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ABSTRACT

Aims. Using a reconstruction of sunspot numbers stretching over multiple millennia, we analyze the statistics of the occurrence
of grand minima and maxima and set new observational constraints on long-term solar and stellar dynamo models.
Methods. We present an updated reconstruction of sunspot number over multiple millennia, from 14C data by means of a
physics-based model, using an updated model of the evolution of the solar open magnetic flux. A list of grand minima and
maxima of solar activity is presented for the Holocene (since 9500 BC) and the statistics of both the length of individual events
as well as the waiting time between them are analyzed.
Results. The occurrence of grand minima/maxima is driven not by long-term cyclic variability, but by a stochastic/chaotic
process. The waiting time distribution of the occurrence of grand minima/maxima deviates from an exponential distribution,
implying that these events tend to cluster together with long event-free periods between the clusters. Two different types of
grand minima are observed: short (30–90 years) minima of Maunder type and long (>110 years) minima of Spörer type, implying
that a deterministic behaviour of the dynamo during a grand minimum defines its length. The duration of grand maxima follows
an exponential distribution, suggesting that the duration of a grand maximum is determined by a random process.
Conclusions. These results set new observational constraints upon the long-term behaviour of the solar dynamo.
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1. Introduction

The Sun is the only star whose magnetic activity can
be studied on long time scales. Direct solar observations
since 1610 reveal great variability of the cycle averaged
magnetic activity level of the Sun – from the extremely
quiet Maunder minimum (second half of 17th century)
up to the modern episode of enhanced activity since
the middle of the 20th century. The Maunder minimum
is representative of grand minima of solar activity
(e.g., Eddy 1977a), when sunspots almost completely
vanished from the solar surface, while the solar wind
appeared to continue blowing, although at a reduced
pace (Cliver et al. 1998, Usoskin et al. 2001). A grand
minimum is believed to correspond to a special state of
the dynamo (Sokoloff 2004, Miyahara et al. 2006), and
its very existence poses a challenge for solar dynamo
theory. It is noteworthy that dynamo models do not
agree how often such episodes occur in the Sun’s history
and whether their appearance is regular or random.
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For example, the commonly used mean-field dynamo
yields a fairly regular 11-year cycle, while there are
also dynamo models including a stochastic driver (e.g.,
Choudhuri 1992, Schmitt et al. 1996, Ossendrijver 2000,
Weiss & Tobias 2000, Minini et al. 2001,
Charbonneau 2001, 2004) which predict intermit-
tency of the solar magnetic activity. The presence of
grand maxima of solar activity has been mentioned
(Eddy 1977a, Usoskin et al. 2003, Solanki et al. 2004)
but has not yet been studied in great detail.

Thanks to the recent development of precise technolo-
gies, including accelerator mass spectrometry, solar ac-
tivity can be reconstructed over multiple millenia from
concentrations of cosmogenic isotopes 14C and 10Be in
terrestrial archives. This allows one to study the tem-
poral evolution of solar magnetic activity, and thus of
the solar dynamo, on much longer time scales than avail-
able from direct measurements. Consequently, a number
of attempts to investigate the occurrence of grand min-
ima in the past, using radiocarbon 14C data in tree rings,
have been undertaken. E.g., Eddy (1977a) identified ma-
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jor excursions in the available 14C record as grand min-
ima and maxima of solar activity and presented a list of
6 grand minima and 5 grand maxima for the last 5000
years. Stuiver & Braziunas (1989) studied grand minima
as systematic excesses of the high-pass filtered 14C record
and suggested two distinct types of the grand minima:
shorter Maunder-type and longer Spörer-like minima (cf.
Stuiver et al. 1991). Later Voss et al. (1996) defined grand
minima in a similar manner and provided a list of 29 such
events for the last 8000 years. A similar analysis of excur-
sions of the 14C production rate has been presented by
Goslar (2003). However, because of the lack of adequate
physical models relating the radicarbon abundance to the
solar activity level, such studies retained a qualitative el-
ement. The use of high-pass filtered 14C data is based on
the assumption that solar activity variations are impor-
tant only on short times, while all the long-term changes
in radiocarbon production are attributed solely to the
slowly changing geomagnetic field. This method ignores
any possible long-term changes in the solar activity (e.g.,
on time scales longer than 500 years for Voss et al. 1996).
There is, however, increasing evidence that solar activity
varies on multi-centennial to multi-millennial time scales
(McCracken et al. 2004, Usoskin et al. 2006a). A recently
developed approach, based on physics-based modelling of
all links relating the measured cosmogenic isotope abun-
dance to the level of solar activity, allows for quantitative
reconstruction of the solar activity level in the past, and
thus, for a more realistic definition of the periods of grand
minima or maxima.

