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Fluctuations of the repetition period of Pcl pearl pulsations

A. Guglielmi!, F. Feygin!, K. Mursula2, J. Kangas?, T. Pikkarainen?, and A. Kalisher!

Abstract. In this paper we investigate fluctuations of
the repetition period of geomagnetic Pcl pearl pulsations.
Starting from calculated repetition period we present a general
formula for the deviation of the repetition period as a
function of wave frequency and stochastic parameters of the
medium along the ray trace. We then apply this formula
for a dipole magnetic field with a simple plasma distribution,
and show that a linear correlation between repetition period
and its deviation is predicted. This correlation and the
frequency dependence of fluctuations are then compared with
experimental values measured from selected Pcl pearl events
observed in Finland.

Introduction

Thirty years ago Jacobs and Watanabe [1964] and
Obayashi [1965] presented the idea that geomagnetic Pcl
pulsations are electromagnetic ion cyclotron waves which
propagate in the magnetosphere along geomagnetic field
lines. Accordingly, the repetition period of a Pcl pearl is
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is the group velocity of ion cyclotron waves with angular
frequency w, V4 is Alfvén velocity, and €} is ion
gyrofrequency. Integral is taken along the field line (dx
is the line element) and / equals twice the length of the
line between conjugate ionospheres.

By now this idea is widely used as a basis when
interpreting observational data and as a starting point
when generalizing theory. Note that in all previous
publications on this topic the magnetospheric plasma is
considered as a regular medium [see e.g. Troitskaya and
Guglielmi, 1967; Jacobs, 1970; Nishida, 1978; Guglielmsi,
1989]. However, in reality the magnetospheric plasma is an
irregular medium, i.e. it contains random inhomogeneities
of plasma density and other plasma parameters. Therefore
the Pcl repetition period 7 also fluctuates randomly
even if pulsations remain on the same field line. Fig. 1
depicts a typical sonagram of a Pcl pearl event with a
sequence of wave packets. When analyzed carefully, small
fluctuations of repetition period T are seen. Accordingly,
it is important to find the stochastic generalization of the
theory of Pcl propagation and to analyze the observed
fluctuations of 7.

In this study we present a theoretical formulation for
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the stochastic r.m.s. deviation of 7 as a function of
wave frequency and statistical properties of the medium
along the ray trace. Then we apply the theory to a
dipole magnetosphere with a simple plasma distribution
in order to extract definite numerical estimates. We also
compare these estimates with observed fluctuations of
Pcl repetition period using ground-based data from the
Finnish magnetometer network.

Theory

Let us regard 7 as a stochastic function of the wave
packet number and call 79 and T; the regular and
irregular (stochastic) parts of 7, i.e. 7 = 79 and 7; = 0.
The line over a symbol means statistical average. We
introduce also o, = 7'12 1/2 to denote the deviation of the
fluctuations of the repetition period. According to Egs.
(1) and (2), 7 depends (via V4 p;1/2) on mass density
p and therefore fluctuates due to its random irregularities.
Let us now divide p to the regular density on the
Pcl ray path po(z), and the irregular, fast fluctuating
p1(z), and assume that | p; |[<< pp. Similarly we divide
V=V+V: with V=Vy and V; = 0. The above
assumption implies | V3 |<< Vp, and we can easily find
in the leading order of perturbation

1 e e
2
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where R = p1/po.

Let usnow make another simplifying assumption and regard
R(z) as a statistically homogeneous function. This means
that the correlation function I',(z1,z3) = R(z1)R(z2)
only depends on the difference of its arguments:
Tp(z1,z2) = Tp(z1 — 22). Then it is natural to change
the variables to ( = 1 — 2 and z = (z1 +z2)/2, whence
Eq. (3) is transformed to
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where we used the symmetry relation I',(—() = I',(¢).
We ignored here the possible correlation of fluctuations
on the back and forth segments of Pcl trajectory between
conjugate points. Had we taken this correlation into
account, the right-hand part of Eq. (4) should be

multiplied by \/§ In the case of small-scale irregularities,
r p(( ) is non-zero for small values of ( only. This allows
us to neglect the dependence of the x-integral on ( and
to put the upper limit to infinity in the ( integral. As
a result we find
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where

00 = 0O, = 2 [T0c, 6)
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Jo(w) = [/ [Vo(m ") ] .M

The physical meaning of these terms is the following: o,
is the deviation of plasma density irregularities and £, is
the effective correlation length of these irregularities along
the wave packet trace. The function Jz(w) describes the
frequency and field line dependence of or.

