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The dynamical behavior of collisional ring systems is studied
via a local simulation which includes mutual gravitational forces
between particles. Direct force calculations involving up to a few
thousand identical particles are employed, with parameter values
appropriate to Satarn’s rings. Different factors affecting the colli-
sional steady state are studied, including two-particle gravitational
encounters, the formation of collective Julian—Toomre wakes, and
even the development of particle groups.

These simulations indicate that the equilibrium radial velocity
dispersion c, tends to be dominated by that factor which alone
would yield the largest random metion. In the case of a constant
coefficient of restitution £ among nongravitating particles, the
equilibrium c, never exceeds a few times r £}, where r is the particle
radius and {} is the orbital angular velocity. With self-gravity,
gravitational encounters soon dominate, even when the surface
density is small, and c, is then close to the escape speed from
individual particles. With increased surface density, scattering by
collective wakes becomes yet more important, and ¢, corresponds
to the Toomre parameter J; = 2. For Saturn’s A-ring this implies
a multilayered structure with strongly enhanced velocity disper-
sion, c¢,, reaching values =15r) for surface densities ~500 kg
m~2, The implied ¢, = (r/1m) 0.2 cm s~! agrees qualitatively with
estimates based on the damping of density waves. Gravitational
wakes are also expected for the rings of Uranus.

In principle, velocity-dependent dissipation corresponding to
values £ = 0.6 would suppress the wake structure. However, the
azimuthal asymmetry of Saturn’s A-ring gives strong support to
the existence of wakes, with the simulated pitch angles of order
20°-25° being in good agreement with those required by observa-
tions. This agreement suggests that the effective values of £ in
that ring is closer to zero than implied by recent laboratory experi-
ments of impacts between solid ice balls.

Likewise, assuming reasonable densities and dissipation, the
present simulations indicate for Saturn’s rings that the collective
wakes begin to degrade into actual particle groups at distances
a = 125,000 km from that planet. Beyond a = 140,000 km, such
clumps seem to be very stable. The simulated aggregates have
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rp = 0.7-0.9, where r, is the minor axis radius of the agregate

relative to its Hill’s radius. © 1995 Academic Press, Inc.

1. INTRODUCTION

The dynamics of dense particulate rings like the main
components of Saturn’s rings are dominated by frequent
mutual impacts between macroscopic icy particles. Their
local equilibrium is determined by the balance between
energy loss in inclastic impacts and the viscous gain of
energy from the systemaltic orbital velocity field (see, e.g.,
Stewart er al. 1984). The time scale required to attain
such a local equilibrium is very short, corresponding to
a few tens of impacts per particle, or less than 10 orbital
revolutions in dense rings. In the absence of self-gravity or
external perturbations, the local equilibrium is determined
mostly by the elastic properties of the particles, more
dissipation leading to a smaller velocity dispersion. How-
ever, particles of a finite size always retain a residual
velocity dispersion that is at least comparable to the differ-
ence in orbital motion over one particle diameter. The
equilibrium state is also affected by the size distribution,
with smaller particles generally exhibiting a somewhat
larger velocity dispersion, and by the optical thickness 7,
since a reduced mean path between impacts makes the
viscous gain of energy less efficient and leads to smaller
random motions in regions of larger 7,

The inclusion of mutual gravitational forces affects the
local dynamics of collisional systems in several, partiaily
competing ways. For example, in a flattened system with
even a moderate surface density the mean vertical gravity
can become comparable to or even exceed the corre-
sponding component of the central force. This tends to
reduce the geometric thickness quite markedly, both be-
cause of the increased verticai stiffness and via increased
dissipation due to the enhanced impact frequency (Salo
and Lukkari 1982). Their combined effect was simulated
by Wisdom and Tremaine (1988, hereafter WT), who used
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a constant vertical oscillation frequency 3.6 times larger
than the orbital frequency, and by Salo (1991}, who calcu-
lated the self-consistent vertical field iteratively from the
particle distribution; the results were practically identical.
However,the inclusion of horizontal components of the
self-gravitational field changes the picture more drasti-
cally. First, the gravitational encounters between parti-
cles correspond to totally elastic impacts and as such they
always tend to increase the random velocity dispersion
(e.g., Cuzzi et al. 1979, Himeen-Anttila 1984). Second,
if the surface density is high enough, there is a possibility
of strong collective gravitational cftects, analogous to the
formation of wakes in stellar systems (Julian and Toomre
1966). Indeed, with the use of standard parameter values
for Saturn’s rings it can be shown that the B-ring is like-
wise susceptible to wake formation (Salo 1992b). Third,
as the Roche distance is approached, direct accumulation
of particles becomes possible, with the wakes transform-
ing to temporary particle groups which resemble the “*dy-
namical ephemeral bodies™ (DEBs) proposed by Weiden-
schilling et al. (1984; see also Longaretti 1989), Such signs,
too, have been observed in simulations (Salo 1992b).

Most of the existing theoretical studies of gravitating
collisional systems have concentrated on the simultane-
ous effects of impacts and encounters only for systems
with low optical thicknesses (e.g., Hornung et af. 1983,
Stewart and Wetherill 1988, Ohtsuki 1992). The eftects
of finite particle size have tended to be ignored. Studies
of dense systems have typically included only the overall
self-gravitational field (e.g., Salo and Lukkari 1982, Araki
and Tremaine 1986, Araki 1991). Even when both the
mean field and two-particle encounters have been consid-
ered (Himeen-Anttila 1984, Hameen-Anttila and Salo
1993), no allowance has been made for the collective
wakes. On the other hand, such spiral wakes have already
been studied extensively in the context of disk galaxies
via local simulations (Toomre 1990, Toomre and Kalnajs
1991), though there with much less need for any physical
collisions.

The present study, although somewhat idealized to
identical particles, attempts to close this gap between
collisional and collective effects in the treatment of dense
planetary rings. Various factors affecting the equilibrium
velocity dispersion are analyzed via local simulations,
including mutual impacts, encounters, and the formation
of wakes and aggregates. Section 2 describes simulation
methods, Section 3 presents preliminary tests, and Sec-
tions 4-6 address factors affecting wake formation (sur-
face density, elasticity, radial distance). Section 7 exam-
ines particle groupings.

2. SIMULATION METHODS

The simulations of the present study arc carried out
with a local simulation method that was first applied to
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planetary ring dynamics by WT and to disk galaxies by
Toomre (1990). Just as in those papers, all calculations
here are restricted to a small co-moving region within the
rings, with periodic boundary conditions as described in
detail in WT to take into account the shearing motion.
Compared to WT, all self-gravitational forces are now
taken into account, rather than just the vertical self-grav-
ity in an approximate manner. Compared to the galactic
simulations of Toomre, physical impacts between parti-
cles are now included, but any softening of the short-
range gravity is omitted as unnecessary.

The calculation of particle orbits is based on integra-
tions of the linearized equations of motion (Hill 1878)

£205 + (2 —4Q)x=F,
§+20% =F, (1)
i+ Qiz=F,_.

Here the x-axis points in the radial direction, the y-axis
points in the direction of orbital motion, and the z-axis is
perpendicular to the equatorial plane. The reference point
of the coordinate system moves with angular velocity of
€} in a circular orbit at a radial distance a. In the present
case of a central point mass, the epicyclic frequency x
and the frequency (), of vertical oscillations are both iden-
tical to ). As remarked by previous authors, the above
linearized equations are valid if | x| and |z| < a.

The calculation of the gravitational accelerations on
the right-hand sides of Egs. (1) is performed by direct
summation: a circular region with radius R, ,, is chosen
around each particle and the forces only from the particles
within this region (nearest images, see Fig. 1} are added
together. The horizontal force components from the re-
gion outside R, are assumed to vanish due to cancella-
tion. Also, with the simulation parameters of the present
study, the net vertical force due to particles outside R,
amounts to only a few percent of the total vertical self-
gravity, and it is likewise ignored.

Two different methods are used in the calculations of
impacts: (1) the locations of impacts are searched itera-
tively and the corresponding collisional velocity changes
are calculated, (2) particle orbits are integrated through
impacts, including mechanical pressure forces arising be-
tween slightly overlapping particles. The first method is
the same as used by Salo (1992a) in previous simulations
of nongravitating dense rings with a broad distribution of
sizes, as well as in the brief study by Salo (1992b) of self-
gravitating models for Saturn’s rings. The latter method,
yet to be described in detail, was developed during the
course of the present study in order to improve the treat-
ment of particle aggregates.
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FIG.1. Schematic diagram displaying the simulation cell (thick lines)
and its eight surrounding replicas (thin lines). Gravitational forces on a
given targetl particle (denoted by the cross) are calculated from all the
other particles whose nearest image lies within the distance R, (de-
noted by the large circle}. The nearest image can be either the actual
particle or one of its eight copies; an example of the former case is
given by the filled triangle, while the other filled symbols represent
particles having one of their images {open symbols) closer to the target
particle. Broken curves indicate regions from which particles contribute
to the force felt by the target particle via their images, In the present
simulations each particle is included only once, by insisting that
Ry = 2 min{L,, L.}, where L, and L, are the radial and tangential
extents of the simulation cell, respectively.

