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We investigate the viscous oscillatory instability (overstability)
of an unperturbed dense planetary ring, an instability that might
play a role in the formation of radial structure in Saturn’s B-ring.
We generalize existing hydrodynamic models by including the heat
flow equation in the analysis and compare our results to the de-
velopment of overstable modes in local particle simulations. With
the heat flow, in addition to the balance equations for mass and
momentum, we take into account the balance law for the energy of
the random motion; i.e., we allow for a thermal mode in a stability
analysis of the stationary Keplerian flow. We also incorporate the
effects of nonlocal transport of momentum and energy on the sta-
bility of the ring. In a companion paper (Salo, H., J. Schmidt, and
F. Spahn 2001. Icarus, doi:10.1006/icar.2001.6680) we describe the
determination of the local and nonlocal parts of the viscosity, the
heat conductivity, the pressure, as well as the collisional cooling, to-
gether with their dependences on temperature and density, in local
event-driven simulations of a planetary ring. The ring’s self-gravity
is taken into account in these simulations by an enhancement of
the frequency of vertical oscillations Äz > Ä. We use these values
as parameters in our hydrodynamic model for the comparison to
overstability in simulated rings of meter-sized inelastic particles of
large optical depth with Äz/Ä = 3.6. We find that the inclusion
of the energy-balance equation has a stabilizing influence on the
overstable modes, shifting the stability boundary to higher optical
depths, and moderating the growth rates of the instability, as com-
pared to a purely isothermal treatment. The non-isothermal model
predicts correctly the growth rates and oscillation frequencies of
overstable modes in the simulations, as well as the phase shifts and
relative amplitudes of the perturbations in density and radial and
tangential velocity. c© 2001 Academic Press
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The Voyager missions revealed a pronounced radial st
ture of the B-ring and the inner A-ring of Saturn appearing
a wide range of length scales down to the resolution limit
the Voyager observations (Smithet al. 1982; Espositoet al.
1983a,b). Several explanations for the formation of the st
ture have been proposed in the literature. Besides the inte
tion of embedded moonlets with the ring particles (Lissa
et al. 1981; Hénon 1981; Spahn and Sponholz 1989), at le
part of the structure was attributed to the dynamics of char
grains and the associated radial momentum transport (Go
and Morfill 1988) and to ballistic transport (Durisen 1995
Lukkari (1981), Lin and Bodenheimer (1981) and Ward (198
suggested a viscous instability of the particle flow to be
sponsible for the structure. This is a diffusive instability th
takes place when d(νσ )/dσ is negative, whereν is the kine-
matic viscosity andσ is the surface density. However, in th
oretical models (Araki and Tremaine 1986) this derivative
found to be large and positive rather than negative, in ac
dance with numerical simulations (Wisdom and Tremaine 19
Salo 1991, 1992b). In addition, no signs of a viscous insta
ity have been found in the latter simulations. The theoretic
and numerically observed density dependence of the kinem
viscosity, however, allows for the so-called viscous overs
bility, investigated in accretion disks (Kato 1978; Blumenth
et al. 1984) and in the context of planetary rings (Border
et al. 1985; Papaloizou and Lin 1988; Schmit and Tscharnu
1995; Mosqueira 1996). Here, the restoring forces after a s
perturbation are directed back to equilibrium but are so str
that the system overshoots the position at the other sid
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OVERSTABILITY

equilibrium.1 The hydrodynamic picture of this process is
wave with growing amplitude. Such a behavior is indeed
served in direct N-particle simulations (see Saloet al.2001) of
dense self-gravitating planetary rings for various particle-s
and internal particle-densities, different models for the ine
ticity of the collisions, and for different ways of simulating th
particles’ self-gravity. In this paper we give a quantitative co
parison between the overstability of a hydrodynamic model
and the simulations.

In a recent paper (Spahnet al.2000) we reported on the qua
itative effect of the energy balance equation on the oversta
ity in a hydrodynamic model of a vertically thin, viscous, se
gravitating, Keplerian disk. Thus, the model allowed for spatia
dependent temperature variations, fulfilling the balance of c
sional cooling, viscous heating, and heat flow. It is importan
note that here temperature refers to the random kinetic en
of the ring particles defined by the trace of the squared velo
dispersion tensor asT = (1/3)Tr〈ci cj 〉. In the present study, w
investigate the influence of the thermal mode in greater de
using transport coefficients and values for the pressure and
lisional cooling that have been determined in event-driven lo
simulations (Saloet al.2001).

Approximating the self-gravity by an enhancement of the
quency of vertical oscillations (Wisdom and Tremaine 198
we find a stability boundary ofτ ∼> 1, optically thinner rings be
ing stable. This is in agreement with the results of Mosqu
(1996) who simulated perturbed states of a dense planetary
and found that the criterion for viscous overstability given
Borderieset al.(1985) is fulfilled for parameters of the outer sa
urnian B-ring (τ ∼ 1.8) but not for the uranianε-ring (τ ∼ 1).

The paper is organized as follows. In Section 2 we display
hydrodynamic balance laws of mass, momentum, and en
together with the constitutive equations for momentum and
flux and derive the linearized equations that yield the lin
instabilities of the basic stationary flow. In Section 3 we brie
discuss the time asymptotic, linear stability of non-axisymme
perturbations and in Section 4 we derive expressions for
growth rates of the linear oscillatory instability and the line
eigenfunctions at marginal stability. In Section 5 we comp
these results to data obtained from simulations, and finall
Section 6 we summarize our results and discuss the limitat
and possible extensions of the model, as well as the implicat
to Saturn’s rings.

2. THE HYDRODYNAMIC APPROXIMATION

2.1. Basic Equations

We describe the ring as a vertically thin, self-gravitating, v
cous fluid disk, consisting of inelastic, uni-sized, smooth, sp
ical particles. The mean fields of surface densityσ , velocity Eu,

1 It seems that the name “overstability,” being somewhat counterintui

actually is motivated by this picture. The naming can be traced back to
Arthur Eddington (Chandrasekhar 1981, p. 3).
IN THE B-RING 317

a
b-

es
s-

e
-

ng

-
bil-
f-
lly
lli-
to
rgy
ity

ail,
col-
cal

e-
),

ira
ring
y

t-

the
rgy
eat
ar
y

ric
the
ar
re
in

ons
ons

s-
er-

ve,

and temperatureT are supposed to obey the hydrodynamic b
ance laws for mass, momentum, and energy. In this specific c
the last balance law contains a cooling term0 that accounts for
the steady dissipation of energy of the motion due to the inela
collisions of the ring particles. With the pressure tensorP̂, the
heat flux vectorEq, the gravitational force fieldEF of the central
planet, and the disk’s mean-field self-gravity potentialφ these
balance equations read

(∂t + Eu · E∇)σ = −σ E∇ · Eu
σ (∂t + Eu · E∇)Eu = σ EF − σ E∇φ − E∇ · P̂ (1)

3

2
σ (∂t + Eu · E∇)T = −P̂ : E∇ Eu− E∇ · Eq − 0 .

Here, we employ the thin-disk approximation, i.e., vertical d
grees of freedom are integrated out,σ is the ring’s surface den-
sity, and P̂, Eq, and0 are vertically integrated quantities. Th
thin-disk approximation is motivated by the extremely sm
thickness of the saturnian rings and it is justified a posteriori
the quantitative match we achieve between the theoretical res
and the simulations. Nevertheless, the dynamical conseque
of the vertical degrees of freedom of the ring material on t
overstability should be investigated in future models.