Here we study the statistics of occurrence of grand
minima/maxima throughout the Holocene and impose ad-
ditional observational constraints on the dynamo models
of the Sun and Sun-like stars.

2. Past solar activity

Solar activity on multi-millenial time scales has been re-
cently reconstructed using a physics-based model from
measurements of 14C in tree rings (see full details in
Solanki et al. 2004, Usoskin et al. 2006a). The validity of
the model results for the last centennia has been proven
by independent data on measurements of 44Ti in stony
meteorites (Usoskin et al. 2006b). The reconstruction de-
pends on the knowledge of temporal changes of the geo-
magnetic dipole field, which must be estimated indepen-
dently by paleomagnetic methods. Here we compare two
solar activity reconstructions, which are based on alter-
native paleomagnetic models: one which yields an esti-
mate of the virtual aligned dipole moment (VADM) since
9500 BC (Yang et al. 2000), and the other a recent paleo-
magnetic reconstruction of the true dipole moment since
5000 BC (Korte & Constable 2005). We note that the ge-
omagnetic dipole moment obtained by Korte & Constable
(2005) lies systematically lower than that of Yang et al.
(2000), leading to a systematically higher solar activity re-
construction in the past (Usoskin et al. 2006a). While the
geomagnetic reconstruction of the VADM by Yang et al.
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Fig. 1. Long-term solar activity reconstruction from 14C
data. All data are decadal averages. Solid (denoted as
’Y00’) and grey (’K05’) curves are based on the paleo-
geomagnetic reconstructions of Yang et al. (2000) and
Korte & Constable (2005), respectively. A) The modula-
tion potential φ. Big circles (’NM’) denote the φ val-
ues obtained from direct cosmic ray measurements since
1951 (Usoskin et al. 2005). B) Open flux Fo. Reconstruction
from sunspot numbers (Krivova, Balmaceda & Solanki 2007)
is used after 1610. C) Sunspot numbers reconstructed here. The
Y00 and K05 curves are called SN-L and SN-S series, respec-
tively throughout the paper. Observed group sunspot numbers
(Hoyt & Schatten 1998) are shown after 1610.

(2000) provides an upper bound for the true dipole mo-
ment, the more recent work of Korte & Constable (2005)
may underestimate it. Thus we consider both models as
they bound a realistic case. We note that the Yang et al.
(2000) data run more than 4000 years longer and give a
more conservative estimate of the grand maxima.

Different indices of the reconstructed solar activity
are shown in Fig. 1. Most directly related to the 14C
production in the atmosphere is the modulation poten-
tial φ (e.g., Castagnoli & Lal 1980, Masarik & Beer 1999,
Usoskin et al. 2002) whose variations are shown in panel
A. The modulation potential φ is a parameter describing
the spectrum of galactic cosmic rays (see definition and
full description of this index in Usoskin et al. 2005). Using
a model of the heliospheric transport of cosmic rays, the
modulation potential can be nearly linearly related to the
open solar magnetic flux Fo. The reconstructed long-term
variations of the open solar magnetic flux are shown in
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Fig. 2. Scatter plot of decadal sunspot numbers for 9500 BC
– 1900 AD published by Solanki et al. (2004), RG(S04), vs.
sunspot numbers obtained in this work in a way identical to
S04 but using the updated open solar flux model of Krivova,
Balmaceda & Solanki (2007).

panel B. Next, using a model of the open magnetic flux
formation, one can estimate the sunspot numbers from
the Fo data. This was done earlier using the open flux
model by Solanki et al. (2000, 2002). However, the model
relating sunspots to the open magnetic flux, has been up-
dated recently by Krivova, Balmaceda & Solanki (2007).
Starting from sunspot numbers (SN) they computed open
and total magnetic flux as well as the total solar irra-
diance (from SN and total magnetic flux). Besides the
active regions, the influence of ephemeral active regions
is included. They determined the free parameters of the
models used by requiring the model output to reproduce
the best available data sets (of open and total fluxes as
well as total solar irradiance) with the help of a genetic
algorithm. In particular, the improved total flux data set
of Arge et al. (2002) and the total irradiance composite
of Fröhlich (2006) set tight constraints, which could only
be met by revising the relationship between SN and total
emergent magnetic flux. This revised relationship is em-
ployed here too. Accordingly, here we use this updated
model to convert Fo into the sunspot number (Eq. A.17),
which is described in detail in Appendix A.

