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disk on a 100-m scale (Julian and Toomre 1966, Salo 1992b; see also Goldr
We extend the investigation of the viscous stability of a dense and Tremaine 1978a). These structures may influence the formation of a ma
planetary ring by the effect of thermal diffusion of random kinetic ~ radial pattern as seen on larger scales by space probes, but even then the

energy. We find that this additional diffusive process has mainlya  ©f k:”etlic he(;"t ﬂ”:j( _Ca’;] belzxpectt)ed to tl’e przs_er;/ed, a';h?j“gg possibly qtéa?w
stabilizing effect on the overstable modes.  © 2000 Academic Press tively altered, and it should not be neglected in future hydrodynamic modeli

Key Words: planetary rings, Saturn of the ring flow.
y P y rings, ’ We perform a linear stability analysis of the hydrodynamic equations al

vary parameters, which serve as scalings of the constitutive relations for
transport coefficients. We use cylindrical coordinate®), z) and assume an
A poorly understood type of structure in Saturn’s main rings, observed Risymmetric §/0® — 0), thin disk of granular grains surrounding a planet
the space probes, are the irregular structures in ring regions of high optitake surface mass density of the disk is givends- [pdz (mass density
depthf > 1 at scales seen down to the limit of the resolution of the eXper]b(r’ t)), the Vertica”y integrated pressureﬁbz fp dzl and the Ve|0city field

ments €100 m). A favored physical explanation for these fluctuations has begidenoted by = u(t, r)e + v(t, r )ee. With these assumptions the balances o
the viscous instability first investigated by Lin and Bodenheimer (1981), Wardomentum, mass, and energy read

(1981), and Lukkari (1981). Viscous instability takes place when the derivative

of dynamic shear viscosity with respect to density is negative which promotes the )2 GM 1 2 Y

onset of a self-amplifying negative diffusion process. Araki and Tremaine (1986) + uv' — — = ——~ — @ — =P + —(yu)' +2v (—)

have shown that the finite size of the ring particles and the related contributions r r o o r

to the transport coefficients suppress the viscous instability. This conclusion has 1 2\ (u)Y

been confirmed by numericil-particle experiments (Wisdom and Tremaine ts [U <§ B :3,”) r ] (1a)

1988, Salo 1991, 1992a). —

Another interesting effect, which is able to promote the formation of radial ; E(r V) = iz [nr3<2> ] (1b)
structures, is the viscous overstability (or pulsational instability) predicted in r or r
accretion disks (Kato 1978, Blumentteilal. 1984) and in the context of plan- _ (rouy
etary rings (Papaloizou and Lin 1988, Schmit and Tscharnuter 1995). Here, the o= T (1c)
system becomes unstable when the mentioned derivative of the dynamic shear oy s )
viscosity with respect to density becomes large and positive (see, for instancg, .. , 1 P ru N2 v u
Papaloizou and Lin 1988, Schmit and Tscharnuter 1995). In the latter inveg? (T TUT) = plreTT = P==+ n[Z(u) * [r(;) } * 2(_> ]
tigations a quasi-equilibrium between viscous heating and collisional cooling 2
has been assumed, and only momentum and mass balances were used in the +J<§ _ gv> [(ru) ] — (1d)
hydrodynamic modeling of the ring. Thus, the influence of (kinetic) tempera- 3 r
ture fluctuations was not taken into account. In the case of accretion disks an
energy balance equation has been considered to model the influence of themalre the dots and the primes denote the partial derivatives with respec
radiation on the stability behavior of the disk (Kato 1978, Blumentiadl. the timet and the radial distanaefrom the central bodyG, M, ®, Q=v/r
1984). In this study we demonstrate the effect of kinetic heat transport inheran¢ the gravitational constant, the mass of the central body, the gravitatio
in the random motion of ring particles on overstability in a dense planetary ringotential of the disk, and the angular velocity, respectivEli the temperature
For simplicity we restrict our attention to purely axisymmetric perturbations afefined via the trace of the velocity dispersion tensor of the ring particles. T
basic Keplerian flow of a ring. It must be noted, however, that nonaxisymmetuertically integrated pressure is labeledBy= o T. The (vertically integrated)
structures might be important for planetary rings, because in theoretical modglsntitiesv, n=ov, ¢, andx are the kinematic shear viscosity, the dynamic
and in simulations they occur naturally in the presence of the self-gravity of thiscosity, the kinematic bulk viscosity, and the heat conductivity, respective
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The difference between granular gases and the usual hydrodynamic gases o,
fluids is the granular cooling due to inelastic collisions as well as differences

in the transport coefficients. The gravitational poterdiak determined by the
Poisson equation

1
- DY + 320 = 47 Go8(2). %)

wheres(z) is Dirac’s delta function. The right-hand sides of (1a) and (1b) contai

the vertically integrated volume forces: the gravity of the central body, the self-
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gravity of the disk, pressure, and friction. The energy balance (1d) is governed

by the effects of the heat conduction, mechanical work, the viscous heating, and

the collisional cooling. To investigate the stability of the system we consid
the vectorx = (u, v, o, T, ®) to be composed of a ground stadg¢ and small
perturbationx; according to