We express the balance equations in a Cartesian coordi
system co-rotating in the ring plane at distancer0 from the central
planet. Letx andy denote the radial and circumferential direc
tion in that system. The linearized central gravitational force p
unit mass expressed in that frame is

EF = 3Ä2xEex − 2ÄEez× Eu , (2)

whereÄ =
√

GM/r 3
0, is the Kepler frequency atr0. The ther-

modynamic fluxes of momentum (P̂), and energy (Eq) are related
to their respective thermodynamic forces (E∇ Eu, E∇T) via a linear
ansatz; i.e.,

P̂αβ = δαβ p− 2ηDαβ − δαβξ∇λuλ (3)

and

Eq = −κD E∇T . (4)

The transport coefficientsη, ξ , andκD are the vertically inte-
grateddynamicshear and bulk viscosity and the heat conduct
ity, respectively.D̂ is the traceless shear tensor

Dαβ = 1

2

(
∇αuβ +∇βuα − 2

3
δαβ∇λuλ

)
. (5)

With these constitutive equations the balance laws are the co
nuity equation, Navier–Stokes equation, and heat-flow equa
of viscous hydrodynamics, extended by the cooling function0,
Siras they are used in the theory of granular matter flow (Jenkins
and Richman 1985).
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The self-gravity potentialφ satisfies Poisson’s equation

∇2φ = 4πGσδ(z), (6)

whereG is the gravitational constant andδ(z) is Dirac’s delta
function. A solution of this equation is (see, e.g., Binney a
Tremaine 1987)

φ(x, y, z) = −2πG

|k| σ (x, y) exp{−k|z|}, (7)

wherek is the inverse of a typical length of variations ofσ , which
we will identify with the modulus of the wave vector of harmon
density perturbations in Section 2.2 (see also Julian and To
1966; Goldreich and Tremaine 1978b). For the stability of
thin-disk this equation is of interest atz= 0.

Please refer to Table I for a list of symbols used in t
paper.

2.2. Linear Stability

Let6, EU , andT0 denote the state variables in the station
state andφ0 its self-gravity potential. For a local region of
planetary ring,6, T0, andφ0 are constants in our model. W
neglect a secular, viscous inward drift of the ring particles
well as the small influence of the planetary oblateness an
disk’s self-gravity potential on the orbital frequency, and w
for the velocity of the stationary stateEU =−(3/2)Ä(r0)xEey in
the co-rotating frame. Now we allow for small perturbatio
σ, T, φ, and Eu = (u, v) of the stationary state. Linearizing an
inserting the constitutive relations (3, 4) in Eq. (1), we obt
linearized balance equations, neglecting terms that are h
than linear order inσ, T, Eu, and their derivatives. Introducin
the ground statekinematicshear and bulk viscosityν andζ we
find

Dσ

Dt
= −6 E∇ · Eu

Du

Dt
= 2Äv − 1

6

(
∂p

∂σ

∣∣∣∣
0

∂σ

∂x
+ ∂p

∂T

∣∣∣∣
0

∂T

∂x

)
+ ν∇2u

− 3Ä

26

(
∂η

∂σ

∣∣∣∣
0

∂σ

∂y
+ ∂η

∂T

∣∣∣∣
0

∂T

∂y

)
+
(
ν

3
+ ζ

)
∂

∂x
( E∇ · Eu)− ∂φ

∂x

Dv

Dt
= −1

2
Äu− 1

6

(
∂p

∂σ

∣∣∣∣
0

∂σ

∂y
+ ∂p

∂T

∣∣∣∣
0

∂T

∂y

)
+ ν∇2v

− 3Ä

26

(
∂η

∂σ

∣∣∣∣
0

∂σ

∂x
+ ∂η

∂T

∣∣∣∣
0

∂T

∂x

)
( )

+ ν

3
+ ζ ∂

∂y
( E∇ · Eu)− ∂φ

∂y
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Dt
= 2

36

[
−P E∇ · Eu− 3ηÄ

(
∂v

∂x
+ ∂u

∂y

)
+ 9

4
Ä2

(
∂η

∂σ

∣∣∣∣
0

σ + ∂η

∂T

∣∣∣∣
0

T

)

−
(
∂0

∂σ

∣∣∣∣
0

σ + ∂0
∂T

∣∣∣∣
0

T

)
+ κD∇2T

]

φ(r ) = −2πG

|k| σ. (8)

Here, D/Dt ≡ ∂t − 3
2Äx∂y is the material derivative and the

TABLE I
List of Symbols

Symbol Definition

Rp Particle-radius
6 Uniform ground state surface density
σ Local perturbation from ground state surface density
EU , Eu Ground state velocity, local perturbation velocity
u Radial velocity perturbation
v Tangential velocity perturbation
T0, T Ground state temperature (velocity dispersion), local

perturbation
φ0, φ Ring’s ground state self-gravity potential, local

perturbation
τ Optical depth
c Effective velocity dispersion
Ä Kepler frequency
G Gravitational constant
g = πG6

cÄ Dimensionless gravity parameter (inverse of Toomre’s
parameter)

EF Central gravity
P̂ Pressure tensor
D̂ Traceless shear tensor
Eq Heat flow vector
0 Energy dissipation due to inelastic collisions
p Scalar pressure
η, ν Dynamic and kinematic shear viscosity
ξ , ζ Dynamic and kinematic bulk viscosity
κD , κ Dynamic and kinematic heat conductivity
k Modulus of radial wavenumbera

pσ , pT Density and temperature derivative of the total pressure
taken at the ground state

ησ , ηT Density and temperature derivative of the dynamic shea
viscosity

0σ , 0T Density and temperature derivative of the cooling functio
ET = 2

30T − 3
2ηT Temperature derivative of the radial energy balance

ω Complex growth rate of overstable modes
β = ∂ logν

∂ logσ Exponent of density dependence of the kinematic shea
viscosity

s Oscillation frequency of overstable modes near margin
stability

ϕ1,2 Marginal eigenvectors of overstable modes

√

a In Section 3 the total wavenumberk = m2 + n2 with azimuthal and radial

componentsm andn.
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symbol|0 denotes that the respective differentiation is take
the system’s ground state. The perturbations in the self-gra
potential can be expressed through the perturbations in the
sity by use of the last equation.

We scale time with the inverse orbital frequencyÄ−1, den-
sity with the ground state quantity6, and velocities with the
effective velocity dispersionc, and length is scaled byc/Ä. The
effective velocity dispersionc is defined via thetotal ground
state pressure as

p = c26. (9)

The effective velocity dispersioncdeviates from the ground sta
velocity dispersion

√
T as it includes also the effect of nonloc

pressure. In what follows, all variables and parameters are sc
quantities, their notation is unchanged. Further, we introduce
parameterg ≡ πG6/(cÄ), which accounts for the influence o

the system’s self-gravity. The parameterg is the inverse of the

r-
Toomre parameter (Toomre 1964).