X

(a) Previous Simulation Method: Search for Impacts

In the first method particle orbits follow Egs. (1) be-
tween successive impacts and are integrated with an RK4
integrator. In the beginning of each time step a list of
potential colliding pairs is constructed, by using a second-
order Taylor estimate for the impact locations, which are
then iteratively improved to correspond to the fourth-
order accuracy (this accuracy is achieved only in the non-
gravitating case, as self-gravitational forces are assumed
to be constant during the time step). The particle pair
with the smallest impact time is chosen and their orbits
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are followed to the impact time and the collisional velocity
changes are calculated (see below). The positions and
velocities of the two particles are then extrapolated back
to the beginning of the step. All entries in the coilision
table involving either member of the just-collided pair are
recalculated, using their modified positions and velocities.
Only impacts taking place after the just-found impact and
before the end of the integration step are accepted. After
this a new impact with the smallest impact time is chosen
and the cycle is repeated until the collision table is empty.
The step is finally concluded by integrating all particles
to their new locations corresponding to the end of the time
step. This method with iterative calculation of several
impacts/particle/timestep is very efficient for systems
with high impact frequency. For the typical time steps
used (AT = 0.005 X T, where T, is the orbital period)
radial excursions are of the order of only few tens of
centimeters, or kess than the typical particle radius. Better
accuracy of orbital integrations would have little practical
significance in systems with high impact frequency (many
particles collide several times during a single dynamical
step).

As the gravitational part of the code can be efficiently
vectorized (whereas collisional routines cannot), the in-
clusion of self-gravity does not in itself lead to a large
CPU-time increase. Nevertheless, as gravity enhances
the impact frequency, the actual computational effort can
increase by a large factor, especially if extensive particle
grouping occurs. Recently the tree-code method has also
been applied to force evaluations in connection with the
local method (Richardson 1993): however, with a few
thousand particles this does not lead to any substantial
increase in efficiency, especially if the impact frequency
is high.

The standard impact model for hard spheres is used.
The elasticity is described by the coefficient of restitution,
g, determining the amount by which the perpendicular
component of the relative velocity component is reduced
in each impact. A few experiments with tangential friction
have also been performed, in which case particle spins
are also taken into account. The velocity change in impact
is thus determined by (Salo 1987a)

(Videou = —8€€ - Vo + (1 = g)e X (Vo X €}, (2)
where (v,)., and (v)., stand for the post- and precolli-
sional velocity differences at the contact point, ¢ for the
unit vector joining the particle centers, and g for the
coefficient of friction (g, = 0 for frictionless impacts). In
terms of v = R’ — R, the relative velocity of particle
centers, (V) =V — (ro + rw’) X ¢ + (r + rYON X ¢,
where r and w stand for the particle radius and spin-
vector (primed and unprimed symbols distinguish the two
particles). The last term, (r + r")QIN X ¢, where N stands
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for the unit vector in the direction perpendicular to the
equatorial plane, arises due to the use of a rotating coordi-
nate system. The changes in the velocity and spin vector
of an individual particle follow from the conservation of
linear and angular momentum, yiclding

’

» - m
R ~R= m+m' {(l A
2e
+ 71 (vcoll - vcnll)}s (3)
m' S
(reoy = re) = ——— 7‘ € X Vs 4

where m and m’ are the masses of the impacting bodies.
Also, for rotating particles the spin vectors must be trans-
formed to the instantaneous coordinate system before
the impact. Most of the simulations study the case & =
constant, but the effects of velocity-dependent elasticity
are also addressed, by studying two functional forms for
the elasticity (Bridges er al. 1984, Dilley 1993). Unless
otherwise mentioned & = 0. In order to facilitate the
treatment of slow impacts leading to a sliding motion of
particle pairs, the same method is adopted as in WT: in
all impacts where the perpendicular component of impact
velocity falls below v = 0.00178, € is set to unity,

(b) Improved Simulation Method:
Force Model for Impacts

Although the above-described method for the calcula-
tion of impacts works adequately for nongravitating parti-
cles, as well as for gravitating systems with wake forma-
tion, it is not well suited for cases where gravitational
sticking between particles leads to the formation of parti-
cle aggregates. In this case, overlapping particles become
a serious problem. Basically, particle overlaps result from
the omission of mechanical pressure forces between
impacting particles. Consider two identical, radially
aligned, synchronously rotating particles (corresponding
to nonrotating particles in the local frame) in contact;
the net attraction between them is positive for a/R e >
(120 pianter /0)'”, Where poiae and p are the internal densities
of the central body and the particle, respectively, while
Riner stands for the mean radius of the central body
(Weidenschilling er al. 1984). For icy particles orbiting
Saturn this distance becomes about 122,000 km. Thus
outside this distance it is expected every now and then
that some simulated colliding particle pair with a small
velocity difference and a favorable relative orientation
have a sufficiently large acceleration toward each other
so that after the integration step the particles end up pene-
trating each other. (Note that overlapping pairs occur also
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in the case of nongravitating particles, even if the WT
method for slow impacts is adopted, because an impact
can be occasionally missed because of small inaccuracies
in the calculations. This is a less alarming case, however,
and the situation is easily corrected at the next step by
allowing the overlapping pair to collide at a slightly de-
layed time. By using double precision in all the calcula-
tions, the problem of overlapping particles is totally negli-
gible in the nongravitating simulations.)

Various solutions were attempted to treat sticking parti-
cle pairs. For example, setting the mutual acceleration to
zero for particles in contact mimics the cancellation of
mutual gravity by mechanical pressure. Similarly, in the
case of several particles simultaneously in contact, the
mechanical pressure forces which are required to balance
the net attractions can be solved from a set of linear
equations. However, in the case of strong sticking tenden-
cies this was found to be insufficient. Consider what hap-
pens when an outside particle hits one of the particles in
such a coherently moving group: the velocity impulse
causes the target particle to penetrate some other member
of the group. Unless some additional pressure force is
introduced, the penetrating pair remains overlapping.
Also, the artificially enhanced density of the group further
increases the tendency for overlaps, easily leading to ex-
aggerated growth of aggregates.

An cbvious way out from this problem is to include a
model for the actual pressure forces affecting colliding
pairs. Such a model is provided by the viscous dissipation
model of particle impacts, recently devised by Dilley
(1993). In addition to applying this new treatment to aggre-
gates, it turned out to be advantageous to handle all im-
pacts in a similar fashion, and replace the search of impact
locations with an additional force term in the right-hand
side of Egs. (1). Somewhat suprisingly, this new method
of collisional calculation turned out not only to be capable
of treating dense particle aggregates, but also to be faster
in general, despite the much smaller time steps required
(meaning that during each step, particle motions are typi-
cally just a tiny fraction of particle radii). Due to the
small step size a simple second-order Taylor integration
is utilized.

Dilley (1993) developed his viscous dissipation model
to offer a theoretical parameterization for the Hatzes et
al. (1988) measurements of velocity and size-dependent
elasticity in impacts between ice particles. In this model
the pressure force between a particle pair is assumed to
be composed of a restoring harmonic force and a viscous
damping force,

Fla)=ka+ Ba (a>0)

(5
=0 (a=0),

where & = (r + ') — |R — R’| is the penetration depth.
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The force acts in the direction joining the particle centers:
the relative acceleration is determined by F(a) = —Ma,
where M = mm'/(m + m") is the reduced mass of the pair.
Conservation of linear momentum determines individual
accelerations:

. om — R-R
AR=—"— F(a)/M—w—lR —RT’
(6)
AR = - Z AR
m

The attractive feature of Dilley’s model is that the parame-
ters &/M and ﬂ/ﬂ can be tied to simple physical parame-
ters, namely the duration of the impact and the coefficient
of restitution. For an impact between two particles in free
space, the equation F{a) = —Ma has a solution of an
exponentially damped oscillation (impact starts at 1 = 0
when o = (),

a= (0) e~ sin(wt), (N
)

where the modified frequency and damping are character-
ized by

w=Val— /27

_ (8)

s=MB,
where w, = Vk/M would be the undamped frequency.
The duration of the impact (the length of the first haif-
cycle) and the coefficient of restitution are (Dilley 1993)

Toy =T = mlay

lTpr) ©)

— 7/ 2ws

a(0)

Thus specifying the desired e determines the product
(kI MOYEMIB) = V(ws)? + 0.25, while (k/M) relates to the
duration of the impact.

In the present simulations with this method, we have
set Ty, = 0.00257 ., and employ time steps of 0.0001T,.
As with the previous collisional method, the time interval
for calculation of gravitational forces is 0.00507,,,. In
practice, a list of close pairs is constructed while gravita-
tional forces are calculated, and the possible penetration
is checked only for these nearby pairs. Maximum penetra-
tion stays below 5% of the particle radius (the force be-
tween a pair of particles is limited to that between particles
in exact contact). Detailed comparisons indicate good
agreement with the previous collisional calculation
method in all experiments with no aggregate formation.
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3. PRELIMINARY EXPERIMENTS AND TESTS

In this section the requirements for numerical simula-
tions of gravitating systems are analyzed, and the effects
of such simulation parameters as the size of the simulation
region or the number of particles are tested. This is very
important due to the large computational effort in the
experiments including mutual forces between particles.
All tests are performed for parameter values which lead
to the formation of wakes but not to excessive aggregates.

To demonstrate the qualitative effects of self-gravity,
a short preliminary series of simulations was carried out
comparing various approximations for the inclusion of
mutual forces. The system consisted of N = 1000 identical
spherical particles, each with internal density p = 900 kg
m~? and radius r = 1 m. The width of the square-shaped
simulation region was L = 65 m and the saturnocentric
distance was @ = 100,000 km. This yields an optical thick-
ness 7 = 0.75 and a surface density X = 900 kg m~2. The
coefficient of restitution was set to the constant value
g = 0.5. The results of the experiments are seen in Figs.
2 and 3, which compare the cases where self-gravity is
either (a} altogether ignored, (b) calculated with the WT
method, (¢) obtained by the iterative self-consistent
method of vertical force calculation (Salo 1991), or (d)
by taking into account all mutual force components. In
addition, both methods for collisional calculations are
compared here.

