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Abstract. Some periods before 1820 are poorly covered by sunspot observations. In addition to
apparent, long observational gaps, there are also periods when there are only few sparse daily sunspot
observations during a long time. It is important to estimate the reliability of the monthly and yearly
mean sunspot values obtained from such sparse daily data. Here we suggest a new method to estimate
the reliability of individual monthly means. The method is based on comparing the actual sparse data
(sample population) to the well-measured sunspot data in 1850–1996 (reference population), and
assumes that the statistical properties of sunspot activity remain similar throughout the entire period.
For each sample population we first found those months in the reference population that contain the
same data set, and constructed the statistical distribution of the corresponding monthly means. The
mean and standard error of this distribution represent the mean and uncertainty of a monthly mean
sunspot number reconstructed from sparse daily observations. The simple arithmetic mean of daily
values can be adequately applied for months which contain more than 4–5 evenly distributed daily
observations. However, the reliability of monthly means for less covered months has to be estimated
more carefully. Using the estimated, new monthly values, we have also calculated the weighted
annual sunspot numbers.

1. Introduction

While the sunspot numbers (SNs) form the longest series of routine solar ob-
servations, some periods are not well covered by observational data. In addition
to long observational gaps when sunspot activity is unknown, there are periods
when observations were very sparse. Such periods raise the problem how to re-
construct average SN values from sparse daily observations. Usually the monthly
mean sunspot number Rm is computed as a simple arithmetic mean of all available
daily SN values Rd , i.e., Rm = 〈Rd〉. However, such a method is uncertain when
only few (in the extreme only one) Rd values are available within a month. For
example, Hoyt and Schatten (1998) noted that traditional monthly SN values can
be reliably estimated only if there are more than 4 daily observations evenly dis-
tributed within a month. In this paper we discuss in detail a new statistical method
(Usoskin, Mursula, and Kovaltsov (2003) to form the monthly (and yearly) means
from isolated daily observations. The advantage of this method is that it allows not
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Figure 1. Samples of histogram distributions of monthly Rm together with the rescaled best-fit Pois-
son distribution functions. The four panels depict the cases of at least one Rd equal to zero or in the
interval [20–25], [45–50], [180–200], respectively.

only to calculate the monthly SN value but also to estimate its uncertainty. The
method is based on the statistical properties of sunspot activity during the recent,
well-covered period, and on the assumption that these properties remain the same
throughout the entire period of sunspot observations since 1610. Since the method
deals with individual daily SN values, which are not available in the Wolf sunspot
number series, we study here the daily group sunspot numbers (GSNs) as presented
by Hoyt and Schatten (1998).
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Figure 2. The quality of monthly sunspot numbers calculated from the arithmetic mean of sparse
daily values. The horizontal and the vertical axes correspond to the arithmetic mean 〈Rd 〉 and the
actual Rm, respectively. Panels (a–d) correspond to 1, 3, 5, and 10 daily observations taken randomly,
and panels (e–f) to 3 and 7 days taken consecutively, within a month. Thick solid, thin solid, and thin
dotted lines depict the mean, 68% and 95% confidence intervals of the Rm vs. 〈Rd 〉 distribution. The
thick dashed line denotes the diagonal Rm = 〈Rd 〉.
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2. Reconstruction of Monthly Sunspot Numbers

First, we analyzed all daily group sunspot numbers for the period 1850–1996 when
the data are reliable and contain no observational gaps. We call this data set (more
than 53 000 daily values) the reference population. Then, given one isolated daily
sunspot value Rd from the poorly covered sample period, we selected from the
reference data set all the days with a daily value close to Rd . The width of the bin
for included Rd values was chosen as a compromise between sufficient statistics
and resolution: the width of the bin is 5 below 100, 10 for 100–160, 20 for 160–
240, and the last bin includes all sunspot values larger than 240. Then we collected
the actual monthly means Rm corresponding to these selected days of the reference
population. (If more than one appropriate daily value was found within a month,
the corresponding Rm value was counted as many times.)

