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Motivated by the desire to test the limits of the standard model via the Lorentz structure of
charged weak interactions we perform an extended and systematic analysis of charge-changing
leptonic vertices. Based on a helicity projection form of the effective hamiltonian, the analysis
yields improved limits on noncanonical couplings from recent, high-precision measurements in
muon decay. We also give limits on possible, charge-neutral exchanges with intrinsic electron and
muon number.

1. Introduction

In a recent publication [1]* we have performed a comprehensive analysis of all
available, charge-changing, leptonic weak interactions in terms of more general
Lorentz structures than V — A. This analysis was guided by the general pattern of
unified local gauge theories but was not restricted to any specific class of such
models. It was found that the data on muon decay, inverse muon decay, 7.£2 decays,
and nuclear Gamow-Teller transitions did allow for sizeable deviations of leptonic
charged current interactions from the canonical V— A form. Several possibilities
were pointed out on how to improve on this unsatisfactory situation in testing the
standard model at low energies.

In the meantime, several precision experiments on muon decay gave much
improved information on the lifetime [2], the decay asymmetry near the upper end of
the decay spectrum [3], and the polarization components of the positron from
polarized p™ decay [4]. Furthermore, the asymmetry measurement [3] also allowed
one to deduce a very precise value of the helicity 4(»,) of the muon neutrino in the
decay m — py, [5]. As we show below, this new set of data gives further constraints

* Henceforth referred to as 1.
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190 K. Mursula, F. Scheck / Leptonic charged weak interactions

on some of the model cases considered in I, thus reducing the allowed range of
deviations from the canonical couplings.

In this work we modify and extend the analysis given in I by incorporating the
new data referred to above. Here we mostly make use of the helicity projection form
(HPF) of the interaction that was proposed recently [6] and which is equivalent to
the charge-changing form (CCF), used in I, and to the charge-retention form (CRF).
This representation renders the relevance of the measurable quantities in terms of
the underlying charged interaction even more transparent than in some of the model
cases considered in I and allows one to make direct contact with specific model
theories. In addition, we also consider the case of interactions containing charge-
retaining vertices and give limits on the corresponding couplings.

The plan of the paper is the following: in sect. 2 we describe and discuss the
helicity projection form of the interaction and give the formulae for the relevant
observables. Sect. 3 summarizes the new data and our strategy in their analysis. In
sect. 4 we study models with factorization and universality, whilst sect. 5 deals with
V — A models with admixtures of other covariants. In sect. 6 we study exotic neutral
interactions, i.e. models which contain additional couplings of the charge-retention
type. Finally sect. 7 contains our conclusions.

2. Helicity projection form and formulae for observables

Following ref. [6] we write the effective charge-changing interaction for muon
decay in the following form:

H=\% Go{ (s + P)es(5+p)uut his(s+p)(s=p) + hon(s = p)(s+p)
+ho(s=p)(s =p) + 81 (v + a%)er (V4 + a0) v + 812 (0 + a*) (0, — a,)
+851 (0% —a®) (v, + a,) + g (0" —a*) (v, — a,)
+Fia (0B 4+ B )yt thg) s+ Fr (1B = ) (15— 10,5 +h.c.}, (1)
where the symbols s through ¢’ stand for the covariants
sy = VA, Puc=Fvs¥, Vi =Ty Yy, af=Yy"vs¥,,
tt(;f= %‘/%—OQ'B‘PM Zi,:B: T'i\@"(wys‘f’k- (2)

(The particle symbols are indicated only once for each class of covariants.) Barring
the possibility of u — e decays with missing neutrals other than neutrinos [7, 8], this
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is the most general effective contact interaction. Clearly, it is equivalent to the CCF
representation used in I, the relation to the complex coupling constants G,, G/ of I
being given by

G
Gi} = (hlz + h21) i(hu + hzz) >

G/
?} = —(hy—hy) i(hu —hy),
Gp
G
GV} =(gn+tgn)t(gn+2x),
A
G| _
\,/} = (81— 22) F(g—22).
G4
Gr
G’ =2(f11 +/)- (3)
T

The representation (1), however, has a number of advantages over the standard
charge-changing representation (CCF) in terms of G, and G/ (or, for that matter, the
standard charge-retention representation (CRF)), viz.