A comparison between the sunspot number series ob-
tained using the new open flux model with those pub-
lished by Solanki et al. (2004) is shown in Fig. 2. The
scatter in the relationship is very small (correlation coef-
ficient 0.995), but there is a small systematic difference
between the two series. The newly obtained sunspot num-
bers are slightly higher, with the mean difference being
about 1.6 and the standard deviation about 2. At large
SN values, however, the opposite is observed, with the

new reconstructed SN being smaller by values up to 14.
This reduces the largest peaks (grand maxima) somewhat.
This difference is a result of the different relationship be-
tween SN and total emerging magnetic flux in active re-
gions used by Krivova, Balmaceda & Solanki (2007) than
by Solanki et al. (2000, 2002). We note that the difference
is kept within the uncertainty of the reconstruction, which
is about 8 for the last millenia and up to 15-20 in the
beginning of the Holocene (see Supplementary Material
to Solanki et al. 2004). The difference between the origi-
nal sunspot numbers published in Usoskin et al. (2006a)
based on the paleomagnetic model by Korte & Constable
(2005) and those obtained here using the updated open
flux model has a mean of 1.0 and standard deviation about
2.4.

The 11,000-yr long data sets of the decadal sunspot
number similar to that by Solanki et al. (2004) but
with the updated open flux model is shown in Fig. 1C.
It is called the SN-L series throughout the paper. The
shorter series (Fig. 1C), which is similar to that by
Usoskin et al. (2006), is called SN-S henceforth. After
1610 AD, the actually observed group sunspot numbers
(Hoyt & Schatten 1998) has been used instead of the re-
constructions.

Before identifying the grand minima and max-
ima, the decadal resolution data have been smoothed
with the Gleissberg (1-2-2-2-1) filter, which is regu-
larly applied when studying long-term variations of
solar activity in order to suppress the noise (e.g.,
Gleissberg 1944, Soon, Posmentier & Baliunas 1996,
Mursula & Ulich 1998). In order to check the effect of
the filter we have studied a number of artificial SN series
containing a total of 1000 grand minima of 60-yr duration
(at the level of SN<15) each. A noise with σ = 10 has
been added to the series, and the grand minima have been
identified again as SN<15 in both the raw and 1-2-2-2-1
smoothed noised series. We found that 35% of grand
minima are incorrectly identified (too short, too long
or split in two short episodes, comparing to the ”real”
signal) in the raw noisy series. The filtering reduces the
mis-identification to 13±3%, i.e. 3-fold. Thus, the use of
the 1-2-2-2-1 Gleissberg filter reduces the effect of noise
on the grand minima/maxima definition and makes the
results more robust. This smoothing, however, leads to
a reduction in the amplitude and a slight underestimate
(about 7% according to the above numerical experiment)
of the number and duration of short, less than 30 years
long minima and maxima.

The filtered SN-L and SN-S series are shown in Figs. 3
and 4, respectively. We analyze both reconstructed SN
data sets in equal details.

3. Definitions

3.1. Grand minima

We have defined a grand minimum as a period when the
(smoothed) SN level is less than 15 during at least two
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Fig. 3. Sunspot activity SN-L throughout the Holocene (see
text) smoothed with a 1-2-2-2-1 filter. Blue and red areas de-
note grand minima and maxima, respectively. The entire series
is spread over two panels for better visibility.
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Fig. 4. Sunspot activity SN-S (see text) smoothed with a 1-
2-2-2-1 filter. Blue and red areas denote grand minima and
maxima, respectively.

consecutive decades - this corresponds to blue-filled areas
in Figs. 3 and 4. However, taking into account the uncer-
tainty of the SN reconstruction and the influence of the
filtering, we have also considered as minima clear dips in
the SN whose bottom is between 15 and 20 and the depth
(with respect to surrounding plateaus/maxima) exceeds
20. Therefore, such periods as, e.g., ca. 6400 BC are con-
sidered as grand minima (see Fig. 3) even though their
bottoms are above 15. On the other hand, the period ca.
4450 BC is not counted as a grand minimum because its
minimum lies above 15 and its depth is less than 20. All
27 grand minimum periods thus defined in the SN-L se-
ries are listed in Table 1 together with their approximate
duration, defined as the period of time when SN was be-
low 15 (20) as discussed above. Among them there are
two periods (ca 9200 BC and 7500 BC) when the domi-
nant grand minima are interrupted by a 1-2 decades long
upward excursions. We regard these period as continuous
Spörer-like minima. Together these grand minima have a
total duration of 1880 years, so that the Sun spends about
17% of the time in a grand minimum state.