Figure 1 shows samples of histograms of the collected Rm values for Rd equal to
zero and within three bins. The histogram distributions are apparently not Gaussian
but can be transformed to the Poisson form after scaling the x-axis, i.e., the Rm

values. Since the GSN value is the number of sunspot groups G multiplied by
a factor of 12.08 (Hoyt and Schatten, 1998), the real statistics behind GSN is the
statistics of sunspot groups (rather than sunspot numbers) which have much smaller
values. Therefore, if Rg is reduced to G by dividing by a factor k = 12, the statistics
of G = Rg/k follow the Poisson distribution:

f (G,µ) ∼ µGe−µ

G! , (1)

where G is a non-negative integer and µ is the mathematical expectation of the
mean. Figure 1 shows the best fit Poisson distributions after rescaling G back to
Rg. One can see that these distributions correspond well to the Poisson shape (after
rescaling) and approach the Gaussian distribution when increasing Rd .

From such distributions we have computed each monthly mean Rm and its un-
certainty σm corresponding to one daily Rd value in a month (Figure 2(a)). The
usual assumption that Rm = 〈Rd〉 (thick dashed line) leads to a significant over-
estimate of the monthly value for Rd > 100. If more than one daily observation
was available in a month we can still apply the above procedure by looking for
the given set of Rd values in the reference population. The corresponding Rm vs.
〈Rd〉 plots are shown in Figure 2(b–d). The deviation between Rm and 〈Rd〉 is still
significant for three daily observations within a month for 〈Rd〉 > 150, but is small
for five observation days and negligible for ten days, in agreement with Hoyt and
Schatten (1998). (The horizontal plateau for 〈Rd〉 > 220 is due to lack of statistics
for high SN values.)

In the above discussion we assumed that the observational days are taken ran-
domly within the month, i.e., that there are no preferred dates of observations and
that individual daily SN values are not correlated. However, it is quite common that
daily observations are consecutive and form a single period of a few consecutive
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Figure 3. (a) Monthly group sunspot numbers, reconstructed as described in the text. (b) The
difference �Rm between the formal and newly calculated monthly sunspot numbers.

Figure 4. Statistical error of the monthly mean group sunspot number as a function of the number of
spotless days within a month from the reference period. The curve depicts the best-fitting exponential.

observational days within a month. In such a case, the individual daily measure-
ments cannot be regarded as random and independent, but the above method can
still be applied by looking for the same set of consecutive Rd values. Note that
in this case the quality of the Rm reconstruction (see Figures 2(e) and 2(f)) is
very close to the single daily observation (Figure 2(a)) because the consecutive
observations are strongly correlated.
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Thus, using the method illustrated by Figures 1 and 2, one can reconstruct a
monthly mean Rm from sparse (or even from a single) daily observations Rd and
estimate its uncertainties. Applying this method to all those individual months from
the period 1610–1820 that contain five or less separate or 10 or less consecut-
ive daily observations, we have reconstructed the monthly GSN values shown in
Figure 3(a). For other months (> 5 evenly distributed or > 10 consecutive daily
observations in a month), we took Rm = 〈Rd〉. The standard error of the mean can
be defined in this case as

σm = σd/
√

nd − 1, (2)

where σd and nd are the standard deviation and the number of daily Rd values
within the month, respectively (Hoyt and Schatten, 1998). The differences between
the formal Rm values (Hoyt and Schatten, 1998) and the newly reconstructed
monthly values are shown in Figure 3(b). The periods when the reconstruction
is clearly different from the formal Rm definition are 1610–1645 and 1710–1810,
with the difference remaining typically within ± 10. Only a few months in 1780s
show a large difference of about −25. Note also that for most months the difference
is positive, indicating that the arithmetic average exaggerates the monthly value, as
suggested by Figure 2.

3. Reconstruction of Yearly Sunspot Numbers

The traditional way to obtain yearly sunspot numbers Ry is to compute the arith-
metic mean of monthly values Rm, i.e., it is a two-step averaging of daily values
Ry = 〈Rm〉 = 〈〈Rd〉〉. We note that Ry computed in this way is different from Ry

computed directly from all Rd values within the year because the two-step arith-
metic averaging (when all monthly values are taken with equal weights) breaks the
error propagation if months are not fully covered by daily observations. Therefore,
strictly speaking, it is more accurate to calculate the yearly SN from the daily
values Ry = 〈Rd〉 or as a weighted average of monthly values. The weighted
average is defined as (Agekyan, 1972; Usoskin, Mursula, and Kovaltsov, 2003)

Rw = 1

w

12∑
m=1

wmRm, (3)

where individual statistical weights are wm = 1/σ 2
m, and w = ∑

wm. The uncer-
tainty in Rw is determined as follows:

σw =
{

(σ ∗ + σ )/2 if σ ∗ < σ,

σ ∗ if σ ∗ > σ,
(4)

where
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Figure 5. (a) Formal (dotted curve) and weighted (solid curve with error bars) yearly group sunspot
numbers for 1950–1996. (b) Scatterplot of weighted vs. formal yearly group sunspot numbers for
1850–1996.