(i) For massless particles, the combinations appearing in each individual term of
eq. (1) project onto states of definite helicity. As a consequence, the number of
interference terms in any decay rate or cross section is minimal (in fact, only
scalar-pseudoscalar and tensor terms do interfere), and most observables will be
functions of absolute squares like |4,|?, |g,.]%...,only.

(i) The canonical V — A interaction is particularly simple because then g,,=1
while all other coupling constants vanish. (Recall that in the standard form four
constants are different from zero.)

(ii)) The combinations of covariants as used in eq. (1) have an especially simple
behaviour under Fierz transformations. Therefore, any nonvanishing coupling con-
stant other than g,, can be identified directly in the hamiltonian either in its
charge-changing or in its charge-retaining form, thus rendering the physical origin of
such additional terms more transparent. In the sequel we shall make use of the
helicity projection form (1) but we shall indicate the connection to the parameters
discussed in I where this is useful.

The parameter 4 which determines the total rate of muon decay (cf. eq. (4) of I) is
given by

A=a{4(1gn*+ 180> + 1802+ 182 1%) + 1hyy [P+ [hip >+ || + [y

+12(1f1 )2 + If)?)) - (4)
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For convenience, we write the decay parameters in terms of the difference to their
V — A values. We find

12
p—i=——{lgnl*+ Igal’ + 21/ + 2Ufnl* + Re(hn fit + hn f35) ). (5)

36
8“%2—{16’1212“ |821|2_2|f11|2+2|f22|2_ Re(hllff'f _hzzfzg)}v (6)
A

8
1—&=—{4(gn1* +2180” = 182 |?) + 1A P + [hoy |* = 411117 + 161/ |
_8Re(h11ff'1< - hzzfzg)} ) (7)
l1—-w=1 —éé
o

_ 8|g11|2+2|hz1|2+2|hn_2f11|2
4(|g11|2+ lg2212)+ |h12|2+ |h21|2+ ihll _2f11|2+ |hzz_2f22|2

(8)

1= =2 {480+ [80l) + o+ gy P+ 12177 ®)
a
C =S R (s 678) st + 10)], (102)
A
ﬁl |
A L <wb>
A

We note that the spectrum parameter 5 is given by n=(a—28)/A4, and the
transverse polarization components Pp, and Pp, determine the quantities
a/A,..., B /A [6]. The invariant, differential cross section for the reaction v, +e~
— u~+ p, is given in the appendix. We do not write down the expression for S, the
ratio of the integrated cross section o(», +e~ — p~+7.) and the formulae for 7 d2
decay. These are obtained easily from egs. (6) or (A.1)-(A.7) and (19) of I,
respectively, upon insertion of egs. (3). The electron polarization in Gamow-Teller
interactions, in factorized and universal models, finally, is given by

PGT/(U/C)z(gll_gzz)/(811+gzz)- (11)
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3. Data and procedure of analysis

The new data on muon decay are summarized in table 1. All other data, not
shown in this table, are the same as in 1. As a first comment, we note that 7, 1s now
known to an accuracy much higher than all other quantities and, therefore, it has a
negligible effect on the error of the latter. We factor out the quantity |g,,|? in the
differential decay distribution. Furthermore, we use the phase freedom in eq. (1) to
choose g,, real positive. Up to a redefinition of the Fermi constant G, this is
equivalent to setting g,, = 1.

There is one peculiarity about the egs. (5) to (10): the coupling constant 4, does
not appear in the electron observables with the exception of 8 and B’. Concerning
these latter quantities /,, cannot be determined from them either because g, is
known to be very small from the other observables. In those models where this

~ constant is not set equal to zero from the start we factor out the quantity

(83, + 4 1h12]%). Again, we can set this factor equal to 1 through a redefinition of G,.

Our strategy in analyzing the data is mostly the same as in I insofar as we
distinguish between two general classes of models: in the first class we assume
factorization and universality, in which case we can also use the available semi-
leptonic data. In the second we study the case V — A, ie. g, =1,8,,=0=g,,=g,,,
with admixture of specific covariants other than V — A. In this second class only the
data from muon decay and inverse muon decay can be used.

