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Local simulations with up to 60,000 self-gravitating dissipatively
colliding particles indicate that dense unperturbed ring systems
with optical depth = > 1 can exhibit spontaneous viscous oscillatory
instability (overstability), with parameter values appropriate for
Saturn’s B ring. These axisymmetric oscillations, with scale ~100 m
and frequency close to the orbital period, generally coexist with in-
clined Julian-Toomre type wakes forming in gravitating disks. The
onset of overstability depends on the internal density of particles,
their elasticity, and the size distribution. The same type of oscillatory
behavior is also obtained in an approximation where the particle-
particle gravity is replaced by an enhanced frequency of vertical
oscillations, 2,/ > 1. This has the advantage that these systems
can be more easily studied analytically, as in the absence of wakes the
system has a spatially uniform ground state. For @,/ = 3.6 over-
stability again starts at = ~ 1. Also, nongravitating systems, €,/
Q =1, show overstability, but this requires T ~4. To facilitate a
quantitative hydrodynamical study of overstability we have mea-
sured the transport coefficients (kinematic shear viscosity v, kine-
matic bulk viscosity ¢, and kinematic heat conductivity «) in sim-
ulations with €,/ =3.6, 2.0, and 1.0. Both local and nonlocal
(collisional) contributions to the momentum and energy flux are
taken into account, the latter being dominant in dense systems with
large impact frequency. In this limit we find ¢ /v~ 2, k/v~4. The
dependence of pressure, viscosity, and dissipation on density and
kinetic temperature changes is also estimated. Preliminary com-
parisons indicate that the condition for overstability is 8 > B¢ ~ 1,
where B:=29log(v)/d log(z). This limit is clearly larger than the
Ber ~ 0 suggested by the linear stability analysis in Schmit and
Tscharnuter (1995), where the system was assumed to stay isother-
mal even when perturbed. However, it agrees with the nonisother-

mal analysis in Spahn et al. (2000). This increased stability is in
part due to the inclusion of temperature oscillations in the anal-
ysis, and in part due to bulk viscosity exceeding shear viscosity.
A detailed comparison between simulations and hydrodynamical
analysis is presented in a separate paper (Schmidt et al.
2001). (© 2001 Academic Press

1. INTRODUCTION

One of the most puzzling features of Saturn’s rings, reveale
by Voyager fly-bys, is the wealth of radial structure on scale
ranging from thousands of kilometers down to the resolutio
limit of a few kilometers (Smittet al. 1982, Laneet al. 1982).
Intuitively, frequent collisions between ring particles would be
expected to smooth out density gradients. This problem has |
spired a great deal of theoretical efforts, concentrating mainly ¢
the role of perturbations due to Saturn’s inner satellites (begt
by Goldreich and Termaine 1978, 1982). Indeed, the radial di
tances of the most regular density undulations in the outer
ring agree well with the locations of satellite resonances (e.c
Cuzzietal.1981, 1984, Espositet al. 1983, Rosert al.1991),
and both theoretical (e.g., Sktial. 1985, Borderiest al. 1986)
and numerical simulation studies (Hertzssthal. 1997, Lewis
and Stewart 2000) confirm that satellites are able to excite wav
trains much as observed. Similarly, resonance confinement c
account for certain isolated narrow ringletsafhiiinen and Salo
1995, Goldreictet al. 1995). However, satellite resonances art
simply too rare to explain the more irregular variations seen i
the densest ring component, the B ring, lacking connection
any known resonances. It thus appears inevitable that irregu
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structure is not totally “irregular”: There are signs of certaithe hydrodynamical models of Schmit and Tscharnuter (199!
preferred length scales of the order of 20 to 100 km. ST from hereon). In the hydrodynamical approximation the
Various models for the B-ring structure have been proposehisotropy of the velocity ellipsoid is ignored and the syster
in terms of embedded moonlets (Lissa@atral. 1981, Spahn is described by the density and isotropic pressure. Furthermo
and Sponholz 1989), dynamics of charged particles (Goertz adtiquantities are typically averaged over the vertical directior
Morfill 1988), or torques exerted by micrometeoroid impactShe Navier—Stokes equations for the evolution of mean radi
(Durisen 1995). The originally proposed intrinsic mechanisand tangential velocity components, combined with the cor
for the generation of density variations was thgcous insta- tinuity equation and energy equation, yield a solution for th
bility, based on the assumption that there is a large collisiaamperturbed ground state of the system, which is characteriz
induced difference between the kinetic temperatures of rarefiega locally linear shear profile. The stability properties of this
(hot) and dense (cool) portions of the rings. In this case the dyround state can be determined by a linear stability analysis:
namic shear viscosity decreases with density and the collisiosatall perturbation of the form exjix + wt) in density, mean
particle flux is directed toward local density maximaafHéen- velocity components, and temperature is introduced, leading tc
Anttila 1978, Ward 1981, Lin and Bodenheimer 1981). The andispersion relation for the wavenumisesf the perturbation and
plification of density variations under such conditions was al$ts complex frequencyw. The Navier—Stokes equations contain
confirmed by computer simulations (Lukkari1l981). Howevethe dynamical shear and bulk viscosities, while the energy be
to operate in actual rings the viscous instability requires thahce equation involves also a heat conduction term. Self-gravi
impacts between particles are very elastic, which is not sup-included via the Poisson equation, providing a link betwee
ported by later laboratory measurements (Bridgeal. 1984) perturbations in density and the self-gravity potential.
of the elastic properties of ice. Theoretical models (Araki and In the analysis of ST it is assumed that the system remait
Tremaine 1986, Araki 1991) as well as computer simulatiofsothermal even when the density is perturbed from the groun
(Wisdom and Tremaine 1988) indicate stability when the mestate value. This simplifies the treatment, by removing the el
sured elastic model is adopted, even in the case of an extendagy equation, and thus the linear dispersion relation becom
size distribution (Salo 1992b). a cubic equation. The evolution of perturbations is then dete

A very promising possibility now appears to iscous over- mined mainly by the dependence of viscosity on density. S
stability (oscillatory instability), which can take place when thdnave applied this approximation to Saturn’s B ring, with the
dynamic shear viscosity increases with density (Bordeies. ground-state properties corresponding to typical values of tt
1985, Papaloizou and Lin 1988, Longaretti and Rappaport 19@5timated B-ring temperature and density. The dependence
Schmit and Tscharnuter 1995). This type of density—viscosiyscosity on density was taken from the results of previous nt
dependence is by far more realistic, especially in extremely flaerical simulations (Wisdom and Tremaine 1988): Itis assume
tened rings. In the case of overstability the collisional flux ighat the kinematic shear viscosity depends on optical thickne
directed away from the local density maxima, but the systelny v o« t#, with 8§ = 1.26. According to ST the B ring should be
overshoots in smoothing the density gradients: Perturbatiamgerstable for all axisymmetric perturbations with wavelength
remain sinusoidal with respect to time but have exponentiakixceeding about ~ 100 m. The maximal growth rates cor-
growing amplitudes (in linear approximation). Superposition aéspond toe-folding times of the order of only a few orbital
such waves, with amplitudes saturated by nonlinear phenomeperiods, forA ~ 120 m. Also, this result is very robust to the
might well yield structures as seen in the B ring (Schmit ardktails of the ground state: The only requirement for the ons:
Tscharnuter 1999). Such pulsational instabilities were first disf overstability is that the shear viscosity increases with densit
cussed in the context of accretion disks (Kato 1978, Blumenthith g at least slightly positive. If self-gravity is included, the
et al. 1984). minimum g8 is reduced even to slightly negative values.

Most of the above cited studies of overstability have dealt The above-mentioned wavelength scale is easily studied |
with the viscous excitation of forced overstable density wavesir direct particle simulations, employing a local simulatior
(Borderieset al. 1985, Papaloizou and Lin 1988, Longaretti andhethod (Salo 1992a, 1995). Interestingly, the predictions of tf
Rappaport 1995) using analytical approximations for the viscd8T stability analysis are not consistent with numerical simula
ity in rings with closely packed particles. However, Mosqueirdons: According to some preliminary experiments (Salo 2001),
(1996) carried out local simulations, where the perturbed shagensiderably steeper viscosity vs density dependence is requit
of streamlines near satellite resonances was included via tirttean is predicted by the analysis of ST. Specifically, simulation
dependent radial width of the calculation region, and confirmedth nongravitating particles did not show signs of overstabil
numerically that the theoretical conditions for overstability giveity, although these were fairly easy to conduct for even ver
in Borderieset al. (1985) were fulfilled in his dense B-ring large optical thicknesses (up to= 3). In principle, the reason
model. However, due to a small number of particles (typicalfpr this discrepancy could be that the hydrodynamical treatme
40) the overstability could not be directly followed. fails for particulate rings. However, due to the high impact fre

In our current study attention will be focused on intrinsiguency (several tens of impacts per orbit) the behavior of den
axisymmetric overstabilities in unperturbed rings, proposed bings should be closely mimicked by a fluid approach (see, e.¢
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Stewartet al.1984, Schmidet al.1999). Nevertheless, there ardnydrodynamical analysis of the overstability phenomenon ar
simplifying assumptions in ST's analysis, which might requiréor the detailed comparison with the overstabilities seen in tt
reanalysis. larger scale simulations.