Among other things, Fig. 2 confirms that the inclusion of
vertical force {dashed curves) leads to a strongly reduced
geometric thickness as compared to the nongravitating
case (thick solid curves). Although the velocity dispersion
is less affected, this extra vertical force tends to increase
the ratio ¢,/c, of the vertical to radial velocity dispersion.
Also evident is that fairly similar results are obtained
whether the vertical field is calculated by WT or by the
self-consistent method, in agreement with Salo (1991).
However, inclusion of the equatorial components of self-
gravity (thin solid lines) changes the situation drastically:
velocity dispersion increases and it also shows strong
fluctuations. Another large change is in the impact fre-
quency: in the nongravitating case it is about 15 impacts/
particle/orbital revolution, but with the vertical field it
increases to 200-300, and with the inclusion of all force
components to about 500, Comparison between the two
collisional method (curves with and without symbols)
shows excellent agreement in the nongravitating case, as
well as in the case of gravitating particles if statistical fluc-
tuations are taken into account. However, with the new
method a considerably smaller impact frequency, about
100 impacts/particle/orbit, is obtained. This difference fol-
lows from the fact that, whereas in the old method sliding
particle pairs experienced numerous small jumps, each
sliding impact is counted just once with the newer method.
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FIG. 2. Comparison between various approximations made in calculating the ring self-gravity. The evolutions of the radial velocity dispersion
¢,, the ratio ¢,/c, between vertical and radial velocity dispersions, the effective geometric thickness H, and the impact frequency are all displayed
as functions of orbital revolutions. The effective thickness is defined by H = V12(z%), which is the thickness of a homegeneous slab of particles
which would have the same dispersion as the observed near Gaussian distribution. Simulation parameters are given in the text. Thick solid lines
(a) correspond to nongravitating particles, and thin solid lines (d) to a sirnulation where all forces are included. Dashed lines (b) denote simulation
with the WT method, using a 3.6-times-enthanced vertical frequency, and dotted lines (c) mark the case where self-consistent vertical gravity is
included. Solid lines with symbols stand for the new collisional method where impacts are described by elastic forces affecting partially penetrating

particles.

Figure 3 shows the particle positions at the end of the
simulations of Fig. 2. Comparing the cases without self-
gravity and with the vertical field only (using just the WT
method, iterative self-consistent field having yielded a
practically identical result), one can see the reduction
of the vertical thickness as well as traces of the regular
structure that would form in the WT-type simulations for
somewhat larger 7’s. On the other hand, the true self-
gravitational case is dominated by collective wake-like
structures, forming immediately within the first orbital
period, much as Julian and Toomre (1966) and Toomre
(1990) had implied. These wakes have a transient struc-
ture, constantly forming and dissolving on timescales of
somewhat less than an orbital period. The strong fluctua-
tions in velocity are related to these strong instantaneous
wakes.

From Fig. 3 it is clear that in order to obtain reliable
results in self-gravitational experiments, the size of the
simulation region must be considerably larger than the
typical scale of the collective wakes. Otherwise, our peri-

odic boundary conditions are likely to distort the scales
and pitch angles of the wakes and probably also other
quantities like velocity dispersion. The scale of wakes
can be roughly estimated from the critical wavelength A
related to axisymmetric Jeans instabilities {Toomre 1964)
in an infinitesimally thin disk,

A = 472G/, (10)

where the epicyclic frequency « equals {1 in a Keplerian
velocity field, and G stands for the gravitational constant.
Asimplied by Julian and Toomre (1966}, this near-instabil-
ity or strong amplification in the shearing disk manifests
itself in the form of trailing wavelets whose most promi-
nent azimuthal wavelength is =2, for a flat rotation
curves, and =4\ for the present case of a Keplerian
velocity field. The axisymmetric instability itself is sup-
pressed at all wavelengths if the radial velocity dispersion
exceeds the critical value
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FIG. 3.

Particle positions at the end of the simulations of Fig. 2, seen both from above (x, y) and in the direction of the orbital motion (x, z).

On the left, self-gravity is not taken into account, in the middle vertical forces are included (via the WT method}, and on the right all forces are
included. The size of the simulation region is 65 m, and the particles are [ m in radius.

Cor = 3.36G 3/ k. (11)

However, even for values of the Toomre parameter
Or = ¢, /¢, around 2 the system can retain a significant
tendency for the formation of collective trailing wakes
(Julian and Toomre 1966).

We next want to formulate the requirements for the
size of the calculation region in terms of the number of
simulation particles and other physical parameters of the
system. For identical particles the surface density is re-
lated to optical depth by 2 = #rpr, and by replacing
(2 = GM/a’, where M is the mass of the central body,
we obtain for Saturn’s rings (M = 5.685 x 10° kg)

3
_ a z
Ay = 69.4m (108 m) (1000 ke m—Z)

3
- a P L
=8.3m (108 m) (900 kg m"3) (1 m) T

In a simulation system with width L, optical thickness
r = Nri/I2, so that

h_ o5 2 I,S( a )3
LN (1000kgm-2) 18 m
y ( P )—0.5 (L)—l.s
900 kg m~> 1m

3
- —0.5,.1.5 a P
ATN " (108 m) (%Okgm*)'

In terms of the total number of particles per cell,

(12)

(13)

=120 i) (1) (oooras)
N= ]280(1000 kg mz) 102 m/ \900 kg m 2
(i) ()
1 m Agr
6 2 2
= (.4 P L
210+ (108 rn) (900 kg m‘3) (A)

In the case of a nonsquare simulation region, L? needs to
be replaced by L, L, where L, and L, stand for the radial
and azimuthal widths, respectively. With realistic Sa-
turn’s ring parameters as in Fig. 3, several tens of thou-
sands of particles would be required for A, > L,, L, (Fig.
4). In fact in the above simulations with N = 1000, the
critical wavelength was 62 m, or only about the same as
the width of the simulation region. As emphasized by
Fig. 4, simulations become very cumbersome when large
values of 7 are desired. Note that consumption of CPU
time scales roughly as N2, so that in fact CPU time is
proportional to 78(L/A_)*. Therefore, to keep CPU time
consumption tolerable it is important to estimate the
smallest acceptable L/\_, value still capable of giving re-
sults that are approximately correct.

A series of test runs was carried out to check this im-
portant question of the adequate size of the simulation
region. In Toomre’s (1990) noncollisional simulations, cal-
culation cells with L, X L, = 6A; X 8A, were typically
used with 4800 particles (whereas in Toomre and Kalnajs
1991 even 12-fold larger particle numbers were simulated).
We use here the same surface number density, n =
k/A2 with k = 100. As the collisional simulations operate

(14)
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FIG. 4. Size of the simulation region in units of the critical wave-
length, shown as a function of optical thickness + and number of simula-
tion particles. Saturnocentric distance ¢ = 100,000 km and internal
density p = 900 kg m~? are assumed.

with finite-sized particles, the number density must be
converted to physical quantities. From Eqs. (12} we
obtain

~ 2 a \

r=234m (1000 ke m‘z) (108 m)
y ( p )—113 (L)'B
900 kg m ° 100/ -

-2 -2/3 173
- a p Kk
T O‘357(108 m) (900kgm3) (100) '

The same standard parameters for p, 2, and ¢ are assumed
as in Fig. 2, so that r = 2,34 m and = = 0.357. The
critical wavelength is 69.4 m. Figure 5 compares the radial
velocity dispersion obtained in simulations performed
with various sized calculation areas. As the radia] extent
L, has less significance (Toomre 1994, personal communi-
cation), in most experiments it was fixed to L, = 4,
while L,/\., was varied between [ and 12 (meaning that
the total number of particles N = 400-4800). In most
cases, R_,, = 1.25A.. Simulation parameters and ob-
served Qp values are also collected in Table 1.
According to Fig. 5 (see also Table 1), the eventual Qr
values are reduced by about 5% for L, = 3A_; as compared
to the value Q; = 1.8 obtained for L, = 12A,, and by
about 15% for L, = 1.5A,. Even for the smallest tested
cell size (L, X L, = 1A, X IA,, with Ry, = 0.5x,) the
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FIG. 5. Influence of the tangential width L, of the simulation region
upon the velocity dispersion, measured via the Teomre parameter
Ot = ¢,/cg. In each experiment L/A, = 4, and Ry, = 1.25x, (or 0.5 X
L., whichever is smaller; see Table I). Asterisks denote two additional
simulations, with R, = 2.0and 0.5k (upper and lower symbol, respec-
tively). Each simulation lasted 20 orbital revolutions and the length of
the error bars corresponds to 2 standard deviations during the last 10
orbital revolutions. In each case the number density was 100 particles
per Al.

TABLE 1
Velocity Dispersions in Experiments with Various Sized
Calculation Areas

N Lx/;\cr Ly’f‘\cr Rmax/hcr QT
L, (tangential width} varied
4800 4 12 1.25 1.80 = 0.09
2400 4 6 1.28 1.83 £0.13
1600 4 4 1.25 1.83 = 0.15
1200 4 3 1.25 1.71 = 0.15
800 4 2 1.00 1.66 = 0.15
600 4 i.5 0.75 1.52 = .11
400 4 1 0.50 1.32 = 0.11
L, (radial width) varied
2400 6 4 1.25 1.84 = 0.11
1600 4 4 1.25 1.83 £ 0.15
1200 3 4 1.25 1.82 = 0.18
Ry (gravity cutoff distance) varied
2400 4 6 2.00 1.97 = 0.16
2400 4 6 1.25 1.83 = 013
2400 4 6 0.50 1.50 = 0.06
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TABLE 11
Size of Calculation Region and the Average Radial Velocity Dispersions in
Experiments with Various Internal Densities p and Optical Thicknesses 7

Lixg o, frid
p
kegm? r=01 7=025 7=10739 =01 7 =025 =039
0 —_ — — 289 +006 270 £003 238 = 0.04
255 86.4 21.9 1i.1 264 =006 241 007 2.15x 0.05
430 43.2 10.9 5.5 273 006 2.60 =005 234 = 0.07
675 28.2 7.3 3.7 298 = 0.07 203 +0.20 3.08 = 0.22
900 21.6 5.5 2.8 3.46 = 0.08 383 +0.15 5.05 % 041
1125 4.4 2.2 473+ 043 6.7t = 0.81
1350 14.4 3.6 1.9 427 £0.10 596045 960 = 1.8
1800 10.8 2.7 1.4 550 £ 0.12 8.0l £0.7 119+ 24
2250 8.6 2.2 639 =026 122 x1.2
2700 7.2 1.8 >15 >30

Note. The gravity cutoff distance R, =

0.5L. Other parameters are: a = 100,000

km, £ = 0.5, In the two simulations leading to stable aggregates, the velocity dispersion
of the nonaccreted particles did not attain a steady state.

reduction is only about 30%. Experiments with different
R, indicate that the value 1.25A,, used in most experi-
ments of Fig. § is in fact too small: for R,, = 2.0x_., Or
increases by about 10%, to about (J; = 2. Finally, the
comparison between L /A, = 6 and 3 confirms that L,
has less influence.