Generally speaking we proceed as follows: complete fits to the data are often
hampered by the fact that there are more parameters than data. Furthermore a
controversial datum such as the measured value of Pﬂé which contradicts the

TaBLE 1
Data on muon decay

Quantity Value Ref.
7 [ps] 2.19703 + 0.00004 2]
52 0.0002 + 0.0043 @
1-P{™E8/p 0.0011 + 0.0023 (3]
1-P, 0.002 +0.045 [4]
B/A , —0.002 +£0.017 (4]
B /A —0.007 +0.016 (4]
12 px 0.030 + 0.047 (12]

®Average of previous measurements as collected in particle data tables [13] and of preliminary value
announced by the Berkeley-TRIUMF group (private information from M. Strovink).

The first six quantities belong to muon decay. The third observable contains P}f“, the muon
polarization from 72 decay. P, is the longitudinal polarization of e* in u* decay; B and B’ are
obtained from the transverse polarization as described in [4] (with « and «’ being zero). The #-parameter
is then found to be 1 =0.004 + 0.034. P‘fK) is the muon polarization as measured in Ku2 decay [12].
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information from p, 8, w = £8 /p, and presumably is obscured by insufficient knowl-
edge of the muon polarization in the experiment, tends to distort the fit. Therefore,
we study the noncanonical covariants one (or at most two) at a time and give lo
limits on the coupling constants. In particular, if a weighted average of experiments
gives a value for the absolute square of a coupling constant, say |g|*=a+ o, we
normalize the branch of the gaussian exp{ —(x —a)?/2¢?} for x €[0, c0] to unity
and calculate x; so that the integral over the interval [0, x,] is 0.683. The value \ﬂc:
is then the 1o limit on |g|.

4. Models with factorization and universality

This class of models (called FSU or FSWU in I) assumes the weak charged
interactions to be mediated by heavy charged bosons with spin 0, 1, or 2. For
simplicity in models I to IIT we study only one such exchange per covariant at a ‘me
so as to make the sensitivity of a given observable to specific types of couplings as
transparent as possible. Furthermore, as in ref. [1], we assume the couplings to be e-pt
universal, but allowing also for the possibility of weak universality (i.e. proportional-
ity of scalar-pseudoscalar coupling constants to the charged lepton masses) in the
case of spin-zero exchange.

These assumptions impose the following constraints on the couplings in eq. (1):

hy,, hy, real, positive semi-definite, (12a)
h,,=hf, with lhy > =hysho, (12b)
211 &2, real, positive semi-definite, (13a)
gn =gt Wwith|gn> =818, (13b)
fa=11. (14)

This class of models has a number of general properties which are evident from egs.
(5) to (10), viz.

§—3=0, 1-¢=0, ¢&=¢  p/=0. (15)

Note that the first result (15) follows from the universality assumption only. Thus,
any deviation of § from 3 would be an indication for violation of universality of
electron and muon couplings to the exchanged charged bosons. The parameter £’
being a polarization component, is smaller than or equal to one, by definition. The
bounds on £, however, a priori are —3 < £ < 3. The factorization and universality

assumptions now constrain this parameter to —1<é<1.
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It is easy to work out the relation to the fit parameters used in 1. We have
Gs=Gg = (hy —hy,)+2ilmhy,,
2 2
GsGp = (hyy+hy) —(hy, +hy),
tgag=2Im(/y)/(hy ~hy,),
Gy=GL = (g1~ 8»)—2ilmg,,
2 2
GyGa=(gn+8n) —(gn+8u),

Ctgay=2Im(gy,) /(8 — &11)- (16)

We now proceed to a number of representative case studies based on the factoriza-
tion and universality constraints (12) to (14).

Model I contains only V, A and T couplings and is equivalent to model FSU 1 of
L, up to the following modifications.

As o and a’ are now found to be zero within a small error band [4] (of about
0.005) the product g, f* is very small, cf. egs. (10a), and it is no more possible to
determine the real and imaginary part of f;; (parameters G and ImG/% in I)
separately. We assume g,, = 1, and leave g,;, and f; free, g,, being constrained by
the universality condition (13b). Limits on g,, and |f,;| are primarily obtained from
p and from « combined. The expressions for a and «’, with the new experimental
limits

Im

A -
:;A} z6Re}<g1*2f11)=0i0.005 (17)

yield a rather tight bound on |g,| - |f}1]- As fi; is compatible with zero, this cannot
be used to improve the limit on |g,| which, by the universality relation, is
essentially the root of the limit on g,;.

