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An extensive analysis of the charged weak interactions of leptons within the left-right symmetric
electroweak model is made. A general mass matrix of the neutrinos is allowed for, neglecting
intergenerational mixing for simplicity, and the limits to the parameters of the model are obtained
for various possible neutrino mass configurations. It is also pointed out that one of the muon decay
parameters, 8, can uniquely distinguish between the different possibilities for the masses of the
right-handed neutrinos.

1. Introduction

The exact V— A structure of charged weak interactions with the implied maximal
parity (and charge conjugation) violation is a basic property of the present standard
electroweak theory: the Glashow—Weinberg—Salam (GWS) model [1]. It is included
in the model by judiciously choosing the chiral fermion representations under the
SU(2) x U(1) group, the minimal gauge symmetry unifying weak and electromagnetic
interactions.. Thus the V— A structure is actually built in the model by hand and,
consequently, no natural explanation is obtained for it.

Many extended models restoring the parity (and charge conjugation) invariance
in the lagrangian have been proposed. After the most economical extension, the
vector-like theory, has been excluded by the famous polarized electron—deuteron
experiment [2], we are left with larger extensions of the GWS model. The most
studied alternative is the left-right symmetric (LRS) model based on the SU(2), X
SU2)r X U(1) gauge group [3]. The obvious left-right symmetry of the lagrangian
is violated by an asymmetric vacuum, giving different masses to the two sets of
gauge bosons.

The question of the energy scale of parity restoration in the LRS model has been
under much discussion recently. If the spontaneous symmetry breaking (SSB) of
the model is done in a “minimal” way [4] using Ag = (0, 1,2) Higgs representation
to break the SU(2)z group, one naturally relates the parity restoration mass scale
to the Majorana mass of right-handed neutrinos, and the light mass of the (almost
purely) left-handed neutrino will be explained through the see-saw mechanism [5].
Then all the accurate purely leptonic charged current (CC) constraints are reduced
to their V-A values, and information on the parity violation level is only obtained
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174 K. Mursula / Leptonic charged weak interactions

from the less accurate and theoretically less well-known semileptonic [6, 7] and
purely hadronic processes.

The hadronic weak decays of baryons have been shown [7, 8] to limit only the
possible mixing between the two charged weak bosons. Other estimates using the
K,-Ks mass difference or pionic decays of kaons can give a lower bound to the
right-handed mass scale. However, the situation is still unsettled since some groups
[9] report results consistent with low-mass parity restoration (Mg ~ 200 GeV) while
others [10] are against it. There are several unknown (top-quark mass, Higgs masses)
or inaccurately known factors which affect the result. Furthermore, whatever the
final conclusion will be, it is dependent on the chosen Higgs sector and therefore
not a general result. '

Enlarging the minimal Higgs sector or using different Higgs multiplets to massify
vector bosons (e.g. with 8z =(0, 1,0) and 8. =(1, 0, 0)) and neutrinos allows for a
more general neutrino mass matrix. Then one can also use the purely leptonic
high-accuracy data to obtain reliable information on the parameters of the left-right
symmetric model. Up to now the leptonic constraints have been discussed only for
the case of Dirac neutrinos [11, 12].

In this work we make a general study of the charged weak interactions of leptons,
allowing for arbitrary mixing between the left- and right-handed neutrinos and
treating the right-handed neutrino masses as a priori unknown parameters. We will,
however, neglect intergenerational mixing to simplify our argument. Such an analysis
is important in view of the on-going and future high-accuracy experiments planned
to measure the muon [13] and beta [14] decay parameters by about one order of
magnitude more precisely than today. We also note that if any deviation from V-A
is seen in these experiments, it will not only imply an extended gauge structure, but
also give information about the mixings and masses of the additional (mostly
right-handed) neutrino states.

This work is divided as follows. In sect. 2 we review the leptonic CC interactions
in the LRS model and discuss the neutrino mass matrix and its eigenstates. In sect.
3 the CC constraints are worked out and in sect. 4 several neutrino mass configura-
tions are considered. In sect. 5 we present our conclusions.