M̂ =


0 −i n −im 0

i
(
2g n

k − 3
2ησm− pσn

) −(νm2+ n2
(

4
3ν + ζ

))
2− nm

(
ν
3 + ζ

) −i
(

3
2ηTm+ pTn

)
i
(
2g m

k − 3
2ησn− pσm

) −1/2− nm
(
ν
3 + ζ

) −(νn2+m2
(

4
3ν + ζ

)) −i
(

3
2ηTn+ pTm

)( ) ( )

 . (13)

where M̂ is the coefficient matrix that depends on time th
oughn
3
2ησ − 2

30σ −i 2mν + 2
3 p n 2 2 2

i
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t

e

a

e
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In short, we define

pσ ≡ ∂p

∂σ

∣∣∣∣
0

, pT ≡ ∂p

∂T

∣∣∣∣
0

for the derivatives of the total pressure (including a local and n
local part) and equivalent symbols for the ground state der
tives of (scaled)η and0. Note thatpσ does not reduce to th
temperature of the system whenp has a nonlocal componen
Further we write

ET ≡ 2

3

∂0

∂T

∣∣∣∣
0

− 3

2

∂η

∂T

∣∣∣∣
0

, (10)

describing the linear reaction of the ground state radial en
balance to variations in temperature.

We take non-axisymmetric perturbations of the station
state (although we will focus in the stability analyses in Sectio
on purely radial perturbations) with azimuthal wavenumberm,
radial wavenumbern = l + 3

2mt in shearing coordinates (se
e.g., Goldreich and Tremaine 1978b)

σ

u
v

 =

σt (t)

ut (t)

v (t)

 exp

{
i

(
l + 3

2
mt

)
x + i my

}
, (11)
T
t

Tt (t)
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with time dependent amplitude functionsσt (t), ut (t), vt (t),
Tt (t). All modes with initial radial wavenumberl are “wound up”
with time by differential rotation unless they have a vanishin
azimuthal wavenumberm.

The solutions (11) with continuous wavenumbers descr
an infinitely extended system. Periodic boundary conditio
as for example used in local simulations, require a discrete
of m and n, commensurable with a length of periodicity. I
shearing coordinates the dependence of the linearized equa
on the radial coordinatex is turned into a time dependence. Thu
we obtain for the amplitude functions a set of linear ordina
differential equations with time dependent coefficients

σ̇t

u̇t

v̇t

Ṫt

 = M̂(t)


σt

ut

vt

Tt

 , (12)
−i 2n ν + 3 pm −ET − 3κk

on-
va-

.

rgy

ry
n 4

,

Here k ≡ √m2+ n2 is the modulus of the wavenumber.̂M
is the Jacobian matrix of the nonlinear Eqs. (1) in Four
space.

3. ASYMPTOTIC LINEAR STABILITY OF
NON-AXISYMMETRIC PERTURBATIONS

We derive expressions for the asymptotic (large time) b
havior of the solutions to Eq. (12), following the treatment
Dubrulle and Knobloch (1992) of a similar system of equatio
for compressible plane Couette flow. We assume that for la
times the solutions can be expressed in the form


σt

ut

vt

Tt

 =

σ̂

û
v̂

T̂

 exp{θ (t)}. (14)

Then θ̇ (t) is given by the eigenvalues of the coefficien
matrix (13). Since the highest order oft in Eq. (12) ist2 we
seek for functionsθ̇ (t) that can be expanded asymptotical
as
θ̇ = a2t2+ a1t + a0+ a−1/t · · · . (15)
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When we expand additionally the 1/k term in Eq. (12) asymptot
ically in powers of 1/t we get a sequence of eigenvalue proble
(at orderst2, t , 1, t−1, . . . ) that yields four distinct solutions fo
each coefficientai . Inserting theai in Eq. (15) the correspondin
four solutions for the functionθ (t) are in leading order int

θ1 = − pσ t
4
3ν + ζ

+ O(1)

θ2 = −1

2
κ m2 t3+ O(t2)

(16)

θ3 = −3

4
νm2 t3+ O(t2)

θ4 = −3

4

(
4

3
ν + ζ

)
m2t3+ O(t2).

Thus, all non-axisymmetric modes arelinearlystable,2 decaying
asymptotically as expθi . Every small non-axisymmetric pertu
bation is “wound up” by the differential rotation of the syste
its radial wavelength tending eventually to zero.

The linear stability of modes withm 6= 0 does not mean, how
ever, that the spontaneous formation of non-axisymmetric s
ture is impossible in this system. The set of equations (12) all
for transient growth of small initial fluctuations that can ev
grow in the nonlinear regime, thus violating the validity of t
linear approximation, and may locally change the ground s
considerably (Dubrulle and Knobloch 1992). In the contex
the excitations of density waves in galaxies this amplificat
mechanism has been discussed for a similar (but non-vis
system for instance by Julian and Toomre (1966) and Goldr
and Tremaine (1978b). In a planetary ring the gravitational in
action of non-axisymmetric structures may give rise to grav
tional wakes (Salo 1992a). In Saloet al.(2001) we showed tha
in simulations such gravitational wakes in general coexist w
the purely radial oscillating density pattern formed by oversta
modes of axisymmetric perturbations. In this study we focus
attention on the radial structure caused by overstability, form
spontaneously from the homogeneous ground state. Thus
investigate the casem= 0 of Eq. (12) in the following section
in greater detail.

4. THE AXISYMMETRIC CASE

Here, we address the casem= 0 of Eq. (12), so that the coe
ficient matrixM̂ is now independent of time. Then the time d
pendence of the hydrodynamic variables is of the form exp{ωt}
and the complex growth ratesω of infinitesimal perturbations o
the ground state are given by the eigenvalues of the linear
equations in Fourier space.

2 Provided thatpσ > 0, as is the case here, although in an ensemble of

sipatively colliding particles the temperature can in principle be adecreasing
function of the density (Petzschmannet al.1999).
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4.1. Growth Rates

The characteristic equation of̂M for m= 0 yields a real local
dispersion relation connectingω and the modulus of the radia
wavenumberk

0= f0(k)+ f1(k)ω + f2(k)ω2+ f3(k)ω3+ ω4. (17)

For the kinematic shear viscosity we assume a dependenc
the surface density of the form (Schmit and Tscharnuter 19

ν ∝ σβ. (18)

The assumption of a constantβ is justified for small amplitudes
of the density perturbation. However,β can be varied with the
ground state density6, thus serving as an order parameter in t
analysis. The derivative of the dynamic viscosity with respec
density then reads

ησ = ν(β + 1). (19)

The functions fi are given in Spahnet al. (2000) in terms of
unscaled quantities in the notation of Eq. (8). Here, we expr
the dispersion relation (17) in the form

0 = pTk
2

(
−k2

(
2

3
0σν + 3

2
(1+ β)ν2

)
+
(
−2

3
0σ + 1+ 3β

2
ν + 2

3
k2νp

)
ω + 2

3
pω2

)
+ 3ηTk

2

(
−2

3
0σ + 3

2
(1+ β)ν + pσk

2ν − 2kνg+ νω2

+ ω
(

2

3
p+ k2ν

(
4

3
ν + ζ

)))
+ Diso

(
ET + 2

3
k2κ + ω

)
,

(20)

where

Diso = ω3+ω2k2

(
7

3
ν+ ζ

)
+ω

(
1− 2kg+ pσk

2

+ k4ν

(
4

3
ν+ ζ

))
+ νk2

(
3(1+ β)− 2kg+ k2 pσ

)
.