X = Xo(ro) + Xa(r, t),

®

with |ro —r| <« ro. All quantitiesy(x) depending on the state vectarlike the

pressureP and all transport coefficients, are expanded about the groundgtate

according toy = Yo + VxYlo - X1+ O(IX1|?) & yo + y1. The stationary ground
state is characterized by the approximate solution

1

GM)\ 2

vo=( ) =Qorg; Tg
fo

—_— :U(/):U():O; dXg=0 4)

Substituting Egs. (3) and (4) into (1a)—(1d), we obtain the linearized system

. P{(o1, T 4 ,
U1 — 2Qovy = —®) — PilonT) + ({o + —vo)U’l (5a)
00 3
. 1 3 Q0
1+ 5 Qo = —3 6—077/1(01, T1) + vovy (5b)
o1 +oou; =0 (5¢)

:—;UOTl = —(fKoT) - (rUl)

3 v
+3%0 {4?7190 — nof (r—l> } — (o1, T)
(5d)
!+ 02®1 = 4rGo15(2), (6)
whereO(|x1|2) are neglected. We perform a Fourier decomposition into pure
radial modes; < exp@t+ikr) for all perturbed quantities, wheseandk =
27 /) are the growth rate and wave numbkergdial wavelength), respectively.

Then, with Egs. (5a)—(5d) the solubility condition of the resulting algebraic,
system yields the dispersion relation

s+ A+ B+ Cs+ D=0, @

with
1 /20y 30n| - 21 (7 2
A= (220 29 @2} p k2= Lyt 2
n0<3aT o 20Ty 0) PG\ 30t 3ot ook
P 7 20y 3 an
_ _ 2 oy ooni o
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Concerning the self-gravity we have used(r, z=0)= —27 Go1/k, which
follows from the jump condition of the potential at=0 as well as from the
transition of the Poisson equation (2)zat 0 to a Laplace equation far# 0
since their solutions a&— +0 must coincide (see Shu 1984).

For an application of the dispersion relation (7) to the dense saturnian rings
will have to know the values for the dependency of the transport coefficients a
the cooling on density and temperature. Since these are in general not yet a
able for dense rings we will limit our present study to the expected qualitati
effects of the additional energy equation, by using a simplified but physical
reasonable set of assumptions. For the constitutive relations wexi§&o#,
kocn, ands o v. According to analytical studies (Goldreich and Tremaine 1978l
Stewartet al. 1984) we use = 1. However, simulations of dense rings sugges
an effectivew < 1/2 (see Salo 1991 and under the additional influence of a si:
distribution Salo 1992b). This effect can be attributed to the nonlocal part
the shear viscosity that depends much more weakly on the temperature t
Ve local part. Thus, for the total viscosity the valuexofnay be reduced in
dense systems. For the expongntiescribing the dependence on density we
haveﬁ >1 (Araki and Tremaine 1986) in dense rings>1). For the gran-
Ular cooling we use = Qto(1—€2)T (Stewartet al. 1984), wherex is the
coefficient of restitution ana = R%o‘/m is the optical depth with the parti-
cle radiusR, and massn. In principle, in an ensemble of inelastic particles
the temperature may depend on the density ascg(o/ao)‘s, wherecy is the
mean velocity dispersion. In force-free granular gases a valdie=6f2 is ob-
served (Haff 1983, Jenkins and Richman 1985).&ar—1 another instability
may arise, the so-called pressure instability of granular gases (Goldhirsch
Zanetti 1993) wher@P/do < 0 (Spahret al. 1997, Petzschmaret al. 1999).
This instability occurs only at very small scales. For Keplerian systems sim
lations indicate a small negativefor dilute systems, vanishing for increasing
T (Salo 1991, see Fig. 5a). This is in accordance with the simulational res
dlog(v)/dlog(c) =B +as =127 (Wisdom and Tremaine 1988, Salo 1991)
when compared to the aforementioned analytically determpedL (Araki
and Tremaine 1986) for > 1, suggesting also a small value|6f. Therefore,
we chooseé =0 in our plots.

For the ratio of heat conductivity to shear viscosity we take the value for den
(elastic) hard sphere gases (Chapman and Cowling 1970} fie= 5, which
should give at least the right order of magnitude for the dissipative ring partic