2. Charged weak interactions of leptons in the LRS model

The assignment of fermions in the LRS model is symmetrical: the left (right)-
handed states transform as doublets under SU(2)(r). Hence the basic CC lagrangian
(for one lepton generation) has the form:

_ oo P
a(fCC: —\/%g[WL‘L IL)/;LVFL+ WR”IRYP-VfR]%—h’C' (1)

In general, the left- and right-handed vector bosons Wy and Wy will get mixed
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through their mass matrix by an angle w (dependent on the details of SSB):

(W1> B (cos © —sin w)( WL> @
W,) \sinw coso /\W/’

The effective four-fermion CC lagrangian can then be written (in the low-|q’|
limit) as follows

fgecﬁc == %gz[A]QJ;,L + BJZRJ;’R + CIJ(’LJ;’R + C2]€RJ;'L] s 3)
where the left- and right-handed lepton currents are

Jeiw = eV (1 7)v5)€ “)

and the following constants have been introduced:

cos’w sinw

A= +
My, M3,
stinzzw_l_coszw’
MW| MWz
. 1 1
Ci=C,=C=sinw cos @ ~W+M%v . %)

We also use the ratios x and y:

(e Dr+(e—1)

=B A= e
r=cia= S ©
where
_lftane
l-tan o’
r=(Myw,/My,)’. )

In the above formulae we are dealing with weak eigenstates of neutrinos. Next
we will discuss the neutrino mass matrix and its eigenvalues, and then present the
effective CC interactions in the neutrino mass eigenstate basis. Let us first simplify
the most general mass matrix of (three generations of) neutrinos by neglecting the
intergenerational mixing, and instead take the most general mass matrix for each
generation separately. This choice makes our argument more clear and distinguishes
it from the other, often studied, special case of sizeable flavour mixing and no
— vy, mixing.

Ve,
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The most general mass matrix for one generation is [15]

€ € C
£ =Y, a&g("’; mD)(”‘R) +he. 8)
mp

¢
MR/ \ Ve,

This symmetric mass matrix M, can be diagonalized by a unitary matrix U,:

0
D,= U;Mfo=<m€l > . (9)
0 me,

yf! . UT Vf
- 4 C ]
Ve,/ L Vel L

le
() -e). a0
Ve,/ R Ve/ R

one finds that the mass lagrangian takes the form:

Defining a new neutrino basis

i _c _c
$m=—§(mglV(lnglR+m(2v(2LV{2R)+h.c. (1D

If the mass eigenvalues m,, are taken real and positive, the phases of the unitary
matrix U, are fixed [16]. However, we will restrict ourselves here to the CP-
conserving case of real matrices M, (in fact we already assumed CP invariance for
the W, -Wg mass matrix in eq. (2)), whence the diagonalizing matrices U, are
orthogonal:

cos o, —Sin a,
U(;E< ) . (12)
sin a, cos a

Then the mass eigenvalues are real, but their signs n¢ are not known:
me’,-E”']ﬂmea T’f=:t1 (13)
Finally, the mass lagrangian (11) is diagonalized by Majorana states x*:

Xi=we +nive (14)

L2
which have the following CP property:
X =mixi. (15)
As noted first by Wolfenstein [17] the relative CP factors are relevant for processes
where two (or more) neutrino states contribute either as propagators (e.g. in neutrino-
less double beta decay) or real particles (e.g. in v, > v,y decay). The n? factors do
notappear in the CC processes we are dealing with below. However, for completeness
we will keep them in our general formulae.
Let us now briefly comment on the mass matrix M in eq. (8) and its eigenvalues
m; and the mixing angle « (we drop the label ¢ for a moment). The eigenvalues are

m. =3my +mg £ (m, — mg)’ +4mb) . (16)
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We wish to call the state with a smaller (absolute value of) mass the first neutrino
state, and the other state with a larger one, the second neutrino. Thus for m_ + mg>0
we have m, =m_ and m,=m_>0 (implying n, = +1), while for m; +mg <0 the
other way around (with 1, = —1). In the first case the mixing angle will be given by

1
tan @ =—2 = — (mg — my —(m,— mg)* +4mb), (17)
m_—mg 2mp

while in the second case one has to replace the right-hand side of eq. (17) by its
negative inverse. The mass eigenvalues have the same or opposite signs, depending
on whether the quantity m; mg — m3, is positive or negative.