Model II assumes that the interaction is given by the exchange of one heavy boson
with spin 1 which couples universally. It is easy to see that in this case the only HPF
parameter to appear in the formulae is g,;/g,, and, in particular, that the phase of
g1, remains undetermined. The muon polarization in the 7 — py, and K - uy,
decays, as well as the electron polarization in Gamow-Teller transitions, is given by

Pl = 8227 811 —px_ _porl )
# 8nt8&u . v

Likewise, the other relevant parameters p, w, §’, depend only on the ratio g,,/g,,.
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TABLE 2
Models assuming factorization and universality

Constraining lo limit
Model Coupling parameters(® on couplings Comments
I 811> 812 p; w; [812] <0.056 for =f11: arg gl fiy re-
fu £ ay of [fi1] <0.037 mains undetermined
g1 <0.003
II 811/82 0; §" P;L(W'K) 811/8n < 9.6 X104 [812] = /811822 318 &1»
PCT undetermined
111 hyy w; ¢ |hyy] <0.076 hoy =hiy; [hy | =hiaho s
hoy B h, <0.076 arg hy; undetermined
v gn ® g1 <0.038 2 spin-one exchanges
) with real couplings
812 p; & 812 <0.036 812 =85 =\818%

@y =¢8/p.

The second column shows which coupling constants are being probed in the models indicated in the
first column and described in the text. The third column shows those observables which yield the
strongest limits. The asymmetry parameter £ is equal to £’ in models I to III but is not used because no
direct measurement is available. Other observables not shown assume their V — A values.

As the deviation from the V — A values is quadratic in this ratio for the case of w,
but linear for the case of p and £’, useful limits stem from these latter two, combined
with the information on P,. Note that g, can at most equal 0.1% of g,, (fourth line
of table 2).

It is instructive to study this model also in terms of CCF parameters. In this case
the correlated limits on the two parameters G, /Gy and a, are obtained from the
relation

gu Gy + Gy —2/Gy Gy cosay
82  Gy+ G, +2/GyG, cosay,

(18a)

[with /G,/Gy being the ratio of the absolute magnitudes of the axial vector and
vector couplings g, and g, respectively, and g, = —gy e~ ', as defined in I]. The
limit g;,/85 < 9.6 X 10~ * yields a limiting contour in the plane (\/GA/GV ,av)

which is approximately a circle around the point (1,0) with radius 2yg,,/g,, . The
absolute boundaries are

[G
094< 1/ =2 <1.06, |ay| <2.5°, (18b)
GV
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and provide the best-known measure of the equality of the complex coupling
constants gy and (—gy,).
Model 111 contains V — A plus factorized S, P structures, i.e.

g,=0=2g,, g1 =0, Ju=0=/fy,
hi,20, hy =0, hy=hiy, |y 1> = hyshy (19)

and is analogous to our former FSU 3 and FSWU 2 models in I. As 4, is unknown,
we factor out the combination g3, + +A7,. The phase of &;; cannot be determined.
The limits on |khy;] and A, stem primarily from « and £’ (fifth line of table 2). B8
gives a similar bound on #4,; only if A, is assumed small. Again it is instructive to

- express this model in terms of CCF parameters, viz.

hi=3(Gs+ Gp) £ 7GsGy cosag.

21

In CCF we have three parameters (Gg/Gv, Gp/Gy, ag) instead of rwo in HPF and,
accordingly, since A, remains undetermined, we find correlated boundary contours
for the CCF parameters. This is another manifestation of the simplicity of the HPF
parametrization. In particular, the (still allowed) case of large 4, corresponds to
ag=0 and Gy = Gp, in which case Gg/G remains unbounded. (This was found in
the global analysis on computer in I.) Gy, Gp and ag are the squares of the absolute
magnitudes of the primordial coupling constants and their relative phase, respec-
tively, as defined in L

