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We investigate the viscous oscillatory instability (overstability)
of an unperturbed dense planetary ring, an instability that might
play a role in the formation of radial structure in Saturn’s B-ring.
We generalize existing hydrodynamic models by including the heat
flow equation in the analysis and compare our results to the de-
velopment of overstable modes in local particle simulations. With
the heat flow, in addition to the balance equations for mass and
momentum, we take into account the balance law for the energy of
the random motion; i.e., we allow for a thermal mode in a stability
analysis of the stationary Keplerian flow. We also incorporate the
effects of nonlocal transport of momentum and energy on the sta-
bility of the ring. In a companion paper (Salo, H., J. Schmidt, and
F. Spahn 2001. Icarus, doi:10.1006/icar.2001.6680) we describe the
determination of the local and nonlocal parts of the viscosity, the
heat conductivity, the pressure, as well as the collisional cooling, to-
gether with their dependences on temperature and density, in local
event-driven simulations of a planetary ring. The ring’s self-gravity
is taken into account in these simulations by an enhancement of
the frequency of vertical oscillations €, > . We use these values
as parameters in our hydrodynamic model for the comparison to
overstability in simulated rings of meter-sized inelastic particles of
large optical depth with ©;/€ =3.6. We find that the inclusion
of the energy-balance equation has a stabilizing influence on the
overstable modes, shifting the stability boundary to higher optical
depths, and moderating the growth rates of the instability, as com-
pared to a purely isothermal treatment. The non-isothermal model
predicts correctly the growth rates and oscillation frequencies of
overstable modes in the simulations, as well as the phase shifts and
relative amplitudes of the perturbations in density and radial and
tangential velocity.  © 2001 Academic Press
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1. INTRODUCTION

The Voyager missions revealed a pronounced radial stru
ture of the B-ring and the inner A-ring of Saturn appearing ol
a wide range of length scales down to the resolution limit o
the Voyager observations (Smitht al. 1982; Espositcet al.
1983a,b). Several explanations for the formation of the struc
ture have been proposed in the literature. Besides the interz
tion of embedded moonlets with the ring particles (Lissaue
et al. 1981; H8non 1981; Spahn and Sponholz 1989), at lea:
part of the structure was attributed to the dynamics of charge
grains and the associated radial momentum transport (Goe
and Morfill 1988) and to ballistic transport (Durisen 1995).
Lukkari (1981), Lin and Bodenheimer (1981) and Ward (1981
suggested a viscous instability of the particle flow to be re
sponsible for the structure. This is a diffusive instability tha
takes place when d¢)/do is negative, where is the kine-
matic viscosity andr is the surface density. However, in the-
oretical models (Araki and Tremaine 1986) this derivative i
found to be large and positive rather than negative, in acco
dance with numerical simulations (Wisdom and Tremaine 198t
Salo 1991, 1992b). In addition, no signs of a viscous instabi
ity have been found in the latter simulations. The theoreticall
and numerically observed density dependence of the kinema
viscosity, however, allows for the so-called viscous overste
bility, investigated in accretion disks (Kato 1978; Blumentha
et al. 1984) and in the context of planetary rings (Borderie:
et al. 1985; Papaloizou and Lin 1988; Schmit and Tscharnute
1995; Mosqueira 1996). Here, the restoring forces after a sm:
perturbation are directed back to equilibrium but are so stron
that the system overshoots the position at the other side
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equilibrium! The hydrodynamic picture of this process is @nd temperatur& are supposed to obey the hydrodynamic bal
wave with growing amplitude. Such a behavior is indeed olBnce laws for mass, momentum, and energy. In this specific ca
served in direct N-particle simulations (see Sel@l. 2001) of the last balance law contains a cooling tdfrthat accounts for
dense self-gravitating planetary rings for various particle-siz# steady dissipation of energy of the motion due to the inelas
and internal particle-densities, different models for the inelagollisions of the ring particles. With the pressure tenBothe
ticity of the collisions, and for different ways of simulating théheat flux vectou, the gravitational force field of the central
particles’ self-gravity. In this paper we give a quantitative conplanet, and the disk’s mean-field self-gravity potenfighese
parison between the overstability of a hydrodynamic model rifglance equations read

and the simulations.

In arecent paper (Spaletal. 2000) we reported on the qual- (O +0- 6)0 =—oV-i
?tat_ive effect of the energy balance equation on t_he overstabil- o (3 +10- 6)5 — oF — aﬁq& _v.p 1)
ity in a hydrodynamic model of a vertically thin, viscous, self-
gravitating, Keplerian disk. Thus, the model allowed for spatially §6(3t +0-V)T=-P:Vi-V-G-T.
2

dependent temperature variations, fulfilling the balance of colli-
sional cooling, viscous heating, and heat flow. It is important ﬁ
note that here temperature refers to the random kinetic ene
of the ring particles defined by the trace of the squared veloc
dispersion tensor as = (1/3)Tr(c;c;). In the present study, we
investigate the influence of the thermal mode in greater detatlﬂ
using transport coefficients and values for the pressure and §

lisional cooling that have been determined in event-driven locgnd the simulations. Nevertheless, the dynamical consequen

simulations (Sal@t al.2001). : . )
Approximating the self-gravity by an enhancement of the freo_f the vertical degrees of freedom of the ring material on th

quency of vertical oscillations (Wisdom and Tremaine 19883)verstab|l|ty should be investigated in future models.

) . . : . " We expr th lan tions in rtesian rdin
we find a stability boundary af = 1, optically thinner rings be- © express e _baa ce equations In a Cautesian coord
ing stable. This is in agreement with the results of Mos uei?%Stem co-rotatingin the ring plane at distangieom the central

9 ’ 9 d anet. Letx andy denote the radial and circumferential direc-

(1996) who simulated perturbed states of a dense planetary rﬁ%%
and found that the criterion for viscous overstability given anit
Borderieset al.(1985) is fulfilled for parameters of the outer sat-
urnian B-ring ¢ ~ 1.8) but not for the uraniaa-ring (r ~ 1).

The paper is organized as follows. In Section 2 we display the

hydrodynamic balance laws of mass, momentum, and ene(gyareq —

) - . JGM/rd, is the Kepler frequency ab. The ther-
together with the constitutive equations for momentum and heat : A
modynamic fluxes of momentun®{, and gnergyf() are related

flux and derive the linearized equations that yield the linear, . . . _ . :
instabilities of the basic stationary flow. In Section 3 we briefl?ontsrzlzr_ rie:pectlve thermodynamic forc&lf, VT) via a linear

discuss the time asymptotic, linear stability of non-axisymmetric
perturbations and in Section 4 we derive expressions for the A

) ere, we employ the thin-disk approximation, i.e., vertical de
H%es of freedom are integrated awtis the ring’s surface den-

s}fy, andP, §, andT are vertically integrated quantities. The
in-disk approximation is motivated by the extremely smal
|9kness of the saturnian rings and it is justified a posteriori b
Rle guantitative match we achieve between the theoretical rest

in that system. The linearized central gravitational force pe
mass expressed in that frame is