Even in the case of large mass separation between the two neutrinos (|m,|>|m;|)
it is possible in principle that the mixing angle « is large. For definiteness, eq. (17)
is then reduced to tan a = —m;/my which implies that |a| can be of the order of
one if m; ~ mg ~ £ mp,. However, this requires that the parameters of the mass matrix
be fine-tuned corresponding to the mass separation by as many orders of magnitude.
For smaller |a|, the need for fine tuning will be diminished, of course.

Let us now go back to study the effective lagrangian of the leptonic CC interactions
and write it in the neutrino mass eigenstate basis. Using egs. (10) and (14) to substitute
the x? for »,’s in the currents J% of eq. (4), one finds that the effective lagrangian
consists of four parts, all of which can be written in the form of eq. (3), however,
with modified coefficients. E.g. for the part involving the two low-mass neutrinos
¥¢ and x¢ one has to replace A, B, C, and C, by A, B, C,, and C,, where

A=Acos a, cos a,nin?,

~

B = Bsin a, sin a,,
C,=C cos a,sin a,n?,
C,=Csin a, cos a, 7} . (18)

The corresponding values of A, ]§, C~?1 and G, for the three other channels Xix5,
X5x¢ and x%x¢ have been tabulated in table 1.

TABLE 1

The coefficients A, B, 5" and (~?2 of eq. (3) (replacing A, B, C, and C,) for the three different neutrino
channels with mass eigenstate neutrinos

€€ €. € ‘e

Xi1X2 X2X1 X2X2
A 5 e € : . : : '
A —Acos a, sin a,n{ns —Asin a, cos apnin¢ Asin a, sin a,m5ns
B Bsin a, cos a, B cos a, sin a, B cos a, cos a,
s Va - . .
G C cos a, cos ap s ~C sin @, sin apnf ~C sin a, cos a5
s . . b ’ . 3
C, ~C sin a,sin a, 5 C cos a,cos a, —C cos a, sin a1
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3. The charged current constraints

We will now derive the formulae for the most important quantities that restrict
the structure of charged weak interactions of leptons. These constraints come from
muon, pion and nuclear beta decay[11], inverse muon scattering [12] and high-energy
neutrino scattering [6].

The muon decay parameters p, ¢ 8 and ¢’ for each possible decay channel can
be straightforwardly derived using the above equations (with #=pu, ¢'=¢) and
general formulae [18]. The corresponding decay rate is proportional to the factor
K =A?+ B>+ C?+ C2. We list in table 2 our results for these parameters in a general
notation for all channels. (One can explicitly see that the n¢ factors do not appear
since the constants A B, C, and C, are squared).

The total cross section for the inverse muon decay process can also be derived
from the above lagrangian (now with ¢ =e¢, ¢'= ) and the general result [19] with
a non-trivial longitudinal polarization h of the neutrino (h= PZ, see later). Our
result is (again, for any particular channel)

o~ A%(1=hy+ B (1 +h) +0375[C2(1 +h) + C1 - b)) (19)

In what follows, we will divide the cross section with its V-A value and call the
ratio S.

The semileptonic effective CC interactions can, of course, be represented by
formulae 31mllar to eq. (3). One finds easily that the lognitudinal polarization of the
neutrino x¢ from pseudoscalar (PX ,€=¢e, u,..., P=a, K ...) and nuclear beta
decays (P x%> for pure Fermi transitions N =F and pure Gamow-Teller transitions
N=GT) [20] can be expressed compactly as follows:

2V, A,

c
Ple=——_pN_ 2 ¢7¢ 2
T v+ AL (20)

TABLE 2

Formulae of the muon decay parameters

for each separate neutrino channel using

the notation of eq. (3) (with A, B, C, and
C, replaced by A, B, C’, and C‘z)