According to these experiments, simulation cells with
LiA, = 4 should be used, with R, = 2\, in order to
obtain results at least for the eventual Q¢'s which are
accurate to within a few percent. Also, simulations must
have long enough durations (=10 orbital periods) so that
mean values can be extracted with reasonable confidence
despite the large statistical fluctuations. However, in sev-
eral cases (for large 7 or p, or for large distances) this
requirement would mean excessive CPU time consump-
tion (see Fig. 4; for other p and a the required particle
number scales proportional to a®?). Therefore, the goal
in the present simulations has been much more modest;

in most of the present simulations L > only 2x_., and
R... = only 0.5L. This should still lead to about 15%
accuracy in velocity dispersion. All values of the simula-
tion parameters used in the experiments that follow are
displayed in Tables II-V, so that any reduction in ¢, can
at least be estimated.

In addition to estimating this modest accuracy of the
velocity dispersion, the properties of the wake structures
were compared between simulations with various cell
sizes. Figure 6 shows examples of the wake structures
obtained at the end of several of the above simulations.
As can be seen, the obtained structures are qualitatively
fairly similar for the two largest cell sizes studied. How-
ever, as the calculation region is reduced the artificial
regularities imposed by the periodic boundary conditions
become more and more severe, affecting both the pitch
angle and the scale of the wakes, as we had feared.

For more quantitative estimates, an autocorrelation

TABLE III
Experiments with Various Values of Optical Thickness 7

T N Likg er( el Cese Or fir
0.1 400 13.5 337 £ 0.13 0.93 4.78 39
0.2 800 6.7 3,55 = 0.13 0.98 3.55 51
0.3 1200 4.5 4.03 = 0.22 .11 1.90 75
0.4 1600 3.4 4.94 + 0.45 .35 1.75 108
0.5 2000 2.7 6.65 + (.87 §.82 1.88 155
0.6 2400 2.2 9,58 = 2.33 2.54 2.18 210

Note. The gravity cutoff distance R

max = 0.5L. Other parameters are: a = 100,000 km,

= 900 kg m™3, ¢ = 0.5. The symbeol f stands for impact frequency/particle/orbit. In the

nongravitating case f ~ 6mr.
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FIG, 6. Examples of variously sized calculations (numbers in frames
denote the cell dimensions L, x L), displayed at the end of the simula-
tions. Solid boxes mark the actual calculation cell. Compare to several
figures in Toomre (1990), noting that here the orbital motion is up and
the direction to the central body is to the left.

analysis was also performed. As we remarked, Toomre
and Kalnajs have already carried out very extensive and
sophisticated studies of the behavior of collective wakes
in two-dimensional systems of noncolliding particles. Es-
pecially in Toomre and Kalnajs (1991), they studied the
spatial correlation functions between the particle posi-
tions and guiding centers. Their numerical simulations
showed extremely good agreement with their theoretical

TABLE IV
Experiments with Various Values of Constant Coefficient of
Restitution &

o Gravitating
Nongravitating
£ o /ri} cfr Y Or fir
0.1 117 + 0.02 7.2x 1.1 2.6 266
0.2 1.29 + 0.04 7.0 = 1.2 2.5
0.3 1.52 + 0.04 6.3 = 1.1 2.2 203
0.4 1.82 = 0.04 57207 2.0
0.5 2.38 * 0.06 5.0 £ 07 1.8 108
0.6 3.65 £ 0.09 43+ 03 1.5
0.65 5.04 £ 0.16 44 02 1.5
0.7 Increasing 59 £ 1.2 2.1

Note. In each experiment N = 1000 particles were simulated and
Likg = 2.56, R, = 0.5L = 1.28x,. Other parameters are: g = 100,000
km, p = 900 kg m?, and 7 = 0.4,
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TABLE V
Experiments for Various Distances
a (10° km) Lix, ¢ /rd €/ Cone Or
70 9.8 2.16 = 0.05 1.00 2.23
80 6.6 2.38 = 0.08 0.90 1.64
90 4.6 3.09 + 0.18 0.99 1.50
100 3.4 5.14 + 0.49 1.41 1.82
110 2.5 8.15 + 1.23 1.93 2.17
120 1.9 120+ 2.6 2.49 2.45
130 1.§ 138 23 2.56 2.23
135 1.4 154 £ 2.4 2.68 2.20-

Note. In each experiment N = 1600 particles were simulated, L =
112.1 m, R,,, = 0.5L. Other parameters are: + = 0.4, p = 300 kg m ™,
and £ = 0.5,

predictions based on superpositions of Julian—Toomre-
type collective wakes situated around each particle. Their
calculation of correlation functions was performed with
the help of Fourier transforms of particle and guiding
center densities after each timestep.

Figure 7 displays some similar but coarser 2-dimen-
sional autocorrelation functions for the particle positions

relative amplitude

FIG. 7. Two-dimensional autocorrelation function from the simula-
tion with L, x L. = 4Ax, X 12A,. Each particle in turn has been placed
at the center and the relative positions of all the other particles have
been tabulated, projected onto the equatorial plane. The plots show
densities (normalized to the mean density) obtained by adding together
positions after each orbital period for 7, = 10-20. The dimensions of
the plot are 2A, X 2A,. Compare this with Fig. 9 (x/Q = 1) in Julian
and Toomre (1966). The small insert shows the central peak (0.25x, X
0.25x_,) region: the two concentri¢ rings there correspond to distances
2r and 4r.
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FIG. 8. Comparison of the autocorrelation functions in simulations
with different-sized calculation regions. Only the central ridge is dis-
played; weak negative sidethroughs are omitted. Contours correspond
to positive densities of 1.1, 1.4, 1.7, and 2.0 times the ambient.

in the present experiment with L, X L, = 4h X 12A,,
projected to the equatorial plane for a region correspond-
ing to 2A, X 2A,. As the Fourier transforms were not
collected during the present simuiations, only the individ-
ual particle positions (stored once/orbital revolution)
were used here, and the autocorrelation function was cal-
culated directly by taking each particle in turn as a refer-
ence point and superposing the relative locations of all
other particies. Although much more time-consuming
than the Fourier technique, it yields better resolution in
our case of relatively few particles. For example, the
concentric enhancements near the origin in Fig. 7, at dis-
tances of 2r, follow from the particles being temporarely
in contact {even another fainter feature is visible at 4r,
indicating a tendency for the formation of small transient
groups). The comparisen between different-sized simula-
tion regions (Fig. 8) indicates that at least the central
portions of the wakes remain fairly similar in all experi-
ments with L, L, > 2 or 3A.. On the other hand, for
the experiment with L, = L, = A, the pitch angle is
considerably larger (=31°) than for more amply sized cal-
culation cells (=23°% the values refer to the innermost
dense region within 0.5\ ) and other features there may
be just about as untrustworthy. This artificial dependence
of the obtained pitch angle upon the size of the simulation
region must be taken into account when the photometric
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properties of these dynamical models are to be compared
with actual observations of the azimuthal asymmetry in
the A-ring of Saturn.

4, FACTORS AFFECTING VELOCITY DISPERSION

In the self-gravitating experiments of the previous sec-
tion, the systems attained a rough steady state with a
dimensionless radial velocity dispersion O == 2, with this
steady state arising from a balance between collisional
cooling and the scattering by the shearing wakes con-
stantly forming and reforming due to collective amplifica-
tion of the N-body graininess. However, with a wider
range of physical parameter values at least two other
factors are likely to affect the equilibrium, namely the
minimum velocity dispersion due to collisions between
finite sized particles, and the gravitational scattering from
two-particle encounters. For example, if the surface den-
sity is very low, collisions in a differentially rotating disk
are likely to maintain a minimum velocity dispersion that
exceeds ¢, by a such a large factor that any collective
wakes are at best very feeble. Also, once very massive
particles are included, their mutual gravitational encoun-
ters may keep the system so hot that collective phenom-
ena are again strongly suppressed. In the following we
write simple estimates for the various parameter domains
where all three factors are likely to dominate, and com-
pare these estimates with our simulations,

According to several previous simulation studies, as
we remarked in the Introduction, impacts can always
maintain a certain minimum velocity dispersion propor-
tional to the orbital velocity difference

Simp 5.3,

rQ} (16)
over one particle diameter, for all 7°’s. This lower limit
corresponds to a near-monolayer ring resulting from & =
constant, though in realistic cases with £ = £(v) decreasing
with increasing v, a somewhat higher velocity dispersion
can be achieved (see Section 5). On the other hand, dilute
gravitational encounters will always tend to produce rela-
tive velocities on the order of the escape speed from the
particle surface, v, = V2Gm/r, where m is the mass of
each separate particle. Expressed in terms of rQ this
yields the minimum

Conc a I o )0.5
e 3.64 (108 m) (900 kgm™3/

Finally, from Eq. (11), inserting Saturn’s parameters and
assuming Q¢ = 2, the velocity dispersion due to wakes
can be expressed as

7y
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FIG. 9a. Radial velocity dispersion in units of r{) as a function of

particle internal density p, for + = 0.1, 0.25, and 0.39. The distance is
fixed to ¢ = 100,000 km and £ = 0.5. The solid curve denotes the escape
velocity from particle surfaces (c.,.), while various dashed lines denote
the Qr = 2 dependence (c,..4.) for the different 7 values. Symbols stand
for the observed steady-state values in simulations, with error bars
indicating their dispersion.