Thus, starting from the expression (1) we have obtained
an interesting new result. Frequency dependence of o,
is, to first order, determined by the regular distribution
Vo(z,w) along the ray path. This gives us a possibility
to test the model experimentally. It also provides the
basis for possible diagnostical applications of the theory.

and

Results in a dipole field

Let us now make some more quantitative theoretical
and numerical estimates by using dipole field and the
following simple plasma density distribution along the
field line: p(z) = p(0)(1 — 22)~*, where z = cosf, 0 is
colatitude (see Guglielmi, 1989). Changing integration
variables with the relation dz = LRg(1 + 322)1/2dz and
using Egs. (2) and (7), we obtain

Je(w) = V2 VR RYLEL - V4 [1w)]M2 (8)

P L= w/20(2))2(1 — 22)2
1 —w/Q2)]3(1 + 322)1/2

1
where I(w) = — dz, (9)
20

Q(z) = Qo(1 + 322)1/2/(1 - 2?)3,
and Qo= Qg/L% 20=01-1/L)Y2  (11)

Here Rp is Earth radius, V4, is Alfvén velocity at
equator, L is Mcllwain’s parameter, and Qg = 3066
s~1 gives the equatorial proton gyrofrequency at L=1.
Qo is the corresponding quantity at equatorial distance
LRE, and Q(z) gives the gyrofrequency at angle  and
invariant latitude L.

The repetition period 79(w) in the dipole magnetosphere
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Fig. 1. Sonagram for one Pcl pearl event
observed at Sodankyla, Finland, on September 30,
1990. The upper band was used in the analysis.
(The narrow vertical line is due to an external
disturbance, probably a lightning.)
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Fig. 2. The proportionality factor A(L,w /o)

as a function of L (calculated in steps of 0.2)

for a few relevant frequencies. The solid, dotted,
dashed and dash-dotted lines correspond to the
frequencies of 0.2 Hz, 0.5 Hz, 1 Hz and 2 Hz,
respectively.

is given by the following well known formula (see e.g.
Nishida, 1978; Guglielmi, 1989):
ro(w) = 4RpV L - 1)V?K (),  (12)
w/29(z)]
where K(w)= — _/[l—w/fl 3/2(1 2%)dz. (13)
We can now easily find the following relation:
or=0,(t,/REL) 10 - A(L,w/).  (14)
2 11/2 _
where A(L,w/Q) = \/--———-(il vz, (15)

4 K() ©

It is interesting to note that the proportionality factor
A(L,w /) is fairly constant (about 0.4) for physically
relevant L and w values, as shown in Fig. 2. Therefore,
Eq. (14) expresses a nearly constant linear correlation

between o, and 79 with oy, L’:,/ 2 and trivial scaling
factors as coefficients. As i1s seen in Fig. 2, largest
deviations from constancy are found for high values of
frequency and L. However, since the high-frequency
pulsations are produced at fairly low L shells (Erlandson
et al, 1990), the physical value of A is approximately
0.4.

Comparing theory with observations

In order to compare the above theory with experimental
data we studied Pcl pearl events observed at Sodankyla
(L = 5.1), Oulu (L = 4.3) and Nurmijarvi (L = 3.3)
from 1975 to 1990. We selected 20 events passing the
following criteria: Average Pcl frequency was almost
constant; Pcl band was broad enough; the chain of
oscillations contained at least 12 wave packets; pulsation
amplitude did not suffer from abrupt changes. One of
the selected events is shown in Fig. 1. Most selected
events occurred in the morning or day hours during quiet
or moderate magnetic activity.
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Fig. 3. Scatterplot of the 20 Pcl events in the
T — 0, plane. Regression line is also shown.