3 A2+ B2
4A B+ 24 C2
Al- 192—3C2+zc2
AT+ B +C +C

p=
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TABLE 3

Coefficients V, and A, for the longitudinal polarization of the two neutrino states x¢ and x5 (f
kinematically allowed) in three processes (pseudoscalar decays and nuclear Gamow-Teller and Fermi
transitions)

v, A,
Py and Py —(A~C)cos a,m +(B—C)sin a, —(A-C)cos a,n{—(B-C)sina,
Pzgaanf?‘ (A~ C)sin a,ns+(B—C)cos a, (A—C)sin a,n5 —(B—C)cos a,
S Pl T (A+C)cos a,nt+(B+C)sin a, (A+C)cos a,ml—(B+C)sina,
P ~(A+C)sina,ns +(B+C)cos a, ~(A+C)sina,n5—(B+C)cos a,

The corresponding constants V, and A, for each process and for the two decay
modes (if kinematically allowed) are given in table 3. The rate of each decay mode
is proportional to the denominator of eq. (20). The electron-to-muon ratio Rp of
the pseudoscalar meson decay that we are going to use as one constraint, can be
calculated from these rates. The longitudinal polarizations of the charged leptons
¢~ are easily obtained from eq. (20) and table 3. If the corresponding X5 state is
heavy, they are just
p,=P" = "EPST:‘- L-[(x—y)/(1- ,‘V)]z tanz Qe
v 1 +[(x=y)/(1=p)] tan” a,

Ccor 1M +3)/(1 +y)) tan® a,
C T +H[(x +y) (1 +y) P tan® @,

ey

If x5 is light enough to contribute to the decay, the formulae [11] of the Dirac case
are recovered.

Another accurate piece of information on the CC structure is obtained from
high-energy muon-neutrino scattering, using its Y dependence (Y =1-E,/E,) at
high x-values. One can find an upper bound on right-handed interactions from the
ratio of Y-dependent and constant terms in the differential cross section. We call
this ratio Ry and find the following formula for it: if x4 is heavy

3 vi(1=hcos’ 2a,,)
Y cos? @, (1 —h)+x7sin” a, (1+h)’

(22)

and if x4 is light
YAy + ()]
-y X (x-y)

All the used CC constraints with their most recent experimental values (and 1o
errors) are listed in table 4. Note that we have included the recent and very accurate
result [21] for the quantity called N, which is the following combination of the
muon decay constants :

(23)

24)
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TABLE 4

All the used leptonic and semileptonic CC con-
straints with their experimental best fit values and
68% CL errors (and references)

p 0.7517 +0.0026 [19]
P 0.975+0.015 [25]
5 0.7551 +0.0085 [19]
& 1.008 £0.054 [19]
N 0.9989 +0.0023 [22]
P, 1.002 +0.045 [24]
R, 0.9953 = 0.0097 [191
—(c/v)PET 1.0010.008 [19]
~(¢/v)PE- 0.97+0.19 [23]
S 0.98+0.12 [19]
R, 0.000 £ 0.005 [26]

Considerable progress has also been made recently in the measurement of P, at
SIN [24].

4. Different neutrino mass configurations

4.1. HEAVY RIGHT-HANDED NEUTRINOS

Having now derived the expression for the CC constraints, we can use these
formulae to study several special cases, following from different assumptions on
the (unknown) masses of the right-handed neutrinos. One possibility is that both
x5 and x4 are too heavy to be produced in the weak decays. Then, as discussed in
sect. 2, large neutrino mixing angles a, would require some fine tuning of the
neutrino mass parameters.

In this mass configuration the formulae for the muon decay parameters are just
those given in table 2, with A, B, C, and G, listed in eq. (18). One can see that all
the constraints reduce to their trivial values, if either the neutrino mixing angles a,
or the LRS parameters r and o vanish. Therefore, in the general case, only related
bounds for the a, angles and the LRS parameters can be obtained. In principle, it
is possible to have a fairly large r with small «,’s or vice versa. Anyway, one can
deduce from the Ry parameter (22) that y and thus @ have to be small. Similarly,
the Rp ratio requires the two neutrino mixing angles to be almost equal. We still
wish to notice, in view of later discussion, that the parameters § and P,¢ can be
either smaller or larger than their V — A values. However, this deviation is suppressed
by two (instead of one) small numbers squared, thus making the observation of any
deviation impossible even in the forthcoming experiments.