(21)

If we neglect nonlocal contributions topσ thenDiso ≡ 0 is the
dispersion relation calculated by Schmit and Tscharnuter (19
which is contained as the isothermal limit in our model (see a
Spahnet al.(2000)). Namely, for finiteηT, pT, 0T, and arbitrary
but fixedω andk, the relationDiso = 0 follows from the fourth-
order, non-isothermal dispersion relation (20) in the limit
infinite heat conductivityκ. This limit is physically clear, since

a large heat conductivity rapidly smoothes out fluctuations in
the temperature, leading eventually in the mathematical limit
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κ →∞ to the isothermal system from which the dispersion
lation Diso ≡ 0 is derived. Similarly, the isothermal dispersio
relation is obtained forET →∞, whereET gives the inverse of
the relaxation time for a thermally excited system (see Eq. (
below).

In order to gain insight into basic properties of Eq. (20)
now seek for approximate expressions for its solutions that
valid for large wavelengths. We expand the growth ratesω(k) in
powers ofk as

ω(k) = b0+ b1k+ b2k2 . . . . (22)

Inserting this relation in Eq. (20) and equating each power ok
separately to zero yields four solutions for thebi , and thus, four
approximate solutionsω(i )(k) which read to orderk2

ω(1)(k) = −ET − k2 2

3
κ + k2F1+ O(k3) (23)

ω(2)(k) = i

[
1− g k− k2

2
(g2− pσ )+ k2

2
F2

]
+ k2

2

[
ν

(
2

3
+ 3β

)
− ζ

]
+ k2

2
F3+ O(k3) (24)

ω(3)(k) = ω(2)∗(k) (25)

ω(4)(k) = −3νk2(1+β)− 3
ηT

ET

[
3

2
ν(1+ β)− 2

3
0σ

]
k2+O(k3),

(26)

where

F1 = pT

1+ E2
T

(
2

3
0σ − ν 1+ 3β

2
+ 2

3
ET p

)
− 3ηT

ET

(
1+ E2

T

)
×
(

2

3
0σ + 2

3
ET p− ν

{
3

2
(1+ β)+ E2

T

})

F2 = − pT

1+ E2
T

(
2

3
0σ ET − 2

3
p− ν 1+ 3β

2
ET

)
+ 3ηT

1+ E2
T

×
(

2

3
0σ + 2

3
ET p− ν 1+ 3β

2

)

F3 = − pT

1+ E2
T

(
2

3
0σ + 2

3
ET p− ν 1+ 3β

2

)
− 3ηT

1+ E2
T

×
(

2

3
0σ ET − 2

3
p− ν 1+ 3β

2
ET

)
.

The mode with purely real growth rateω(1) is connected to the
thermal stability of the system. The leading wavelength in
pendent termET describes the dependence of the radial
ergy balance between viscous heating and collisional coo

on variation of the temperature (see Eq. (10)). For stabilityET

has to be positive, requiring the cooling to dominate the he
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ing when temperature is increased over the ground state va
and vice versa when the temperature is decreased. The se
term, proportional tok2, corresponds to a hydrodynamic he
diffusion mode, with the term∝ κ which is purely damping.
For the parameter values of the dispersion relation we have
termined in simulations in Saloet al. (2001) (see Table III)
ET is indeed positive in all cases and dominates the other
terms in the expansionω(1). Also, we have2

3κ > F1. The sec-
ond and third modes have complex conjugate growth ratesω(2)

andω(3) which will give overstability for appropriateβ. The
terms F2 and F3 contain the corrections due to the heat flo
equation at this order, the other terms already following fro
the isothermal model. In the isothermal model the imagin
part of ω(2) andω(3) is the Keplerian frequency with correc
tions due to self-gravity and pressure forces. The real p
yield an expression for the stability boundary in the the lim
λ→∞

β∞cr ≡
1

3

(
ζ

ν
− 2

3

)
(27)

so that long wavelengths become overstable ifβ > β∞cr which
was already derived by Schmit and Tscharnuter (1995). A s
ilar criterion was given by Papaloizou and Lin (1988) (Eq. (4
of that paper), which results in Eq. (27) when bulk viscosity
included in their analysis. An exact expression for the line
marginal stabilityβcr (k) for the isothermal model is given in
Section 4.2, where eigenfunctions of the hydrodynamic eq
tions are derived at marginal stability. The fourth mode w
growth rateω(4), corresponding to the viscous instability, is aga
purely real. It reduces in the isothermal limit to

ω(4)→−3k2 ν(1+ β)+ O(k3) (28)

leading to the stability criterionβ > −1 which is equivalent
to the conditions derived by Lin and Bodenheimer (1981), a
Ward (1981).

Since we introduced with the heat flow an additional diff
sion mechanism in the system the termsF2 and F3, which are
not present in the isothermal case, can be expected to ha
primarily stabilizing effect, as we have argued in Spahnet al.
(2000). This is confirmed by the quantitative comparison of t
study presented in Section 5.

4.2. Eigenfunctions

Here, we determine the overstable eigensolutions of the
drodynamic model, for simplicity in the isothermal limit, sinc
here the expressions can be given analytically in a comp
form. The inclusion of the energy-balance equation leads to
qualitative differences in those properties of the linear eig
solutions which we will eventually compare to simulation
namely the phase differences and amplitude ratios of the
at-
turbations inσ , u, andv. For example, the phase differences in
the non-isothermal model, taken in this case from numerically
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determined eigenfunctions, yield the same results. Howev
is important to note that the stability boundary itself is chan
considerably when thermal effects are included.

Restricting our attention again on purely radial modes
matrix (13) reduces in the isothermal limit to

M̂ =

 0 −i k 0

i (2g− pσk) −k2
(

4
3ν + ζ

)
2

−i 3
2ν(1+ β)k −1/2 −k2ν

, (29)

which leads to the third-order dispersion relation given
Eq. (21) andDiso = 0. This dispersion relation has two margin
curves in the (λ, β)-plane. The first one, for the purely real eige
value, reads

βvicr (k) = k
2g− pσk − 1, (30)
3

s

σu
v


L/R

∝

 ∓2k[ scos(s t± k x)+ νk2 sin(s t± k x)]

2s[scos(s t± k x)+ νk2 sin(s t± k x)]

cos(s t± k x)k2
[
ν+ ( 4

3ν+ ζ
) (

k4ν2+ s2
)] − ssin(s t± k x)

 (36)

σu
 ∝

 2k sin(k x)[ssin(s t)− νk2 cos(s t)]

2 cos(k x)s[scos(s t)+ νk2 sin(s t)]

 . (37)

(35)

For A = 0 orB = 0 these are left moving or right moving wave

and forA = B we obtain the standing wave solution
v
S cos(k x)

[{
ν + ( 4

3ν + ζ
)

(k4 2 2
}

2
]

t

le

rmal
ined
n-

ic
r-

ne
the

he
separating the (λ, β)-plane in a region of viscous stabilityβ >
βvicr (k) and instabilityβ < βvicr (k). In the large wavelength limi
it reduces to the conditionβ < 1 for viscous instability given
above. The second marginal curve is for the two oscillat
modes (for long wavelengths given by Eqs. (24) and (25), w
F2 = F3 = 0)

βcr (k) = 1

3

(
ζ

ν
− 2

3

)
+ 1

3

(
4

3
+ ζ
ν

)
×
(

pσk
2− 2gk+

[
7

3
ν+ ζ

]
νk4

)
, (31)

separating regions of viscous overstabilityβ > βcr (k) and sta-
bility β < βcr (k).