. 3
Couke - a P
rQ 14.2 (10B m) (900 kg m‘3) T (18)

Attempting to find a rough description of the behavior,
we study the possibility that the steady state is dominated
by the factor yielding the largest minimum velocity dis-
persion.

According to Egs. (16)-(18), c,,. is comparable to ¢y,
throughout Saturn’s rings (assuming £ = constant), unless
p is considerably below the density of water ice: ¢, ./r Q)
varies between 2 and 6 for a = 70,000-140,000 km if
p = 900 kg m™*. On the other hand, ¢, dominates c,,.
unless 7 is small; ¢,,./r @ = (5-40)7 for the same distance
range and density. Therefore, the easiest way to separate
the three different factors is to use p as a free parameter
and study several values of 7, as is done in Fig. 9. Notice
that in Eqgs. (16)—(18) the expected velocity dispersion
scales in all cases in proportion to r; therefore simulation
results for the chosen r = | m are readily applicabie to
other r's as well. Observed values are also collected in
Table II.

In the absence of self-gravity {p = 0) increase of 7 leads
to a slightly reduced c,, hasically due to the less effective
viscous gain as the particles’ mean radial excursions be-
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FIG. 9b. Detail, showing the theoretical curve for the combined
effects of collisions and encounters without inclusion of collective wakes
(calculated according to Hameen-Anttila and Salo 1993). For clarity,
only curves for 7 = 0.1 and 0.25 are shown. Solid line denotes the ¢,y
curve.

tween impacts are smaller. Equilibrium ¢ /r ) is reduced
from about 3 to 2.5 for the studied 7 range. For small
nonzero p the gravitational forces are still insignificant
and c;,, continues to dominate. If p is increased but 7
is still small, ¢, exceeds c,, while ¢, stays smaller;
accordingly ¢, starts to follow the c.,. curve. In Fig. 9a
this is seen for r = 0.1, where ¢, values follow the solid
line corresponding to gravitational scattering due to en-
counters; the dotted line which corresponds to ¢, for
7 = 0.1 is always below the ¢, curve, These results agree
with Ohtsuki (1992) who found that in low-7 systems self-
gravity is unimportant if the collisions alone are able to
maintain velocity dispersion exceeding v,,,.

For larger 7°s and thus for larger surface mass densities,
Cuwake ©Xceeds ¢, for certain p and accordingly ¢, values
start to follow the c,,,. lines. This is seen in Fig. 9a for
v = 0.25 and 0.39. However, for very large densities
(p =~ 2700 kg m™?), the velocity dispersion becomes con-
siderably larger than predicted by Eq. (18). The same
takes place for + = 0.1; ¢, starts to deviate from the
Cene curve. These deviations follow from the formation of
gravitational particle groups which efficiently scatter the
other particles. Even for somewhat smaller p the wakes
continuously form transient condensations which survive
for several orbital periods: this probably explains why Q¢
starts to exceed 2 (see the values for + = 0.25). Examples
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Examples of the particle positions at the end of simulations of Fig. 9a (after 20 orbital revolutions). The two groups seen for 7 =

0.1, p = 2700 kg m~® formed after 10 orbital periods, while that for r = 0.25 formed already after 2 periods. All other clumps are transient.

of the particle positions at these runs are displayed in
Fig. 9¢, illustrating both the increased tendency to wake
formation as p and 7 are increased and the eventual clump-
ing of wakes into distinct particle groups.

Figure 9b shows in greater detail the simulation results
for small p's, together with theoretical estimates based
on Himeen-Anttila and Sato (1993). Theoretical curves
take into account the simultaneous influence of collisions
and gravitational encounters, as well as the increased
mean vertical field, but they do not inciude the formation
of collective wakes. For this reason they fail to reproduce
the increased velocity dispersion for large p values. How-
ever, they vield very accurate steady-state values for the
nongravitational case, and also give a qualitatively correct
description for the drop of equilibrium velocity dispersion
as p is slightly increased from zero. This decrease follows
from the gravitational acceleration before impacts, lead-
ing to enhanced energy dissipation (see also Lukkari and
Salo 1984). For r = 0.1 in which case the collective effects
are weak and the velocity dispersion is dominated by two-
particle encounters and physical impacts, the theoretical
curve gives good agreement for all p’s which do not lead
to aggregate formation.

The next series of simulations (Fig. 10) modeled the
evolution for various 7's while the internal density was
fixed to that of solid ice, p = 900 kg m~>. Values larger
than 7 = 0.6 were not simulated as the small L/A_, would
then underestimate ¢, significantly (see Table III). Ac-
cording to Fig. 10a, in the gravitating case the increased
7 leads to strongly increased ¢, . At the same time fluctua-
tions in velocity dispersion strengthen (see the error bars).
Both ¢, and ¢, grow in a similar fashion (c, denotes the
dispersion of tangential velocities relative to the mean
shear, y + 1.5(x), while in ¢, the increase is smaller,
which leads to practically constant ¢, /c, = 0.5. while ¢ /
c. is strongly reduced. As noted earlier, impact frequency
is much higher than in the nongravitating case. It also
rises in a nonlinear fashion as compared to the linear
r-dependence in the former case. The frame in the lower
left-hand corner displays ¢, in dimensionless units; after
being determined by encounters for r < 0.2, ¢, first attains
values around O+ = 2 and then exceeds it for 7 = 0.4. This
overshooting most probably follows from the increased
tendency for particle grouping, some signs of which are
visible in Fig. 10b, showing the positional plots. However,
groups manifest as density enhancements in wakes, not
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density, r = 0.6 corresponds to % = 720 kg m -,

as separate stable structures as in the high-p experiments
(compare Fig. 10b with Fig. 9¢). Although the wake struc-
ture is not readily apparent in the positional plots for
7 = 0.2, it can be clearly seen in the autocorrelation of
particle positions.

5. INFLUENCE OF ELASTIC PROPERTIES

All the above experiments were performed with a con-
stant coefficient of restitution, & = 0.5. As the amount of
dissipation depends strongly on g, other choices were also
explored. In addition to various constant values of g, two
different functional forms of velocity-dependent elasticity
were studied. According to the laboratory measurements
of Bridges et al. (1984}, the coefficient of restitution for
ice particles at low temperatures can be written in the
form

e{vy = maxl(v/v) ™, 0.25] (v>v,)
=1

19
v=uv,), 9

where v is the perpendicular component of the impact
velocity and v, is constant. According to the Bridges ef
al. measurements v, = 0.01 cm/sec; this value is denoted
by vy in the subsequent discussion. This functional form,
which predicts fairly inelastic impacts with ¢ = 0.5 even
for moderate impact velocities of a few mm/sec, has been
widely studied in simulations (e.g., WT, Salo 1992a,
1992b, Hinninen and Salo, 1994). Later Hatzes et al.
(1988) performed improved laboratory experiments
(lower temperature, reduced amount of frost in particle
surfaces) which yielded considerably less inelastic behav-
ior. Recently, Dilley (1993) has proposed theoretical mod-
els fitting accurately both the velocity and the size depen-
dence of the Hatzes ef al. measurements in the range
v < 2cm/isec, 2.5 cm < r < 20 cm. According to Dilley
(1993),

e(v) = e ™VI-E

20
£ = EP(L+ /i3 (1 + (/e 2.5 cm) 302, @0

where r, and r, are the radii of the larger and the smaller
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FIG. 10b.  Particle positions at the end of the gravitating simulations of Fig. 10a. In each case L, = L, = 112 m and the different 7's correspond

to different N.

colliding particle, respectively, and the expenent & de-
scribes the mass dependence (not determined by the
Hatzes et al. experiments). Impact velocity is expressed
in cm/sec. The parameters &; and p depend on the proper-
ties of the ice spheres; for example, £, = 0.16 and p =
0.65 for the Hatzes et al. measurements at the temperature
T = 133 K with thin frost. Scaled to 1-m particles (with

= () these models imply that ¢ is in the range 0.6-0.8.

Figure 11 displays results of simulations performed for
various values of constant . In the nongravitating case,
the equilibrium velocity dispersion is on the order of a
few times r{} (increases monotonically with &), unless ¢
exceeds critical value £_(7), in which case steady state is
no longer possible. In Fig. lla, £ = 0.65 still leads to
steady state while for ¢ = 0.70, particle eccentricities and
inclinations grow continuously with time (indicated by
dashed line). This agrees with the theoretical predictions;
according to Goldreich and Tremaine (1978) ¢, = 0.69
for 7 = 0.4, while Himeen-Anttila (1984) gives &, = 0.72.
In the case of self-gravity the behavior is different for
small &; the minimum of ¢, is obtained for £ = 0.6-0.65,
with stronger dissipation leading to larger velocity disper-
sion. This again follows from the strong tendency for
particle grouping to enhance gravitational scattering (see
Fig. 11¢). The particle grouping is also evidenced by the

strongly enhanced impact frequency (Table IV). The criti-
cal ¢ is somewhat increased to =0.75. Notice that in the
self-gravitating case ¢,/r(} is practically independent of
e, corresponding to an effective thickness H = 6r, Without
self-gravity, equilibrium corresponds to a practically
monolayer state.