In Spahret al. (2000) we suggested that the hydrodynamical
treatment of ST should be augmented by including the energy

equation in the analysis, thus accounting for the fact that the perin this section a few simulation examples of overstability will
turbed system does notinstantaneously achieve isothermality epresented, for systems with fully self-consistently calculate
that temperatures are adjusted via the viscous gain of energy gafLgravity. We also demonstrate that a qualitatively simila
collisional cooling and via the kinetic heat flux. The derived newyerstable behavior is achieved for a much simpler case, whe
fourth-order dispersion relation reproduces ST's results in thg effects of self-gravity are accounted for solely by increasin
limit of infinite heat conduction but implies increased stabilityhe frequency of vertical oscillations with a constant factor. Thi
of dense rings for a finite heat conduction, which is at least ingter case will also be studied in detail in the next sections, :
qualitative agreement with the above-mentioned simulations.véb” asin Paper Il, where we compare the overstab“ity seen

further candidate for a stabilizing factor, as pointed out in Spalimulations with a theoretical stability analysis. For simplicity
et al. (2000), is the bulk ViSCOSity, for which no previous eStiwe concentrate on the case of identical partides_

mates exist for planetary rings. More quantitative comparisonsThe method used in the current simulations is basically sin
were not made in Spatet al. (2000), since the new dispersionjlar to that in Salo (1992a, 1995). Thus, all calculations are re
relation includes several additional parameters which are difétricted to a local coordinate system, co-moving with the locz
cult to estimate analytically. For example, besides the viscosijyean angular speed of particles. Linearized dynamical equatic
vs density dependence utilized by ST, the dependence of digge employed, and the particles leaving the simulation syste
pation, energy gain, and heat conduction on density need tofyge treated by the periodic boundary conditions, first introduce
determined. Moreover, the derivatives of pressure and viscosiywisdom and Tremaine (1988) and in Toomre and Kalnaj

with respect to temperature are required. It is also important(tpa91). The particle motion between impacts is governed by
include both local and nonlocal contributions to these quantities;

the latter become very important in dense systems with a high X —2Qy + (Qr2 — 492)x = F,
filling factor. Thus, the new dispersion relation is most power- . .
ful in combination with detailed simulation estimates for these y+aax=F, (1)
quantities. These estimates can be obtained from small-scale Z+ Qﬁz = F,,
simulations N ~ 10°), whose calculation region is so small that
they are not subject to overstabilities. Quantities obtained fromhere thex-axis points in the radial direction, theaxis is in
these simulations can then be inserted into the improved disptiie direction of orbital motion, and ttzeaxis is perpendicular to
sion relation, to yield predictions for the behavior of perturbahe equatorial plane. The reference point of the coordinate sy
tionsin larger wavelengths, studied in simulations wite- 10°.  tem moves with angular velocit® in a circular orbit at a radial
In this paper we start by showing that an overstable behalistancea. In the case of a central point mass, the epicyclic fre
ior can be seen in direct simulations, if realistically calculateguency<2, and the frequencs2, of vertical oscillations are both
self-gravity is included in dense systems (Section 2), providatkntical to2. The symbolsF,, Fy, and F, denote additional
that the dimensions of the calculation region are large enougHadoces (e.g., self-gravity). The boundaries are treated by assu
cover the most overstable wavelengths. Specifically, we demamg that each particle with a positiox,(y, z) has an infinite
strate that the basically axisymmetric overstability can coexis¢t of image particles ak( nLy, y + mLy — 3/2nL,Qt, 2),
with the nonaxisymmetric Julian—Toomre wakes which evolweherem andn are integersl.x andL denote the dimensions
in dissipative self-gravitating disks (see Salo 1992a). We furthefrthe actual calculation region, ahds the time reckoned from
demonstrate that a qualitatively similar overstable behaviortise beginning of the simulation. Equations (1) are invariant ur
obtained in an approximation, where the effects of the particléer this transformation. Each time a particle crosses the bour
particle self-gravity are mimicked solely by an enhanced verticaty, one of its images enters the calculation region and replac
oscillation frequency, as in the study of dense rings by Wisdatime leaving particle. If the crossing occurs across the inner
and Tremaine (1988) (see also Lukkari and Salo, 1984). The adier boundary, the velocity of the particle is thus modified b
vantage of this simple approximation is that, for systems whoagy = £3/2 QL, which corresponds to the difference of shea
dimensions fall below the regime of overstable wavelengthsvglocity acrosd 4. In this manner the evolution of the system is
yields a steady, spatially uniform ground state. This enables theependent of the choice of the origin of the coordinate syster
derivation of the required ground-state properties and transp®ite results are also independent of the size of the calculati
guantities with respect to density and temperature (Sectionsegion, provided that it is large compared to the mean free pa
and 4), without the ambiguities related to the presence of ndmetween impacts (Wisdom and Tremaine 1988, Salo1991).
steady wake structures. The derived quantities will be used inin the current simulations we ignore the spin of particles an
the next paper (Schmidit al. 2001; hereafter Paper Il) for theassume frictionless impacts. The velocity change in impacts

2. SIMULATION EXAMPLES OF OVERSTABILITY
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thus determined by the normal coefficient of restitutéignde- periments reported in Salo (2001). Namely, in the 2-D case tt
scribing the ratio of the post- and precollisional relative velocitynpact frequency increases very strongly witfonce the max-
components in the direction joining the particle centers. For tiveal packing density fnax = 7/+/12~ 0.91) is approached,
€n We use the standard velocity-dependent elasticity model adrresponding tg ~ 2 for T ~ 0.5. In this case, the system
Bridgeset al. (1984), is indeed strongly overstable, on time scales of a few tens
orbital periods. However, 2-D simulations are rather artificial
even as an approximation for a strongly flattened 3-D syster

wherev, is the normal component of the relative velocity Of'\_nother, more realistic way to increageis the proper inclu-

the impacting bodies and the scale parameteequalsvg = sion of self-gravity. For example, the vertical self-gravitationa

0.077 mms? in Bridgeset al's (1984) measurements. Thisﬁeld leads to a strong enhancement of the impact frequenc

type of velocity dependence follows also from theoretical mog)—Oth via increase(_j frequency of vertical osci_IIations and yia th
els for dissipative impacts (Spalenal. 1995, Brilliantovet al. rgduced scale he|ght,.and thus, to a strong increase of VIScos
1996). Two methods are used for the treatment of impaCtS:Vl\ﬂth the surface density. In the case of actual particle—particl

the current section we use the force model introduced in S E)avity the situation is more complicated than this, because

(1995), while the simulations in Sections 3 and 4 are carri appearance of g.rav-|tat|c_)nal wake structures.
out by following the evolution piecewise from one impact t In dense self-gravitating rings the particles have a tendency

the next, and using instantaneous velocity changes in impj&gn elongated trailing particle groups, dissolving and reemer
(“event-élriven” method). As shown in Salo (1995) both met{"9 intime scales of few orbital revolutions. These are analogot

ods yield identical results, but the former one is generally fastté)rthe transient wakes produced by orbital mass enhancement

for self-gravitating runs. However, the event-driven method stellar disk, studied in the classical work by Julian and Toomr

preferred in Sections 3 and 4, as it allows easier identificati(g 966). In particulate rings the wakes can achieve a statistic

of the individual impacts and the associated velocity changL§ (?ady state as the coIIisio_naI dissipation is able to balance t
required for the evaluation of nonlocal transport quantities. extra heating due to scattering by the wakes themselves. Acco

The main difference in the current self-gravitating simule{'[1g to simulations (Salo 1992a, 1995, Daisaka and lda 1999) t

tions as compared to our previous simulations is the improv[a‘%isumngil ve?cny dlslnglon, measured with the Toor@re
calculation of mutual gravitational forces. Instead of the gparame er (Toomre ):

rect particle—particle method used in Salo (1995), now only the

nearby forces are calculated by a direct summation, whereas the Qr
gravitational forces from distant particles are calculated by a

three-dimensional FFT method, utilizing the double periodicityttains a time-averaged equilibrium value of the order of 2 in th
of the simulated system in the planar components of a sheatg@e of strong wake structure. The typical radial scale of wak
coordinate system. This method, while still correctly including close to Toomre’s critical wavelength,
the effects of close gravitational encounters, enables consider-

ably larger calculation regions and a larger number of simulation 47°Go
particles (by a factor of 20), which is essential for the present -z
study. Numerical checks also indicate that the distant forces cal-
culated with the FFT-method deviate insignificantly from thoseherec, ando stand for radial velocity dispersion and surface
obtained with direct summation. Details of this method will bdensity, respectively. For the Keplerian case the most unstat

en(vn) = (Un/vc)70'234,

G
" 7Go’

®)

(4)

published elsewhere. azimuthal wavelength is)4,. According to the survey in Salo
The linear stability analysis of ST predicts that the conditiof1995; see also Ohtsuki and Emori (2000)) a rough criterion fc
for overstability is thap := (dv/dz)(z/v) > Ber, Wheref, = the emergence of wakes is that the radial velocity dispersic