F = 30228, — 2Q8, x U, )

growth rates of the linear oscillatory instability and the linear Pap = apP = 21Dap = dapE Vi Ly 3)
eigenfunctions at marginal stability. In Section 5 we compare
these results to data obtained from simulations, and finally in
Section 6 we summarize our results and discuss the limitations = >
q=—«pVT. (4)

and possible extensions of the model, as well as the implications

to Saturn's rings. The transport coefficients, &, and«p are the vertically inte-

grateddynamicshear and bulk viscosity and the heat conductiv

2. THE HYDRODYNAMIC APPROXIMATION ; 3 o
ity, respectively.D is the traceless shear tensor

2.1. Basic Equations

1 2
We describe the ring as a vertically thin, self-gravitating, vis- Dap = 5 (eruﬂ + Vgl — §5aﬁvxux>- ®)
cous fluid disk, consisting of inelastic, uni-sized, smooth, spher-
ical particles. The mean fields of surface densifyelocityd, With these constitutive equations the balance laws are the cor
nuity equation, Navier—Stokes equation, and heat-flow equati
11t seems that the name “overstability,” being somewhat counterin'[ui'[ivg,]c viscous hydmdynamlcs’ extended by the COOImg function

actually is motivated by this picture. The naming can be traced back to &p they are used in the theory of granular matter flow (Jenki
Arthur Eddington (Chandrasekhar 1981, p. 3). and Richman 1985).
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The self-gravity potentiap satisfies Poisson’s equation DT 2 dv  du
—PV.li-3Q + —
Dt 3% ax ay
V2¢ = 4rGo §(2), (6)
9, <8n on )
+-Q o+ —=| T
whereG is the gravitational constant aidgz) is Dirac’s delta 4 30 | 9T |o
function. A solution of this equation is (see, e.g., Binney and
i r r
Tremaine 1987) (9 0 T) 4+ koV2T
80 aT |,
2nG
d(X,y,2) = —WU(K y) exp{—K|z|}, (7) 26
#0) = =S 0 ®)

wherek is the inverse of a typical length of variationssgfwhich

we will identify with the modulusofthewavevectorofharm0n|q_|ere D/Dt = 8 — 3Qx3y is the material derivative and the
density perturbations in Section 2.2 (see also Julian and Toomre

1966; Goldreich and Tremaine 1978b). For the stability of the

thin-disk this equation is of interest at= 0. TABLE |
Please refer to Table | for a list of symbols used in this List of Symbols
papetr.
Symbol Definition
2.2. Linear Stability
N Rp Particle-radius
Let X, U, andT, denote the state variables in the stationary Uniform ground state surface density
state andpy its self-gravity potential. For a local region of as Local perturbation from ground state surface density
planetary ring,, To, and¢o are constants in our model. WeY. U Ground state velocity, local perturbation velocity
neglect a secular, viscous inward drift of the ring particles, 4s Radial velocity perturbation
Tangential velocity perturbation
well as the small influence of the planetary oblateness and they Ground state temperature (velocity dispersion), local
disk’s self-gravity potential on the orbital frequency, and wrlte perturbation
for the velocity of the stationary staté = —(3/2)Q2(ro)x€y in o, ¢ Ring’s ground state self-gravity potential, local
the co-rotating frame. Now we allow for small perturbations perturbation
0, T, ¢, andi = (u, v) of the stationary state. Linearizing and’ Opticaldepth
. f L . . C Effective velocity dispersion
inserting the constitutive relations (3, 4) in Eq. (1), we obtaig Kepler frequency
linearized balance equations neglecting terms that are higher Gravitational constant
than linear order i, T, G, and their derivatives. Introducing g = =X Dimensionless gravity parameter (inverse of Toomre’s
the ground statkinematicshear and bulk viscosity and¢ we parameter)
find F Central gravity
P Pressure tensor
Do . D Traceless shear tensor
—__ =—_YV-.Uu q Heat flow vector
Dt r Energy dissipation due to inelastic collisions
p Scalar pressure
Du 1 ( 80 p 5 n, v Dynamic and kinematic shear viscosity
— = — — ) + vV £, ¢ Dynamic and kinematic bulk viscosity
Dt X 8 KD, K Dynamic and kinematic heat conductivity
77 9T k Modulus of radial wavenumbgr
Po. Pr Density and temperature derivative of the total pressure,
( do 8y ) taken at the ground state
No» N7 Density and temperature derivative of the dynamic shear
( ) L) — — viscosity
Iy, Tt Density and temperature derivative of the cooling function
Er= %FT - %WT Temperature derivative of the radial energy balance
Dv 1 1 /ap 8p w Complex growth rate of overstable modes
— = ——Qu— — < ) + W2y B = g,'gg; Exponent of density dependence of the kinematic shear
Dt 2 2 3y aT 0y viscosity
( n| 8o 377 9T ) s Oscilla_ti_on frequency of overstable modes near marginal
| —= stability
do 00X ¥1,2 Marginal eigenvectors of overstable modes
( > G 8¢ . - .
+ — 2 |n Section 3 the total wavenumblee= +/m?2 4 n2 with azimuthal and radial
ay componentsn andn.
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symbol |y denotes that the respective differentiation is taken afth time dependent amplitude functiong(t), ug(t), v (t),
the system’s ground state. The perturbations in the self-gravifyt). Allmodes with initial radial wavenumbéare “wound up”
potential can be expressed through the perturbations in the deith time by differential rotation unless they have a vanishin
sity by use of the last equation. azimuthal wavenumben.

We scale time with the inverse orbital frequery?, den- The solutions (11) with continuous wavenumbers descrik
sity with the ground state quantiy, and velocities with the an infinitely extended system. Periodic boundary condition:
effective velocity dispersion, and length is scaled lyy 2. The as for example used in local simulations, require a discrete ¢
effective velocity dispersior is defined via thdotal ground of m and n, commensurable with a length of periodicity. In
state pressure as shearing coordinates the dependence of the linearized equati

onthe radial coordinateis turned into atime dependence. Thus
p=c?%. (9) We obtain for the amplitude functions a set of linear ordinar
differential equations with time dependent coefficients

The effective velocity dispersiardeviates from the ground state

velocity dispersion/T as it includes also the effect of nonlocal ot ot
pressure. Inwhat follows, all variables and parameters are scaled l_Jt = M(t) Ut i (12)
quantities, their notation is unchanged. Further, we introduce the Ut Ut
parameteg = 7 GX /(c2), which accounts for the influence of T T
the system'’s self-gravity. The parametgis the inverse of the )
Toomre parameter (Toomre 1964). where M is the coefficient matrix that depends on time thr-
oughn
0 —in —im 0
G (298 — 3p,m—p,n) —(vm?+n?(3v +¢)) 2—nm(4 +¢) —i(3n:m+ pn) 13
(298 = 3n,n—p,m)  —1/2—nm(3+¢)  —(vn?+m2(3v+¢)) —i(3nmn+ pm)
30, — 2T, —i(2mv + %pn) —i(2nv + £pm) —E, — 3kk?
Here k = v/m? + n? is the modulus of the wavenumbevl
In short, we define is the Jacobian matrix of the nonlinear Egs. (1) in Fourie
ap ap space.
P =3 o pT_aTO
forthe derivatives of the total pressure (including alocal and non- 3. ASYMPTOTIC LINEAR STABILITY OF
local part) and equivalent symbols for the ground state deriva- NON-AXISYMMETRIC PERTURBATIONS

tives of (scaled); andT". Note thatp, does not reduce to the
temperature of the system whenhas a nonlocal component.
Further we write