σ = 1/
√

w (5)

is the expected mean error and

σ ∗ =
√

1

(n − 1)w

∑
wm(Rm − Rw)2 (6)

is the actual mean error of Rw.
The monthly values of Rm and σm can be taken either as reconstructed above

for months with few observational days or directly from daily values otherwise. A
special case is when all daily SN values within a month are equal to zero, leading
to σm = 0. This makes it impossible to formally apply Equation (3) since the
corresponding statistical weight approaches infinity (wm → ∞). We analyzed
those months of the reference population that contain zero values and found a
dependence of the observed σm on the number of spotless days within a month
which is shown in Figure 4. This relation is nearly exponential and predicts that
σm = 0.51 for 30 spotless days within a month. This value can be interpreted, e.g.,
as an observational threshold for the sunspot number or as an error of rounding
to integer. Accordingly, we have set all values of σm → 0 to σm = 0.51 and then
applied the above described weighted averaging technique. This leads to σw = 0.15
for a spotless year. We have checked that the applied technique yields the same
values, within 1σ error, as the formal yearly GSNs (Hoyt and Schatten, 1998)
for the reference population (see Figure 5). The standard deviation between the
weighted and formal yearly GSN values is 3.3.

Another problem arises when a year contains only one month of sunspot ob-
servations. There are eight years (1614, 1623, 1640, 1731, 1734, 1738, 1746, and
1748) with only one monthly Rm in the GSN series. In these cases we used the same
statistical approach which was used for months with few daily observations (see
Section 2). For a given Rm and σm we found, using the reference population, yearly
Ry values for all years containing one monthly SN within the range of Rm ± σm.
Then a histogram of these collected Ry values was constructed in a similar way
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TABLE I

Yearly group sunspot numbers: formal values Rg as well as the new, weighted Rw and their
uncertainties σw .

