, which could modify the mean spin ve-
locity. In the limit of large a all particles accrete to clumps, and
the spins of these clumps are almost synchronous (〈ωz〉 = Ω)
thus s becomes zero (Karjalainen and Salo, 2004). Since the
above analytic equation gives 〈ωz〉 = 1.2Ω for s = 0, there is
clearly some shortcomings for the analytic solution for small s

near 0. Except for this extreme case, the enhancement of 〈ωz〉
seems to be explained quite naturally by the reduced local shear
rate.

Closely packed rings with optical depth τ > 1 can also ex-
hibit spontaneous viscous oscillatory instability, termed vis-
cous overstability (e.g., Schmit and Tscharnuter, 1999; Spahn
et al., 2000; Salo et al., 2001; Schmidt et al., 2001; Daisaka
et al., 2001; Schmidt and Salo, 2003). Axisymmetric oscilla-
tions are formed by this instability and can co-exist with the
non-axisymmetric wakes formed by near-gravitational instabil-
ity. With decreasing self-gravity, for example by reducing the
particles’ internal density ρ for a fixed a, the axisymmetric
oscillations become more dominant in comparison to wakes.
Fig. 8 shows an example of temporal evolution of dispersions
of translational and spin velocities when the overstability is in-

Fig. 8. Evolution of translational and spin velocity dispersions (solid curves).
Oscillatory instability (overstability) enhances translational velocity dispersion.
The local dispersion obtained by using the 10 nearest neighboring particles
is shown by the dot-dashed curve. The simulation parameters are τ = 1.39,
r = 2 m, ρ = 225 kg m−3, N = 15,000, kf = 0.1. These are almost the same as
those used in the bottom row of Fig. 1 in Salo et al. (2001).
duced. The velocity dispersion increases with time whereas the
local velocity dispersion as well as the spin velocity dispersion
are only weakly affected by the large systematic motions related
to overstability. We also find that the onset of overstability be-
comes slightly easier with stronger friction, since this leads to
increased dissipation rate. However, the dependence of the in-
stability on εn and size distribution seems much more important
than that on εt.

Altogether, the spin velocity dispersion seems to be only
slightly affected by large scale systematic motions, either re-
lated to gravitational wakes or viscous overstability. This sug-
gests that the same might be true also for the density waves
induced by satellite resonances.

3.3. Power law size distribution

So far, we have discussed the properties of rings with iden-
tical particles. As long as we consider only identical particles,
the spin frequencies are of the order of the orbital frequency.
The situation turns out to be drastically different if we allow for
the particle size distribution.

We adopt a power law distribution of particles with the upper
and lower cut-off sizes as

(25)
dN

dr
∝ r−qs , rmin < r < rmax.

According to the voyager I radio occultation measurements
(Marouf et al., 1983), qs 	 3 and rmax/rmin = 500 with rmin =
1 cm. The recent analysis by French and Nicholson (2000) sug-
gests similar values qs, but the range of particle size is different
in each ring: rmax/rmin = 1000 with rmin = 1 cm for the C ring
whereas rmax/rmin 	 70 with rmin = 30 cm for the A and B
rings. In either cases, these widths of the size distribution are
still too large for direct N -body simulations and we need to
truncate the size distribution to a shorter width (see Appendix C
for the required number of particles in simulations). Therefore,
we first conduct non-self-gravitating simulations with a rather
large rmax/rmin (up to 100) and examine the dependence of var-
ious steady-state quantities on the width of size distribution.
Secondly, we conduct self-gravitating simulations with a rather
small rmax/rmin(=10), and based on the non-self-gravitating
simulations speculate what might be the behavior of the self-
gravitating rings with realistic larger rmax/rmin.