4.2. LIGHT RIGHT-HANDED NEUTRINOS

Another, and more interesting, possibility is that both of the (mostly) right-handed
neutrinos x5 and y5 are light enough to contribute to the weak decays we are
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considering. (For simplicity, we will neglect here all effects of finite neutrino masses).
Then one finds after adding up all the different contributions to each decay process
that the neutrino mixing angles a, drop out and the corresponding formulae reduce
to those for Dirac neutrinos [11, 12] (although x% and x5 do not have to combine
to form a Dirac neutrino). Therefore we call here a neutrino with a light x5 a
Dirac-like neutrino.

However, for the scattering processes a more detailed knowledge of the mass of
a Dirac-like neutrino would be necessary, since the x{ and x5 states are produced
coherently and an oscillation pattern is induced. This is very much similar to what
was found [6, 12,27] for light mirror neutrinos and was called neutrino-mirror
neutrino oscillation. Also here all scattering cross sections of an incoming ¢-type
neutrino are of the generic form

o(as) = P},(s)a(0), (25)
where
P%,(s)=1—3sin’ 2a,(1 —cos(2ms/ L)) (26)
is the oscillation factor at a distance s with an oscillation length
47wE
L=— 27
Am2 > ( )
Am?=mi—-m?. (28)

If s« L there is no information on «, (coherent case) and if s> L (incoherent
approximation P%,(s) is averaged to

P =1-1sin’2a, (29)

in which case a bound on a, can be obtained. ¢(0) is a (modified) cross section
which may depend on all other parameters (7, w, @) except on a,. An example of
o(0) is given by the inverse muon scattering constraint S, which was calculated for
two Dirac-like neutrinos in ref. [12]. (See also later in table 6.)

Thus in this case there is no unambiguous information on the mixing angle «,,
and, since no v.-scattering experiment is now included, no information at all on «..
For further enlightment about the neutrino mixing angles one would have to use
other constraints, e.g. neutrino oscillation experiments. We do not go more deeply
into this question here. However, we wish to point out that also the neutrinoless
double beta process will put a combined limit on the mixing angle «., neutrino
mass eigenvalues m,, and m, (including their sign) and the LRS parameters.

For completeness we have presented the 1o boundaries of the most strict CC
constraints in this Dirac-like case in fig. 1. One can see that the parameters w and
r are limited essentially by p and N; and the latter constraint is in slight disagreement
with an earlier result for P,£ [25]. A global test gives the following bounds:

Jr=0.15(<0.22),
(~2.7°<Yw = —0.2°(<1.3%) . (30)
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Fig. 1. The 68% CL boundary curves set by the most relevant CC constraints on the parameters r and

o in case both x5 and x5 are light. The straight line is the new parameter N, the dashed, dotted,

dash-dotted, long-dashed and double lines come from p, P, ¢, PST, ¢ and Ry, respectively. All curves,
except the strip formed by P, ¢ enclose the origin. N and P, ¢ are in slight disagreement.

Thus the heavier vector boson would in this case have to be at least 4.5 times more
massive than the lighter boson. In the incoherent case for the muonic neutrino
masses, the angle |, | is restricted to less than 16°.

We wish to point out here a few remarks on the muon decay parameters in this
Dirac-like case (for formulae, see refs. [11, 12]). Namely, the parameter P,¢ cannot
be larger than one for any values of r and w. Furthermore, the parameter & is
trivially . As we shall see later on, different assumptions on the masses of x5 states
will lead to different predictions for these parameters, thus opening the possibility
of obtaining information on the neutrino masses from these parameters.