é. Thus, nongravitating simulations, which indicate a nearlyaintained by impacts alone (about a few times wherer is
linearv vs t dependence for >>1 (8 ~ 1) (e.g., Salo 1991, the particle radius) or by two-particle gravitational encounter
Section 4) should lead to overstability. For typical B-ring patof the order of the surface escape velocity) does not exceed tt
rameters, the predictesifolding growth times are only a few corresponding t@Q ~ 2.
orbital periods for the most overstable wavelengths of the orde€omparedto the simulations of nongravitating particles, whel
of 100 m. However, we have not seen any traces of such behavjgically a few hundred particles are sufficient to obtain reli-
in any nongravitating simulation performed uptte= 3. able results for the collisional steady-state properties, the se
The generalized linear stability analysis in Spahal.(2000) gravitating simulations require much larger particle numbers
indicates that the criticg$ required for overstability might in This follows because to obtain realistic amplitudes for the wake
fact be larger, if the effects of heat conductivity are includethe size of the calculation region must exceed their scale. A ru
Also, Bc might rise close to or even above unity if the bullof thumb (Salo 1995) is that the calculation region covers ¢
viscosity significantly exceeds the kinematic viscosity. SuppdetastLy x Ly = 4 x 4X¢ and that the gravitational forces
for this was also given by the recent two-dimensional (2-D) ekrom each particle are calculated at least up to a distance
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FIG.1. Snapshotsfrom self-gravitating simulations after evolution of 50 orbital periods. In each case alocal region ef 383 mis followed, corresponding
to 1Qher X 4Acr. The simulation parameters are= 1.4, o = 840 kg m2, and the Saturnocentric distance is 100,000 Km=(1.945 x 104 s*l). The four
different examples correspond to different combinations of particles’ internal denaitd radius : To maintain fixeds andr the product p is kept fixed. The
number of particles is between 15,000 and 60,000. In the leftmost column the system is shown from above (the planet is to the left, and the deeutam of 1
orbital motion is up), while in the middle column the system is shown from the side (the vertical extent of the fea@25k., ). In the right column the radial
velocity profile is shown (vertical rangeds0.8 cm 71, corresponding to 2652 for 1-m particles). The elasticity of impacts is described by the Briegak (1984)
formula. The self-gravity is calculated with FFT, usingrgnx ny x n; = 256 x 64 x 8 density grid, combined with a pairwise calculation of particle—particle
forces for mutual distances smaller thiap/5. In each of the runs the Toomre parameteis~ 1, before the onset of overstability.

2i¢r. For simulations describing Saturn’s B ring these condtcreases, the wake structure weakens, basically because the n
tions imply that at least about 4@articles are needed, everimal mass density the wakes can attain is reduced. Simulf
when limiting the simulation to identical particles. To search fareously, a new type of oscillating, axially symmetric structur
possible overstable behavior even larger regions are requiredcomes visible in wavelengths of 100-150 m. ‘BHelding
especially in the radial direction. times of the amplitude of these structures is of the order «
In principle, the presence of wakes makes the distinctidew tens of orbital periods. In the cage= 360 kg nT3, both
of overstable behavior in simulations somewhat difficult, esxisymmetric and nonaxisymmetric structure is seen simult
pecially because the radial scale of the wakes falls to about theously. Fourier analysis reveals the presence of weak axisy
same parameter region as that expected for overstability, and atsziric waves also in the wake-dominated case 450 kg n3,
because of the rapid growth rates and the saturation of wakeswell as the presence of weak nonaxisymmetric wakes ev
to large amplitudes. Nevertheless, with suitable parameter vialthe p = 225 kg nT3 case. The axisymmetric oscillations are
ues both wakes and overstabilities can be seen simultaneoualso visible in the velocity profiles.
Such ademonstration is provided by Fig. 1, for an optically thick A demonstration that we are indeed dealing with an overst
(r = 1.4)ring. Four different simulations are shown, differing irbility is provided by Fig. 2, where the evolution of perturba-
the internal density of particlep (= 225-450 kg n723), while tions is followed for one orbital period for the simulation with
the surface density is kept constamt£ 840 kg nm?). The size p = 300 kg nt3. Different time steps are represented by dif-
of the simulation region covetls, x Ly = 10he x 4Acr, With  ferent curves in the same frame. All studied quantities sho
Aor = 583 m. oscillations with a period close to one orbital revolution, with
For the case witlp = 450 kg n72 the behavior is dominated phase shifts between density and radial and tangential velo
by nonaxisymmetric transient wakes, inclined by about#ith ties in accordance with theoretical expectations for overstabilit
respect to the tangential direction, in accordance with previo(RRaper Il). Figure 2 also shows two simpler cases, where tl
studies. Also, the most prominent radial wavelength of thesgerstability is retained. In Fig. 2b only the vertical componen
inclined structures is close #q,. However, due to low internal of self-gravity is included, whereas the planar components
density of particles the Toomre parameteris only ali@ut~ 1, self-gravity are set to zero, and in Fig. 2c the self-gravity i
in contrast toQt ~ 2 found in earlier simulations performedapproximated by the aforementioned increase of vertical fre
mainly for solid ice density. As the internal density further deguency. Here we have takex/ 2 = 3.6, the same value studied
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FIG. 2. The evolution of radial perturbation profiles over one orbital period (after evolution of 100 periods). The thick solid and dashed lines corre
to the beginning and the end of the interval, respectively. Three different cases are compared: In (a) the run corresponds to the selfsgragibting ni3
example of Fig. 1, (b) is similar except that only the vertical component of self-gravity is included, while the planar components are set to zd),thed i
particle—particle self-gravity is altogether ignored but the frequency of vertical oscillations is increased by a factor of 3.6. Perturbaticasdethr, local
vertical thicknes$H = /6(z2), radial velocityvy, and shear corrected tangential veloaify+ 1.5 x are shown (velocity unit is$2, while the unit ofH isr).

by Wisdom and Tremaine (1988) and in Salo (1991). Except flangths. As will be shown in Paper Il, the increased frequenc
the different dominant wavelength and different amplitude @fs compared to orbital frequency is just what is expected fro
perturbations, the qualitative behavior in all three cases is vgmessure and viscosity effects, while the reduced frequency t
similar. This suggests that the overstability is not tied to the ifiects the slowdown of epicyclic oscillations due to self-gravity
clusion of self-gravity itself but rather to the modified viscouge.g., Toomre 1964).
properties of the system. Figure 4 shows another comparison of the above runs, displa
A qualitative difference between true self-gravitating systenisg the evolution of the dispersion of the radial velocitiggy2),
and those with an enhanced vertical frequency (or with just thalculated for the whole simulation system. The behavior of thi
vertical component of self-gravity) is however seen in the frejuantity provides a good indication of overstable behavior. |
guency of overstable oscillations (Fig. 3). For the approximatitke absence of systematic oscillatiqvi(ajf) will equal the local
cases the frequency of overstable oscillations always exceedsthlecity dispersion, thus attaining a steady-state value after a fe
orbital frequency, with the difference increasing toward smallégns of impacts/particle. In the case of overstabilifjv2) be-
wavelengths. In the case of actual particle—particle gravity tiemes more and more dominated by the total squared amplitu
oscillation period is generally longer than the orbital perioayf systematic oscillationgp?) = 3", AZ, whereA denote the
although the frequency turns again into a rise at smaller wawelocity amplitudes of different axisymmetric modes allowec
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In the case with only weak overstability & 450 kg n1T3) the
rms velocity dispersion is mainly determined by the wakes
whose transient nature leads to irregular fluctuationg §o2).
The other two curves in Fig. 4aindicate the signature of growin
overstable amplitudes. Also shown in Fig. 4b are comparisol
between the realistic particle—particle self-gravity and the tw
above-mentioned approximations. It can be seen how increasi
the ratioQ2,/ Q2 leads to a more rapid growth of overstabilities.
Also shown is a nongravitating simulation whérg = 2, show-
ing the establishment of a steady state with no signs of overstal
fluctuations.

During the simulations there is a tendency for the prominel
axisymmetric wavelength to increase. For example, in the rt
with p = 225 kg n13, the dominant radial wavenumbler= 4
seen in Fig. 1 is gradually displaced ky= 3, as the run was
continued to 200 orbital periods. Note that, due to the periodi
ity of the simulation region, only wavelengths which are intege

FIG.3. The frequency of axisymmetric oscillations as a function of wavef- fi f it dial extent It is th . tant t
length, in the case of particle—particle gravity£ 1.4, p = 225kg nT3) and in ractions or its radial extent can grow. It 1S thus important 1c

the case of an enhanced vertical frequery @, = 3.6). The runs correspond Check that the size of the calculation region is large enough
to those in Fig. 1, except that radial length i9.20= 1166 m. The frequencies that the periodic boundaries do not affect the growth of dominal

are calculated with the Lomb normalized periodogram (see Ritesls 1992,  overstable modes. For this purpose an additional simulation w
p. 569), using radial velocities from the first 20 orbital periods of evolution.

by the calculation regiond( stands for the phase of the mode)
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performed, corresponding to the= 225 kg nT3 case shown
in Fig. 1, except for twice the number of particles and with ¢
twice larger radial extent (same run as studied in Fig. 3). Th
fun retained the growth on the same absolute radial scales (n
k = 7 was dominant after 200 orbital periods), and with sim
ilar e-folding times. This confirms that the periodic boundary
conditions are not responsible for the obtained overstabilitie
nor do they affect the observed behavior, at least not in scal
which are a few times smaller than the calculation region. Als
in all the above simulations a small initial seed was given for th
axisymmetric velocity perturbations, amounting texc 20~4 m
s~1 for eachA with k = 1-30. A comparison simulation with-
out such a seed (amplitudes of initial noise are about 10 tim
smaller than the amplitude of seed) yielded practically identic:
behavior, except for a time delay of about 20 orbital period
before the overstability became visible. Similarly, the onset c
overstability is delayed if the tangential size of the calculatio
region is increased, leading however to identical evolution.