We derive expressions for the asymptotic (large time) be
havior of the solutions to Eq. (12), following the treatment o
Dubrulle and Knobloch (1992) of a similar system of equation

E, = ZB_F _ §3_’7 , (10) for compressible plane Couette flow. We assume that for lar
30T |, 20T, times the solutions can be expressed in the form
describing the linear reaction of the ground state radial energy R
balance to variations in temperature. Ot o
We take non-axisymmetric perturbations of the stationary U | _ Lj explo(t)). (14)
state (although we will focus in the stability analyses in Section 4 Ut v
on purely radial perturbations) with azimuthal wavenuminer Tt T

radial wavenumben = | + gmt in shearing coordinates (see,

e.g., Goldreich and Tremaine 1978b) Then 6(t) is given by the eigenvalues of the coefficient
o) matrix (13). Since the highest order bin Eq. (12) ist? we
seek for function®(t) that can be expanded asymptotically

_ U (t) . 3 .
= wt) exp{'('*ﬁ’“t)”'my}’ S

Ti(t) 6 =at’+ait+ag+aq/t---. (15)

— < < Q
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When we expand additionally th¢ R termin Eq. (12) asymptot- 4.1. Growth Rates
ically in powers of ¥t we get a sequence of eigenvalue problems
(atorderg?,t, 1,t%, ... ) that yields four distinct solutions for
each coefficierd . Inserting they; in Eq. (15) the corresponding

The characteristic equation bf for m = 0 yields a real local
dispersion relation connectingand the modulus of the radial

four solutions for the functiod(t) are in leading order it wavenumbek
p,t 0= fo(k) + fr(k)w + fa(K)w? + fa(K)w® + *. 17)
b= —7 + 0(1)
§V + ;

For the kinematic shear viscosity we assume a dependence
6, _}K M2t + O(t?) the surface density of the form (Schmit and Tscharnuter 199¢
2
3 (16) v xof. (18)
03 = —= vm?t3 + O(t?)
4 The assumption of a constatis justified for small amplitudes
0n = 3 (‘_‘v n C) M2t + O(t?). of the density perturbation. Howevett.can be varied with the
4\ 3 ground state densify, thus serving as an order parameter in the
analysis. The derivative of the dynamic viscosity with respect t
Thus, all non-axisymmetric modes direearly stable? decaying density then reads
asymptotically as exy. Every small non-axisymmetric pertur-
bation is “wound up” by the differential rotation of the system; ne = v(B + 1). (29)
its radial wavelength tending eventually to zero.

The linear stability of modes witln £ 0 does not mean, how- The functionsf; are given in Spahet al. (2000) in terms of
ever, that the spontaneous formation of non-axisymmetric strusiscaled quantities in the notation of Eq. (8). Here, we expre:
ture isimpossible in this system. The set of equations (12) allowee dispersion relation (17) in the form
for transient growth of small initial fluctuations that can even
grow in the nonlinear regime, thus violating the validity of the, > ,2( 2 3 >
linear approximation, and may locally change the ground stgee_ prk (_k (51“5\; + 5(1 + A )
considerably (Dubrulle and Knobloch 1992). In the context of > 1438

g

I, +

the excitations of density waves in galaxies this amplification 3 3

mechanism has been discussed for a similar (but non-viscid)
system for instance by Julian and Toomre (1966) and Goldreich
and Tremaine (1978b). In a planetary ring the gravitational inter-

action of non-axisymmetric structures may give rise to gravita-

tional wakes (Salo 1992a). In Saoal. (2001) we showed that + w(% P+ K2y <f'v + §>)> + DiSO<ET + EKZK + w)
in simulations such gravitational wakes in general coexist with 3 3 3

the purely radial oscillating density pattern formed by overstable (20)
modes of axisymmetric perturbations. In this study we focus our

attention on the radial structure caused by overstability, formipghere

spontaneously from the homogeneous ground state. Thus, we

investigate the casm = 0 of Eq. (12) in the following section , _ 3 +w2k2<zu n C)er(l— 2K+ p, K2

in greater detail. 3

2 2
v+ ékzvp>a) + 3 pw2>

2 3
+ 3nTk2(—§Fo + 5(1 + B)v + p,k?v — 2kvg + vaw?

4
4. THE AXISYMMETRIC CASE + k4v(§v + c)) + vk2(3(1+ B) — 2kg + k? p(,>.

Here, we address the case= 0 of Eq. (12), so that the coef- (21)
ficient matrixM is now independent of time. Then the time de-
pendence of the hydrodynamic variables is of the forn{ekp If we neglect nonlocal contributions ta, thenDjs, = 0 is the
and the complex growth ratesof infinitesimal perturbations of dispersion relation calculated by Schmit and Tscharnuter (199
the ground state are given by the eigenvalues of the linearizglich is contained as the isothermal limit in our model (see als
equations in Fourier space. Spahret al. (2000)). Namely, for finitey;, p;, 'y, and arbitrary
but fixedw andk, the relationD;s, = 0 follows from the fourth-
order, non-isothermal dispersion relation (20) in the limit of
2 Provided thatp, > 0, as is the case here, although in an ensemble of diLmcinite heat conductivity. This limit is physically clear, since

sipatively colliding particles the temperature can in principle lieereasing @ large heat CondUCti\{ity rapidly qumhes out ﬂUCtU?tion_S i
function of the density (Petzschmaahal. 1999). the temperature, leading eventually in the mathematical lim



OVERSTABILITY IN THE B-RING 321

k — oo to the isothermal system from which the dispersion réag when temperature is increased over the ground state val

lation Djso = 0 is derived. Similarly, the isothermal dispersiorand vice versa when the temperature is decreased. The sec

relation is obtained foE, — oo, whereE; gives the inverse of term, proportional tck?, corresponds to a hydrodynamic heat
the relaxation time for a thermally excited system (see Eq. (28iffusion mode, with the termx « which is purely damping.

below). For the parameter values of the dispersion relation we have ¢
In order to gain insight into basic properties of Eq. (20) wiermined in simulations in Salet al. (2001) (see Table IlI)

now seek for approximate expressions for its solutions that e is indeed positive in all cases and dominates the other tv
valid for large wavelengths. We expand the growth rai@gg in  terms in the expansion®. Also, we have—x > F;. The sec-
powers ofk as ond and third modes have complex conjugate growth raf@s
and »® which will give overstability for appropriatg. The

(k) = b + bk + byk?. ... (22) termsF, and F3; contain the corrections due to the heat flow

equation at this order, the other terms already following fror

Inserting this relation in Eq. (20) and equating each powds ofthe isothermal model. In the isothermal model the imaginar

separately to zero yields four solutions for theand thus, four part of @ and »® is the Keplerian frequency with correc-

approximate solutions() (k) which read to ordek? tions due to self-gravity and pressure forces. The real pal
yield an expression for the stability boundary in the the limi
2
(k) = —E; = K*5c + K2Fy + O(K) 23 * 7>
1/¢ 2
k2 k2 o _ (2 __
w(Z)(k) —j |:1 —gk— 3(92 —p)+ EF2:| Ber 3 (v 3> (27)