The two overstable eigenvalues of the matrixM̂ at marginal
stabilityβ = βcr (k) are purely imaginary, namely±is, where√ ( )
s= 1− 2gk+ pσk2+ 4

3
ν + ζ νk4 . (32)
ET AL.
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The expression under the root is always positive in the regi
of parameter values (g, pσ , ν) that are of interest here. The
corresponding marginal eigenvectors read

ϕ1 =

 2k(i νk2+ s)

2s(i νk2+ s)

(νk2− is)
(
1+ [ 4

3ν + ζ
]

[νk2+ is]k2
)
 (33)

ϕ2 =

 2k(i νk2− s)

−2s(i νk2− s)

(νk2+ is)
(
1+ [ 4

3ν + ζ
]

[νk2− is]k2
)
. (34)

Thus, a solution in the overstable subspace to the linear prob
at marginal stability reads3(

σ
u
v

)
= Aϕ1 exp{ikx − ist} + B ϕ2 exp{ikx + ist} + c.c.
ν + s ) k cos(s t)− ssin(s t)

ory
ith

In the limit of long wavelengths these solutions yield simp
phase shifts in the variablesσ, u, v, which are given in Table II.
The phase shift between density perturbations and the the
excitations that are also given in that table have been obta
from a numerical solution of the eigenfunctions of the no
isothermal model.

5. COMPARISON OF THEORY AND SIMULATION

In this section we compare the results of the hydrodynam
model to 3D local N-particle simulations for meter-sized pa
ticles at high optical depth (τ = 1 and 2). The simulation box
is located at a distance of 100,000 km of a mass point of o
saturnian mass. For the inelasticity of the particles we take
standard formula of Bridgeset al. (1984) for an impact velo-
city dependent coefficient of restitution. For a description of t
simulation method see Salo (1991, 1995).
3 The other eigensolution with growth rateω(4) (given approximately by
Eq. (28)) will decay rapidly forβ = βcr (k).
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TABLE II
Spatial Phase Differences in the Hydrodynamic Model

Standing Left traveling Right traveling
wavea wave wave

Ph(σ )-Ph(u) ± π2 π 0

Ph(σ )-Ph(v) − π2 − π2 − π2
Ph(v)-Ph(u) 0,π − π2 π

2

Ph(T)-Ph(σ )b π , 0 − π2 π
2

a Two given values refer to the respective temporal phase of Eq. (37).
b Phase differences for the eigenfunctions of the non-isothermal model

been obtained numerically. They are in agreement with the phase differen
the isothermal eigenfunctions given by Eqs. (36) and (37).

The simulations show overstable behavior when self-gra
is taken into account (Fig. 1). In Saloet al. (2001) we demon-
strated this for different ways of incorporating self-gravity
the simulations, i.e., full particle–particle gravity interaction a
mimicking the effect of gravity with an enhancement of the f
quency of vertical oscillations (Wisdom and Tremaine 1988)
both cases we observe similar overstable perturbations in the
tem, indicating that overstability is not bound to the self-grav
itself but rather to the corresponding changes in the visc
properties of the system. Figure 1 refers to the case of enha
Äz = 3.6Ä and τ = 1. Starting from a uniform ground stat
the simulated system rapidly develops radial oscillations o
100-m scale in all the state variables, including the tempera
The maxima in surface density correspond to maxima in
thickness of the system.

In the case of direct particle–particle gravity we observe
ditionally the occurrence of gravitational wakes, i.e., a n
axisymmetric structure with characteristic angle of inclinati
wavelength, and amplitude. The relative intensity of both ty
of structure depends for a fixed optical depth on the particle b
density (Saloet al.2001). As already mentioned in Section 3, t
nonlinear non-axisymmetric gravitational wakes are not cove
by the analysis of this paper. Consequently, we restrict our a
tion on simulational systems that consider self-gravity via
enhancement of the vertical frequency, leading to purely ra
structure. Also, in this case the system has a stationary gr
state, from which transport coefficients and other parame
needed for a comparison to the hydrodynamic model can be
tained, as is described in Saloet al.(2001) for different values o
the enhancement factor of the frequency of vertical oscillati
Äz/Ä = 1, 2.0, 3.6. All the examples in this section refer to th
caseÄz/Ä = 3.6 if not otherwise stated. An inclusion of dire
particle–particle self-gravity, and thus the presence of grav
tional wakes, will at least alter the ground state of the syst
However, we emphasize, that the growth of radial oversta
modes is retained also with full self-gravity (see Saloet al.2001).

5.1. Transport Coefficients
In general, the transport coefficients in the constitutive Eqs.
and (4), and the cooling function0 are functions of the den-
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sity, the temperature, and of the dissipativity of the collisio
They can be calculated in the framework of kinetic theory
dense systems, using Enskog’s extension of the Boltzmann e
tion (Chapman and Cowling 1970), to the desired order in
Chapman–Enskog expansion. For granular gases transport
ficients have been derived in the limit of nearly elastic collisio
to Navier–Stokes order (see for instance Jenkins and Rich
1985; Lunet al. 1984; Garz´o and Dufty 1999) and to Burnet
order (Sela and Goldhirsch 1998). However, it is known, that,
instance, the dependence of the viscosity on the density an
temperature in a planetary ring (Goldreich and Tremaine 197
differs drastically from that in a sheared granular flow. The m
reason for this is that the particles in the ring move on curv
Keplerian orbits between collisions (Goldreich and Trema
1978a). A similar difference cannot be excluded for the ot
transport processes. Thus, since we want to derive quantitat

FIG. 1. Perturbations of the state variables due to overstability in a sim
lation with optical depthτ = 1 and particle-radius 1 m after about 1000 orbit
revolutions. The saturnocentric distance was 100,000 km in this simulation
the self-gravity was mimicked by an enhancement of the frequency of ver
oscillations. The upper plot shows the particle-positions projected in the p
z= 0 of the simulation box. Here, orbital motion is upward; the planet is to
left. Clearly visible are the radial perturbations on a 100-m length scale du
overstability. The plot in the middle shows the local velocity dispersion (so
line) and〈|z|〉/Rp (dashed line), which is proportional to the local thicknes
whereRp is the particle-radius. The lower plot shows the perturbations in

(3)radial velocity (solid) and in the shear corrected tangential velocity (dashed).
The phase differences are characteristic for (right) traveling waves (see Table II).
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TABLE III
Ground State Parametersa

τ Äz/Ä c [cm/s] ν ζ/ν κ/ν plocal pσ pT ET ηT 0σ β

0.5 3.6 0.048 0.348 3.10 6.48 0.411 1.79 1.28 0.72−0.031 1.34 0.67
1 3.6 0.064 0.357 2.14 4.17 0.160 2.19 1.35 2.50−0.280 1.74 1.15
1.5 3.6 0.086 0.342 1.99 4.14 0.091 2.41 1.68 3.78−0.363 1.67 1.19
2 3.6 0.106 0.322 2.12 4.09 0.064 2.72 2.77 4.51 0.378 1.84 1.
2 1 0.051 0.336 2.13 5.16 0.26 1.85 1.50 1.31−0.05 1.42 0.87

a All the quantities are dimensionless, excluding the effective velocity dispersionc which is given in cm/s.ν
is scaled withÄ/c2, plocal with 6c2, pσ with c2, pT with 6, ET with 6Ä, ηT with 6/Ä, and0σ with Äc2. To

relate to the figures and tables of Saloet al. (2001), velocity dispersion has to be scaled withRpÄ and transport
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the growth rates of perturbations together with the correspon
wavelengths, the granular transport coefficients are too unce
for our purposes.