A brief survey of self-gravitating simulations similar to the
p = 225 kg n73 case in Fig. 1 indicated that overstability starts
whent ~ 1.2 (Fig. 5). For largero’s the strong wake struc-
ture appears to limit the growth of overstable modes. Neverth
less, forp = 450 kg nT3 the system is clearly on the verge of
overstability: A small reduction in the amplitude of the wakes
induced by cutting the region from which the gravity is cal-
culated (see Salo 1995), is sufficient to allow the growth ¢
prominent axisymmetric oscillations similar to those seen fc
smallerp’s. For example, by limiting gravity to that exerted

FIG.4. Evolution of the total rms radial velocity in simulations. In the leftfrom the region within oneé.., around each particle, signs of

three self-gravitating runs of Fig. 1 with differep's are compared, while in the
right several types of simulations corresponding te 300 kg nT3 are shown,
The curve labeled “Fz” corresponds to only vertical gravity, while the run§

overstability are visible already far = 1. The onset of over-
tability is also sensitive to the elasticity assigned to the in

labeled “3.6” and “2.0” correspond to nongravitating runs with enhanced vertiddfiCts as well as to the particle size distribution. For example, i

frequency. The curve “1.0” stands for a nongravitating simulatioe=(2;).

overstability was still obtained (for = 1.4, p = 225 kg n13)
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can also lead to overstable behavior, retaining the same que
tative characteristics as the more realistic self-gravitating cas
The main advantage is that for systems whose dimensions ¢
below the regime of overstable behavior, the evolution now leac
to a uniform stationary steady state, as required when applyi
linear stability analysis.
0 50 100 150 0 50 100 150 In the analysis of ST the ground state was described by tf
surface density and by the distance from the planet, througt
Q. The isotropic kinetic pressurp was identified witho T,
whereT = c(z) is the kinetic temperature(is the 1-dim velocity
dispersion) and the kinematic viscositywas assumed to be
of the formv = vg(o/00)?. Values forayg, 22, ¢o, andvy Where
chosen to represent the dense parts of Saturn’s B ring. In the nc
isothermal stability analysis of Spabhal.(2000), which takes
o 50 100 150 o =0 100 150 Into account the energy equation, several additional quantiti
ORB ORB are required. For example, we will need the cooling functign
FIG.5. The onset of overstability in simulations with differenten, and giving the (.ZiISSIpa'[I\{e |QSS of energy, and the heat CondUCt.lvn
size distribution, measured in terms of the total rms radial velocity. In the uppfer connecting the kinetic heat flux to the temperature gradier
left frame four different values of are compared, while in the upper right theln addition we need to know the derivatives pf v, and T’
velocity scale parameter in Bridges al's formula is varied. The two lower with respect tol for a fixed density. Besides shear viscosity,
frames display two runs with a power-law size distributiog(= 0.5, rmax= related to the flow of momentum in the presence of velocit:

5 m, exponentj = 3), with two different elasticity models: The evolution of s e also need the bulk (expansion) viscasitglated to
velocity dispersion is shown separately for six logarithmic size bins (small

ro. . . .
particles have larger dispersion). In all cases the internal density of particleﬁke irreversible ﬂQW of energy Into internal degrees of freedor
o =225kgnts. due to compression. For all components of the pressure ten:

we will consider both local and nonlocal contributions; the latte

. . . arises because the particle locations in impacts correspond

when the velocity scale parametey in Bridgeset al.s for- : . ; . ; .
y P e g slightly different mean radial distances (Araki and Tremaine

mula (Eq. 2) was doubled, whgrea; “'.U)UB = 5 the system 1986, Shukman 1984). In dense systems the latter contributit
became stable (increaseg/vg implies increased steady—stat% pressure and viscosity is often dominant

velocity dispersion). Also, when using a power-law size distribu-
tion,n(r) ~ r =9, withrmin = 0.5, rmax= 5m, andy = 3, yield-
ing the same ando, the system remained stable for Bridges
al.’s formula. This increased stability is likely to be related to the Letus denote the particle positionsxy= {X, y, z} and their
increased velocity dispersion achieved by small particles. Hotelocities byvi = {X, y, z}. Further, denote the mean veloc-
ever, with increased dissipation and constant 0.1, oversta- ity U = (v) so that a particle’s random velocity és= v — u.
bility was again achieved even with size distribution. These feline kinetic temperature is defined &s= 3 tr(cc;). In a spa-
examples already indicate that the onset of overstability in derfi@ly uniform steady state there is a linear shear prafile
rings is very dependent on the various, still poorly constraindg —3/2€X, 0}. However, we will also study cases where there
parameter values. is an additional perturbatiofu = {§uy, duy, 0} depending on
A more detailed analysis of the overstable behavior in sirfi€X-coordinate.
ulations, utilizing the transport coefficients derived in the next The flow of momentum consists of the local contribution, rela
two sections for systems with enhanced vertical oscillation fréd to the momentum carried by particles’ random motions, ar
quency, is left to Paper Il. The main emphasis will be on tH&e nonlocal contribution, resulting from momentum transfe
caseQ,/Q = 3.6. This value is chosen, partly because it erffom one particle to another during a collision. The former ca
ables the comparison to some previous simulations (e.g., th@§eexpressed as (averaging over vertical direction is assumec
by Wisdom and Tremaine 1988) and also because it leadsBat follows)
a rapid growth of overstabilities, so that they are more easily

cr/(r)
O N & O 0 O
cr/(rQ)
oON » O 0 O

cr/(r2)

o N -~ (o)) 0 O
T
4
Q |
: )

cg/(r2)

3.1. Equations for Transport Quantities

. . local
followed to the nonlinear regime. P =a(cicj), (6)
3. EVALUATION OF QUANTITIES NEEDED while the nonlocal contribution is
IN HYDRODYNAMICAL ANALYSIS onocal_ 7 30 AX0 -
! B Not

In this and the next section we will study the approximation
where the particle—particle self-gravity is replaced by an ehtere the sumis over all impacts taking place during the time ir
hanced vertical frequency. As shown above this simplificatigarvalst, while Ax; is the absolute difference of theoordinates
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of the impacting particles, anéic; is the change in thg- energy from the transfer in the impacts. This is achieved b
coordinate of the velocity of the particle with larger The num-  splitting the velocities, of impacting particles (withk = 1, 2)
ber of particles is denoted by. The same formulations haveinto the center of mass velocitg = 0.5 (v1 + v2) and the rel-
been used by Wisdom and Tremaine (1988) and by Mosquedtave velocityg = v, — v;. With these definitions we obtain for

(1996). the velocities and the related kinetic energies of the particle
In the hydrodynamical description the pressure tensor is wr{tvith + and — signs corresponding to particlés=2 and 1,
ten as respectively)
P=pU-2yD-¢U0V -u, (8) 1
Vk = Ve % =0, (14)
wherep is the isotropic pressurg,andé stand for the dynamic 2
shear and bulk viscosities) & ov, § = o¢), respectivelyl) is 1, 1, 1,
the unit tensor, an® the shear tensor B = SVk=35 Ve + Z,g £Ve Q- (15)
1 2 - : L
Dij = > Viuj + Vjui — §5ij ViU | . (9) Taking into account that only the relative velocity is altered du
to the collision according to
Since trD = 0 and in the steady state we have- u = 0, it
follows that gd=g-—(A+¢€(g-n)n, (16)
1~ 1 . R
P=3 rP = 3 tr(p'oca! 4 pronioca) — plocal . pnonlocal where the prime labels the value after the collision anslthe

(10) unit vector pointing from particle 1 to 2, we obtain the changt

of the kinetic energy for the particle
We will determine both pressure components separately. Sim-

ilarly, for the nondiagonal component we habg, = —%SZ + 2_1
1ac8uy + 3a,8uy, affording an equation from which shear vis- 8Ex=E — Ex= 8
cosity can be derived. Specifically, if there are no systematic

motions §uy = 0, éuy = 0) this yields

@0+ @ e, @)

The first term is the energy dissipation in the impact; the secot

2 is the transported energy. To separate the transport part we def
n=-— P12 = nlocal + nnonlocal’ (11)
3Q .
with similar identification of local and nonlocal components as Ex = Ex — E(El +Ey), k=12, (18)

for the pressure.
Equation (8) also provides means for the estimation of bulithere E; and E; are kinetic energies of the particles partic-
viscosity. Assume that the system is perturbed so that the coiting in the impact. Now we defingE$ = E° — E, which

pressionV - u is nonzero. Further, assume that various quagquals, except for the sign, the last term in Eq. (17). The nonloc
tities are separately collected for different radial zones of thgergy flux can then be written as

system. Due to compression the instantaneous isotropic pres-

surep(t) in each zone will then deviate from(o (x, t)), which oY AXSES
is the steady-state pressure corresponding to the instantaneous g;"omoeal = Nt (19)
densityo . Taking the trace of Eq. (8) affords
D—pe=—£V-u (12) where Ax; is as before andES is the change associated with
c — T

the particle with the largex; -coordinate. Note that the last term
providing a relation from whicl§ can be obtained. Again, thein Eq. (17) is related to the “dynamical friction” term in Ohtsuki
division to local and nonlocal components will be made. (1999), which in the case of unequal-sized particles works t
The kinetic heat fluxq is related to the transport of randomward energy equipartitioning between different size population
kinetic energy,E = c2/2 (here we use energy/particle mass), I the hydrodynamical treatment the heat flux is assumed
which also takes place both via particles’ motion and durir§ePend linearly on the temperature gradient,
impacts. For the local flux we have
1 g=—«pVT, (20)
6° = 0 (Eq) = So(c’G). (13)
wherekp is the dynamic heat conductivity. Again, identifying
The treatment of nonlocal energy flux is somewhat more protitis with Egs. (13) and (19) offers means for evaluating both th
lematic, as we must separate the dissipational loss of kindtical and nonlocal heat conductivity.
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3.2. Practical Evaluation of Transport Quantities 1000 F ' '