2 k2 3 so that long wavelengths become overstable # g3 which

TS [" (5 + 3ﬁ> - 4 + 5 F+0K) (24) \vas already derived by Schmit and Tscharnuter (1995). A sin
ilar criterion was given by Papaloizou and Lin (1988) (Eq. (43
0¥k = 0@ (K) (25) of that paper), which results in Eq. (27) when bulk viscosity i
3 2 included in their analysis. An exact expression for the line ¢

|:—v(1+ B) — —Fa}k2+0(k3), marginal stabilityBe (k) for the isothermal model is given in
2 3 Section 4.2, where eigenfunctions of the hydrodynamic equ
(26) tions are derived at marginal stability. The fourth mode witt
growth raten™), corresponding to the viscous instability, is agair

o®(K) = —3vk3(1+8) — 3%

where purely real. It reduces in the isothermal limit to
F—_ P (2 ro_,it88 2 p> 3 o® - 32 (1 + B) + O(K3) (28)
1+ E2\3 2 3 E.(1+ E?)
) leading to the stability criteriof8 > —1 which is equivalent
< R E p— { 1+B)+E }) to the conditions derived by Lin and Bodenheimer (1981), an
Ward (1981).
P 2 2 1+ 38 3 Since we introduced with the heat flow an additional diffu:
Fo=— 1+ E2 (51“0 Er — 3F 2 T) + 1+ E2 sion mechanism in the system the terfsand F3, which are
T ! not present in the isothermal case, can be expected to hav
<2F + ZET p— 1 + 313) primarily stabilizing effect, as we have argued in Spathml.
3 3 2 (2000). This is confirmed by the quantitative comparison of thi
study presented in Section 5.
F p: <2F +2Ep 1+3ﬁ) 3nr
= - Slo sErP—V -
3 1+ E2\3 3 2 1+E? 4.2. Eigenfunctions
2 2 1+38 Here, we determine the overstable eigensolutions of the h
x| =z[ Er—=p—v E: ). ) R . o
3 3 2 drodynamic model, for simplicity in the isothermal limit, since

here the expressions can be given analytically in a comps
The mode with purely real growth rai&®) is connected to the form. The inclusion of the energy-balance equation leads to r
thermal stability of the system. The leading wavelength indgualitative differences in those properties of the linear eigel
pendent termE, describes the dependence of the radial eselutions which we will eventually compare to simulations
ergy balance between viscous heating and collisional coolingmely the phase differences and amplitude ratios of the pe
on variation of the temperature (see Eq. (10)). For stablity turbations ino, u, andv. For example, the phase differences ir
has to be positive, requiring the cooling to dominate the hedlte non-isothermal model, taken in this case from numerical
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determined eigenfunctions, yield the same results. HoweverThe expression under the root is always positive in the regirr
is important to note that the stability boundary itself is changed parameter valuesg( p,, v) that are of interest here. The

considerably when thermal effects are included. corresponding marginal eigenvectors read
Restricting our attention again on purely radial modes the o
matrix (13) reduces in the isothermal limit to 2Kk(ivk® +s)
oL = 2s(i vk? + s) (33)
0 —ik 0 . .
. _ (vk? —is) (14 [2v + ¢ ] [vk? + is]k?
M=| ig—pk K (Fv+¢) 2 |, (29 ( [_3 , ] )
Sido(i4 gk —1/2 —kPy 2k(ivk® —s)
o = —2s(i vk? — ) . (34)
which leads to the third-order dispersion relation given by (k% +is) (14 [3v + ¢] [vk? —is]k?)

Eq. (21) anDis, = 0. This dispersion relation has two marginal
curvesinthex, g)-plane. The firstone, for the purely real eigenThus, a solution in the overstable subspace to the linear proble
value, reads at marginal stability reads

vi Zg B pﬁk a . . . .
or (K) = k73 -1, (30) u | = Agrexplikx — ist} + B g explikx + ist} + c.c.
v

(35)
For A = 0 orB = Othese are left moving or right moving waves

o F2k[scosk t+ k x) + vk?sin(st £+ k x)]
(u) x 25[scos6 t £ k x) + vk?sin(s t = k X)] (36)
V/r  \cosetxkx)k?[v+ (3v+7¢) (k2 +?)] —ssinttkx)

and for A = B we obtain the standing wave solution

u 2 cosk x)s[scosE t) + vk?sin(s t)] . (37)

(0) 2k sink x)[ssin(s t) — vk? cosé 1)]
X
v/s \coskX)[{v+ (3v+¢) (kK*'?+s?)} k?cosk t) — ssin(s 1)]

In the limit of long wavelengths these solutions yield simple
separating thej(, )-plane in a region of viscous stabilify > phase shifts in the variablesu, v, which are given in Table II.

I (k) and instabilitys < B2 (k). In the large wavelength limit The phase shift between density perturbations and the thern
it reduces to the conditiofi < 1 for viscous instability given excitations that are also given in that table have been obtain
above. The second marginal curve is for the two oscillatofygom a numerical solution of the eigenfunctions of the non
modes (for long wavelengths given by Egs. (24) and (25), withothermal model.

F, = F3=0)
5. COMPARISON OF THEORY AND SIMULATION

1/¢ 2 1/4 ¢
ﬂcr(k)=-<——-> -<—+—> o |
3\v 3/ 3\3 v In this section we compare the results of the hydrodynami
7 model to 3D local N-particle simulations for meter-sized par
x <pgk2 —2g9k+ [év +€}Uk4>v (31) ticles at high optical depthr(= 1 and 2). The simulation box
is located at a distance of 100,000 km of a mass point of or
separating regions of viscous overstabifity- A (k) and sta- Saturnian mass. For the inelasticity of the particles we take tf
bility B < Ber (K). standard formula of Bridgest al. (1984) for an impact velo-
The two overstable eigenva'ues of the mataxat margina' C|ty dependent coefficient of restitution. For a deSCI‘iption of th
stability 8 = (k) are purely imaginary, nametytis, where ~ Simulation method see Salo (1991, 1995).

4
sS= \/1 — 29k + p, k2 + <—v + C) vk4. (32) 3The other eigensolution with growth rate® (given approximately by
3 Eq. (28)) will decay rapidly foB = Bcr (k).
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TABLE 11 sity, the temperature, and of the dissipativity of the collisions
Spatial Phase Differences in the Hydrodynamic Model They can be calculated in the framework of kinetic theory fo
dense systems, using Enskog’s extension of the Boltzmann eq
Standing Left traveling Right raveling tj5y (Chapman and Cowling 1970), to the desired order in th
wavée wave wave

Chapman—Enskog expansion. For granular gases transport cc
ficients have been derived in the limit of nearly elastic collision

Phe)-Ph() +7 P 0

Phe)-Ph() —z —z —z to Navier—Stokes order (see for instance Jenkins and Richm
Ph@)-Phi) 0,7 -z z 1985; Lunet al. 1984; Garp and Dufty 1999) and to Burnett
Ph(T)-Ph@)° 7.0 -z z order (Selaand Goldhirsch 1998). However, it is known, that, fc

instance, the dependence of the viscosity on the density and |
& Two given values refer to the respective temporal phase of Eq. (37).  temperature in a planetary ring (Goldreich and Tremaine 1978
b Phase differences for the eigenfunctions of the non-isothermal model hwers drastically from that in a sheared granular flow. The mai

been obtained numerically. They are in agreement with the phase differences o s . . .

the isothermal eigenfunctions given by Eqs. (36) and (37). ?eéson_ for thlg is that the part_|c_les in the ring move on curve

Keplerian orbits between collisions (Goldreich and Tremain

1978a). A similar difference cannot be excluded for the othe

lWansport processes. Thus, since we want to derive quantitative

The simulations show overstable behavior when self-gravi
is taken into account (Fig. 1). In Saéa al. (2001) we demon-
strated this for different ways of incorporating self-gravity in
the simulations, i.e., full particle—particle gravity interaction and
mimicking the effect of gravity with an enhancement of the fre-
quency of vertical oscillations (Wisdom and Tremaine 1988). In
both cases we observe similar overstable perturbations in the sys-
tem, indicating that overstability is not bound to the self-gravity
itself but rather to the corresponding changes in the viscous
properties of the system. Figure 1 refers to the case of enhancec
Q, = 3.6Q2 andr = 1. Starting from a uniform ground state, —20E
the simulated system rapidly develops radial oscillations on a -1000 -500 0 500 1000
100-m scale in all the state variables, including the temperature.