Fig. 9 shows the dependence of ring steady-state quantities
on width of size distribution, for a non-self-gravitating case
with qs = 3, τ = 1, and εn = εt = 0.5, obtained by using the in-
stantaneous impact model. The difference between the largest
and smallest particles in the velocity dispersion is quite small
as compared with that in their sizes, and increases only slightly
with the width of the size distribution. The equipartition of the
kinetic energy, 0.5mc2, between larger and smaller particles is
not achieved. This is essentially due to the larger energy dis-
sipation rate for smaller particles with larger velocities (Salo,
1987a, 1987b, 1991, 1992a). Since impact velocities are not
so different with different size of particles, the dependence of
the spin velocity dispersion on the particle size is quite small
as well. This means that the spin frequency (the spin velocity
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Fig. 9. Dependences of the dispersions of velocity and spin velocity (solid and
dashed curves in upper frame, respectively) and the spin/kinetic energy ratio
(lower frame) on the width of size distribution for non-self-gravitating particles.
The power law index qs = 3 and the maximum size of particles rmax = 5 m are
assumed. Three different cases of the minimum size of particles rmin = 0.050,
0.232, 1.077 m with the fixed total optical depth τ = 1.0 are shown. The instan-
taneous model is used with εn = εt = 0.5.

divided by the particle radius) is roughly proportional to 1/r .
Ohtsuki (2005) obtains a similar size-dependence of the spin
frequency for optically low rings. These results are very impor-
tant for the interpretation of thermal infrared emission of rings
(see the next section for more discussion).

The energy ratio Erot/Ekin in Fig. 9 is almost independent
of the particle size and close to the case of identical particles
(0.134 for τ = 1.0 and εn = εt = 0.5 in Fig. 2a). However,
the ratio is slightly enhanced for the largest particles and this
looks opposite to the theoretical prediction (Salo, 1987a). In
fact, smaller particles make multiple collisions on the largest
particles, resulting in the slight enhancement of the energy ratio
for the largest particles. This is basically the same mechanism
which was discussed in Section 3.1 for closely packed rings.

Fig. 10 shows the self-gravitating ring quantities for qs = 3,
τ = 0.5, rmax/rmin = 10, and rmax = 5 m with different a.
This size distribution gives the effective particle radius reff =
3Σ/(4ρτ) = 1.95 m. Since the typical velocity dispersion of
gravity wakes is proportional to Σ (see Eq. (23)), it is con-
venient to normalize the velocity dispersion by reffΩ when
comparing with the simulations of identical particles with the
same τ and ρ. We find that the behavior of the largest particles
is quite similar to that in the corresponding identical particle
case for all the quantities shown in Fig. 10. On the other hand,
the velocity dispersion of the smallest particles is about dou-
bled compared to that of the largest particles. This is similar to
the non-self-gravitating case, although the velocity dispersions
themselves are now much larger than in the non-self-gravitating
case. These results suggest that the largest particles are perma-
nently stuck to the wakes (or wakes form predominantly around
them), while the smaller particles move more freely between
the wakes (see also Salo et al., 2004).

The dependence of the spin velocity dispersion on the par-
ticle size is somewhat stronger than that of the velocity disper-
sion: the spin velocity dispersion for the smallest particles is
about 3–4 times that of the largest particles’ values. As a result,
in contrast to the non-self-gravitating case Erot/Ekin decreases
with particle size. This dependence can be explained as follows.
For qs = 3 the total mass is dominated by the largest parti-
cles even though the contribution to the optical depth from each
size of particles divided logarithmically is the same. Therefore,
the spin state of the largest particles is determined by mutual
collisions between the largest particles themselves, since the
momentum given by smaller particles is insignificant. The rel-
ative velocity of largest particles, which are stuck to wakes,
is close to their mutual escape velocity vesc rather than the
global dispersion cwake (Eq. (23)); this is similar to what was
seen in the identical particle case (Section 3.2). Therefore, the
spin dispersion of the largest particles is roughly given by
vesc × √

5(1 − εt)/(9 + 5εt) (see Eq. (14) for the factor). On
the other hand, the spin state of the small particles is affected by
collisions with all other particles. The impact velocity of small-
est particles, which move between wakes, are similar to cwake.
Hence, the spin dispersion of the smaller particles becomes also
of the order of cwake.