In Saloet al.(2001) we described the determination of tran
port coefficients in direct N-body simulations for identical i
elastic particles of 1-m radius, the self-gravity approximated
an enhancement of the frequency of vertical oscillations. For
velocity dependent coefficient of restitution the formula

εn(vn) =
(
vn

vB

)−0.234

(38)

obtained experimentally by Bridgeset al. (1984) was used
Here,vn is the normal component of the relative velocity of t
impacting particles andvB =0.077 mm/s. These transport coef
cients are used here as values for the parameters of the dispe
relation (20) so that the overstability observed in simulations
in the non-isothermal hydrodynamic model can be compared
rectly. The relevant parameter sets are displayed in Table II

All the quantities given in Table III are dimensionless (e
cluding the effective velocity dispersionc). Time is scaled with
the Keplerian frequency, the numerical value we will use isÄ =
1.95× 10−4 s−1, the value for a semimajor axis of 100,000 k
in the saturnian system. Length is scaled withc/Ä, velocity
with c, and density with the ground state density6. Thus, the
total ground state pressure is unity and the ground state tem
atureT0 is equal toplocal in this scaling. Note that the numeric
value of the ground state density does not alter the analys
the non-self-gravitating case, or, as in this study, if the eff
of self-gravity in the simulations is taken into account by
enhancement of the vertical frequency.

5.2. Initial Growth Rates

In simulations that start from a stationary state we observe
formation of oscillating radial perturbations in the mean surfa
density, as well as in the non-systematic radial and tangentia
locities, and in the velocity dispersion (Fig. 1) (see also Saloet al.
2001). We follow the development of the Fourier modes of th
bulating them 40 times per orbital period, a
al exponential growth with characteristic tim
ing
tain
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of a few tens of orbital revolutions, depending on wavelen
and optical depth of the run. To facilitate the determination of
growth rates we superimpose a small initial seed to the statio
state in form of low amplitude harmonic perturbations in sol
the radial velocity of the simulational system. An example of
measurement of the growth rates from a simulation with opt
depthτ = 1 is shown in Fig. 2 on a logarithmic scale. Line
fits yield the growth and decay rates in density and radial
tangential velocity for the different wavelengths. The amplitu
in the density perturbation of longer wavelengths may decay
tially before the overstable growth sets in, but then the gro
rates in all the three state variables are practically the same
growth rate is positive for all wavelengths larger than a cr
cal wavelength (in the example withτ = 1 about 80 m) and is
maximal for an intermediate wavelength (100 m forτ = 1). For
modes that are shorter than the critical wavelength we determ
the decay rates of the initial seed perturbation which can als
compared to the model predictions. The growing longer mo
soon start to excite shorter modes and so the short perturba
start to grow again. This is a nonlinear effect that already se
shortly after the beginning of the overstable growth.

Using the transport coefficients we have determined in S
et al.(2001) as parameters for the hydrodynamic model we
that the inclusion of the energy balance equation has a stab
ing effect. The boundary for the onset of overstability is shif
to higher optical depth as compared to the isothermal mode
particular, the isothermal model predicts overstability for s
tems that are found to be stable in simulations. An example w
optical depthτ = 2 andÄz/Ä = 1.0 is shown in Fig. 3.

The upper plots show stability diagrams that are obtai
from a numerical evaluation of the dispersion relations for
isothermal (left) and the non-isothermal model (right) using
parameters obtained in simulations (Table III). The growth ra
corresponding to overstability are the real parts of the two co
gate complex solutions of the dispersion relation. The lower p
display the growth and decay times following from the stabil
diagrams for the isothermal and non-isothermal case. In qu
tative agreement with the direct simulation the non-isother

nd
es
model predicts an exponential decay of oscillatory modes of all
wavelengths. Generally, for systems without enhancement of the
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FIG. 2. Example of the measurement of the growth rates from a simulation with optical depthτ = 1. The amplitudes of the Fourier modes of overstab
oscillations in the optical depth (lower curve), and the radial (upper curve) and tangential velocity are tabulated 40 times per orbital revolution.Linear fits yield the
growth and decay rates for the different modes. The unit of the velocity amplitudes isÄRp and the amplitude of the optical depth perturbation is normalized
the ground state optical depth.

FIG. 3. Upper plots: Lines of equal 10 folding times of radial oscillations in units of orbital revolutions in the (λ, β)-plane. The region above the line o
marginal stability (labeled byRe(ω) = 0) is overstable; the region below is stable. This particular case withτ = 2 and without the enhancement of the frequency
vertical oscillations demonstrates the shift of the stability boundary between the isothermal model (left) and the non-isothermal one (right). Thehorizontal dashed
line marks the value ofβ = 0.88 for the caseτ = 2 andÄz/Ä = 1 as it was determined in simulations (Saloet al. 2001). Thus, the isothermal model predict
instability for this system while the non-isothermal model is stable. Lower plots: Results from a simulation withτ = 2 andÄz/Ä = 1 and a radial extension of
the simulation box of 2000 m. Small-amplitude radial seed-perturbations of various wavelengths were superposed to the mean values of density andial and
tangential velocity. All wavelengths are found to be stable; the decay times (indicated by negative 10 folding times) are shown in these plots as cross-symbols. The

decay times are in good agreement with those predicted by the non-isothermal model while the isothermal model predicts overstable growth of the modeswith
λ > 40 m.
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FIG. 4. Upper plots: Lines of marginal stability in the (λ, β)-plane, for systems withÄz/Ä = 3.6 for τ = 1 on the left and forτ = 2 on the right. The
dash-dotted line refers to the isothermal case and the solid line to the non-isothermal model. The region above the lines is overstable. The location of the lines of
equal 10 folding times relative to the marginal lines is analogous to the upper plots in Fig. 3 The horizontal dashed lines mark the values ofβ that are relevant for
these cases as they were determined in simulations (Saloet al. 2001). Thus, for both optical depths both models predict overstability albeit with different gro
times and a different wavelength that separates the stable from the unstable region. Lower plots: 10 folding times for theory and simulation in depeence of
the wavelength forτ = 1 andτ = 2,Äz/Ä = 3.6. Simulational results are plotted as symbols, diamonds for growth times, crosses for decay times, bot
simulations with a radial extension of the simulation box of 2000 m. Different symbol sizes correspond to separately determined growth of perturbations in density
(largest), radial velocity, and shear corrected tangential velocity (smallest). The square symbols in the plot for optical depthτ = 1 correspond to growth and decay

times from a simulation with a reduced radial extension of 620 m. Also shown is the asymptotic (largeλ) value of the rise times in the plot for optical depthτ = 2
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as a dotted line, following from the approximation (24).

frequency of vertical oscillations we find stability up to optic
depths as high asτ = 4.