- total gain
............. local gain

The most important advantage of the local method is thattr [ nonlocal qoin
optical thickness of the system is controlled by the number ¢ I dissipation
particles and the size of the calculation region. It is thus possib |
to determine the density dependence of all quantities of inte 100}
est by conducting a series of separate experiments for differe i
densities. The above formulas f&= {p, ', q, n, &, kp} use
dynamic quantities containing the surface mass density, wheres
the current simulations operate with massless particles. To 3
cilitate the application of hydrodynamic equations we will sysv 10F
tematically replace by optical thickness and define the cor-
responding simulation quantities by

® o
o
L

orbit

cle/

sl

Xsim = KX, (21)

10.0

where K = t/o is the mass extinction coefficient. Thus, for
examplez, p's‘i’r%a' = 7 T. Also, what we actually measure from FIG. 6. Check of the shear viscosity measurements. Solid line indicate

. . . . <. ; ; _ 902 ; ;
simulations are the kinematic transport quantities 77/(7» .= the total viscous gain of energ@sm = 3$2“vz, while dotted and dashed lines

£/, andk = kp /o show separately the local and nonlocal contributions, respectively. The symbc
! = *p/- indicate the directly measured energy dissipalighin impacts. The overlap of
Gsimandl gy indicates that the energy balar@g,, — I'si, = 0is very accurately
satisfied. The energies are normalized bg)2 and they correspond to the
change of energy/particle/orbital period.
The evaluation of the shear viscosity is based on Eqg. (11)
and is carried out in a straightforward manner, as in Wisdom

and Tremaine (1988) and Salo (1991). A good accuracy cgeach particle. This causes a standing radial compression w
be achieved, as can be measured in a uniform steady stat@jth a decaying amplitude. The instantaneous pressplféd
and thus averages can be taken over all particles in the systgig pnonlocalang the values of are then tabulated for short time
and over arbitrarily long periods of time once the steady staiftervals (typically 20 intervals per orbital period) for different
is achieved. The same runs are also used for the evaluationeial zones of the system (typically for 20 zones). Similarly, th
steady-state values &f, p, and['sim as functions oft. mean radial velocities are collected for these time intervals ar
The values of the viscosities obtained can be checked by Qb-nes, toobtaih =V - U = 98Uy /X (Since thereis compres-
serving that the values of implied viscous gain balance the colfon only in thex-direction; the system also develops systemati
sional dissipation of energy, measured directly by summing th&notions, due to the addéd,-perturbation, but these are much
individual energy lossesin impacts. In the steady state we mmaker' and most importantly depend onlypmot ony).
havel'sm = %QZ‘EU. As shown in Fig. 6 this balgnce IS satisfied The steady-state values of pressypg(x, t) corresponding
to great accuracy, for both small and largeSince different o instantaneous(x, t), are calculated with the help of the
contributions to the viscosity are dominant in these two limglocal(r) gnd penlocalr) relations, constructed in the separate

its, this confirms the correctness of both the local and nonlogghs utilized in the evaluation of shear viscosity. In practice, .

3.2.1. Shear Viscosity

viscosities. second-degree interpolation between the tabulated discrete d.
sity values is sufficient. With the above procedure we have fc
3.2.2. Bulk Viscosity each time interval and radial zone certain valuea @nd pres-

Compared to the evaluation of shear viscosity, the basic d%f? ;E:SZV'\‘;";BZ? '_I'hizc.irﬁtiISIazsc:?Li%nr;sevl;]aerr? :rlfelssn;?:i’;otsyr
ficulty is that bulk viscosity can only be measured in a presenge ' ' Y

. . A é)erature is still evolving toward equilibrium, is eliminated: This
of compression. In practice we proceed as follows: An initial ra-

dial velocity gradient is introduced in thedirection by adding irr?ilt?;(la\t/lglzgsrclz?:sgatg bee [};ﬁgﬁu\lﬁryAT;?rig%\;i;egu;)t/eih;zzg
a sinusoidal velocity increment, q ) '

tics, the velocity perturbation can be repeated several times; tf
is important in cases where the compression wave is rapid
(22) decaying.
To check this method we must be sure thatthe relation betwe
A andp — p.is indeed linear and that the proportionality factor

2\We drop the subscript “sim” from pressure, to avoid using simultaneous stjﬁ—.inqependem of the appligd VelOCity_ perturbation, as Iong.e
and superscripts, but we retain its usefoandq. this is small. For systems with potentially overstable behavic

Sux(X) = A, cos (2rx/Ly),



SIMULATION OF VISCOUS OVERSTABILITY 305

file, by making the elasticity of impacts depend slightly on the
position. Since we are interested in the radial heat conductit
this is done by

local pressure

ve(X) = vg[1 + A cos (2rx/Ly)], (23)

nonlocal pressure

NO N O
T
\
/

whereu, is the velocity scale parameter used in the Bridges
type elasticity law andg is the original parameter for Bridges
et al’s formula. Similarly, if we are interested in a system
Coomoca=  6-48 with a constant coefficient of restitution, a small sinusoide
: variation with x is introduced to the desired mean value
of en.

As long asA. is small, this produces an almost sinusoida
radial variation in the equilibriur which is continuous over the
radial boundaries. The advantage is that once the (nonunifor
-4 steady state has been established, all quantities necessary
-0.3 0.0 0.3 -0.3 0.0 0.3 . . . .

—du,/dx —duy/dx the evaluation ok can be time-averaged from the simulation
which can be made arbitrarily long. This removes the problen

FIG. 7. Example of the determination of bulk viscosity, for= 0.5 and  one has ifc is estimated from runs with an initially nonuniform
Q/Q = 36 In the upper frames the solid_l_ine_ and the dash-dotted line d‘f‘-profile rapidly decaying toward a uniforf.
pote the mstantaneous pressprend the egumbrlum pressug correspond- In practice the evaluation af requires the tabulation & in
ing to the instantaneous density, respectively. The dashed line dgmetqs, . .
while the thick solid line is the instantaneous compression. One single cbdial zones, as well as the tabulation of the local and nonloc
lection interval of 0.05 orbital periods is shown. In the lower frames, all datnergy fluxes in the radial direction. As for the bulk viscosity
points (20 zones and 400 collection intervals) from the same run are displayge must make sure that the linear trend assumed by Eq. (20)
simultaneously, together with a linear fit whose slope gives the bulk viscosity SPideed valid and that the proportionality factor is independent ¢

efficient. Simulation quantities are used (see Section 4) and the units ofpress&e. the limit of ishi turbati Fi 8 id
and the kinematic bulk viscosity anect)? andr 22, respectively. The amplitude In the imit ot vanishing perturbation. Figure o provides ar

of initial radial velocity perturbations amounted tos2 example of the evaluation, withA. = 0.2. Altogether, the de-
rived values ofk'°@ andx"°"oca differed by less than about 5%
between runs wittA, = 0.01-05. For still smaller amplitudes
care must be taken so that the dimensions of the calculation re-
gion are small enough or that the measurement is short enough
because otherwise the amplitude of oscillations might grow to

p—p¢ (nonlocal)

3.0

excessively large values. The upper row of Fig. 7 displays ¢ | *7% 720720 | - e
example of how the pressure deviations relate to compressi | ] ol dT/ax ST ETNn
for a single instant of time. When collected over the whole ru ~ /\ ) e
(lower row), the overall linear trend is evident, although ther:  **f 1 Al N

is considerable noise present. In the example shown the a 2% ] o2

plitude of velocity perturbation amounted 9, = 2r Q. This BTt _O'fzo s
is a fairly large perturbation (comparable to the radial veloc x x

ity dispersion), causing about a 20% oscillation of the opti ., - o3

cal depth. Nevertheless, the mearin this run is only about e 0.2

2% larger than in the absence of extra velocity perturbatio o 1% o

A corresponding run withA, = r Q yields similar values for & oo} o £ o0

bothz'°ca and¢nonlecal within about 3% accuracy. If the ampli- ¢ ol | 5o

tude is further decreased the results become excessively affec -0.2

by noise. In all the subsequent measuremeyits= 2r @ was e o oo oo oos T e e oo
used. —dT /dx —dT/dx

3.2.3. Heat Conductivity FIG. 8. Example of the determination of heat conductivity, foe= 0.5

and 2,/ Q2 = 3.6. The frame on the upper left shows the steady temperatul

As in the measurements of bulk viscosity, the heat condugofile (vc is varied by 20% according to Eq. (23)). In the upper right the solic
tivity could in principle be evaluated by introducing an initial,"”e represents the radial temperature gradient, while ‘the dashed and dot
. . curves show the local and nonlocal heat fluxes, respectively. The lower fram
qecaymg temperatu re perturbatlon tothe system. Howevgr, th linear fits to values from all different zones, yielding the heat conductio
is an alternative way, enabling a more accurate determinati@hefficient. The units of temperature, heat flux, and kinematic heat conductivi

Namely, we can create a steady, nonuniform temperature paee¢Q)?, (r )3, andr2Q, respectively.
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FIG. 9. Example of the energy balance in runs with steady nonuniform radial temperature profile. In the upper frame the viscGus gaﬁu[fgﬂ +
axauy]"‘, and dissipatiomsi, are shown. The lower frame shows the (negative of) heat conduetigncalculated both directly from the measured energy flux
(Hsim = 9x(rgsim); thin line + open squares) and from the temperature gradient utilizing the fitted vah;(aHifm = —dx(x7dxT); solid thin lines). On the same
frame Ggnm — I'sim (dashed line, large solid squares) is also shown. Note the difference in the scales between the upper and the lower frame: The near o
Gsim — I'sim @and— Hgy indicates that the balan€g;,, — I'sm + Hsim = 0 is very accurately satisfied. As in Fig. 6, change of energy/particle/orbital period is show
normalized by (£2)2.

the values ok "o hecome strongly affected by noise. All thdn practice theéuy terms turn out to be insignificant compared to

subsequent measurements were made Wjtk= 0.2. duy, which in itself provides a small correction to the systematit
The derived values of can be verified by checking that theshear. Dropping the terms containiéig, and using kinematic

energy balance equation holds, not only for the system agl@antities, the energy equation implies

whole, but for each radial zone separately. Here we also take

into account that due to the nonuniform temperature prétile 3 2

andsuy do not necessarily vanish. In the presence of heat flow  7v [_EQ + 8x5uy} + x(tk9xT) — Fsim = 0. (27)

the energy balance reads

(24) Figure 9 provides an example of the magnitude of the viscol
gain and dissipative loss terms, as well as the heat conductic
It follows that for the pressure contribution we have The case = 0.5 is chosen, since then both local and nonloca
terms contribute significantly to the heat conduction. As can b
seen the energy balance is fairly well satisfied in each zone.