4.3. ASYMMETRIC NEUTRINO MASS CONFIGURATIONS

There are still other possible configurations for the right-handed neutrino masses.
It may well be (as for the “minimal” Higgs choice) that all the x5’s are too heavy
to be produced in weak decays. It is also possible that the two x5 states have
somewhat different masses, e.g. such that one of the states could contribute to muon
and pion decays but the other could not. (It has been pointed out [28] that even
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with the minimal Higgs model the x3 state can be as light as tens of MeV. This
shows how indeterminate all the mass predictions are, and that all possible mass
configurations should rherefore be studied.) This possibility, though somewhat
accidental, is worth studying because of its phenomenological implications.

As noted in ref. [6], some of the muon decay parameters, asymmetric with respect
to the exchange of the two neutrinos, will attain different formulae for the two cases
of light x5 or x4, respectively. We will now study these generation-asymmetric
models more carefully. For simplicity and clarity of our argument, we will again
neglect all effects of finite masses. A complete analysis can be made using our
coupling constants and adding the trivial phase-space factors with finite x5 masses.

If x5 is light, both x| and x5 (forming a Dirac-like electron neutrino) contribute
to each decay process with their respective couplings given in table 1. We have
presented the ensuing formulae for the constraints explicitly in table 5. One finds
that Pu¢ is always smaller than or equal to one. (Equality is obtained if both «,
and w vanish.) However, contrary to the above, the parameter 8 is now restricted
to be always greater than or equal to 3 (6 =3 for © =0, independently of a,). The
accurately constrained N is now seen to take the following form:

1=[(x=p)/(0 =y tan’ @, 1-x"tan’ @,
1+{(x—y)/(1-y)Jtan’ a, 1 +x"tan’ a,’

31

TABLE S

The muon and pseudoscalar decay parameters and the inverse muon decay
scattering constraint S for such a neutrino mass configuration where x}§ is
light enough and x4 too heavy to contribute to the low-energy processes

2 2 a2
3 cos"a,+x"sin’a,

pP= 2 252 2
4cos” a, +x"sin” @, +y

222 a2 2
_cos”a, —x7sin a, 3y°cos” 2a,

e 202 2
cos” o, +X"sin” a, +y
2 202
3 cos” a, —x“sin a,

- 2 22 a2 24
4 cos” @, —x"sin” @, =3y cos” 2a,,

2 2 il 42 2
_cos” a, —x”sin” a, —y” cos 2a,,

-

2 2 in? ]
cos” a, ~x"sin” o, +y

M

TR 4% tan? a,
_I=[=p)/( =y tan o,
“ (= p)/(1 - )P tan’ a,

_ L+[(x—p)/ (1= )7
P cos? a, H(x=»)/(1-y)Fsin’a,

G cos’ @, (1+P,)+x?sin’ a, (1~ P,) +0.375y%(1 + P, cos 2a,,)
2(cos® a,, +x7sin” a,, +y?)
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w'o!

10 -

ob Y

Fig. 2. Similar boundaries as in fig. 1, but now for x5 light and x4 heavy (with @, =0). The meaning
of the lines is as in fig. 1, except that the long-dashed line comes now from the electron-to-muon decay
ratio R,. Note that N does not set any limit and that p and P, ¢ contradict each other.

which is always less than or equal to one. It essentially measures «,,, and for @, =0
it reduces to one. Therefore, contrary to the case of two Dirac-like neutrinos, N
does not impose now a strict constraint for the LRS parameters.

We have plotted in fig. 2 the most relevant constraints restricting r and o, taking
a,, equal to zero, for simplicity. As p, 8, P,£ and ¢’ all limit the same function, y,
only the most accurate restriction coming from p is given, together with the slightly
contradicting result for P& A global fit to the data gives the following values for
the parameters:

Jr=020(<035),
(—4.4°<)w = —2.3° (<2.4°) ,
@, =0°+11°. (32)

In this case W, must only be less than three times heavier than W,. Since & —3=30?

to leading order, one sees that deviations of & from 3 up to 1% are still allowed,
making the future tests [13] with increased accuracy extremely interesting.

A similar analysis has been made also for the case of light x5 and heavier 5.
The CC constraints for this case have been listed in table 6. While p, being symmetric
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TABLE 6

The same as table 5, but now x4 is light and x5 heavy

3 cos® a,+x?sin’ a,

p=" -
4 cos® a,+x*sin? a, +)?

cos® a, — x? sin? a, +3y° cos? 2a,

cos? a, +x? sin? a, +y?