In simulations with enhancement of the frequency of verti
oscillations overstability is observed also at lower optical dep
The condition for overstability is roughly given byβ > 1. This
corresponds toτ > τcrit, whereτcrit is slightly less then unity for
Äz/Ä = 3.6. Results forτ = 1 andτ = 2 are given in Fig. 4.
The lines of marginal stability are shown for the non-isotherm
and the isothermal models. In the latter case the stabilizing
fluence of a larger bulk viscosityζ > ν (as well as nonloca
pressure) is contained, in contrast to the similar plot in Sch
and Tscharnuter (1995), whereζ = ν was assumed. Basically
all perturbations with wavelength larger than roughly 100 m
found to be overstable for the dense model-rings under cons

ation (particle-radius 1 m, elasticity law (38)), with a maximum
growth rate at a somewhat larger wavelength. The growth ra
l

al
hs.

al
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decrease for increasing wavelength, finally going to zero
perturbations of a large spatial extension.

In Fig. 4 (lower plots) 10 folding times are shown as pr
dicted by the hydrodynamic model and obtained from sim
lations. The agreement between simulation and theory is
proved when the energy balance equation is considered in
analysis. The diamond symbols in these plots are the gro
times obtained from simulations with a radial extension of
simulation box of 2000 m. Forτ = 1 growth times from a simu-
lation with reduced radial box-length (620 m) are also shown
square symbols. The growth times are also practically indep
dent of the tangential width of the box except for a slight de
of the onset of the overstable growth in a tangentially lar
system.
tes
The frequency intensity of the overstable oscillations for the

different modes is shown in Fig. 5 as a contour plot from a
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FIG. 5. The frequency intensity (Lomb periodogram) of the oversta
oscillations from a simulation with optical depthτ = 2, Äz/Ä = 3.6 as a con-
tour plot in the (ω, λ)-plane. The solid line is the theoretical curve from t
numerical solution of the dispersion relation (20).

simulation withτ = 2. The solid line is the is the oscillatio
frequency predicted by the hydrodynamic model as the im

nary part of the conjugate complex solutions of the dispersion

li

viscosity was equal to the shear viscosity. In the simulational

relation Eq. (20). In this case where the self-gravity is approxi-

FIG. 6. The influence of a variation of parameters of the model on the growth times of overstable modes of the non-isothermal model forτ = 2. In each plot
a single parameter is varied; the others are kept constant. The respective values as they are determined in simulations are represented with a thickne. The last

systems we investigated in Saloet al. (2001), it is found to
two plots show the convergence of the line of marginal stability toward tha
respectively.
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mated byÄz/Ä > 1 the frequency is always larger than the K
plerian frequency. In a system with true particle–particle grav
the wavelength dependence of the frequency is qualitatively c
ered by Eq. (32). Ignoring the small (∝ k4) viscosity term, this
means that all wavelengths smaller than the Jeans-length

λJ = π pσ
g

(39)

oscillate faster than the Keplerian frequency, and those la
thanλJ oscillate more slowly. The oscillation frequencies f
simulations with true particle–particle gravity are shown in Fig
of Saloet al. (2001).

The influence of various parameters on the growth times
the oscillatory instability is shown in Fig. 6 for an example wi
τ = 2. Interestingly, the 10 folding times of overstable mod
suffer a similar shift in the (λ, β)-plane when parameters ar
varied. An important parameter, already present in the isot
mal model, is the bulk viscosityζ . In many studies that were
based on hydrodynamic models it was assumed that the
t of the isothermal model (dashed) in the limit of large heat conductivity orlargeET,
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FIG. 7. The ratio of the amplitudes of perturbations in surface density
radial velocity plotted against the wavelength for a simulation with optical de
τ = 1 andÄz/Ä = 3.6. The different lines correspond to different times, sta
ing with the dashed curve. In course of the time development the ratio appro
a linear dependence (compare to thick dashed line) on the wavelength t
predicted by the hydrodynamic model (Eqs. (36) and (37)) for not too short w
lengths. The duration of the record in this plot was about 1000 orbital peri

be about double the shear viscosity, a shift that stabilizes
system considerably. Other parameters introduced with the

ergy balance that may have a large influence on the growth times

with

order ink by the eigenvalueω in Eq. (28). In spite of the sim-
rve
are pT, ηT, and0σ . The dependence of the growth times on the

FIG. 8. The phase differences of the state variablesσ , u, andv, andT for selected wavelengths are shown (first three columns) from a simulation

plifications made in the derivation of that solution we obse
τ = 1. They are determined 40 times per orbital revolution for 50 orbital pe
wavelengths in a histogram with normalized area. The simulational data po
ET AL.

nd
pth
rt-
ches
at is
ve-
ds.

the
en-

(dimensional) wavelength scales with the effective velocity d
persionc.

The ratio of heat conductivity to shear viscosity determin
in simulations is about 4–6 for the optical depths that have b
investigated in Saloet al. (2001). The stability behavior of the
hydrodynamic model is insensitive to moderate variations
that parameter, while the effect of the thermal equation itsel
large, as can be seen from the shift in the marginal stability l
for κ →∞, corresponding to an isothermal model. This lar
influence can rather be attributed to the relaxation of therm
excitations to a balance of collisional cooling and viscous he
ing, which is neglected in an isothermal model. The time sc
of this relaxation is given byE−1

T (see Eqs. (10) and (23)).

5.3. Eigensolutions

In Section 4.2 we obtained eigensolutions for a simple isoth
mal hydrodynamic model of the ring’s flow. These solutio
were computed at the critical value of the parameterβ, see
Eq. (37), from the eigenvectors of the linear problem that c
respond to the overstable eigenvalues. The other eigensolu
decays rapidly with characteristic time that is given to leadi

(4)
riods. The last column shows the phase differences summed up over all (overstable)
ints accumulate at the theoretical values given by Eq. (37) for standing waves.
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qualitative agreements with the overstable modes in
simulations.

For k¿ 1 and thuss∼ 1, in the model the ratio of the os
cillations of the radial velocity and the shear corrected tang
tial velocity is about 2 (see Eqs. (36) and (37)), which is a
observed approximately in the simulations, as can be see
Fig. 1. This was also found in a numerical solution of the n
linear isothermal hydrodynamic equations far from thresh
β = βcr (k) performed by Schmit and Tscharnuter (1999).

For long wavelengths the ratio of the amplitudes of the ve
ity perturbations to the density amplitude should be proportio
toλ (see Eq. (37)). For a simulation we show this ratio in Fig
where the linear dependence inferred from the theory is ind
observed (see also Fig. 2).

Also, we compare the phase differences of the state varia
obtained from simulations to those of the hydrodynamic eig

solutions for standing waves and traveling waves. In the linear

riate

e pr
00,
ift of a

In runs without seed perturbations, both standing waves and
ch
regime both are equally good solutions. In those runs where the

FIG. 9. The long time development of typical modes in a simulation withÄz/Ä = 3.6 andτ = 1. The Fourier amplitudes of perturbations inσ , u, v, andT
for three different wavelengths have been tabulated 40 times per orbital revolution. The two curves in the upper plot show the time development of the maxima and
minima of the amplitudes of the density perturbation. Only when the system forms a standing wave the minimum Fourier amplitude found in an approptime
interval (a few times the period of overstable oscillations) is close to zero. The growth of the amplitude slows down and finally saturates after 200–400 orbits. Also
shown are the phase differences of the state variables for these wavelengths in course of the run. With growing amplitude, traveling waves seem to beferred:
The phase differences of the mode with 250-m wavelength are consistent with those of a (linear) left moving, traveling wave between orbits 200 and 7for the
222-m wavelength up to orbit 300. These two wavelengths approach later—and the 200-m wavelength from the beginning—the values for the phase shright

traveling waves are observed in the linear regime with a mu
moving linear wave (see Table II). This particular simulation develops a righ
method, using linearized equations of motion for the particles, is invariant u
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small initial seed perturbation has been superimposed on
radial velocities we observe in the early stage of the time
velopment phase differences that are consistent with thos
the hydrodynamic standing wave solution (37); see Table II.
Fig. 8 these are shown for 50 orbital periods tabulated from
simulation.