In the case £ = e(v) the equilibrium state is determined
by the parameters of the elasticity model (see Salo et al.
1988). For example, with the Bridges model, Eq. (19),
velocity dispersion in the absence of self-gravity scales
proportional to v, if v, & r{, while for small v_ velocity
dispersion is proportional to rQ (see Salo 1991, where
this model is studied for r = 1 and the equilibrium velocity
dispersion vs v /vg is displayed in log-log scale). The
inclusion of self-gravity leads to a qualitatively similar
behavior as in the case & = constant, so that larger dissipa-
tion enhances velocity disperion with the minimum being
attained for v, = 2uj.

Figure 11b depicts all the experiments with varying
elastic properties, displaying the radial velocity dispersion
in the gravitating case versus that for nongravitating case.
Self-gravity influences the equilibrium state significantly
via formation of wakes only if the corresponding nongravi-
tating simulation yields ¢,/rQ} = 5, regardless of the
details of the elasticity model. This is the case if ¢ =
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FIG. 11a. Results of simulations where constant coefficient of resti-
tution is studied, both for gravitating (p = 900 kg m~>) and for nongravi- 1 , bty . P
tating particies {p = 0). Other parameters of the simulation were fixed: 1 10 100
a = 100,000 km, r = L m, r = 0.4, and N = 1000. Circles stand for _
simulations with spinning particles, with coefficient of friction g, = 0.5. ¢,/ (p=0)
Filled symbols stand for gravitating and open symbols for the nongravi-
tating case. FIG. 11b. Radial velocity dispersion in the gravitating simulation vs

that in the corresponding nongravitating experiment. Simulation results
of Fig. 11a (¢ = 0.1-0.65) are collected in the same frame as well as
experiments with velocity dependent elasticity models (vfvg = 0.25-10

constant = 0.6 or if v, = 2ug in Eq. (19). On the other in Bridges-type formula, Eq. (19); three different Dilley models, Eq.

i ; (20), are studied: & = 0.16, p = 0.65 [thin frost, 7 = 133 K], & = 0.25,
hand, all the Dilley-type models predict such a large p = 0.43 [thick frost, T = 127 KJ, & = 0.34, p = 0.36 [thick frost, T =

velocity dispersion that inclusion of self-gravity does 719 K)) The straight dashed line stands for c(p = 900) = c(p = 0). Cross
not significantly affect the equilibrium. However, ac- denotes the simulation with spinning particles and tangential friction
cording to Fig. 9 the limit ¢,/r} = 5 = c,,. scales (¢ =g = 0.5). Asterisks denote simulations with v = 0.1.
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dependent model, Eq. (19) (lower row).
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YELQCITY FIELD: A=100 000 km, 7=0.4

FIG. 12. Velocity field in the simulation of Fig. 10, with 7 = 0.4.
Tails indicate the direction of the particle, with the lengths corresponding
to movement in 0.05 orbital revolutions. For clarity, particles with posi-
tive radial velocity are shown by filled symbols. The circular orbital
velocity at the position of the particle has been subtracted from the
tangential velocities.

proportional to the parameters p and t determining the
surface density; therefore for larger 7's self-gravity
would be important also for more elastic impacts (the
same is true for larger semimajor axes: see the next
section). Also, for smaller 7’s, the maximum velocity
dispersion for the self-gravity to be important depends
rather on ¢, . This was verified in a few additional
simulations for r = 0.1, which are also displayed in
Fig. 11b.

Some experiments with tangential friction were also
carried out, in which case the particle spins were taken
into account. The value g, = 0.5 was used for the coeffi-
cient of friction. Results of the two experiments with
e = 0.5, both for p = 0 and for p = 900 kg m~?, are also
shown in Fig. 11a (circles). As friction enhances energy
dissipation, the equilibrium velocity dispersion in the non-
gravitating case is somewhat reduced, by about 30%. In
the gravitating case, inclusion of friction leads to an in-
crease in velocity dispersion, mainly via increased ¢, and
c¢,. This again follows from the enhanced tendency for
grouping; for example, the wake structure in the simula-
tion with & = 0.5, & = 0.5 is very similar to that in the
case e = 0.3, g = 0.

An interesting detail is the behavior of the mean spin.
According to theoretical studies (e.g., Araki 1991, Salo
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1987a, Himeen-Anttila and Salo 1993) the mean spin, (w,)
is fairly insensitive to different parameters including = and
&, being about (0.30-0.35) £ in the same sense as orbital
rotation. Also, inclusion of the mean vertical field does
not affect its value, Our result from the present simula-
tions, (w.}/1 =~ 0.36 = 0.02 for p = 0, is consistent with
these predictions as well as with the earlier simulations
performed with a totally different code which did not use
the local method (Salo 1987h). However, in the present
run with p = 900 kg m™, (w.)/€) is significantly larger,
=0.66 * 0.09. This suggests that the formation of wakes,
not taken into account in the above-mentioned theoretical
treatments, significantly affects the distribution of impact
directions and velocities in a manner that enhances {,).
Another difference in the behavior of rotating gravitating
particles is in the ratio of energies stored in the random
motions and in particle spins, E,/Ey, = H(ra)/c?. In
the nongravitating experiments this ratio rapidly attains
a steady-state value, the dispersion of spin velocities fol-
lowing the evelution of mutual impact velocities which
are proportional to the random velocity dispersion. In
the present nongravitating experiment £, /£, = 0.11, in
agreement with theoretical studies of dense rings (e.g.,
Hémeen-Anttila and Salo 1993} and also fairly close to
the approximation 2e,/(14 ~ 5¢,) = 0.09 found for a rar-
efied disk (Salo 1987a). However, in the corresponding
gravitating run E_/E,, is only about 0.04. The smaller
ratio for the self-gravitating case may be due to the fact
that the local velocity dispersion experienced by particles
is actually smaller than the global value studied so far.
Indeed, most of the increase in the velocity dispersion
for the self-gravitating experiments comes from the differ-
ences in the systematic motions between the adjacent
wakes. This is illustrated in Fig. 12, showing the particle’s
velocity field (with systematic shear subtracted) in the
simulation with 7 = 0.4, ¢ = 0.5 (see Fig. 10b). For clarity,
particles with positive and negative radial velocities are
distinguished. The largest velocities are observed in the
regions between the wakes. Figure 13 displays in a more
quantitative manner the difference between the global and
local velocity dispersion in the self-gravitating experi-
ments of Figs. 10 and 11, the former showing the rms
values over the whole calculation area. The latter is calcu-
lated for each particle separately, relative to the local
mean velocity (from the 10 nearest particles) and then
averaged over the system. Typically, local ¢, and ¢, are
both approximately constant for different values of & and
7, in spite of the large difference in the global dispersion.
For ¢, the difference between local and global values is
smaller, but still significant when ¢ is small or 7 large; local
ratios ¢ /c, can be much larger than the global value, and
they rise toward unity when ris increased. In the nongravi-
tating case the differences between local and global veloc-
ity dispersions vanish. Also, the earlier difference in the
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Total and local velocity dispersion in self-gravitating simulations of Figs. 10 and 11. The local velocity dispersion was calculated for

each particle from the motions of the 10 ncarest particles, and then averaged over all particles. The total value is the rms value for the whole
system, thus including the streaming motions of the wakes with respect to each other.

E /E,;, between gravitating and nongravitating rotating
particles disappears if local dispersions are used.

6. INFLUENCE OF RADIAL DISTANCE

As the significance of self-gravity increases with re-
duced differential rotation, a series of experiment was
performed by varying the saturnocentric distance be-
tween g = 70,000-140,000 km, while keeping the particle
density, surface density, and elasticity constant. Figure
14 displays the particle positions achieved at the end of
these simulations while Fig. 15 shows the corresponding
radial velocity dispersions. Readily visible in Fig. 14 is
the increased amplitude and separation of wakes as a is
increased. Simultaneously, the clumpiness of the wakes
strengthens and at ¢ = 140,000 km the system rapidly
forms a massive aggregate containing almost all particles.
Already for a = 130,000 km this tendency is very strong
and practically destroys the wake structure. 1n the veloc-
ity dispersion plot the formation of transient clumps mani-
fests with Q1 values exceeding 2. Notice also that the ¢,
values for larger a’s are likely to be underestimated due to

small size of the simulation region (see Table V). Smaller
values of 7 were also simulated (r = 0.1 in Fig. 15); in
this case ¢, = v,,. as gravitational encounters dominate
over collective wake formation.

As the vertical velocity dispersion ¢, is proportional to
¢,, Fig. 15 also indicates strongly enhanced geometric
thickness for the outer parts of Saturn’s rings. The ob-
served H/r=2.7¢,/r{} = 1.1¢,/r{). Therefore, the numeri-
cal values of the ordinates correspond roughly to the effec-
tive thickness obtained with 1-m particles, whereas for
larger sizes they have to be multiplied by {#/1 m).

The behavior at the distance a = 140,000 km was further
studied in additional experiments with smaller r’s. All the
displayed examples (Figs. 16a and 16b) lead to a formation
of stable aggregates; in the case 7 = (.2-0.4 the formation
occurs within the first few orbital revolutions, with the
initial condensations rapidly coalescing into a single ag-
gregate containing practically all simulation particles. For
example, the clumps seen in the frame T = 2 for r = 0.3
can all still be distinguished in the aggregate of T = 5
frame if individual particles are followed. In the case of
smaller 7’s, the timescale for aggregate formation is
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FIG. 14. Particle positions at the end of simulations performed for various Saturnocentric distances with 7 = 0.4, ¢ = 0.5, and p =
900 kg m~". The duration of each simulation was 15 orbital revolutions. In each case N = 1600, and L, = L,=112m.

longer, several tens of orbital periods (for example, the
group seen for r = 0.1 grows continuousiy to the end of
the simulation; also, its growth is evidently slowed down
by clearing the radial lane where it resides). Also, several
stable groups can coexist in the simulation region {r =
0.05). The coefficient of restitution also affects the group-
ing tendency: for e = 0.1 several aggregates form very
rapidly. An interesting detail is the mutual interaction of
these groups; although they retain their identity there
is a continuous exchange of particles. For example, the
particles residing in the largest aggregate of the 7 = 80
frame were distributed between all the five groups seen
in 7= 40.