3 R
Ea(8t+u-V)T=—P:Vu—V.q—F.

. 4 )

3 2 3.3. Evaluation of Derivatives with Respect
- |:_§Q 4 axguy} . (25) to Kinetic Temperature
The temperature derivatives pfv, andl'si, are evaluated by
For anx-dependent temperature profile this implies introducing a small uniform temperature deviation to the systen

This is made by multiplying the shear corrected velocities ©

each particle{x, y + 3/2Q2x, z}, by a constant factof. This

changes the temperature by a factérwhile maintaining the

5 orientation of the velocity dispersion tensor. The various quar

+7 [_:_39 + 8x5Uy:| + 0(kpdxT) = T. (26) titie_s of interest are then tabulated during short time interval
2 while the system returns to the steady state Wita- Tg;. The

3 4
EU SUy dxT = —pdxdUy + (577 + é) (BXSUX)Z
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derivatives are estimated with alinearfitbetweeh =T — Ts;  quantity

and the deviation of the collected quantities from their steady-

state values. The same procedure can be repeated several times 2

during each run to improve the statistics of the fit. Er =507 (
However, there are some difficulties in the method outlined

above. Most importantly, the modification of particles’ veloci- - . :

ties introduces vertical oscillations to the system. In principl(‘é\fhere the q_ua_ntlty in parenthesis r_neasures_the difference b

this could be avoided by multiplying theecoordinates of the ween_the_ dissipational loss an_d viscous gain of energy. T.h

particles with the same factdr. This however has the draw-quam'ty. Is chosen because th.ls is the comb!r)atlon n Wh'c

back that onlyf > 1 can be applied, since far < 1 possible the cooling term enters the nonisothermal stability analysis (s

particle overlaps will invalidate the measurement. Also, aIteringaper I.I)' . .

the vertical profile can in itself modify the properties, so that th&In principle, we would also need o know the gradients o

measurement might not correctly describe the partial derivati ¢ above quant!tle_s with respect to surfacs_: densny,_ for_a f'?“
temperature. This is even more problematic to realize in sin

with respect tol' alone. A possible solution would be to limit lations: A h in th densit b di
attention to just horizontal components of the velocity dispeﬁ’—a lons. Any change in the mean densily, say by expandir

sion tensor, but this is not in accordance with the hydrodynarrme caICltJIatlor:j_reg}Elon ?url_lr_]r? th? run, W'”.I?lso Iea(_j tot r?ﬁ'c
approximation we are utilizing. Another way to reduce the inflf€Mperature adjustments. Therefore, we will approximate the

ence of vertical oscillations is to perform several measuremeﬁfasr'vat'ves by the differences of the above quantities betweent

with a different f and average over these runs that each posst_eady-state _valu_es at various densmes. This should be a fai
od approximation, especially since the steady-state temp

sess slightly different oscillations. Figure 10 gives an exam . ; . ; .
of such a measurement, for= 1, 2,/ = 3.6. Altogether 11 ature varies only weakly with density (see Fig. 11 in the ne»
. i o section).

runs are superposed, with= 0.5-20. In the linear fit only a
certain range ofAT| is used. The upper limit is chosen to make
sure that derivatives correspond to the steady state, and the lower 4. RESULTS

limit eliminates the noise around the steady state. Note that in-W h ied out " i ts of the v:
stead of the derivative of the coolifgm, we fit directly the . € have carried out systematic measurements ot the v
ious steady-state quantities ferup to 5 for three different

values of the vertical frequency enhancement facy,Q =
1,2, and 36. In each case the particle radius is 1 m, the Sa
urnocentric distance is 100,000 krf2 & 1.945x 1074 s71),

Lsim— —QZTV) ) (28)

IO and the Bridge®t al. impact model is assumed. The simula-
T 005} tions utilizeN = 1000 to 10,000 particles. Table | lists some of
= -0.00 the parameters measured from simulations for selected valt
8 -005 of r.
:8]2 Figure 11 (upper row) displays the dependence of the kinet
" 52-01 00 o1 oo temperaturd, pressurep, and shear viscosity on the optical
log(T/Ter) depth. Both local and nonlocal contributionsg@ndv are dis-
015 s played. Pressure has been normalized pgo that the curves
010} | 250 are more easily comparablg'®® /¢ andv'°® are directly pro-
T oos} portional to the trace and to the nondiagonal component of tl
3 -0.00f I velocity dispersion tensor, respectively. In accordance with pr
g -0.05} vious simulationsT first drops withz but then starts to rise
:812 A for largert. This decrease iii follows from the finite volume
T 02 0 oo o1 o2 T oo o1 0o o1 0. Of particles, limiting the effective mean path between impact
log(T/Tsr) T-Tg and thus also the gain of energy from the systematic motion v

) o ) local shear viscosity. In contrast, for a large enowghonlo-
FIG.10. Example of measuring the derivatives with respect to temperatureal . ity dominates the total Vi it d ts for tf
for r =1 andQ2;/Q = 3.6. The frame on the upper left shows the decay 0?_ VISCOSIty dominates the total viscosity and accounts for

temperature perturbations to steady state: Each curve denotes a single simuléig Of the steady-state temperature. The optical depth whe
run and represent an average of 8 successive perturbations. Altogether 11 thesnonlocal viscosity component starts to exceed the local o
are shown, with velocity modification factor ranging between 0.5 and 2.0(see@j§pends on the vertical enhancement. 8gf 2 = 1 and 36
text for more explanations). The horizontal dashed lines indicate thetemperatm% takes place at ~ 0.8 and 03, respectively. Similarly, the

range used: In the current example only points whed8 @ |T — Tst/ T| < 0.2
are used, wher@&s; indicates the steady-state temperature of the system. Tﬂgnlocal preéssure exceeds the local onefer 1.0 and 04. The

three other frames show the fits to pressure, viscosity, and the difference betwW@Bf QY dissipatioi'si, as a function ot was already shown in
energy loss and gain, with respect to temperature. Fig. 6.
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TABLE |

Various Quantities Measured from Simulations

T we/ Q T p g/p" v c K Dp/Dr B Dp/DT Dv/DT Er
Q/Q, =36
0.25 1.77 4.46 1.57 0.710 1.52 5.49 22.8 1.28 0.57 0.85 0.34 0.2
0.50 453 2.54 3.09 0.411 2.15 6.65 13.9 1.79 0.67 053  —0.04 0.72
1.00 14.8 1.73 10.8 0.160 3.87 8.27 16.1 2.19 1.15 021 -0.12 2.50
1.50 323 1.77 29.2 0.091 6.69 13.4 27.7 2.41 1.19 015 -0.10 3.79
2.00 55.8 1.91 59.4 0.064 9.52 20.2 38.9 2.72 1.55 0.18 0.08 4.5
Q/Q; =20
0.25 1.26 4.60 1.48 0.776 111 4.11 22.9 1.18 0.62 0.87 0.42 0.1
0.50 2.72 2.84 2.59 0.547 1.48 4.70 14.9 1.42 0.49 0.67 0.21 0.4
1.00 6.73 1.81 6.59 0.275 2.27 5.26 11.8 1.87 0.85 0.41 0.02 1.1
1.50 12.3 1.63 14.3 0.171 3.35 6.91 14.3 2.11 1.06 0.28 -0.12 2.23
2.00 19.8 1.63 26.9 0.121 4.63 9.24 18.1 2.26 1.16 028 -0.10 3.14
Q/Q, =10
0.25 0.71 5.03 1.45 0.867 0.66 2.93 17.5 1.11 0.80 0.92 0.57 0.C
0.50 1.44 3.85 2.62 0.733 1.03 3.93 19.9 1.22 0.57 0.82 0.39 0.1
1.00 3.07 2.48 4.98 0.498 1.42 4.15 13.6 1.45 0.51 0.66 0.17 0.5
1.50 5.01 1.96 8.47 0.346 1.82 4.28 11.5 1.67 0.70 0.51 0.13 0.8
2.00 7.30 1.74 13.6 0.257 2.27 4.84 11.7 1.85 0.88 039 —0.04 1.31

Note. Temperatures and pressures are scaled @)?(and transport coefficients f<2, as in the figuresD/DT andD/Dt denote logarithmic derivatives.
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FIG. 11. The upper frames show the dependence of temperature, simulation pressure (divigedray/shear viscosity as a function of optical depth, for
Q;/Q = 1.0 and 36. In the lower left, the dependence of impact frequencyt as shown, while the two remaining frames displpyr andv as a function

of we.
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3.6. In the left local and nonlocal contribution are shown separately, while i
FIG.12. Shape and orientation of the velocity dispersion tensor. The quathe right total values are displayed.
tities cp, ¢, andcs denote the principal axis values of the velocity dispersion
tensor, whileS measures the deviation of the major principal axis from the radial

direction (in radians). For smadl, ¢; andc, correspond to radial and tangential Bacause of this the ratiag'v and¢ /v attain rather large values
velocity dispersion, whilez measures the vertical dispersion for all values.of for smallt (Fig 14) For Iarger where nonlocal contributions
dominate, the ratios seem to approach roughly constant valt