It should be noted that the value of Erot/Ekin for the smallest
particles is rather close to that of the non-self-gravitating case,
since their motions are random unlike large particles in wakes.
It can be expected that the value of Erot/Ekin for smaller par-
ticles will reach the same asymptotic value as in the non-self-
gravitating case if the size distribution is sufficiently extended.
Therefore, we expect that the rather steep dependence of q on
the particle size seen in simulation of Fig. 10 is limited to the
large particles, whereas the distribution is expected to be less
steep for the small particles if realistic wide distributions are
studied.

In the present paper, we showed size distribution cases only
for optically thick rings. For the case of small optical depth, in
fact, Erot/Ekin decreases with size near the large size end, as
well as optically thick cases. Recent studies by Ohtsuki (2005)
and Ohtsuki and Toyama (2005) based on three-body formu-
lation and N -body simulations, respectively, also pointed out
that spin frequency is approximately proportional to 1/r (cor-
responding to a constant q), but size-dependence of spin fre-
quency near the large size end becomes steeper for optically
thin cases. However, the mechanism causing the steeper size-
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Fig. 10. The equilibrium state of rings of self-gravitating particles with size distribution for τ = 0.5, qs = 3, rmin = 50 cm, rmax = 5 m, and reff =
3Σ/(4ρτ) = 1.95 m. The results for three different distances a = 80,000, 100,000, and 120,000 km (solid, dashed, dot-dashed curves) are shown. The force
model is used with kf = 0.1, εn = 0.5, and ρ = 900 kg m−3. For comparison, the horizontal lines show the corresponding values in the cases with identical particles
(from Figs. 6 and 7).
dependence in the large size end for optically thin rings must
be different from that for optically thick self-gravitating rings:
we have explained the latter mechanism in the above, and more
explicit physical explanations for the former mechanism will be
given in future works (e.g., Ohtsuki, in preparation).

In Fig. 10, the mean spin rate 〈ωz〉 increases with the
strength of self-gravity (larger a) for all the sizes of parti-
cles. The enhancement of the largest particles is caused by
the same reason as we explained for identical particle cases in
Section 3.2. On the other hand, 〈ωz〉 of smaller particles is en-
hanced by accretion or sliding on the largest particles. When a
small particle accretes on a large particle, their velocity differ-
ence u (Eq. (1)) and relative velocity vr tend to vanish due to the
dissipation. As a result, we obtain ω1,z 	 r1/r2(Ω −ω2,z)+Ω ,
where ω1,z and ω2,z are z-components of spin rates for small
and large particles, respectively, and this suggests that spin rates
of small particles’ on large particles tend to be larger than Ω ,
since 〈ω2,z〉 < Ω (see also Morishima and Salo, 2004a). Since
the effect of accretion or sliding becomes more important with
larger a, the averaged 〈ωz〉 for smaller particles is more en-
hanced. This mechanism may not be very clear in the case of
a narrow size distribution like in Fig. 10, but would be more
pronounced for a wider size distribution. In the simulations of
Richardson (1994), the enhance of 〈ωz〉 for smaller particles is
not seen. This is probably because his simulation time is too
short. The time scale to acquire the equilibrium value of 〈ωz〉 is
much longer than those for other quantities (e.g., Salo, 1987b).

The effect of the size distribution on the dynamical behavior
of rings seems not so significant when gravitational wakes form,
since the velocity dispersion of the largest particles is almost the
same as that of identical particles, as we explained above. This
is probably because of several competing effects: some of the
smaller particles fill the voids in the wakes and thus enhance
the strength of gravity (Karjalainen and Salo, 2004), whereas
other fast moving small particles stir wake motions and tend to
reduce their strength.