—- [\]
[= -]
FETTITTITEE

1
—

TANGENT. COORD. [m]

The maxima in surface density correspond to maxima in the Q Lo C ' ' ' ]
thickness of the system. 2 N L S A S ) 3

In the case of direct particle—particle gravity we observe ad- ;'f_l oy /’\ "‘ '\\ N h oy -
ditionally the occurrence of gravitational wakes, i.e., a non- == C /' ‘v/ \,/ ‘\_, \ J' N v/ \j' \v/ -
axisymmetric structure with characteristic angle of inclination, E 0.5 MMWM
wavelength, and amplitude. The relative intensity of both types £ - ]
of structure depends for a fixed optical depth on the particle bulk < 0‘?000 5'00 (') 5(')0 1000
density (Sal@t al.2001). As already mentioned in Section 3, the - -

0.6

nonlinear non-axisymmetric gravitational wakes are not covered
by the analysis of this paper. Consequently, we restrict our atten- 0.4
tion on simulational systems that consider self-gravity via the 02
enhancement of the vertical frequency, leading to purely radial > 0.0
structure. Also, in this case the system has a stationary groundgg' -0.2
state, from which transport coefficients and other parameters 2 —_g.4
needed for a comparison to the hydrodynamic model can be ob-&i -0.6
tained, as is described in Sabal. (2001) for different values of -1000 -500 0 500 1000

the enhancement factor of the frequency of vertical oscillations RADIAL COORDINATE [m]

2,/ = 1,20, 36 All the exa}mples in this SpCtIOI’) refer t(,) the FIG. 1. Perturbations of the state variables due to overstability in a simt
case2,/ 2 = 3.6 if not otherwise stated. An inclusion of direCliation with optical depth = 1 and particle-radius 1 m after about 1000 orbital
particle—particle self-gravity, and thus the presence of gravitavolutions. The saturnocentric distance was 100,000 km in this simulation al
tional wakes, will at least alter the ground state of the systethg self-gravity was mimicked by an enhancement of the frequency of vertic
However, we emphasize, that the grovvth of radial overstamg:illations. The upper plot shows the particle-positions projected in the plar

. . . . z = 0 of the simulation box. Here, orbital motion is upward; the planet is to th
modesis retained also with full self-gravity (see Sztlal.2001). left. Clearly visible are the radial perturbations on a 100-m length scale due

overstability. The plot in the middle shows the local velocity dispersion (soli

5.1. Transport Coefficients line) and(|z|)/Rp (dashed line), which is proportional to the local thickness,
o . o whereRy, is the particle-radius. The lower plot shows the perturbations in th

Ingeneral, the transport coefficients in the constitutive EQgs. (3}ial velocity (solid) and in the shear corrected tangential velocity (dashec
and (4), and the cooling functioR are functions of the den- The phase differences are characteristic for (right) traveling waves (see Table

EL. [em/s]

PER
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TABLE 111
Ground State Parameters?

T Q,/Q  clcm/s] v /v kv plocal Py pr Er Ny s B

0.5 3.6 0.048 0.348 3.10 6.48 0411 179 1.28 0.720.031 1.34 0.67

1 3.6 0.064 0.357 214 417 0.160 219 135 2.506-0.280 1.74 1.15

1.5 3.6 0.086 0.342 199 414 0.091 241 168 3.780.363 1.67 1.19

2 3.6 0.106 0.322 212 409 0.064 272 277 451 0.378 184 1.55
2 1 0.051 0.336 2.13 5.16 0.26 1.85 150 1.310.05 1.42 0.87

2 All the quantities are dimensionless, excluding the effective velocity dispecsidrich is given in cm/sv
is scaled with2/c2, p°@ with £c?, p, with ¢, pr with £, Er with £, 57 with £/, andI’, with Qc2. To
relate to the figures and tables of Salal. (2001), velocity dispersion has to be scaled W& and transport
coefficients withR3 <.

the growth rates of perturbations together with the correspondiofya few tens of orbital revolutions, depending on wavelengt
wavelengths, the granular transport coefficients are too uncertaid optical depth of the run. To facilitate the determination of th
for our purposes. growth rates we superimpose a small initial seed to the stationa

In Saloet al.(2001) we described the determination of transstate in form of low amplitude harmonic perturbations in solely
port coefficients in direct N-body simulations for identical inthe radial velocity of the simulational system. An example of the
elastic particles of 1-m radius, the self-gravity approximated bgeasurement of the growth rates from a simulation with optics
an enhancement of the frequency of vertical oscillations. For teptht = 1 is shown in Fig. 2 on a logarithmic scale. Linear

velocity dependent coefficient of restitution the formula fits yield the growth and decay rates in density and radial ar
tangential velocity for the different wavelengths. The amplitud
—-0.234 . . . .
(1n) = Un (38) in the density perturbation of longer wavelengths may decay in
€nitn) = tially before the overstable growth sets in, but then the growt

rates in all the three state variables are practically the same. T
obtained experimentally by Bridgest al. (1984) was used. growth rate is positive for all wavelengths larger than a criti:
Here,vn is the normal component of the relative velocity of theal wavelength (in the example with= 1 about 80 m) and is
impacting particles angs =0.077 mm/s. These transport coeffimaximal for an intermediate wavelength (100 mfoe 1). For
cients are used here as values for the parameters of the dispergigfes that are shorter than the critical wavelength we determi
relation (20) so that the overstability observed in simulations afi§e decay rates of the initial seed perturbation which can also!
in the non-isothermal hydrodynamic model can be compared @bmpared to the model predictions. The growing longer mode
rectly. The relevant parameter sets are displayed in Table lll.soon start to excite shorter modes and so the short perturbatic