NOTE 659

ensemble. Similarly, we find for the ratio of bulk viscosity to shear viscosity 2F ' ‘ ! ' ]
¢/v=1. F STABLE
The limit k — oo yields the dispersion relation derived by Schmit and i~ »»»»»»» nettral stability, €/n=5 actg
Tscharnuter (1995) provided that the pressure is giveR byo Tp and Ty = CS. Y 1F i 20.00 E
This becomes clear by splitting off the hydrodynamic heat flux mode. Then, the 2 F
dispersion relation can be rearranged as 3 g R
<~ O e
2 o0 E ]
0:<S+ 3(%()'(2’(0) X |:s3+52:_0<;770+0'0{0> ‘%T 1 E ]
« b ]
+s<Q§—k2nGao+k2@‘ +k4i2no(‘—1no+ag§o>) : ]
90 |o i) 3 5 r : - ]
2(22 01 219p an| 9P| By 0 400 500
+ié{antl| —eren+e 232 w)|+F (| 77 )
G
2F ' i ' T f
where the functiorF contains all the derivatives with respect to temperature. F STABLE
For this isothermal limit the regions of stability and overstability are shown in E 1 r e E
Fig. 1 (dashed lines), in dependencgatndA. For the parameters we have used o : 3
5 F ]
S~ [ 3
3F !‘I ] S of 3
S ] 2 :
— [ b -1 — 9
OEFIN A T -1k E
Q0 B ] X E 3
° [ | ] F 3
5 E \ ] £ ]
SR : -t ‘
‘E/D E 0 500
T ]
i OF 8000 7 e e mm = *5
@ F - ] FIG. 2. Theinstable modef the dispersion relation (Eq. 7) for the same
F ] parameters as described in the legend of Fig. 1.
—_ 1 F \ ) . -
0 100 200 300 400 500
A[m] Qo=1.95x 10~* s1,09 =133 g cnr2 corresponding to = 1 for ice particles,
co=0.2cms?, vp=54 cnfs 1, corresponding to the B ring of Saturn, and
3ETY ! / ' 7 further a particle radiuRp = 1 m, aparticle bulk density of 1 g cm,ande = 0.4
g l‘. %«9 - OVERFABLE %30 for the coefficient of restitution. The latter is the mean value resulting from tt
.~ F oW § S & variable restitution law (Bridgest al.1984) at the mentioned velocity dispersion.
e 2 g For 8 =1.27 (corresponding te =1, § = 0) all wavelengths. > 40 m should
© E be overstable. The fastest growing wavelength is slightly less than 100 m.
3 ; With decreasing rati@ /n we find that the neutral stability curve is shifted
T 1F to higherg and to larger wavelengths (solid lines in Fig. 1). This behavior i
\no/o F not sensitive to small variations @&f/5. The lower and upper parts of Fig. 1
= E demonstrate an additional stabilizing effect of a reduced valuefof dense
Il 0F systems, as mentioned before, in the nonisothermal model. Another factor
A 5 tends to stabilize the overstable mode is the bulk viscosity/ifexceeds unity
§ (unity was assumed in Fig. 1), the viscous overstability is more difficult 1
-1t achieve. For example,/v = 2 would shift the neutral boundary to abgii= 1
0 100 200 300 400 500 for the case ofc/n=>5,«=0.5. The variation of the bulk viscosity affects
A[m] similarly the isothermal model as already indicated by the analysis of Schr

and Tscharnuter (1995), although they assummed= 1 throughout their paper.
FIG. 1. Theoverstable modef the dispersion relation (Eq. 7). Lines of Figure 2 shows the influence of the heat flow on the instable mode)(R€

equal 10-folding times of harmonic perturbations are shown in units of the dm(s) = 0) of Eq. (7). Here, fok /5 =5 the instability is shifted to values ¢f
bital time in the {, B) plane. The isothermal casgn = oo (dashed curves) higher than those for the isothermal caseg = co. However, this shift is less
and the nonisothermal cas¢n =5 (solid curves) are plotted. Neutral stabil- pronounced for smaller. Thus, in dense systems £ 1) with 8 > 1.27 viscous
ity is drawn in each case as a thick line, separating the overstable (aboveittsability is also not to be expected in the nonisothermal model.
line) from the stable region (below the line). The upper plot corresponds toThe result of this Note is that heat conduction is able to change the stabi
a (=dlog(v)/dlog(T)) =1, the lower to a smallez (see text). Here, the tem- behavior of hydrodynamic models of dense planetary rings considerably. F
perature is assumed to be independent of the surface density~.e.,The op- ther, the importance of a detailed knowledge of the magnitudes of the transy
tical depth is equal to 1. The horizontal dotted line marks the valge-01.27,  coefficients and their dependence on deritgitemperature is stressed. For in-
corresponding to this optical depth in simulations of Wisdom and Tremais¢ance, the differences observed in the viscosities for free granular gases (Jer
(1988). and Richman 1985) and for the material forming a planetary ring (Goldreich a
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Tremaine 1978b, Stewaet al. 1984, Salo 1991, Schmidt al. 1999) show that Julian, W. H., and A. Toomre 1966. Non-axisymmetric responses of differe
the transport coefficients afit(c) are also determined by the physical environ- tially rotating disks of starsAstrophys. J146, 810-830.

ment. Further, an increased rativ additionally stabilizes our hydrodynamic Kato, S. 1978. Pulsational instability of accretion disks to axially symmetr
model, shifting neutral stability to even higher valuesfofor the overstable  ggcillationsMon. Not. R. Astron. So&85, 629—642.

mode. This emphasizes the importance of an improved analytical and numeri_q |

. o . : I R D. N. C., and P. Bodenheimer 1981. On the stability of Saturn’s ring
evaluation of the constitutive relations in order to study the stability of planetaryAstrophys J. Let48 L83-L86

rings in greater detail. . . e . . .
Lukkari, J. 1981. Collisional amplification of density fluctuations in Saturn’
rings.Nature292 433-435.
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