We also confirmed that the total viscosity (the sum of the
local, non-local, and gravitational viscosities) normalized by
r2

effΩ is almost independent of the width of size distribution.
When gravitational wakes form, the gravitational viscosity and
the local viscosity are almost equal, and the non-local viscosity
becomes negligible (Daisaka et al., 2001). Salo et al. (2004) re-
ported that the wake angle with respect to the direction of the
orbital motion becomes steeper and the typical wake tangen-
tial length becomes shorter for size distribution case as com-
pared with the identical particle case. While the steeper angle
enhances the angular momentum transfer by the self-gravity
and thus the gravitational viscosity, the shorter wake length
decrease it. It seems that the effects more or less compensate
and the resulting viscosity is almost independent of the size
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Fig. 11. Dependence of spin frequency q/r on particle size. Both cases with
(solid curves) and without (dashed curves) the self-gravity are shown. The sim-
ulation results for non-self-gravitating case are from Fig. 9 whereas those for
self-gravitating case are from Fig. 10.

distribution. On the other hand, the formation of oscillations
by viscous overstability is clearly suppressed by fast moving
smaller particles in the size distribution case (Salo et al., 2001).
The systematic study of the effects of size distribution on this
instability will be conducted in another work.

4. Discussion: Implications for thermal infrared emission
of rings

4.1. Fast spin or slow spin?

Thermal emission of rings is a complex function of ring
particle properties and ring structure (e.g., Cuzzi et al., 1984;
Spilker et al., 2003). One of the biggest issues is whether a par-
ticle radiates over its whole surface area or mainly from the
face illuminated by direct sunlight, which is the dominant heat
source. The former situation may correspond to the case where
particle spins are fast compared to the scale of the thermal re-
laxation time, while the latter corresponds to slowly spinning
particles. The rate of post-eclipse temperature increase after
emergence from Saturn’s shadow suggests that the averaged
thermal relaxation time of ring particles is ∼1 h (Froidevaux
et al., 1981; Spilker et al., 2003), whereas the orbital period is
∼10 h (in the mid B ring). Therefore, we can roughly say that a
particle whose spin frequency is larger than 10Ω is a fast rota-
tor and vice versa.

Fig. 11 shows the spin frequency normalized by the orbital
frequency as a function of particle size in various size dis-
tribution cases. Both the case including self-gravity and the
case without self-gravity are shown. The spin frequency of the
largest particles is always close to the orbital frequency, so that
their rotation can be considered slow on the scale of a ther-
mal relaxation time. On the other hand, the spin frequency in-
creases with decreasing particle size. Since the spin frequency
is roughly proportional to the inverse of particle size, particles
smaller than ∼0.1rmax are expected to be fast rotators. It should
be noted that the total cross section of particles in each logarith-
mic size bin is the same for the power-law index qs = 3. There-
fore, the ratio of the total cross section of fast rotators to that
of slow rotators is roughly given by ∼ log10 (rmax/rmin) − 1.
The widths of size distributions estimated from observations,
rmax/rmin ∼ 70–1000 (Marouf et al., 1983; French and Nichol-
son, 2000), suggest that the total cross sections of fast rotators is
likely to be comparable to or even larger than that of slow rota-
tors. This appears to be in contrast to the previous thermal mod-
els which seem to prefer slow rotators (e.g., Froidevaux, 1981;
Kawata, 1983, see also reviews by Cuzzi et al., 1984; Esposito
et al., 1984).

Since the solar phase angle dependence of surface tempera-
ture is much stronger for slow rotators than that for fast rotators,
observations of temperature with various solar phase angles by
Cassini will be a strong constraint for the spin state and the
width of size distribution of ring particles. In fact, fast rota-
tors can be further classified into two types by their collision
frequencies, when considering solar phase angle dependence
of their temperature. If the collision frequency is high enough,
the illuminated sides of particles change frequently in a random
fashion, so that their temperature profile will be close to isother-
mal. On the other hand, if the collision frequency is small, some
fraction of fast rotators have their spin axes directing nearly
toward the Sun, so that the phase angle dependence of their
temperature is the same as that of a slow rotator. Hence, rings
composed of fast rotators with less frequent collisions must
have a stronger solar phase angle dependence than rings with
frequent collisions. This effect should be included in thermal
modeling, besides the other effects related to the optical depth.