All the quantities given in Table IIl are dimensionless (exstart to grow again. This is a nonlinear effect that already sets
Cluding the effective VelOCity dispersi(m). Time is scaled with Shorﬂy after the beginning of the overstable growth_
the Keplerian frequency, the numerical value we will us@ is: Using the transport coefficients we have determined in Sa
1.95x 10 *s™1, the value for a semimajor axis of 100,000 kngt al.(2001) as parameters for the hydrodynamic model we fin
in the saturnian system. Length is scaled wfif2, velocity that the inclusion of the energy balance equation has a stabil
with ¢, and density with the ground state density Thus, the ing effect. The boundary for the onset of overstability is shifte
total ground state pressure is unity and the ground state tempgthigher optical depth as compared to the isothermal model.
atureTy is equal top'°*@ in this scaling. Note that the numericalparticular, the isothermal model predicts overstability for sys
value of the ground state density does not alter the analysisdfns that are found to be stable in simulations. An example wi
the non-self-gravitating case, or, as in this study, if the effegptical depthr = 2 and2,/Q = 1.0 is shown in Fig. 3.
of self-gravity in the simulations is taken into account by an The upper plots show stability diagrams that are obtaine
enhancement of the vertical frequency. from a numerical evaluation of the dispersion relations for th:
isothermal (left) and the non-isothermal model (right) using th
parameters obtained in simulations (Table Ill). The growth rate

In simulations that start from a stationary state we observe tberresponding to overstability are the real parts of the two conj
formation of oscillating radial perturbations in the mean surfagate complex solutions of the dispersion relation. The lower plo
density, as well as in the non-systematic radial and tangential @gésplay the growth and decay times following from the stability
locities, and in the velocity dispersion (Fig. 1) (see also 8&d.  diagrams for the isothermal and non-isothermal case. In quan
2001). We follow the development of the Fourier modes of thetative agreement with the direct simulation the non-isotherms
perturbations, tabulating them 40 times per orbital period, anmibdel predicts an exponential decay of oscillatory modes of &
observe an initial exponential growth with characteristic timegavelengths. Generally, for systems without enhancement of tl

5.2. Initial Growth Rates
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Example of the measurement of the growth rates from a simulation with optical depth. The amplitudes of the Fourier modes of overstable

oscillations in the optical depth (lower curve), and the radial (upper curve) and tangential velocity are tabulated 40 times per orbital leneatifits. yield the

growth and decay rates for the different modes. The unit of the velocity amplitugeRjsand the amplitude of the optical depth perturbation is normalized b

the ground state optical deptl

h.

ISOTHERMAL, 1=2, Q/Q =1.0

20 TN T T /' T
X 1\\/9 S o / S Q/ ]
= - ; S .
S 1.5_— i & -
o B | ]
> X . .
\ = .‘ -
3 10 =088 3 -
o - E i
L - = b
T osF - Lo == Re(w) =0
Q B N - 0 O 7
RN = 00 ]
ool R
10 100 1000
— ISOTHERMAL £=0.88
v  10*
@ 10°
@
o 102
w g0
=
= 1o°
(29 N
= _ O
= Tio ++
l-II' -10? ++ -+ +
2 -0 F+1
:104 +
10 100 1000
A[m]
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vertical oscillations demonstrates the shift of the stability boundary between the isothermal model (left) and the non-isothermal one (hightpritaédashed

line marks the value g = 0.88 for the case = 2 andQ2;/ 2 = 1 as it was determined in simulations (Saloal. 2001). Thus, the isothermal model predicts

instability for this system while the non-isothermal model is stable. Lower plots: Results from a simulationwithand2,/ 2 = 1 and a radial extension of

the simulation box of 2000 m. Small-amplitude radial seed-perturbations of various wavelengths were superposed to the mean values of deiaignend 1

tangential velocity. All wavelengths are found to be stable; the decay times (indicated by negative 10 folding times) are shown in these plstgalsaiso3$he

decay times are in good agreement with those predicted by the non-isothermal model while the isothermal model predicts overstable growth ofitre mc

A>40m.
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FIG. 4. Upper plots: Lines of marginal stability in the (8)-plane, for systems witlR2,/ 2 = 3.6 for r = 1 on the left and for = 2 on the right. The
dash-dotted line refers to the isothermal case and the solid line to the non-isothermal model. The region above the lines is overstable. Théhbtagerob
equal 10 folding times relative to the marginal lines is analogous to the upper plots in Fig. 3 The horizontal dashed lines mark theguhlaearefrelevant for
these cases as they were determined in simulations ésalo2001). Thus, for both optical depths both models predict overstability albeit with different grow
times and a different wavelength that separates the stable from the unstable region. Lower plots: 10 folding times for theory and simulatioarinedepen:
the wavelength for = 1 andt = 2, Q,/Q = 3.6. Simulational results are plotted as symbols, diamonds for growth times, crosses for decay times, both
simulations with a radial extension of the simulation box of 2000 m. Different symbol sizes correspond to separately determined growth obpeitudesisity
(largest), radial velocity, and shear corrected tangential velocity (smallest). The square symbols in the plot for opticakdepthrespond to growth and decay
times from a simulation with a reduced radial extension of 620 m. Also shown is the asymptotic\jlaedee of the rise times in the plot for optical depth= 2
as a dotted line, following from the approximation (24).

frequency of vertical oscillations we find stability up to opticatlecrease for increasing wavelength, finally going to zero fc
depths as high as = 4. perturbations of a large spatial extension.

In simulations with enhancement of the frequency of vertical In Fig. 4 (lower plots) 10 folding times are shown as pre:
oscillations overstability is observed also at lower optical depthdicted by the hydrodynamic model and obtained from simu
The condition for overstability is roughly given l/> 1. This lations. The agreement between simulation and theory is in
corresponds te > t.,, Wherer,, is slightly less then unity for proved when the energy balance equation is considered in t
Q,/Q = 3.6. Results forr = 1 andr = 2 are given in Fig. 4. analysis. The diamond symbols in these plots are the grow
The lines of marginal stability are shown for the non-isothermtimes obtained from simulations with a radial extension of th
and the isothermal models. In the latter case the stabilizing simulation box of 2000 m. Far = 1 growth times from a simu-
fluence of a larger bulk viscosity > v (as well as nonlocal lation with reduced radial box-length (620 m) are also shown &
pressure) is contained, in contrast to the similar plot in Schnsiquare symbols. The growth times are also practically indepe
and Tscharnuter (1995), where= v was assumed. Basically,dent of the tangential width of the box except for a slight dela)
all perturbations with wavelength larger than roughly 100 m acd the onset of the overstable growth in a tangentially large
found to be overstable for the dense model-rings under considgrstem.
ation (particle-radius 1 m, elasticity law (38)), with a maximum The frequency intensity of the overstable oscillations for thi
growth rate at a somewhat larger wavelength. The growth ratlifferent modes is shown in Fig. 5 as a contour plot from ¢
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mated by2,/ Q2 > 1 the frequency is always larger than the Ke-
plerian frequency. In a system with true particle—particle gravit
the wavelength dependence of the frequency is qualitatively co
ered by Eq. (32). Ignoring the smatk (k%) viscosity term, this
means that all wavelengths smaller than the Jeans-length

(39)

oscillate faster than the Keplerian frequency, and those larg
than i, oscillate more slowly. The oscillation frequencies for
simulations with true particle—particle gravity are shownin Fig.
of Saloet al. (2001).