Year Rg Rw σw Year Rg Rw σw Year Rg Rw σw

1610 36.0 15.7 20.7 1650 0.0 0.0 0.15 1690 0.0 0.0 0.15

1611 34.2 54.3 6.4 1651 0.0 0.0 0.15 1691 0.0 0.0 0.15

1612 92.7 94.5 7.5 1652 4.0 0.1 0.5 1692 0.0 0.0 0.15

1613 109.6 86.3 8.0 1653 0.8 0.3 0.3 1693 0.0 0.0 0.15

1614 121.0 115.0 24.0 1654 0.7 0.1 0.2 1694 0.0 0.0 0.15

1615 80.3 20.8 18.6 1655 0.5 0.1 0.2 1695 0.1 0.1 0.15

1616 20.1 17.5 4.1 1656 0.6 0.1 0.2 1696 0.0 0.0 0.15

1617 2.3 0.1 0.2 1657 0.2 0.1 0.15 1697 0.0 0.0 0.15

1618 1.3 0.2 0.3 1658 0.0 0.0 0.15 1698 0.0 0.0 0.15

1619 15.0 13.2 2.0 1659 0.0 0.0 0.15 1699 0.0 0.0 0.15

1620 15.0 13.0 1.1 1660 2.0 0.7 0.5 1700 0.4 0.1 0.15

1621 15.0 15.0 0.2 1661 0.8 0.2 0.3 1701 0.5 0.1 0.15

1622 15.0 16.9 0.4 1662 0.0 0.0 0.15 1702 0.6 0.2 0.15

1623 15.0 13.0 9.0 1663 0.0 0.0 0.15 1703 2.7 2.0 1.3

1624 9.6 11.6 1.6 1664 0.0 0.0 0.15 1704 4.1 1.9 1.0

1625 42.4 34.5 3.9 1665 0.0 0.0 0.15 1705 5.5 3.8 0.9

1626 26.6 16.7 2.0 1666 0.0 0.0 0.15 1706 3.2 1.0 0.7

1627 16.5 15.0 1.7 1667 0.0 0.0 0.15 1707 5.3 2.7 1.6

1628 23.2 23.2 3.0 1668 0.0 0.0 0.15 1708 2.8 0.9 0.7

1629 18.7 17.4 2.3 1669 0.0 0.0 0.15 1709 1.6 0.5 0.4

1630 0.0 4.2 1.9 1670 0.0 0.0 0.15 1710 0.4 0.1 0.2

1631 4.4 3.2 1.4 1671 0.9 0.3 0.4 1711 0.0 0.0 0.15

1632 0.0 0.0 0.15 1672 0.4 0.1 0.15 1712 0.0 0.0 0.15

1633 14.3 0.6 0.7 1673 0.0 0.0 0.15 1713 0.3 0.1 0.2

1634 3.0 0.1 0.4 1674 0.2 0.1 0.2 1714 0.9 0.2 0.3

1635 4.3 0.1 0.3 1675 0.0 0.0 0.15 1715 3.6 1.9 0.6

1636 – – – 1676 1.8 0.6 0.5 1716 9.2 3.6 1.6

1637 – – – 1677 0.3 0.1 0.2 1717 17.5 15.2 1.6

1638 68.7 68.8 4.7 1678 0.2 0.1 0.15 1718 9.0 5.1 1.8

1639 76.8 69.2 5.1 1679 0.0 0.0 0.15 1719 33.9 26.3 4.4

1640 15.0 17.0 11.0 1680 0.8 0.2 0.3 1720 23.4 18.5 2.5

1641 – – – 1681 0.0 0.0 0.15 1721 21.4 7.4 2.6

1642 47.3 16.6 12.9 1682 0.0 0.0 0.15 1722 11.1 10.6 0.8

1643 17.6 15.8 3.1 1683 0.0 0.0 0.15 1723 4.5 8.8 1.1

1644 11.6 3.6 1.8 1684 1.4 0.4 0.4 1724 15.6 11.7 0.5

1645 0.0 0.0 0.15 1685 0.0 0.0 0.15 1725 12.8 8.3 2.4

1646 0.0 0.0 0.15 1686 0.6 0.1 0.15 1726 36.2 33.2 2.3

1647 0.0 0.0 0.15 1687 0.1 0.1 0.15 1727 36.5 41.5 2.2

1648 0.0 0.0 0.15 1688 0.5 0.2 0.15 1728 64.3 60.6 7.4

1649 0.0 0.0 0.15 1689 0.2 0.1 0.15 1729 24.0 8.8 6.4
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TABLE I

Continued.