4.2. Monolayer or multilayer rings?

So far, two main types of models have been used when in-
vestigating the ring’s thermal response, namely the monolayer
model and the multilayer model. The former type of models
explicitly include the effect of finite size of particles, which is
important if the particle size is comparable to the mean free
path of a photon (i.e., the distance between particles); how-
ever the models are limited to a single layer of uni-sized par-
ticles (Froidevaux, 1981; Leyrat et al., 2003). On the other
hands, the multilayer models solve the classical radiative trans-
fer equations, but neglect the effects of the finite size of particles
(Kawata and Irvine, 1975; Kawata, 1983). Interestingly, both
types of models can be made consistent with observational data
by adjusting various parameters; however, they both prefer slow
spins.

The situation of realistic rings suggested by N -body simula-
tions is more complicated. Rings resemble a monolayer for the
largest particles since their sizes are comparable to the typical
ring thickness (∼c/Ω), whereas the smaller particles are dis-
tributed more extensively in the vertical direction, like assumed
in the multilayer models (Fig. 12, top). The importance of the
mixed monolayer and multilayer characteristics were already
pointed out by optical modeling using particle fields directly
obtained by N -body simulations (Salo and Karjalainen, 2003;
Salo et al., 2004). Especially, the dependence of the effective



Dense planetary rings with spinning particles 287
Fig. 12. Examples of simulations without (upper frames) and with (lower frames) self-gravity. Both cases assume qs = 3 and rmax = 5 m. For the non-self-gravitating
case rmin = 5 cm and τ = 1.0, while rmin = 50 cm and τ = 0.5 for the self-gravitating case. Left frames display views from the top whereas right frames display
views from the side, looking toward the direction of the orbital motion. Northern hemisphere of each particle is colored with brighter color than the southern
hemisphere, assuming that the north pole points the direction of the spin axis. Note that the scales used in the upper and lower frames are different.
particle size (and volume density) on the viewing elevation of-
fered an attractive explanation for the optical tilt effect, i.e.
the dependence of ring brightness on the elevation. Since the
spin state of particles is also sensitive to their size, analogous
elevation angle effects might be important in thermal model-
ing. Further, gravitational wakes cause spatial non-uniformity
of ring particles (Fig. 12, bottom), which may also significantly
modify their thermal response. It is probably quite difficult to
obtain the thermal response of such complicated rings analyti-
cally. For the realistic thermal modeling, one may thus need to
directly use results of N -body simulations (i.e., particle posi-
tions, particle spins).

5. Conclusion

We have investigated the spin state of planetary ring parti-
cles using N -body simulations including self-gravity and size
distribution. The significant results we obtained are:

1. The spin frequency of the largest particles is close to the
orbital frequency regardless of the various ring parameters
(i.e., the optical depth, the strength of gravity, or the width
of size distribution). Note that by the spin frequency we
refer to the dispersion of spins: the spins acquire a non-zero
mean vertical component but this is typically insignificant
compared to the dispersion.

2. The spin frequency is roughly inversely proportional to the
particle size. Thus the spin frequency of small particles is
much larger than the orbital frequency, as long as the ring
particles possess an extended size distribution.

3. Saturn’s ring particles represent a mixture of fast rotators
(say 〈ω2〉1/2 � 10Ω) and slow rotators on the scale of a
thermal relaxation time, and the fraction of fast rotators
may be comparable to or even exceed that of slow rotators.
The future Cassini data of the infrared emission of Saturn’s
rings, combined with accurate thermal modeling will clar-
ify the fraction of fast rotators. This in turn will constrain
the ring particle properties (i.e., the width of size distribu-
tion and the particles’ thermal inertia).

4. The overall contribution of spins on the dynamical steady-
state of rings is not very significant. However, dissipa-
tion connected to friction may promote the formation of
wakes caused by near-gravitational instability or the for-
mation of axisymmetric oscillations via viscous overstabil-
ity.
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Appendix A. Analytic formulation for collisional energy
changes

Here ignoring the systematic velocity field, we consider the
energy changes due to random motions of particles. We de-
fine the kinetic and rotational energies per unit mass as Ekin
and Erot, respectively. The change of these energies �Ekin and
�Erot in a collision are given by

(26)�Ekin = 1

2

1

m1 + m2

[
m1

(
v′2

1 − v2
1

) + m2
(
v′2

2 − v2
2

)]
,

(27)

�Erot = 1
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2
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2
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Using Eqs. (3) and (4), we obtain

(28)

�Ekin = −1
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1 − ε2
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49
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2u2
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]
,

(29)

�Erot = m1m2

(m1 + m2)2

[
2

7
(1 − εt)(n × u) · (r1ω1 + r2ω2)

+ 5

49
(1 − εt)

2(n × u)2
]
.