FIG. 5. The frequency intensity (Lomb periodogram) of the overstable The influence of various parameters on the growth times «
oscillations from a simulation with optical depth= 2, @,/ = 3.6 asacon- the oscillatory instability is shown in Fig. 6 for an example with

tour plot in the {, A)-plane. The solid line is the theoretical curve from the[ = 2. Interestingly, the 10 folding times of overstable mode
numerical solution of the dispersion relation (20). :

suffer a similar shift in the X, 8)-plane when parameters are
varied. An important parameter, already present in the isothe

simulation witht = 2. The solid line is the is the oscillationmal model, is the bulk viscosity. In many studies that were
frequency predicted by the hydrodynamic model as the imagiased on hydrodynamic models it was assumed that the bl
nary part of the conjugate complex solutions of the dispersiorscosity was equal to the shear viscosity. In the simulation:
relation Eq. (20). In this case where the self-gravity is approxdystems we investigated in Sad al. (2001), it is found to
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FIG. 6. The influence of a variation of parameters of the model on the growth times of overstable modes of the non-isothermal med2| foreach plot
a single parameter is varied; the others are kept constant. The respective values as they are determined in simulations are representedneitf laetfaci li
two plots show the convergence of the line of marginal stability toward that of the isothermal model (dashed) in the limit of large heat condlartpatiQr
respectively.
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(dimensional) wavelength scales with the effective velocity dis

— E
::’ E persionc.
} 107 Phe / ORBITS 100 - _ T_he rat?o of_heat conductivity to sh_ear viscosity determine
k-4 E / 50 E in simulations is about 4—6 for the optical depths that have bee
2 0 7 7 investigated in Salet al. (2001). The stability behavior of the
£ 10 E E hydrodynamic model is insensitive to moderate variations ¢
ot - ] that parameter, while the effect of the thermal equation itself i
2 1073 | large, as can be seen from the shift in the marginal stability lin
T F 3 for k — oo, corresponding to an isothermal model. This large
3 104 i ] influence can rather be attributed to the relaxation of therm
100 1000 excitations to a balance of collisional cooling and viscous hea
A[m) ing, which is neglected in an isothermal model. The time scal

of this relaxation is given b§;* (see Egs. (10) and (23)).
FIG.7. The ratio of the amplitudes of perturbations in surface density and

radial velocity plotted against the wavelength for a simulation with optical depth
T = 1andQ,/Q = 3.6. The different lines correspond to different times, start5.3. Eigensolutions

ing with the dashed curve. In course of the time development the ratio approaches . . . . . .
a linear dependence (compare to thick dashed line) on the wavelength that ién Section 4.2 we obtained eigensolutions for a simple isothe

predicted by the hydrodynamic model (Egs. (36) and (37)) for nottoo shortwaveral hydrodynamic model of the ring’s flow. These solution:s
lengths. The duration of the record in this plot was about 1000 orbital periodgyere computed at the critical value of the paramgieisee
Eqg. (37), from the eigenvectors of the linear problem that col
be about double the shear viscosity, a shift that stabilizes tlespond to the overstable eigenvalues. The other eigensoluti
system considerably. Other parameters introduced with the elecays rapidly with characteristic time that is given to leadin
ergy balance that may have a large influence on the growth tinmeder ink by the eigenvalue™ in Eq. (28). In spite of the sim-
are pr, n7, andl',. The dependence of the growth times on thglifications made in the derivation of that solution we observ
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FIG. 8. The phase differences of the state varialdes), andv, andT for selected wavelengths are shown (first three columns) from a simulation wi
= 1. They are determined 40 times per orbital revolution for 50 orbital periods. The last column shows the phase differences summed up over lal) (ove
wavelengths in a histogram with normalized area. The simulational data points accumulate at the theoretical values given by Eq. (37) for seanding wav
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qualitative agreements with the overstable modes in teeall initial seed perturbation has been superimposed on t
simulations. radial velocities we observe in the early stage of the time dk
Fork « 1 and thuss ~ 1, in the model the ratio of the os-velopment phase differences that are consistent with those
cillations of the radial velocity and the shear corrected tangethie hydrodynamic standing wave solution (37); see Table Il. |
tial velocity is about 2 (see Egs. (36) and (37)), which is aldéig. 8 these are shown for 50 orbital periods tabulated from
observed approximately in the simulations, as can be seersimulation.
Fig. 1. This was also found in a numerical solution of the non- The phases of the simulational system accumulate at the tt
linear isothermal hydrodynamic equations far from threshotutetically determined values. From the initial seed perturbatior
B = Ber (K) performed by Schmit and Tscharnuter (1999).  in the radial velocity alone the system develops oscillations i
For long wavelengths the ratio of the amplitudes of the veloall the state variables that keep the characteristic phase diffi
ity perturbations to the density amplitude should be proportionahces of the standing wave solution for more than 50 orbit;
to A (see Eq. (37)). For a simulation we show this ratio in Fig. feriods. In the following development the system shows inte
where the linear dependence inferred from the theory is indemediate transitions to traveling waves which finally displace th
observed (see also Fig. 2). standing wave, as shown in Fig. 9. This transition seems to |
Also, we compare the phase differences of the state variabtesinected with the slowing down of the amplitude growth du
obtained from simulations to those of the hydrodynamic eigeto the nonlinearity.
solutions for standing waves and traveling waves. In the linearln runs without seed perturbations, both standing waves a
regime both are equally good solutions. In those runs where thaveling waves are observed in the linear regime with a muc
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FIG.9. The long time development of typical modes in a simulation With @ = 3.6 andtr = 1. The Fourier amplitudes of perturbationssinu, v, andT
for three different wavelengths have been tabulated 40 times per orbital revolution. The two curves in the upper plot show the time developmeexitd Hredm
minima of the amplitudes of the density perturbation. Only when the system forms a standing wave the minimum Fourier amplitude found in an géippeopri
interval (a few times the period of overstable oscillations) is close to zero. The growth of the amplitude slows down and finally saturates afierBR-ABo
shown are the phase differences of the state variables for these wavelengths in course of the run. With growing amplitude, traveling waves sfemeid be
The phase differences of the mode with 250-m wavelength are consistent with those of a (linear) left moving, traveling wave between orbits 26r dne 70(
222-m wavelength up to orbit 300. These two wavelengths approach later—and the 200-m wavelength from the beginning—the values for the phagathift
moving linear wave (see Table II). This particular simulation develops a right traveling wave. In other simulations left traveling waves atk dheesiveulation
method, using linearized equations of motion for the particles, is invariant under the inversionrx andy — —y of the radial and tangential coordinate.
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more rapid transition to traveling waves only. The travelingarticle—particle self-gravity leads to a similar enhancement ¢
waves seem to be the preferred state of the nonlinearly satwe collision frequency and overstability is retained in this case
rated modes. Even in the nonlinear state the simulations shasvdescribed in Salet al.(2001). Direct gravity leads, however,

the phase differences of the hydrodynamic eigensolutions (3&)the formation of non-axisymmetric gravitational wakes whict
i.e., for right traveling waves and left traveling waves, respethen form an altered spatially inhomogeneous ground state f
tively, in spite of the fact that the hydrodynamic solutions are ring’s flow with different viscous properties. Such system
strictly valid only at marginal stability. The phase differenceare nearer to the threshold of overstability for plausible paran
for the respective types of solution of the linear hydrodynaméters, when compared to the treatment with vertical frequen
model are displayed in Table II. enhancement. Since in the case of direct, particle—particle se
gravity the marginal curve has a minimum for finite wavelengtt
(see Eq. (31)) it is possible that overstability is then restricte

The hydrodynamic model for a dense planetary ring propos%oda band of wavelengths around the wavelength of maxim.