The phases of the simulational system accumulate at the
oretically determined values. From the initial seed perturbatio
in the radial velocity alone the system develops oscillations
all the state variables that keep the characteristic phase di
ences of the standing wave solution for more than 50 orb
periods. In the following development the system shows int
mediate transitions to traveling waves which finally displace t
standing wave, as shown in Fig. 9. This transition seems to
connected with the slowing down of the amplitude growth d
to the nonlinearity.
t traveling wave. In other simulations left traveling waves are observed: The simulation
nder the inversionx→−x andy→−y of the radial and tangential coordinate.
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more rapid transition to traveling waves only. The traveli
waves seem to be the preferred state of the nonlinearly s
rated modes. Even in the nonlinear state the simulations s
the phase differences of the hydrodynamic eigensolutions (
i.e., for right traveling waves and left traveling waves, resp
tively, in spite of the fact that the hydrodynamic solutions a
strictly valid only at marginal stability. The phase differenc
for the respective types of solution of the linear hydrodynam
model are displayed in Table II.

6. DISCUSSION

The hydrodynamic model for a dense planetary ring propo
in this paper, being a generalization of the isothermal mode
vestigated in Schmit and Tscharnuter (1995, 1999), success
describes the initial development of radial oscillatory mod
in direct N-particle simulations. The model yields the corr
phase shifts between the state variables, the amplitude ra
the growth rates, and the oscillation frequencies of the o
stable modes. Overstability leads to the formation of a ra
structure in the ring, growing exponentially in the linear regim
on a time scale of a few tens of orbital periods. Perturbations w
a characteristic length of more than about 100 m are oversta
with a maximum growth rate for a slightly larger wavelength

For a quantitative agreement with simulations the inclus
of the hydrodynamic heat flow equation in the model is nec
sary. In particular, an isothermal model would predict osci
tory instability also for non-self-gravitating systems, which
not observed in our simulations even at optical depths as hig
τ = 4. Crucial for the onset of overstability is the higher col
sion frequency in a self-gravitating system compared to a n
self-gravitating one of the same optical depth. Other impor
factors are the appropriate values for the transport coeffici
of the ring’s flow, the equation of state, and the cooling funct
that accounts for the collisional energy loss. These have b
determined from simulations in Saloet al. (2001) and are used
here as parameters in the hydrodynamic model. In this way
hydrodynamic balance laws provide a satisfactory descrip
of the simulated dense systems.

6.1. Limitations of the Model

In general, hydrodynamic modeling assumes that the velo
dispersion of the system can be described by a scalar v
However, in a planetary ring the diagonal components of
velocity dispersion tensor are unequal in general and its princ
axes are not aligned with the radial and tangential directi
(Saloet al.2001). The neglect of this anisotropy becomes m
severe for systems of lower density. A better theoretical base
the description of the ring’s flow is provided by kinetic theo
and thus, the task of investigating directly the kinetic bala
laws for an oscillatory instability should be addressed in futu

In our study the self-gravity of the particle-disk is incorp
rated in the simulations by an enhancement of the frequenc

vertical oscillations which flattens the disk and thus increas
the collision frequency. An inclusion of the more realistic dire
ET AL.
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particle–particle self-gravity leads to a similar enhancemen
the collision frequency and overstability is retained in this ca
as described in Saloet al.(2001). Direct gravity leads, howeve
to the formation of non-axisymmetric gravitational wakes wh
then form an altered spatially inhomogeneous ground state
the ring’s flow with different viscous properties. Such syste
are nearer to the threshold of overstability for plausible par
eters, when compared to the treatment with vertical freque
enhancement. Since in the case of direct, particle–particle
gravity the marginal curve has a minimum for finite waveleng
(see Eq. (31)) it is possible that overstability is then restric
to a band of wavelengths around the wavelength of maxi
growth.

Our simulations and the hydrodynamic model deal with
system of uni-sized particles. The question arises how the in
sion of a size distribution would alter the viscous overstabil
On the hydrodynamic level this would lead to similar balan
laws for the mass density, the mass-averaged velocity, and v
ity dispersion, as in the uni-sized case but with modified tra
port coefficients, cooling function, and equation of state, wh
would now contain contributions from different particle speci
Since the viscous properties of a collisional system are ma
determined by the largest particles, the overstability of a s
tem with size-distribution and a given maximum particle-rad
should resemble a system of uni-sized particles of that ra
with somewhat lower optical depth. Thus, the growth rates
overstable modes are expected to be smaller. In Fig. 5 of
et al.(2001) a simulational example is shown for a system w
a differential size-distributionn(r ) = r−3 (0.5 m< r < 5 m),
where overstability is observed, although it requires higher
sipation than in the case of identical particles.

6.2. Implications for Saturn’s Rings

The inclusion of the energy-balance equation stabilizes
optical depth rings in our model, in contrast to results of previ
isothermal studies (Schmit and Tscharnuter 1995). The crite
for oscillatory instability we find isβ ≡ ∂ logν/∂ logσ ∼> 1 in
accordance with direct local particle-simulations that dem
strate the spontaneous development of overstable oscillatio
high optical depth particulate rings. In spite of the stabilizing
fect of the energy perturbations our self-gravitating simulatio
also indicate that the threshold of overstability falls in the mi
of the range of plausible B-ring parameters.

This stability boundary is in agreement with the simulatio
carried out by Mosqueira (1996) who verified that the criter
for viscous overstability in perturbed rings, given by Border
et al.(1985), is fulfilled for the outer saturnian B-ring (τ ∼ 1.8)
but not for the uranianε-ring (τ ∼ 1).

Thus, viscous overstability is a promising effect to expla
structure formation in Saturn’s B-ring. In fact, overstability c
directly account for a sub-km structure in the optical depth p
file of that ring, showing variability on time scales compara

es

ct
to the orbital period. This size-range lies well within the resolu-
tion limit of the cameras onboard Cassini so that our theoretical
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prediction can be verified with the expected images and da
that mission.

Of course the linear theory presented in this paper desc
merely the onset of instability and the ranges of parameter
which instability is possible. The actual structure-forming p
cess that follows a linear instability is, however, governed
the nonlinearities of the basic equations. In our simulations
exponential growth in the linear regime begins to slow down
finally saturates after 100–1000 orbital periods. This expre
the growth of the perturbations into the nonlinear regime, s
posing that the flow is nonlinearly supercritically stable. T
saturation sets in first for the fastest growing wavelength
then gradually for those that grow more slowly and is char
terized by an interaction of modes of different wavelengths
a large system this interaction could lead to the formation
superimposed modulation of the saturated amplitude of osc
tion on a much longer length-scale as the wavelength of m
mal growth rate (Schmit and Tscharnuter 1999), resembling
structure actually seen in the B-ring.
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