We adopt the following assumptions when averaging over col-
lisions (e.g., Salo, 1987a):

1. Impact directions are isotropically distributed. This approx-
imation is valid if the velocity dispersion is much larger
than the systematic velocity gradient over particle diame-
ter.

2. The velocity distribution is given by a Maxwellian.
3. There is no correlation between translational and spin mo-

tions.

Following these assumptions, the averaged value of u2
n as an

example is given by

〈
u2

n

〉 =
∫∫

f (v3
r )u

2
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(30)= 1
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2

)
,

where f (v3
r ) is the distribution function for v3

r (vr = v2 − v1)
normalized as

∫
f (v3

r )dv3
r = 1, ψ is the solid angles for the
collisional direction n, and c1 = 〈v2
1〉1/2 and c2 = 〈v2

2〉1/2 are
velocity dispersions. Integrations are carried out where impacts
are possible, vr · n < 0. In the above equation, the last equality
comes from the Maxwellian velocity distribution (see Hämeen-
Anttila, 1983). Similar to Eq. (30),

(31)
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3

(
q2
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2

)
,

where q1 = 〈(r1ω1)
2〉1/2 and q2 = 〈(r2ω2)

2〉1/2 are dispersions
of spin velocities.

Finally, we obtain
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For the case of identical particles, we obtain Eqs. (12) and
(13). Equation (33) gives Erot/Ekin in the equilibrium state
(Eq. (14)), and using this ratio we can obtain the ratio 〈u2

t 〉/〈u2
n〉

(Eq. (9)).

Appendix B. Shear rate dependence of the mean spin rate

The non-zero z-component of the mean spin rate is caused
by the systematic velocity gradient, which is ignored in Ap-
pendix A. Here we briefly review the derivation of the analytic
expression for the mean spin rate after Salo (1987a) (see its
Section 5 for more detail).

Using Eq. (1), the systematic velocity difference at the con-
tact point usy contributed by the systematic velocity gradient is
given by

(34)usy = vsy − (r1ω1 + r2ω2) × n.

Here vsy is the velocity gradient in the inertial system give as

(35)vsy = (0,−sx,0)Ω + (−y, x,0)Ω,

where x and y are the coordinate differences between con-
tacting particles’ centers in the radial and azimuth directions,
respectively, and s is the normalized shear rate (s = 3/2 for the
Keplerian case). The first and second terms in the right-hand
side of Eq. (35) represent the systematic velocity shear in the
rotational coordinate and the modification term from the rota-
tional coordinate to the inertial coordinate, respectively.

In the equilibrium state, the mean value of spin change in
collisions vanishes, 〈r1ω

′
1 −r1ω1〉 = 0. Therefore, from Eq. (4),

the following equation needs to be satisfied as well:

(36)〈n × vsy〉 = (r1ω1 + r2ω2) − (r1ω1 + r2ω2) · 〈nn〉.
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Assuming that particle flux is proportional to vsy · n and carry-
ing out the averaging where impacts are possible (vsy · n > 0),
we obtain the z-components of averaged values (from Table II
of Salo, 1987a)

(37)〈n × vsy〉z = 1

5
(4 − 2s)(r1 + r2)Ω,

(38)〈nn〉zz = 1

5
Izz,

where I is the unit tensor. Substituting these values into
Eq. (36), we obtain the equilibrium spin rate 〈wz〉ana = 1/4(4−
2s)Ω for the identical particle case.

If we assume random impacts supposing large velocity dis-
persion cases, we obtain

(39)〈nn〉zz = 1

3
Izz.

If we use this value instead of Eq. (38), we obtain slightly higher
value:

(40)〈wz〉ana = 0.3(4 − 2s)Ω.