in this paper, being a generalization of the isothermal model i rowth.

vestigated in Schmit and Tscharnuter (1995, 1999), successfugﬁur swfnulz_itl(_)ns dandt_trlle h¥ﬂrodynatm|c modelhdeatth{th I(
describes the initial development of radial oscillatory mod S enf"n 0 l.m"Z'.Z?.bp?r Icles. ldel?uetshlon_arlses ow tebl'rl]'f
in direct N-particle simulations. The model yields the corre on ora size distribution would alter the VISCous overstapiiity

phase shifts between the state variables, the amplitude ratl Q,ﬂ;e ?}/drodynzmlc 'Iteviahl this would Ieadotlo sllml_ltar ba(;an(fe
the growth rates, and the oscillation frequencies of the ov gwsforthe mass density, the mass-averaged velocily, and Vel

stable modes. Overstability leads to the formation of a radfgf dispersion, as in the uni-sized case but with modified trans

structure in the ring, growing exponentially in the linear regimé),Ort coefﬂments,_coollng fun_ctlon, and _equatlon of_state, Wh'd
tg@uld now contain contributions from different particle species

6. DISCUSSION

on atime scale of afew tens of orbital periods. Perturbations witf] . ) - .
ce the viscous properties of a collisional system are main

a characteristic length of more than about 100 m are oversta . . o
etermined by the largest patrticles, the overstability of a sy:

with a maximum growth rate for a slightly larger wavelength. ith size-distributi daai . il diu
For a quantitative agreement with simulations the inclusidf™ VIV(; slze- bIIS rou |0tn an fa given n:jammtgrr parflihe-tra ('j'“."
of the hydrodynamic heat flow equation in the model is neced ou'd FESEMUIE a System of Uni-sized particies ot that radi

sary. In particular, an isothermal model would predict osciIIaYyIth somewhat lower optical depth. Thus, the growth rates ¢

tory instability also for non-self-gravitating systems, which ig)verstable modes are expected to be smaller. In Fig. 5 of Se

not observed in our simulations even at optical depths as higheégli:;rézrggtliglasir:lijlgt'ﬁgjtlig)";"’(‘r”)‘pler'fgs?oogrgoi ? sysétir]r; wit
- = . < s

7 = 4. Crucial for the onset of overstability is the higher colli? N ; . . .
sion frequency in a self-gravitating system compared to a no\/r\‘her_e oversta_lblhty IS obseryed, althoth it requires higher di
self-gravitating one of the same optical depth. Other importaﬂpat'on than in the case of identical particles.
factors are the appropriate values for the transport coeﬁicie%ta
of the ring’s flow, the equation of state, and the cooling function ™"
that accounts for the collisional energy loss. These have beefhe inclusion of the energy-balance equation stabilizes lo
determined from simulations in Sadt al. (2001) and are used optical depth rings in our model, in contrast to results of previou
here as parameters in the hydrodynamic model. In this way tlkethermal studies (Schmit and Tscharnuter 1995). The criteric
hydrodynamic balance laws provide a satisfactory descriptifor oscillatory instability we find is8 = dlogv/dlogo = 1 in
of the simulated dense systems. accordance with direct local particle-simulations that demor
strate the spontaneous development of overstable oscillations
high optical depth particulate rings. In spite of the stabilizing ef
In general, hydrodynamic modeling assumes that the velocfgct of the energy perturbations our self-gravitating simulation
dispersion of the system can be described by a scalar valakso indicate that the threshold of overstability falls in the mids
However, in a planetary ring the diagonal components of tioé the range of plausible B-ring parameters.
velocity dispersion tensor are unequal in general and its principalThis stability boundary is in agreement with the simulation:
axes are not aligned with the radial and tangential directionarried out by Mosqueira (1996) who verified that the criterior
(Saloet al.2001). The neglect of this anisotropy becomes mofer viscous overstability in perturbed rings, given by Borderie:
severe for systems of lower density. A better theoretical base @dral. (1985), is fulfilled for the outer saturnian B-ring ¢ 1.8)
the description of the ring’s flow is provided by kinetic theorybut not for the uranias-ring (r ~ 1).
and thus, the task of investigating directly the kinetic balance Thus, viscous overstability is a promising effect to explair
laws for an oscillatory instability should be addressed in futurstructure formation in Saturn’s B-ring. In fact, overstability can
In our study the self-gravity of the particle-disk is incorpodirectly account for a sub-km structure in the optical depth prc
rated in the simulations by an enhancement of the frequencyfité of that ring, showing variability on time scales comparable
vertical oscillations which flattens the disk and thus increaststhe orbital period. This size-range lies well within the resolu
the collision frequency. An inclusion of the more realistic diredton limit of the cameras onboard Cassini so that our theoretic

Implications for Saturn’s Rings

6.1. Limitations of the Model
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prediction can be verified with the expected images and datagidreich, P., and S. Tremaine 1978a. The velocity dispersion in Saturn’s ring
that mission. Icarus 34, 227-239.

Of course the linear theory presented in this paper descrilgeddreich, P., and S. Tremaine 1978b. The excitation and evolution of densi
merely the onset of instability and the ranges of parameters fofavesAstrophys. J222, 850-858. '
which instability is possible. The actual structure-forming prg#enon. M. 1981. A simple model of Saturn's ringéature293 33-35.
cess that follows a linear instability is. however governed b&(}nkms, J., and M. Richman 1985. Grad’s 13-moment system for a dense ga:

. o . . . . inelastic spheresArch. Ration. Mech. AnaB7, 355-377.

the nonlinearities of the basic equations. In our simulations the. P

. . . . . Julian, W. H., and Toomre, A. 1966. Non-axisymmetric responses of differer
exponential growth in the linear regime begins to slow down anﬁtially rotating disks of starsAstrophys. J146, 810-830.

flna”y saturates after 100__1000_ orbital peno_ds. This _eXpreS%e(a?o, S. 1978. Pulsational instability of accretion disks to axially symmetric
the growth of the perturbations into the nonlinear regime, sup-scillations Mon. Not. R. Astron. Sot85, 629—642.

posing_that the _ﬂOW is nonlinearly supercr_itically stable. Thgn p. N. ., and P. Bodenheimer, 1981. On the stability of Saturn’s rings

saturation sets in first for the fastest growing wavelength andastrophys. J248 L83-186.

then gradually for those that grow more slowly and is charatissauer, J. J., F. H. Shu, and J. N. Cuzzi, 1981. Moonlets in Saturn’s ring

terized by an interaction of modes of different wavelengths. InNature292 707-711.

a large system this interaction could lead to the formation ofLgkkari, J. 1981. Collisional amplification of density fluctuations in Saturn’s

superimposed modulation of the saturated amplitude of oscillalings-Nature292 433-435. _ o

tion on a much |0nger Iength-scale as the Wavelength of makp_n, C., S. Savage, D. J. Jeffrey, and N. Chepurniy 1984. Kinetic theories f
. . ranular flow: Inelastic particles in Cuette flow and slightly inelastic particle:

mal growth rate (Schmit and Tscharnuter 1999), resembling th% P gnty P

; . a general flow fieldJ. Fluid Mech.140, 223-256.
structure aCtua”y seen in the B-ring. Mosqueira, I. 1996. Local simulations of perturbed dense planetary roagas

122 128-152.
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