Model IV assumes the standard W, exchange (i.e. g,, = 1, g1, = g1, = &5, = 0) plus
the exchange of one more spin-one object (not degenerate with W) with real and
universal couplings

g1=0, 85,20, 812=8n = V8185 -

The best limit on g, stems from w, the best limit on g{, from p and £’ combined,
as shown in the last two lines of table 2. This model is interesting in the context of
models with two nondegenerate W-bosons W, and W,. For instance, if the couplings
of (£, v;) to W, and W, are equal then the information on g{, yields a limit on the
ratio of boson masses, viz. M, > 5M, (at 1o), up to small mixing effects. In the
manifestly left-right symmetric model based on SU(2); X SU(2)y X U(1) [9], finally,
g1, is a measure of the mixing angle ® of W, and W, [sect. 6.2.3 in [6]] (mass
eigenstates versus interaction states), viz. |®| < 0.036.
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5. V — A models with admixtures of other covariants

As in I we have studied the case of dominant V — A interaction to which small,
noncanonical, in general complex structures are added. In contrast to our earlier
analysis, which gave only a selected set of examples, we now study in a systematic
way the noncanonical couplings one by one in order to exhibit more clearly the
sensitivity of individual observables to the different couplings. Thus, we set g,, =1
and add to it one by one the couplings indicated in the second column of table 3.

As noted earlier, the coupling /,, cannot be determined from direct or inverse
muon decay, unless g, is different from zero and not small. By a redefinition of G,
in eq. (1) we can always take out a factor (g3, + +|h,,|?) from the denominators of
expressions (5)—(10) and obtain limits on the other coupling constants normalized to
this constant. As g;, is always found to be small, this procedure is indistinguishable
from setting g,, =1, h;, = 0 — the choice that we have adopted.

Table 3 shows our results for this class of model. As before, cf. sect. 4, the third
column indicates the observables which constrain the coupling at stake (all couplings
not shown in the second column are now zero with the exception, of course, of g,,
which is 1). The table shows that tensor as well as noncanonical vector /axial vector
couplings are excluded at the level of about 0.03 and 0.04 (10), respectively. The

TABLE 3
Models assuming V — A plus other covariants

Constraining 1o limit
Model Coupling parameters® on coupling Comments
I hyy w |hyq] <0.076 f=w
u® hys ’ [hyy| <030
® hay w [hy| <0.076 f=w
B —0.060 < Re k5, < 0.076
B’ —0.092 < Im /1,; < 0.036
v 811 e [g11] <0.038 f=w
V@ 812 = 821 e, & |g12] <0.036 E=¢
VIa®© g2 p; 8 & |g1n] <0.038 1-¢=2(1-¢)
VIb 821 p; & [821] <0.044 1-&=-2g,|*
VI fin p; & w |fi1] <0.026 1-¢=—-(1-w)
VI o p; 85 & |f22] <0.027 1-¢=301-¢)
@y =¢8/p.

® Model with S, P structures.

(©Model with V, A structures.

DModel with T structures.

In all of these models g,, was set equal to 1 whilst all couplings not indicated in the second column
were set equal to zero. Those observables that do not appear in column 3 or 5 assume their V — A values.
Column 5 indicates the additional information that will be obtained from a direct measurement of £.
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m : e
Fig. 1. Exchange of a neutral particle Q° with intrinsic family numbers (I, = +1, L,= +1) and spin
J=0,1o0r2.

Fig. 2. Contribution of Q° exchange to muonic g-factor anomaly.

limits on scalar /pseudoscalar couplings are not as good with %, being the least well
determined (model 1I). In the case of /4, (model III), on the other hand, we obtain
independent limits on its real and imaginary parts.

6. Neutral models

We have also studied the more speculative possibility of exchanges of the kind
shown in fig. 1 being added to the standard W * diagram. A particle of this kind
would be electrically neutral, would have total lepton number zero, L = 0, but would
carry equal and opposite muonic and electronic family numbers (L, = +1, L,=
F1)*. Particles of this kind would contribute to muon decay, to the g-factor
anomalies of muon (fig. 2) and electron (analogous diagram with e and pu inter-
changed), to », and 7, electron scattering, the hyperfine structure of muonium and
to the asymmetry in e*e "= pu*p~ (e*e " — 777 7) (fig. 3). The particle Q° should
not couple to quarks, however, because this would give rise to neutrinoless muon
capture (u~— e7) on nuclei and to kaon decays into pe pairs**. Although this is
speculative we find it interesting to give limits on the couplings of Q° to leptons as
they are obtained from muon decay.