This shear rate dependence is used for the analysis in Sec-
tion 3.2.

As one can see, we do not consider each collision orbit pre-
cisely and the averaging is not well consistent for different
terms for large velocity dispersion cases. On the other hand,
Ohtsuki (2004a, 2004b) obtained the mean spin rate analyti-
cally by averaging the torque exerted by all the non-circular
collision orbits precisely, but only for the Keplerian shear case.
His obtained spin rate (〈wz〉ana 	 0.37) is slightly higher than
ours (0.3). The extension of Ohtsuki’s method to various shear
rates would be helpful for more accurate analysis.

Appendix C. Required total number of particles for size
distribution cases

For the size distribution case, the number of particles N(r)

with radii between r and r +dr is assumed to be N(r) = Ar−qs ,
with the upper and lower cutoffs rmax and rmin, where A is a
constant. For a larger qs and a larger width W = rmax/rmin, the
required number of particles in simulations increases.

Let us first consider physical quantities in a simulation box
with the area of L2. The total number of particles Ntot is given
by

(41)Ntot = A

rmax∫
rmin

n(r)dr = Ar
1−qs
max

1 − qs

(
1 − Wqs−1).

Since we divide particles into groups with a constant logarith-
mic size increment �W = 101/6, the number of particles in the
group of the largest particles becomes

(42)NL = Ntot
1 − 10(qs−1)/6

1 − Wqs−1
,

where we used Eq. (41). The total optical depth τ is given by

(43)τ = π

2

Ar
3−qs
max (

1 − Wqs−3) = πr2
max
2

NtotF1,

L 3 − qs L
where F1 = 1−qs
3−qs

1−Wqs−3

1−Wqs−1 (for the case of qs = 3, the factor

(1 − Wqs−3)/(3 − qs) is replaced by lnW ). The total surface
density is given by

(44)Σ = 4πρ

3L2

Ar
4−qs
max

4 − qs

(
1 − Wqs−4) = 4

3
ρτrmaxF2,

where F2 = 3−qs
4−qs

1−Wqs−4

1−Wqs−3 and we used Eq. (43) for the transfor-
mation. The velocity dispersion can be scaled by reffΩ , where
reff = rmaxF2 is the effective radius (see Section 3.3).

The first condition for the required total particle number is
determined by the minimum number of particles in the group
of the largest particles (Salo, 1992a). From Eq. (42), we obtain

(45)Nng,1 = 1 − Wqs−1

1 − 10(qs−1)/6
NL.

Taking NL = 5 as the smallest statistically meaningful number
of ‘largest’ particles, with qs = 3 and W = 100, it gives Nng,1 =
21,400. The second condition is determined by the minimum
size ratio of the simulation box size L to the largest particle
size (Salo, 1992a). From Eq. (43), we obtain

(46)Nng,2 =
(

L

rmax

)2
τ

πF1
.

For τ = 1.0, qs = 3, W = 100, and L/rmax = 8, we obtain
Nng,2 = 22,100. The above two conditions give almost the same
required number if τ = 1.0. For larger τ , the second condition
becomes more severe.

For dense self-gravitating rings, wakes form due to near-
gravitational instability. The radial scale of wakes is expected
to be comparable to the critical wave length λcrit:

(47)λcrit = 4π2GΣ/Ω2.

The third condition for the required total particle number is de-
termined by the ratio of λcrit to the simulation box size L. From
Eqs. (43), (44), and (47), we obtain

(48)

Nwake = 2210τ 3
(

a

108 m

)6(
ρ

900 kg m−3

)2(
L

λcrit

)2

F 2
2 /F1.

This is much more severe than other two conditions unless τ is
much smaller than unity. Since the simulation results are almost
independent of the simulations box size for L > 4λcrit (Salo,
1995), we adopt L = 4λcrit for obtaining the minimum particle
number for a self-gravitating simulation. From the above equa-
tion, one can find that the required number for a size distribution
case is F3 = F 2

2 /F1 times larger than that for a case of identical
particles with the same condition. If qs = 3, F3 = 3.3 and 50.2
for W = 10 and 100, respectively.
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