One important point concerning the displayed aggregate
formation deserves mentioning. Although the above se-
ries of simulations for @ = 140,000 km leads in every case
to a rapid formation of aggregates, the limiting distance
for the onset of aggregate formation is not very sharply

defined. Namely, altogether 10 experiments (with dura-
tion of 10 orbital periods) were performed for a = 140,000
km, = 0.4, and £ = 0.5, with slightly different simulation
parameters. Qut of these, 5 experiments failed to form
any stable aggregates during the admittedly short duration
of these simulations. Even different seeds for the random
number generator used in the creation of initial particle
positions can make the difference between accretion and
nonaccretion. Nevertheless, in a similar series for a =
150,000 km, all experiments led to rapid aggregate forma-
tion. We are currently studying in more detail the depen-
dence of particle grouping on distance and on the model
for (injelasticity (Lukkari and Salo, in preparatiomn).

7. PARTICLE GROUPS

It is interesting to compare the results of the experi-
ments leading to accretion with the semianalytical criteria
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derived by Ohtsuki (1993, see also Canup and Espostto
1995), based on the numerical three-body integrations of
particle orbits in planetary rings. According to Ohtsuki
(1993), the possibility of accretion is determined by the
ratio of the sum of the particle radii to the Hill radius,
r, = (ry + r)iRyy, where Ry, = a(m, + my)*/{(3M)3; for
t, = % particles are inside their Hill surface and accretion is
the typical outcome of impact unless ¢ is close to unity,
while for r, = 1 accretion is completely suppressed. For
intermediate values § < r, < | particles extend partially
out of their mutual Hill surface, and accretion is possible
but quite difficult. The condition r, = 1 is identical to
the Weidenschilling et ai. (1984) limit for synchronously
rotating particles feeling a net attraction toward each
other, as well as with the accretion condition adopted in
Longaretti’s (1989) analytical study of the evolution of
particle size distributions in Saturn’s rings.

For Saturn’s rings the scaled radius of the particle pair
can be written as

—1/3
_ P a
=017 (900 kg m‘3) (108 m)

where p is the mass ratio of the impacting particles. For
identical particles with p = 900 kg m~> this formula yields
r, (100,000 km) = 1.22 and rp(]40,000 km) = 0.87, with
the limit r, = 1 being attained for a = 122,000 km. This
is consistent with the observed accretion at ¢ = 140,000
km, but as r, > 4 the accretion probability in an individual

-1 1+ #]:’3
A+

2n
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impact should be small; according to Ohtsuki, probability
is already below 3% for r, = (.74 and decreases rapidly
as r, increases. Apparently the strong observed tendency
for particle groupings is due to the high impact frequency,
50 that even a small capture probability is sufficient for
numerous simultangous particle groupings. Another fac-
tor that helps accretion in a realistic many-particle case
is the fact that as particle groups are formed, the effective
mass ratio in impacts between the existing group and an
impacting particle is increased. For example, if we assume
that a spherical aggregate contains about 200 particles,
with a filling factor close to the three-dimensional limit
of m/ V18 =~ (.74, the effective value of r, for an attach-
ment of an individual particle on the surface of the aggre-
gate would rise to 7,(140,000 km) = 0.71. However, this
underestimates the actual attainable r, values as the true
filling factor is always less than the maximum. Thus, in
principle, accretion seems easier in the case of unequally
sized particles as the small particles can then fill the voids
between the large ones, thus increasing the volume den-
sity. An example of this is shown in Fig. 17, comparing
an aggregate formed at ¢ = 130,000 km in the case of
nonidentical particles and that in the previous a = 140,000
km, 7 = 0.4 experiment of identical particles. The size
distribution here is the same power law which was studied
by Salo (1992b).

Some attempts were made to determine the r, values
corresponding to the attachment of new particles to the
aggregates seen in the various positional plots. For that
purpose the density profiles of the aggregates were mea-
sured. The calculation of the volume density was per-
formed with Monte Carlo method: each particle was filled
with 100 random mass elements whose distance from the
group center was tabulated. In the case of groups contain-
ing just a few tens of particles this is more accurate than
using the {ocations of the particle centers. Figure 18 pro-
vides an example of volume density and r, profiles for
the aggregates of Fig. 17. The results of several other
experiments are collected in Tables VI and VII, displaying
group sizes and properties in various simulation systems
displayed in Figs. 9¢, I1c, 14, and 16. The group size was
determined by fitting an ellipsoid to the particle positions
and measuring its minor axis in the equatorial plane; Ry,
is defined to be twice the dispersion in this direction.
Although rather arbitrary, this measure has the advantage
that it can also be applied to the cases where groups
are not isolated but represent denser portions of wakes
(transient groups in Table VII). The quantity N, de-
notes the number of particles within distance R, from
its center, being often less than one-half of the total num-
ber of particles in the group, depending on its shape.
Volume density indicates the mean filling factor inside
R

group*

According to Table VI, the rapidly formed aggregates
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FIG. 16. Examples of particle groups in simulations for a = 140,000 km, for various times during the simulation (in units of orbital revolutions).
In (a} each frame shows a 100 x 100 m region, while the actual calculation cell is denoted by a box. In each case 1600 particles were simulated
and optical thickness was varied by changing the size of the calculation cell. The coefficient of restitution £ = 0.5. In (b) the calculation cell is
fixed (L. = 112 m), and N = 1600 for + = 0.1, while N = 800 for r = 0.05.
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FIG. 17.
A slice of the simulation system through the equatoriat plane is shown.

Comparison between simulations with a power-law size distribution (dN/dr = r=3 for 0.50 < r < 5 m) and with identical particles.

Note that the experiment on the left corresponds to 2 = 130,000 km,

while for that on the right, « = 140,000 km. In both cases, & = 480 kg m™2.

in Fig. 16a all have r, = 0.7, in accordance with Ohtsuki’s
value of % Similar values are observed for the stable
aggrepates seen in Fig. 9¢, as well as in the size distribu-
tion experiment of Fig. 17. However, for smatler ’s in
Fig. 16b, r, values in the range 0.77-0.93 are observed,
indicating that growth is possible even for rp > 3. [t is
also worth remembering that the above values refér to
minor-axis values, with the major axis of the groups ex-
tending sometimes well outside the Hill radius (for exam-
ple, with 7 = 0.2 in Fig. 16a, r, = 1.2 for the outermost
particles). Also, in the simulations with transient clumping
of wakes (Table VII), r, values in the range 0.8-0.9 are
sometimes observed. Apparently, in these cases the per-
turbation from the adjacent wakes prevent the collapse
of the clumps into separate groups.

For comparison, Table VI also shows the properties of
the aggregate formed in the previous A-ring simulation
with a size distribution (Salo 1992b). In these old simula-
tions the particle overlap at the end of the experiment
was already sizable, leading to about 5% enhancement
in the aggregate density. However, comparison with the
present size-distribution experiment, where overlaps are
totally insignificant, shows that numerical deficiencies
were not responsible for the stability of the groups ob-
served earlier.

8. DISCUSSION AND SUMMARY

As we have seen, an extensive numerical survey of the
etfects of self-gravitation in collisional disks of identical
particles has been performed, here concentrating deliber-
ately on the parameter values most appropriate for Sa-
turn’s rings. The present e¢xperiments complement the

size-distribution experiments briefly reported by Salo
(1992b) by considering a much larger range of optical
thicknesses, radial distances, and elasticity models, as
well as by exploring the different domains where gravita-
tional encounters and the collective Julian—-Toomre wakes
are likely to be important. Also, the formation of particle
groups was now followed in some detail,
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FIG. 18. On the left, the volume density of the aggregates of Fig.
17 are shown, as a function of the distance from the center (mean volume
density within this distance). The solid line stands for the case with a
size distribution, while the dashed line refers to the aggregate composed
of identical particles. On the right, corresponding r, parameters are
shown. The two vertical lines indicate r, = 1 and 4. In the case of the
size distribution the r, values correspond to an attachment of a 50-cm
particle on the aggregate.
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TABLE VI
Properties of Stable Particle Groups in Simulations
Distance P Volume
(10° km) (kg m™3) T Ryom N density r Comment
140 S00 0.4 1t.4 921 0.61 0.72 Fig. 16a
14¢ 200 0.3 10.3 638 (.58 0.73 Fig. loa
140 900 0.2 9.1 460 0.61 0.73 Fig. 16a
140 900 0.1 3.7 17 0.63 0.77 Fig. 16b
140 S00 0.05 5.0 70 0.57 0.82 Fig. 16b
140 200 0.05 6.2 90 0.38 0.93 Fig. 16b e = 0.1
100 2700 0.25 7.9 315 0.66 0.70 Fig. 9¢
100 2700 0.10 6.5 157 0.56 0.76 Fig. 9¢
130 900 0.25 13.1 648 0.68 0.70 Size distribution; Fig. 17
128 900 0.25 12.2 390 0.77 0.69 Size distribution: Salo 1992b

Note. The properties of stable particle groups seen at the end of various simulations corresponding to different saturnocentric distances, particle

interpal densities, and system optical thicknesses. The group size R

ETOUp

refers to the minor-axis radii in the equatorial plane and N, is the

number of particles within this radius. The cumufative volume density was determined by the Monte Carlo method explained in the text, and r,
stands for the radius of the group + particle scaled by the Hill radius (Eq. (21)), calculated by using Rgqyy and Ny, The figure displaying the
particle positions is indicated in the last column. Unless otherwise indicated, £ = 0.5.