Year Rg Rw σw Year Rg Rw σw Year Rg Rw σw

1730 69.7 79.9 17.5 1760 45.5 41.5 4.0 1790 65.1 66.5 13.4

1731 0.0 6.0 9.3 1761 68.5 68.2 5.8 1791 43.2 43.0 4.4

1732 18.0 12.9 12.3 1762 46.2 38.3 4.0 1792 42.0 21.1 13.3

1733 0.0 0.0 0.15 1763 34.2 28.1 2.3 1793 41.0 14.4 9.7

1734 0.0 7.3 10.2 1764 30.5 21.0 2.4 1794 30.2 27.1 7.1

1735 18.3 22.1 2.8 1765 8.4 1.9 1.7 1795 15.7 19.8 2.7

1736 48.6 53.9 1.8 1766 3.7 0.3 0.5 1796 13.7 2.3 1.8

1737 24.0 26.0 4.9 1767 33.9 10.9 4.9 1797 7.7 6.0 1.1

1738 17.0 25.0 13.0 1768 71.4 67.1 5.7 1798 4.8 0.9 0.9

1739 52.5 39.7 9.9 1769 98.5 91.5 8.4 1799 5.6 1.9 1.6

1740 9.3 13.2 0.6 1770 97.6 84.0 8.6 1800 11.0 2.3 1.5

1741 57.7 10.7 10.7 1771 79.4 67.3 9.1 1801 51.1 48.5 3.4

1742 16.1 11.7 3.3 1772 66.2 62.4 4.5 1802 35.3 32.6 3.2

1743 8.3 11.8 1.4 1773 32.4 30.3 3.3 1803 18.6 14.3 2.6

1744 – – – 1774 25.8 16.5 3.3 1804 21.6 22.6 5.0

1745 – – – 1775 5.6 1.8 0.9 1805 25.6 6.2 3.0

1746 0.0 7.3 10.2 1776 14.0 5.2 2.0 1806 13.3 15.5 2.3

1747 – – – 1777 38.3 25.5 4.4 1807 5.0 0.2 0.5

1748 61.0 63.0 17.5 1778 72.0 40.9 4.4 1808 3.5 0.6 0.5

1749 63.2 61.2 5.7 1779 80.8 92.2 5.5 1809 1.2 0.1 0.2

1750 58.0 48.9 2.7 1780 55.0 63.1 6.5 1810 0.0 0.0 0.1

1751 33.7 32.0 2.4 1781 71.1 63.8 5.5 1811 0.3 0.1 0.1

1752 29.0 27.4 3.6 1782 32.9 25.2 4.8 1812 4.0 0.7 0.6

1753 23.9 18.9 4.5 1783 21.1 20.7 4.0 1813 9.1 3.3 1.5

1754 8.8 12.3 1.4 1784 4.8 8.6 3.1 1814 10.4 12.2 1.4

1755 4.7 1.6 0.8 1785 16.0 14.9 3.9 1815 16.9 15.0 0.6

1756 7.3 6.8 1.2 1786 63.3 47.5 4.6 1816 30.8 28.0 1.7

1757 24.8 15.9 2.1 1787 89.2 71.5 4.6 1817 28.1 24.7 1.9

1758 40.7 34.5 3.0 1788 82.5 87.6 4.1 1818 21.7 19.9 1.8

1759 49.5 46.1 2.7 1789 79.7 68.5 7.3 1819 19.2 19.0 2.1

as in the analysis of monthly values. Figure 6 shows some samples of histograms
for yearly values (cf., Figure 1) which again depict the approximate Poisson shape.
From these histograms one can find the yearly average and its uncertainty for those
years when the standard averaging method (Equations (3)–(6)) cannot be applied.
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Figure 6. Samples of histogram distributions of yearly Ry together with the rescaled best fitting
Poisson distributions for three such years which only have one month of sunspot observations: 1734
(Rm = 7.3 ± 7.7), 1748 (Rm = 63 ± 19), and 1614 (Rm = 115 ± 26).

The weighted yearly GSN values are shown in Figure 7(a) together with the
formal yearly GSN series (Hoyt and Schatten, 1998). The weighted yearly GSN
values Rw and their standard errors σm are also given in Table I for the period
1610–1819 when there are significant gaps in the data. The difference between
the two annual curves (Figure 7(b)) becomes significant for those years which are
poorly covered by sunspot observations. A few yearly values are modified quite
significantly, by more than 30. The new, weighted yearly values are mostly below
the corresponding formal values. This is particularly true for the time interval
after 1750. We note that the weighted yearly sunspot values are also reduced in
1792–1794 and depict a minimum in 1793, thus confirming the existence of the
lost solar cycle in 1790s, as discussed in great detail by Usoskin, Mursula, and
Kovaltsov (2003).

4. Conclusions

We have presented a new method, based upon statistical properties of sunspot activ-
ity during the last 150 years, which allows to estimate the monthly sunspot number
value and its uncertainty from sparse (or even single) daily sunspot observations.
The fact that the method can also evaluate the errors in the monthly SN values
allows to apply the method of weighted averaging to calculate the yearly sunspot
number value from monthly data. We have presented the reconstructed monthly and
yearly group sunspot numbers for the period 1610–1810 (reconstructed monthly
group sunspot numbers and their uncertainties can be requested from the authors).
The method provides a basis for more rigorous studies of the statistical features of
sunspot activity during early times when good data coverage was not yet routine.
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Figure 7. (a) Yearly group sunspot numbers calculated as the formal arithmetic mean (dotted curve)
and the weighted average (solid curve with dots). The latter is given with the estimated uncertainties.
(b) The difference �Ry between the formal and new, weighted yearly sunspot numbers.
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