2 2 102
_é cos” a,— X" sin” a,

4 cos? &, — x?sin” &, +3y? cos? 2a,

cos? a,—x? sin® a, +y° cos’ 2a,

§'=

cos? a, +x?sin® a, +y°
1-x*tan’ a,
1 +x%tan® a,
1-2y+2xy —x*
1 =2y —2xy +x2+2y°

_cos® a. +[(x—y)/(1-y)F sin’ «,
T L=/ nF
cos? a, +x2[(x = y)/(1 = )P sin? a, +0.375y*[sin” e, +[(x — ¥)/(1 = »)F cos® a.]
[1+[Ge =)/ (1= 9)F]cos® a +x% sin’ e, +y?]

P

§=Py(s)

with the interchange of the two neutrinos, is obtained just by changing «, to a.,
the other parameters obtained attain different expressions. The parameter P,¢ can
obtain a value greater or smaller than one. Therefore, if P ¢ is found to be larger
than one, it suggests this neutrino mass configuration. Even more clear is the
information from &, since it is now always smaller than or equal to . Thus a possible
observation of a deviation from this value would signal for one of the asymmetric
neutrino mass configurations (as well as an extended gauge structure) in a definite
way.

We have plotted again the most relevant constraints on r and o (taking a.=0)
in fig. 3. One can see that N and p form now the most strict bounds and that the
early measurements on P,¢ are in an even more clear conflict with N than in the
case of two Dirac-like neutrinos. A global fit gives the following limits:

Jr=0.17(<0.28),
0=0£19°,

(—11°a, = —3.6°(<4.6°. (33)
Since 6 —3~ —%w>, a deviation of up to 0.3% from 3 is possible.

We still want to point out that for many reasonable types of charged weak
interactions [19] the § parameter was found to be trivially 3. This makes the study
of 8 even more worthwhile and the present suggestion even more probable, in case
some deviation is observed.




186 K. Mursula / Leptonic charged weak interactions

10

Fig. 3. Similar bounds as in fig. 1, but now for x4 light and x5 heavy (with «, = 0). The meaniﬂg of the

lines is as in fig. 1, except that the long-dashed line comes from R,. N and P,¢ are now in a more clear
conflict than in fig. 1.

-10

5. Conclusions

We have studied the charged weak interactions of leptons in the left-right sym-
metric SU(2)g XSU(2). X U(1) theory, going beyond the restrictions set on the model
by choosing the “minimal” Higgs representation [4]. We have considered a general
CP conserving mass matrix for neutrinos (neglecting, for clarity, the interfamily
mixings), and calculated the form of the most accurate leptonic and semileptonic
CC constraints. The bounds on the parameters of the LRS model (the mass ratio
and mixing angle of the vector bosons) and the neutrino mixing angles were derived
for several neutrino mass configurations.

For heavy right-handed neutrinos, the neutrino mixing angles should naturally
be small, and thus little information on the LRS parameters is obtained. On the
other hand, if the right-handed neutrinos are light (forming “Dirac-like” neutrinos),
the data imply strict limits to the LRS parameters (Mw, =4.5My,; —2.7° <o <1.3°).
For any Dirac-like neutrino, the coherence of the two states affects the neutrino
scattering experiments. A general treatment of the corresponding cross section was
indicated.

The possible generation asymmetric neutrino mass configurations were also dis-
cussed. If the electron-type right-handed neutrino is light and the muon-type one
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is heavy, the recent high-accuracy result [21, 22] for muon decay was shown to be
trivial, thus allowing for an even lighter mass for the second vector boson. Further-
more, a possible deviation of & from 3 was shown to uniquely select one of the
asymmetric mass configurations. This deviation (depending in the first order only
on » and not on the naturally small neutrino mixing angle) may be so large that it
could be observed in the next generation of experiments.

The author wants to thank Dr. J. Maalampi for discussions and the Emil Aaltonen
Foundation for financial support.
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