For each of the 20 Pcl pearl events we calculated the
average repetition time 7 and its deviation o, at two
frequencies of the same band. (The read-out error of times
from the sonagram was estimated to be about 5s). The
values obtained at the lower (higher, resp.) frequency are
denoted by index 1 (2). A typical difference between the
two frequencies was 0.1-0.15 Hz. Furthermore, average
values of quantities measured at the two frequencies of
one band were calculated. These are denoted by bars.
The average frequency varied from 0.3 Hz to 1.5 Hz.

In Fig. 3 we have depicted the scatterplot of all 20
events in 7 — 7, plane. A fair correlation (r2 = 0. 55)
between the two quantities is found with a linear regression
equation of ¢, = 0.99 + 0.11 x 7. Thus Fig. 3 provides
observational evidence for the above idea of a linear
relation between o, and 7, as expressed in Eq. (14).

The observed properties of events also reproduce the
well known inverse relation between repetition period
and frequency of Pcl pearls (see e.g. Troitskaye and
Guglielmi, 1967). Using average values for events observed
at Sodankyli we find f = 103 x 7~ 1(r? = 0.63). From
this relation and the above mentioned correlation between
7 and 0, it is clear that 0, was also found to be
inversely correlated with the average frequency f. Thus,
on an average, larger values of 7 and 0, were observed
at low frequencies.

However, while this relation is true for the statistical
ensemble of events, a different frequency dependence was
found when each event was studied separately. Let
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Fig. 4. Frequency ratio w/{)y versus parameter
F' calculated for L = 4.5.
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us first note that the repetition period for the upper
part of the band (72) was slightly larger than that of
the lower part (7;) for most events. The two periods
were found to be very well correlated (r2 = 0.96) with
79 = 9.9 4+ 0.99 x 7;. The non-zero intercept of this
regression is due to the changing slope of pearls during
the event. This intercept gives the statistically averaged
time delay between the upper and lower frequencies of
about 10 s. Thus the higher frequency part of a pearl
propagates slower and gets delayed with respect to the
lower frequencies. Similarly, the deviations calculated
for the upper (0s) and lower (0;) frequency parts of
é)ulsatlon band were seen to be fairly well correlated
0.67) with 09 = 3.3+ 1.1 x07. Out of 20 events,
17 had o9 larger than o;. A typical value of the
difference 09 — 07 is 4-5 s while that for g9 (01) is
17-18 s (12-13 s). Accordingly, the upper frequencies of
a pulsation band suffered a larger deviation than the
lower frequencies. This is in an interesting difference to
the above discussed inverse relation between f and 7,
based on statistical averages.

In order to further study the frequency dependence
of or, let us introduce the dimensionless parameter
(actually the logarithmic derivative of the deviation)
F = dfno,/dfnw. The theoretical value of F can be
calculated from Eq. (8). Instead of showing the lengthy
formula we have plotted in Fig. 4 the frequency ratio
w/Qo versus the value of F for L = 5. Numerical
calculations show that this curve changes only little if
plasma density distribution or L are varied, once L > 3.
As seen in Fig. 4 fluctuations of the Pcl repetition period
increase monotonously (but nonlinearly) with frequency,
in agreement with the above discussed observation of
09 being greater than o;. The distribution of observed
values of F' is presented in Fig. 5. It is characterized
by a maximum at FF = 1—1.5. As seen from Fig. 4,
this range of F' corresponds to w /{2y of about 0.55-0.65.
Accordingly, for most selected Pcl events our method
finds nearly the same frequency in a physically relevant
range of values.

Discussion

Let us first comment on the restrictions made in
the derivation of Eq. (5). The perturbative treatment
is only allowed if density fluctuations are small, i.e.
| p1 |<< po. This condition is expected to be valid
for quiet and moderate geomagnetic times whence Pcl

Number of Pc1 events
o

2 -1 0 1 2 3 4 5 6 7

F
Fig. 5. Frequency distribution of the observed
values of F for 20 Pcl events.
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pearls prefer to occur. During such times the conditions
on small-scale irregularities and the homogeneity of the
correlation function are also best guaranteed.