* There would then probably also be analogous objects mediating between e and 7, u and .
**1f QO carries spin 1, its mixing with Z° must be very small so as to avoid conflict with the
experimental limits on p — ey and p — e€e. For some more detailed estimates see ref. [10].
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Fig. 3. Contribution of Q° exchange toe*e ™ — p*p~.

Let us denote the corresponding coupling constants (in helicity projection form)
by

1,4 (scalar-pseudoscalar) v, (vector-axial vector) @;, (tensor-pseudotensor) .
(20)

These effective couplings fulfil factorization but there is no reason why they should
be universal. Therefore, unlike relations (12)~(14), we only have the relations

M2M21 = MM Y12Y21 = Y11 Y22 - (21)

The contribution to (g — 2) is smaller than the known standard weak contributions
and hence undetectable at present. The same statement probably also applies to the
hyperfine structure in muonium. As to the asymmetry in e*e ~— p* 7, the limits on
the coupling constants do not upset the agreement of the data with the standard
model. For instance, if Q° carries spin 1 and is heavy, the asymmetry is found to be

2G
AzzK(S)"ﬁ(Y11+722)XS- (22)

Here s is the squared c.m. energy, K(s) denotes the asymmetry due to y— Z°
interference [6].

We find the following expressions for observables in muon decay (knowing that
the new couplings are small compared to g,, = 1):

p— 3= =l + 10>+ 10+ Ml = 4lenl> + lenl?)] (23)

60— % = %[_ |7711|2+ 'nzzlz_ M12|2+ ln21|2+4(l<r>u|2— "P22|2)] 5 (24)
8

1—wzl~s;:ﬂwuﬁ+wuﬁ+ﬂwmﬂ, (25)

8
1—$=1—55+%[—muﬁ+2mnﬁ—mnﬁ+2mnﬁ+4wuﬁ—8wnPL

(26)
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1- '=%[|7721|2+ |7722|2+4’Y11!2+4|Y12|2+ 12|(P22|2]’ (27)
o

A 1/Re

o = “2—< Im} ["712"73‘2 * Uzl’ﬁl] ) (28)
A

B

A 1(R

g :E{Irg}[(l‘?'Yn)Yf'EiYUYEﬁ]' (29)
A

We note, in particular, that « and a” are quadratic in the »,, whilst 8 and B’ are
linear in 7v,,. In this class of models « and a’ are bound to be very small whereas 8
and B8’ may be different from zero.

We have studied the three possible spins of Q° separately: J =0 is the case of
model I, J =1 is the case of model II, and J = 2 the case of model III. Our results
are summarized in table 4. In model 1 we obtain 1o constraints of the type

1311 + [112]* < 0.017, [1221% + Im21]% < 0.017,
from which we conclude limits on |7,,| of the order of 0.09 (if they have equal

magnitudes) to 0.13 (if n,,,n,; or 1y, n,, vanish). The constraints from the data are
much better, where applicable, in the other two cases, cf. third and fourth, as well as

TABLE 4
Models assuming V — A plus neutral exchanges

Neutral Constraining 1o limit
Model couplings parameters® on couplings Comments
1 Mix 0; 8; & a; o |m,] <0.09-0.13 1-¢=
(M2 ® + [0 17 = 3 1P+ [mial?)
II m w; & [v11] <0.038 £=w;
Y12 B; B’ —0.038 <Rey;; <0.030 v,;, v,, constrained
—0.018 <Imy;, <0.046 through eq. (21)
I P15 P P3O @ & lp1i | <0.019 1—£=10]9y > — 4lpn|%
[Py, < 0.056 phases of ¢;;
undetermined
@ =£8/p.

The neutral couplings 7, v;, and @;; are defined by an expression analogous to eq. (1), written with
the ordering (€p)(7,7. ). To this the standard W-exchange is added (g,, = 1). The observables not shown
assume their V — A values. The fifth column indicates when and how a direct measurement of £ will add
to the existing constraints.
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fifth lines of table 4. In the spin-1 case vy,; and y;, are constrained to zero within a
few percent of g,, =1, whilst v,, and v,, remain undetermined. Most interesting is
model III which yields very tight bounds on both types of tensor couplings.