Our experiments with various methods for approximat-
ing the self-gravity emphasize that the inclusion of all
three force components is essential. If only the mean
vertical field is considered, as in WT and in Salo (1991b),
gravity leads to the reduction of velocity dispersion and
vertical thickness, a result that is not reproduced by the
present, more realistic calculations, where both mutual
encounters between particles and collective wake forma-
tion lead to a much increased velocity dispersion. The
accurate modeling of wakes necessitates the use of a con-

siderably larger number of particles, which leads to a
strongly increased CPU consumption. However, numeri-
cal tests indicated that calculation regions of size L =
(2-3)A,, vield sufficiently accurate (10-15%]) rough results
for equilibrium velocity dispersions and for transient wake
structures, implying that the presently attainable numbers
of a few thousand simulation particles may be sufficient
for modeling systems with 7 =< 0.6.

According to the present simulations, four different do-
mains can be distinguished in the behavior of self-gravitat-

TABLE VII
Properties of Transient Clumps in Simulations

Distance p Volume

(10% km) (kg m™ r Reronp Nyawp density rp Comment
100 900 0.4 5.6 42 0.24 1.58 Fig. 14
110 900 0.4 53 51 0.34 1.26 Fig. 14
120 900 0.4 5.9 110 0.54 0.94 Fig. 14
130 900 0.4 6.1 138 0.57 0.85 Fig. 14
135 900 0.4 6.9 204 0.62 0.78 Fig. 14
100 900 0.4 5.0 62 0.50 1.12 Fig. llc: £ = 0.3
100 2250 0.1 38 21 0.35 1.08 Fig. 9¢c
10 2250 0.25 6.6 163 (.56 (.81 Fig. 9¢
100 1800 0.4 5.3 91 0.61 0.88 Fig. 9%

Note. The properties of transient particle groups seen at the end of various simulations corresponding to different Saturnocentric distances,
particle internal densities, and system optical thicknesses. The group size Ry, Iefers to the minor-axis radius in the equatorial plane and Ngou
is the number of particles within this radius. The figure displaying the particle positions is indicated in the last column. Unless otherwise indicated,

e =0.5.
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ing rings. First, if the internal density p and/or surface
density 2 are small, gravitational effects are rather insig-
nificant, and the steady state is determined by collisions
and is somewhat affected by the gravitational accelera-
tions before impact. In simulations with a constant coeffi-
cient of restitution g = 0.5, this implies an equilibrium
velocity dispersion ¢y, on the order of a few r{, and an
impact frequency of approximately 207 impacts/particle/
orbital revolution. With larger p and % two new possibili-
ties arise: the velocity dispersion becomes dominated ei-
ther by scattering in mutual two-particle encounters or
else by scattering due to collective wakes. Typically, en-
counters dominate only at low optical depths 7 = 0.1, In
both cases, the impact frequency is strongly enhanced,
by factors of 2 and 6 for 7 = 0.] and 0.5, respectively.
Also, in the case of wake formation, the velocity disper-
sion shows strong fluctuations. Finally, a fourth kind of
behavior 1s the formation of siable particle aggregates,
preceded by the increased clumpiness of the wakes. In
the case of small 7, increased p leads directly to aggregate
formation.

The significance of gravitational forces depends cru-
cially on the elastic model adopted. Especially for con-
stant coefficients of restitution, the self-gravity is always
significant and manifests itself by an increased velocity
dispersion. Furthermore, if & is close to zero, the tendency
for temporary particle groupings becomes stronger, evi-
denced by the increased impact frequency and the clump-
iness of the wake structure (see Fig. 11). On the other
hand, with velocity-dependent g, the system can attain
an equilibrium velocity dispersion exceeding r£) by a large
factor. For example, this is the case according to the
laboratory measurements by Hatzes er al. (1988) if these
results are scaled to meter-sized particles with the theoret-
ical formulas by Dilley (1993). In this case the influence
of gravitational forces becomes totally insignificant and no
wake structure is expected. However, it is very uncertain
how well the current laboratory measurements of spheri-
cal solid ice balls are applicable to the physical conditions
in the ring systems. For example, Dones and Porco (1989)
have shown by light-scattering simulations that Ju-
lian-Toomre-type wakes would offer a natural explana-
tion for the observed (sece e.g. Franklin et ai. 1987) azi-
muthal brightness variations in Saturn’s A-ring. Indeed,
the pitch angles in the present simulations with sufficiently
large calculation regions, about 23° (as inferred from auto-
correlation plots like Fig. 8), agree remarkably wel with
the observed brightness minimum occurring 24 degrees
before the ansae (Dones et al. 1993). Clearly, more de-
tailed calculations of the conditions for the appearance
of wake structure, combined with detailed photometric
modeling, would offer an efficient indirect method for
inferring the actual elastic properties of particles in Sa-
turn’s rings.

HEIKKI SALO

An important result in the simulations of dense rings
where collective wakes dominate is the strong increase
of ¢,/r {} with radial distance a, proportional to *. Accord-
ing to simulations performed for = 0.4 and X = 480 kg
m 2, ¢,/r(} reaches values on the order of 15 in the outer
A-ring corresponding to ¢, = (+/1 m) 0.2 cm sec™'. In the
case of low r, gravitational encounters yield ¢, /r{) = a'?,
reaching values of ==6. This implies that even if ¢ is a
constant close to zero, Saturn’s A-ring should be far from
the monolayer state which would be expected if self-grav-
ity is omitted. For example, for ¢ = 130,000 km an effec-
tive thickness of 15 m was obtained for identical 1-m
particles. In the single size-distribution experiment de-
scribed, for the same distance, H = 65 m for the submeter
particles, and about 20 m for the largest particles. This
increase in velocity dispersion is in accordance with the
enhanced viscosity implied by the observations of the
damping of density waves in Saturn’s A-ring, especially
the Mimas 5:3 bending wave at a = 131,900 km, for
which the implied value for kinematic viscosity » = 260
cm? sec”! (Shu et al. 1983). If we apply the approximate
formula v = ¢2/2Q 7/(1 + 77 (Goldreich and Tremaine
1978) to the simulation for @ = 130,000 km this yields
v = 40(r/1 m)® em’ sec”!, which is on the same order if
we assume that size distribution in Saturn’s rings could
be represented by a system with identical 2.5-m particles.
However, it is unclear how well this formula applies to
the present case with strong wakes where angular momen-
tum is carricd both by the “*local” velocity dispersion and
by the collective motions of the wakes. Another proposed
explanation for increased velocity dispersion and viscos-
ity 1s the input of kinetic energy from the numerous den-
sity waves in the outer A-ring (Lissauer e al. 1984). In
fact, this also offers a possible explanation for the reduced
asymmetry in the outermost A-ring, as discussed by
Franklin ef al. (1987) and Dones et al. (1993); if O > 2
due to external energy input, the wake structure would
again start to diminish, contrary to the trend that is seen
in Fig. 14.

Although the simulation parameter values used referred
to Saturn’s rings the results can be extended to other
planetary ring systems. For example, for the Uranian
rings Egs. (17) and {18) take the forms

. L5 \D.5
Cene =93 a £

rQ TT\10°m 900 kgm=3/ ’
Cuake _ a_y p )
b o AT (108 m) (900 kgm—3) "

Thus, assuming that Oy = 2, p = 900 kg m 3, cae/r§2
varies as (7-12)7 and c_,./r{t as 2.5-3.4 in the ring zone
(42,000-51,000 km), These equations imply that self-grav-
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itational forces should dominate over collisions in deter-
mining the equilibrium structure of dense ringlets. Indeed,
according to French et al. (1991) and Esposito et al. (1991)
Voyager radio occultation and multiwavelength observa-
tions indicate that the thickness of the e ring is several
tens of meters, while lower [imits for the effective particle
size and surface density are » = 0.7 m and 2 = 800 kg
m~>, For these minimum values, simulations suggest
H = 13 m, consistent with the observationally deduced
multilayer structure, However, the narrowness and ec-
centricity of the Uranian ringlets implies more compli-
cated dynamical behavior than handled by the local simu-
lations.

According to the present stmulations (see also Salo
1992b), the formation of particle aggregates in the outer
parts of Saturn’s rings appears unavoidable if the individ-
ual particles have solid ice density and are not too elastic
in their behavior. The properties of these groups were
discussed here in terms of r,, the sum of groups’ and
particles’ physical radii relative to their combined Hiil
radii. According to Ohtsuki (1993), accretion is a typical
outcome for an impact between a particle pair with r,
< %, whereas for larger r,’s the probability of accretion
becomes increasingly smaller and vanishes for r, = 1. In
our simulations the r, values for the outermost particles
on the surfaces of the aggrepates are in the range (.7-0.9,
so that at least temporary accretion is possible even if
some of the group members spill over the group’s Hill
surface. However, the accretion condition rp < 1, used
forexample by Longaretti (1989), is clearly too optimistic.
Nevertheless, substantial clumpiness of the wake struc-
ture takes place for values corresponding to r, = 1.

The subsequent evolution and the maximum size of the
aggregates cannot be deduced from the present experi-
ments, due to the limited number of particles in the simula-
tions. Experiments with larger calculation regions, con-
taining several such aggregates and allowing for their
mutual interactions, would be needed. Also, in more real-
istic studies of accretion in the outer reaches of planetary
rings it will be desirable to include a distribution of parti-
cles sizes. In principle, the new collisional method replac-
ing impacts with a force model will facilitate the study of
these problems.
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