Furthermore, the dipole approximation used for numerical
comparisons should apply quite well since most Pcl pearls
occur at fairly low L-values (L = 3-6) in the morning
sector where the field lines are much less perturbed than
e.g. in the night sector.

The clear concentration of observed pearl events to
only a small range of F gives good evidence for the
theory to explain the observed fluctuations of repetition
period. A mere scaling argument or any other known
mechanism could not cause such a concentration.

The fact that the higher frequencies of a Pcl pearl band
experience larger fluctuations than the lower frequencies
may, in addition to the frequency dependence given by
the theory, be slightly further enhanced due to the
higher frequencies spending a longer time (about 10 s
more, as presented earlier) in the magnetosphere, thus
getting more vulnerable for random plasma fluctuations.
However, this effect alone can not be the dominant reason
since it does not produce a constant value for F'.

Most measured values of F being positive and
corresponding to physically relevant frequencies gives
additional support for the presented theory. However,
for three events, a negative value of F was obtained
(see Fig. 5). These may, of course, be ascribed to
experimental errors. Another explanation is also possible.
In the above treatment we have discussed left-handed
waves, but Pcl waves may also occasionally propagate
in the right-handed (R) magnetosonic mode. The group
velocity of R-mode waves is obtained from Eq. (2)
by substituting w — —w. Using this substitution the
frequency dependence of o, can be calculated for the
R-mode from Eq. (9), resulting in a negative value of F.

Let us also briefly mention some diagnostical possibilities
of the theory. The correlation coefficient between 7 and
can be used to estimate the parameter Q = o, (fp/RE)l/2
which characterizes the flatness of the magnetospheric
plasma along the Pcl trace. Using the theoretical value of
A ~ 0.4, the expected L ~ 5 and the observed coefficient
of proportionality 0.11, we find Q ~ 0.6.

We have neglected the effect of heavy ions in Eq. (2).
This omission affects the absolute frequency scale but does
not invalidate the above comparison of the observed and
theoretical frequency dependences of o,. In particular,
the frequency obtained from observed values of F' was
about half the ion (proton) gyrofrequency while Pcl
fre«iuency observed on the ground was below equatorial
He" gyrofrequency. Thus, a more correct absolute
frequency scale is obtained if He" rather than proton
gyrofrequency was used in Eq. (11) and, consequently,
if Qg had one fourth of its value given below Eq.
(11). (With this substitution, the frequency range would
also correspond to the frequency of the maximal wave
growth; see e.g. Kozyra et al, 1984). However, the
frequency dependence of o, as tested by F is, because
of its definition as a logarithmic derivative, determined
by the form (slope) rather than the absolute value of
the dispersion relation. Taking He™ ions into account,
the dispersion relation of left-handed waves below the
He't gyrofrequency (class I waves in the terminology
of Rauch and Rouz, 1982) greatly resembles the form
of the dispersion relation of waves below the proton
gyrofrequency when heavy ions are neglected. Thus we
are confident that the results obtained above for the
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frequency dependence remain valid even if heavy ions
were taken into account.

In order to briefly mention some of the diagnostical
possibilities of the method, we can e.g. obtain an estimate
of the plasma density at the equator in the following way.
Using the observed value of F' we will first determine
from Fig. 4 the corresponding ratio w/{}¢ and, knowing
the observed w, we can find g and then L. The plasma
density at the equator then is found by the inversion of
Eq. (1) using the measured values of 7, w and L.

Conclusion

We have studied fluctuations of the repetition period
of Pcl pearls in a theoretical framework, using a few
physically motivated simplifying assumptions. We found
out that the fluctuations depend on the effective correlation
length of plasma irregularities and a frequency dependent
part which is determined by the regular plasma density
distribution along the Pcl ray path.

Using the dipole field and a simple plasma distribution we
derived explicit formulas for fluctuations and demonstrated
that an approximately linear relation between the repetition
period and its fluctuations follow. This prediction was
verified by measured data from a number of pearl events.
In addition, the frequency dependence of fluctuations was
shown to be in accordance with theoretical expectations.
We discussed the limitations of the model and outlined
some possibilities for diagnostic applications.
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