7. Summary and conclusions

In this work we update and extend our previous analysis of leptonic vertices
occurring in charged leptonic and semileptonic processes, on the basis of the new
high-precision data in muon decay that became available recently. We apply for the
first time the helicity projection form (HPF) of the effective hamiltonian whose
primary merits are the following: it exhibits in a more transparent manner the
sensitivity of a given observable to specific types of couplings. It minimizes
the number of interference terms so that an improvement in accuracy for one of the
observables does not require a new fit of all the couplings. Because it makes use of
left- and right-handed fields, contact to specific unified models is made in a simple
and transparent manner. Finally, its simple behaviour under Fierz reordering allows
for physical interpretation of any noncanonical Lorentz structure in a straightfor-
ward way.

The analysis is based on the assumption that no other muon decay modes [7, 8] are
present and that neutrinos are essentially massless. Other decay modes u~ —e ™+
neutrals, if present, could produce compensating effects in the decay parameters, as
long as these are deduced from observation of the electron only. In the case of
massive neutrinos [11], neutrino state mixing and the possible occurrence of Majorana
states render the analysis considerably more involved.

Generally speaking, we find that the HPF couplings are now well constrained,
relative to the dominant V — A structure g,,, the progress being brought about in
some cases by the new measurement of w = £8/p [3], in others by the measurements
of the complete polarization of the positron in p* decay [4]. Vector, axial vector and
tensor couplings are generally found to be zero within about 0.04 (in units of g,,) or
better. The limits on scalar-pseudo-scalar couplings are not so good: the constant
h,, remains undetermined, 4,, is badly known and could be as large as 0.3 (cf.
model II of table 3). The limits on h,; and h,; are typically of the order of 0.08.
Improvements on ¢, and an independent measurement of ¢ would help to narrow
down these limits, (cf. the comments in tables 3 and 4). In the framework of models
with factorization and universality (sect. 4) we note that the deviation of § from its
V — A value 3 is a test of the assumed ep universality.

We also study the more speculative possibility of exchanging a neutral particle Q°
with quantum numbers (L.= +1, L, = F1) (composite?) and spin J=0,1 or 2.
For J=1 and J=2 we obtain rather good limits on some of or all effective
couplings. In the case J = 0 there is room for such a contribution at the level of up
to 0.13.
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Appendix
INVARIANT DIFFERENTIAL CROSS SECTION FOR THE REACTION e = ur,

Let s =(p@»+p©)?% 1= (p"~p®)* and u=m. + m_— s — 1 be the standard
kinematic variables and let 4 be the helicity of the incoming muon neutrino. As in I
we define the kinematic functions

i,

gi(x):= (x—mi)(x—mg), x=s or t,

g, (s, t):=(s+ t)(s-l- [ — mi— mg),

and write the cross section as

i e B - P ) R - RS Y IR &
dr \dr)va de Jsp dr )t dr Jsp-T dt Jsp-va dt Jva-1’

(A1)

We then have

(92), = {lgalsu(e) + anlaals. D1~ )+ (1 255 —h)).

2ms
(A2)
(%)SP=%gl(t){(|hlllz+ |h21|2)<1 - h) +(1 ©2h— _h)} > (A'3)

(921, =595 [281() + 285,00~ (0] (P01~ ) +(1 20 ).

(A.4)

(92), = =22 [5) - a0~ WRe( £5) #1020 —)).

(A.5)
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In contrast to the SP— T interference term (above), the SP— VA and VA—-T
interference terms become negligible as soon as s > m, m,. They are*

do G}
(E)SP_VAZ - zwzzumem,u.{Re(g22h§1 +812hf1)(1 "h) +(1 o2 h— _h)} >
(A.6)
do G¢
— = ——3umm,{Reg, fi(1—-h)+(1e2;h> —h)}. (A7)
dt VA-T 7732 K

The second term in each of the curly brackets is obtained from the first by
exchanging the indices 1 and 2 on the couplings and by replacing the helicity 4 by
—h. In fact, as 4 is now known to be equal to —1 within 0.4%, the second terms all
vanish and our formulae (A.1) become very simple. In this case, again, the coupling
h,, does not appear in the expressions for the cross section.
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