One of the main effects of the increas@g)/ © is to enhance /v ~ 4 and¢/v ~ 2. The measurements are increasingly in
the impactfrequency, so that the behavior of the system is simifigcurate forr — 0, but it seems that the ratios at smalare
toQ, = Q butwith a higher. Indeed, when we look at/z and  2/SO limited, tac/v ~ 30-40 and /v ~ 6-7. Again the behav-
v as functions of impact frequenay instead ofr (lower row ior is dominated by the _|mpact frequency, so t_hat the ratios ft
of Fig. 11) it is clear thatu. is the actual quantity determiningdifferents2;/ < are practically the same for a given. _
their behavior. In terms of impact frequency, the dominance Figure 15 shows the logarithmic derivatives of viscosity an
of nonlocal terms begins when./ @ ~ 2—3, corresponding to pressure with respect ta qu smallr bot.h p andv are propor-
roughly 15 impacts per orbital revolution. tional tot as the local contribution dominates. For mtermedlatj

The shape and orientation of the velocity dispersion tensbrf =9 !Ogl(”)/a log(z) dec_reases to abou'F 05 hear the maxi
are shown in Fig. 12. The oscillations seen in the curves M ofv®®#, whereas for still larger the derivative rises above
Q,/Q = 3.6, especially in the ratioz/cy, are real, correspond-
ing to the tendency of forming a layered vertical structure in the
system, as found in Wisdom and Tremaine (1988). Again the ve e ——rrry
locity dispersion tensor depends mainly.an Note that even for
7 = 5 the system is still fairly far from having an isotropic ve-
locity dispersion tensor.

The different transport coefficients are compared in Fig. 13,
For clarity only the cas&,/ 2 = 3.6 is shown; the other two
studied values lead to a same type of behavior (except for small
values of coefficients; see Table I). For all valueg afie have
totalk > ¢ > v, and the same order holds also separately for th
local and nonlocal contributions. The local contributior &lso
peaks at smaller than that forz or v. This again follows from
the effect of reduced mean free path due to the finite volume ¢
particles. Namelyg is related to the energy flow, so it is dom-
inated by the particles with the largest velocity deviations, anc 4| . ... . . ... 1 " -
these are most prone to experience impacts. The nonlocal ca 0.1 1.0 0.1 1.0 10,0 100.0
tribution tox for smallz is relatively large, leading to a slanted i we/Q
S-s_hapeq curve .for th.e tote) whereas botla_andv are mono- FIG.14. Ratioofthetransport coefficients (total values) for different values
tonically increasing withr. In general, the differences betweeny o,/ . In the right all measured ratios are shown together as a function
local contributions are larger than those for the nonlocal onéspact frequency.

ts

icien

ratio of transport coeff
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TEY total unity, due to the nonlocal contribution. This rise is stronger fo
Este i O a larger$2,/ 2 ratio, with 8 attaining unity atr = 0.9, 1.3,
S 2 and 25 for @,/ Q = 3.6, 2.0, and 10, respectively. This corre-
= = sponds in each case tq/ Q ~ 10, or about 60 impacts/orbital
E‘“ § revolution. Again the curves faR,/ 2 = 3.6 show strong un-
° 0.0 ° dulations, arising from the aforementioned tendency for a lay
0 1 2 3 4 ered structure. For example, thdistribution develops two den-
4 T sity peaks between = 0.9 and 104, three peaks betweerbl
20 e 30 " and 175, and four between.25 and 25. The corresponding
ORRE M"“"'l 25 - : values of impact frequency are./ Q2 ~ 15, 35, and 80, which
T 1off LEw g 20} o"*,.,b-'o;;ob nonlocal in the lower frames are seen to be associated with the maxir
2 o0sp Tt < 15} ) and minima in the derivatives of local and nonlocal viscosi
= 0.0} °‘% ocol 1 Z10p a j{'f’ ties, respectively. The overall behaviorfor 1 < v < 2inthe
¢) ] om . . .
s —05} \°W\ S 05} oS locol case2,/ Q2 = 3.6 agrees well witls = 1.26 used in Schmit and
-1.0 0.0 Tscharnuter (1995). For the derivativelt§, (not shown in the
0.1 1.0 10.0 100.0 0.1 1.0 10.0 100.0 .
we/Q we/0 plot) we always find log(Tsim)/d log(z) ~ B + 1.

Figure 16 collects the measurements of temperature deriv
FIG.15. Derivatives of shear viscosity and pressure with respect to densityyeg. Again the dependence on battand w; is displayed to
In the upper frames the total values are shown as a functienfof different o5 agj76 the dominant role of the latter quantity. At the limi
values ofQ2;/ 2, while in the lower frames the local and nonlocal contributions . .
are shown as a function of impact frequency. of small r both p andv react roughly linearly to changes in
T, as expected since they are dominated by local contribution

As t increases, botl log(p)/a log(T) and a log(v)/d log(T)
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FIG. 16. Derivatives of pressure, shear viscosity, and net energy loss with respect to temperature. In the upper frames the derivatives are shown as
of 7, separately for the three different valuesf/ Q. In the lower frames the derivatives are shown as a function of impact frequency. Larger symbols indi
measurements where many individual runs were combined, as in Fig. 10.
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decrease toward zero, with the latter achieving even slightly TABLE 11
negative values fow;/ Q2 ~ 10. This indicates that for dense Transport Coefficients for = = 1 for Two Different Scale
rings nonlocal pressure and viscosity are only weakly depen- Parameters in Bridges et al.'s formula

dent on velocity dispersion, being rather dominated by the sys-=

tematic velocity shear, manifesting the strongly non-Newtoniaf/ ©  ve/ve VT ¢ KoK p

character of such granular flows. Note that the actual derivarg 1 157 142 42 136 96 29 0.51

tive ap/0T = [dlog(p)/adlog(T)][ p/T] increases monotoni- 1.0 5 307 306 77 299 98 25 -0.20

cally with 7, since p increases strongly with while T varies 3.6 1 131 387 83 161 42 21 1.15
3.6 5 208 468 110 198 42 23 0.89

only weakly. The quantitfey rises almost linearly withw, for
we/ Q2 < 10 but slows down somewhat for a larger impact fre- o ] ) .

L S i Note. Velocity dispersiony/T is scaled by 2 and transport coefficients by
guency. The positive values & indicate thermal stability as r2Q, as in the figures.
any temperature deviation will then tend to decay, with larger
values indicating more rapid establishment of energy balance fe¥ge-scale run no overstability was obtained. However, whe
a larger density. Altogether, the uncertainty of these derivativess increased to 1.5, the./vg =5 case leads to overstability
is much larger than that of the steady-state quantities themselygs~ 1.1) as well.

In conclusion, the simulation measurements described abovét is also of interest to estimate the critigidor overstability in
indicate that the main effect of enhanced vertical frequeneglf-gravitating runs. For the case studied in Figo 54225 kg
comes through the increased impact frequency, thus shifting3, r varied) the onset of overstability takes place in the rang
to smallerr the behavior that would be seen in the nongraw = 1.0-12. If the viscosities are evaluated in the same mann
itating 2,/ = 1 case at larger densities. This holds for thas for the runs with enhance®,/ 2, this corresponds again to
steady-state quantities themselves and also for their derivatiyes: 1.0-11. However, this is only approximative, as it neglects
with respect to temperature. Since the nonisothermal stabilihe gravitational viscosity, corresponding to momentum flov
analysis predicts that the onset of overstability depends on dhge to the gravitational scattering by the wakes (Daiszikal.
above quantities, most importantly ¢ this means that also 2000). Nevertheless, wakes are fairly weak in this case.
in the nongravitating case the overstability would be expectedFinally, we also made runs with the three different ring model
for a very larger. In the case,/Q = 3.6 our experiments studied in detail in Mosqueira (1996), corresponding to th
with large simulation regions indicate that overstability sets iranians and e rings and Saturn’s B ringz(= 0.62, 1.04,
for z ~ 0.85, corresponding t6 ~ 0.93. To check the behavior and 1.8, respectively). Since the calculation region has a fixe
with Q= Q, three new large-scale experiments were carrigddial size these runs correspond to the: 0 experiments in
out, witht = 3, 4, and 5, each extending for 500 orbital periMosqueira (1996), i.e., no streamline distortion. In these expe
ods. In agreement with our previous, somewhat shorter runs, theents the enhancement factor for vertical frequency was ce
first run witht = 3 is stable, althougjg = 1.05. The run with culated from the instantaneous vertical thickness of the syste
T =4 (B = 1.17) shows some signs of marginal overstabilityh the same manner as in Mosqueira (1996),

(weak growth, limited to 150-m wavelength), but only the last
run (8 = 1.25) shows a clear overstability, although only the Qg =Q% 4 ,
largest wavelength correspondingke= 1, A = Ly =310 m 3Heft

grew in this run, withe-folding time of roughly 450 orbital pe- where He = \/@_H, with r denoting the particle radius.
riods. This suggests thaly ~ 1 is required for overstability 555 the appropriate values Bfwere used. The mean enhance:
for these parameter values (uni-sized particles of 1 m, Bridgﬁ,%nt factors obtained in this manner weg/ Q@ = 1.59, 2.04,

et al's coefficient of restitution); the small difference betwee 4 314 for these three models. In agreement with the perturby
the cases reflects the slighfc difference_in other parameter_snllﬂs carried out in Mosqueira (1996), the first two models wer
Paper Il we show more detailed comparisons between prediclgg e 4150 in the unperturbed case (no growth of oscillatior
and measured growth times. during 150 orbital periods), whereas in the third model a cle:

All the experiments so far have referred to the elasticity modgl sy mmetric overstability was seen: in a run with total radia
of Bridgeset al. To briefly check whether the derived transpor,, ;-\t of 620 m the fastest growing mode wiitk= 5, ) = 124

coefficients have more general validity a few experiments with 44 a ten-fold time of about 20 orbital periods.
different scale parametegin Eq. (2) were carried out. We chose

ve/vg = 5, for which case the steady-state velocity dispersion is 5. SUMMARY AND DISCUSSION

roughly doubled as compareditg/vg = 1, and carried out mea-

surements of, ¢, and « for t = 1 (see Table Il). The ratios/v Our self-gravitating simulations provide a first direct demon
and¢ /v seem to be fairly little affected by this change in thatration of viscous overstability in a dense unperturbed coll
elasticity model. The values ¢f are also shown in Table | andsional ring. For parameters resembling those typically inferre
indicate that in the case/vg = 5 the system witlf2,/ 2 =3.6 for dense parts of Saturn’s B ring this instability manifests a
now falls marginally outside the parameter region of overstaystematic axisymmetric density, velocity, and temperature o
bility estimated aboved ~ 0.9). Indeed, in a correspondingcillations, with radial scales~100 m and oscillation periods

871G trp 29)
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close to the orbital period. Several tests ensured that the reshliaced frequency of vertical oscillation®;/ 2 > 1. As shown
are not affected by the periodic boundary conditions employég previous simulations (Wisdom and Tremaine 1988) this af
in the simulations, thus supporting the hypothesis that similproximation leads to strongly enhanced impact frequency ar
free axisymmetric oscillations could spontaneously grow in realsteeper dependence of viscosity on density. Indeed, with t
ring systems. The requirement for the onset of overstability value2,/ 2 = 3.6, chosen in Wisdom and Tremaine (1988) to
that the rings have a high filling factor, which is the case for@present the dense B ring, this method also leads to overstal
Bridgeset al. (1984) elasticity model for meter-sized particledty in the regimer ~ 1. Besides being computationally much
in self-gravitating rings withr > 1. faster than the inclusion of particle—particle self-gravity, this
A hydrodynamical treatment of dense unperturbed ringseatment has the important advantage that it leads to a unifol
(Schmit and Tscharnuter 1995) has predicted overstable behgreund state, from which the growth of overstable oscillation
ior. However, the conditions we find for overstability are clearlgan be analyzed.
more stringent than predicted by their hydrodynamic treatment,We have employed local simulations also for the direct eval
as indicated by the stability of simulated non-self-gravitatingation of transport coefficients for simulations wigh/Q =
rings for r ~ 1. Oscillatory instability was theoretically sug-1.0-36. A large humber of individual runs were performed,
gested also by Borderiesal.(1985) for forced density waves inwith calculation regions small enough to prevent the growth ¢
denserings, under conditions which were subsequently explomarstable modes. For shear viscosity the method devised
by simulations of Mosqueira (1996). Specifically, Mosqueird/isdom and Tremaine (1988) was used. Shear viscosity is
(1996) found that the condition for density wave overstabilitiated to the radial flow of tangential momentum in the presenc
was fulfilled in his B-ring model withr = 1.8, but not for his of the systematic velocity shear. The local component of vis
e-ring model witht = 1.04, in qualitative agreement with ourcosity was obtained from the flow of momentum accompanyin
results for unperturbed free oscillations. Still, based on theee epicyclic random motions of particles and is related to th
two examples it is not yet completely clear weather these twondiagonal component of the velocity dispersion tensor. F
cases have similar stability boundaries. steady-state systems this could be measured with good ac
Our experiments with particle—particle self-gravity indicateacy by averaging the whole ensemble of simulation particle
that axisymmetric overstability can coexist with nonaxisymmeénd also over time, a fact first utilized extensively by Wisdon
ric Julian—Toomre wakes forming in dense self-gravitating ringand Tremaine (1988). However, in the case where typical par
However, the presence sfrongwakes seems to suppress overele excursions between impacts are not large compared to th
stable oscillations, as seen by comparing runs with fixed surfaiees, there is another important, so-called nonlocal compone
density but with different internal density of particles. When wéraki and Tremaine 1986, Shukman 1984), related to the flo
are near the stability boundary, any small reduction in the ampidif tangential momentum in impacts between particles whos
tude of wakes can promote overstable oscillations. For examptenters are at slightly different radial distances (hence the ter
when the calculations of Fig. 1 far= 450 kg nT° are repeated “nonlocal”). The nonlocal flow can also be directly measurec
by limiting the region from which the self-gravity is calculated ton simulations by time averaging over collisional momentun
onelr, axisymmetric oscillations become clearly visible in thehanges in impacts. In fact, this nonlocal component dominati
direct plots forr ~ 1. The same is also true when using smallén systems with high optical depth and large filling factor anc
rectangular calculation regions (size2i¢,). However, in such leads to the strongly nonlinear behavior of viscosity as a func
a small-scale simulation it may be difficult to recognize thgon of . The measurement of nonlocal viscosity also followec
axisymmetric overstability, as complete unstable wavelengttie method of Wisdom and Tremaine (1988).
do not fit into the calculation region. Indeed, it is very likely that For the evaluation of heat conductivity a somewhat differ
the coherent velocity oscillation reported recently by Daisalent procedure was employed, since in the steady state there is
and lda (1999), seen in their local simulations, manifests sumperature gradientin the local system (however, the tangent
incompletely covered viscous overstability, rather than beinvglocity shear is always present). In principle, we could intro
caused by any gravitational scattering by wakes. Unluckily, oduce an initial gradient of temperature and observe the heat fli
current computational resources do not allow extended simut@nnected to it. However, this poses problems as the temperat
tions with largerp’s for t’s exceeding unity (this follows from gradient itself and the other properties of the system are the
the p?z2 dependence of the required number of particles) (Satontinuously changing. A more reliable way to measure he:
1995). For example, to study particles with solid ice densitgpnductivity is to make the amount of dissipation (via elastic
p =900 kg nT3, with = = 2 would requireN ~ 10° even if ity) depend on the radial position. A slightly different collisional
limiting the study to identical particles. steady state then follows in various parts of the system, accol
The presence of gravitational wakes complicates any ammanied by a steady temperature gradient and heat flux. Provid
lytical study of overstability, as the system cannot be describdtht the elasticity is only slightly different at different positions,
by a spatially uniform ground state. However, we have showhis will provide an estimate of heat conductivity characteristic t
that a qualitatively similar viscous overstability can be obtaingtie mean value of dissipation in the system. As in the case of vi
when particle—particle self-gravity is approximated by an ewesity, heat conductivity also contains a nonlocal contribution
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Bulk (or expansion) viscosity has not been previously meaity. These were also measured directly from local simulation
sured in connection to planetary rings. This quantity is relatedth methods similar to those used for the evaluation of tran:
to what happens in the compression of the system. If the wagskrt coefficients. The derivatives with respect to density wer
delivered to the system when it is compressed is not balanceddsyimated from the differences between steady-state values
the work relieved in the expansion phase, this extra dissipatiorifferent densities, justified by the weak dependence of tempe
attributed to bulk viscosity. The measurement of bulk viscosigture on density.
from simulations was made directly from its definition. We in- Our measurements indicated that betand¢ generally ex-
troduced a sinusoidal standing radial velocity perturbation to theedv, with the asymptotic values at largebeing«/v ~ 4
system and observed the proportionality between compressam¢ /v ~ 2. Strictly speaking this is valid only for the param-
and the deviation of the instantaneous pressure from its equildter combination we have adopted: meter-sized identical pe
rium value. Again, both local and nonlocal components, asdizles with Bridgeset al’s elasticity model. However, a few
ciated with local and nonlocal pressure, were significant. Notgamples with somewhat thicker systems gave similar ratic
that bulk viscosity could also be measured by the simulatiorethough the absolute values of transport coefficients were larg
method of Mosqueira (1996), where the azimuth-dependent haterestingly, the above asymptotic ratios for transport quantitie
dial width of the local simulation region induces compressioare qualitatively similar to those derived from the Enskog kineti
In principle this could provide an even more accurate measutbeory of dense systems, which gives ~ 4 and¢ /v ~ 1.3
ment, as averages over arbitrarily long collection periods col@hapman and Cowling 1970), while if allowance for a smal
be used. amount of dissipation is made (Jenkins and Richman 1985),

Besides the transport coefficients, the nonisothermal stabilitgcreases while/v increases slightly (Fig. 17). Typically, non-
analysis also requires knowledge of how the dissipation, prdgeal contribution to both pressure and viscosity exceed loc
sure, and shear viscosity depend on temperature for a fixed demes at large’s, corresponding to impact frequenay./ Q2 >
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FIG. 17. Comparison of the ratio of transport quantities obtained in simulations (upper row) with those calculated for dense hard-sphere gases by C
and Cowling (1970) (middle row) and by Jenkins and Richman (1985) for dissipative particles (lowermost row). In simulations asymptotic valtizéseate o
whenw/ 2 > 10, corresponding to mean volume filling factor withith < H/2 exceeding about 0.4.
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