We note that all the grand minima after 3000 BC dis-
cussed by Eddy (1977a, 1977b) are present in Table 1,

Table 1. Approximate dates (in -BC/AD) of grand minima in
the SN-L series (see text).

No. center duration comment

1 1680 80 Maunder
2 1470 160 Spörer
3 1305 70 Wolf
4 1040 60 a)
5 685 70 b)
6 -360 60 a,b,c)
7 -765 90 a,b,c)
8 -1390 40 b,e)
9 -2860 60 a,c)
10 -3335 70 a,b,c)
11 -3500 40 a,b,c)
12 -3625 50 a,b)
13 -3940 60 a,c)
14 -4225 30 c)
15 -4325 50 a,c)
16 -5260 140 a,b)
17 -5460 60 c)
18 -5620 40 -
19 -5710 20 c)
20 -5985 30 a,c)
21 -6215 30 c,d)
22 -6400 80 a,c,d)
23 -7035 50 a,c)
24 -7305 30 c)
25 -7515 150 a,c)
26 -8215 110 -
27 -9165 150 -

a) Discussed in Stuiver (1980) and Stuiver & Braziunas (1989).
b) Discussed in Eddy (1977a, 1977b).
c) Shown in Goslar (2003).
d) Exact duration is uncertain.
e) Does not appear in the SN-S series.

which however contains also minima at ca. 1040 BC and
2860 BC not found by Eddy. On the other hand, all the
grand minima listed in the Table are mentioned by Voss
et al. (1996), but the latter1 list more minima, e.g., three
minima between 200 BC and 200 AD which do not ap-
pear in our series. Most of the minima listed here can also
bee seen in Fig. 2 of Goslar (2003). Therefore, we conclude
that our definition of grand minima applied to the present
data set gives results generally in agreement with earlier
studies but not identical to them. In particular, it gives
more details than the study by Eddy (1977a) but discards
some small fluctuations mentioned by Voss et al. (1996).

The grand minima listed in Table 1 dating after 5000
BC are identical for both SN-L and SN-S series (except for
one minimum ca. 1385 BC in the SN-S series which does
not match the formal definition). These grand minima will
be used for the further analysis.

1 Definition of minima by Voss et al. (1996) was based solely
on the relative variations of ∆14C.
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Table 2. Approximate dates (in -BC/AD) of grand maxima
in the SN-L series.

No. center duration comment

1 1960 80 modern, b)
2 -445 40 -
3 -1790 20 a)
4 -2070 40 -
5 -2240 20 a)
6 -2520 20 a)
7 -3145 30 -
8 -6125 20 -
9 -6530 20 -
10 -6740 100 -
11 -6865 50 -
12 -7215 30 -
13 -7660 80 -
14 -7780 20 -
15 -7850 20 -
16 -8030 50 -
17 -8350 70 -
18 -8915 190 -
19 -9375 130 -

a) Discussed in Eddy (1977a, 1977b)).
b) Center and duration of the modern maximum are prelimi-
nary since it is still ongoing.

3.2. Grand maxima

Similar to Solanki et al. (2004), we define as a grand max-
imum of solar activity a period when SN exceeds 50 dur-
ing at least two consecutive decades (see red filled areas in
Figs. 3 and 4). If two consecutive maxima are separated
by less than 30 years they are considered as a single max-
imum (e.g., ca. 9000 BC in the SN-L series), i.e. they are
treated in a way similar to grand minima. We have iden-
tified 19 grand maxima (of a total duration of 1030 years,
corresponding to about 9% of the time) in the SN-L se-
ries since 9500 BC, including also the modern maximum.
These are listed in Table 2. Four out of six grand max-
ima found here after 3000 BC coincide with those pointed
out by Eddy (1977a,1977b). In the SN-S series, 23 grand
maxima (of a total duration of 1560 years, corresponding
to about 22% of the time) are identified since 5000 BC, as
listed in Table 3. All maxima identified in the SN-L series
are present also in the SN-S series, but the latter yields
more maxima satisfying the same definition before 1500
BC (after ca. 1500 BC the maxima are nearly identical).
This indicates that the identification of maxima is less ro-
bust than for grand minima, and is more dependent on
the definitions and model assumptions.

3.3. Waiting time distribution

The interval between two consequent events is called the
waiting time. The statistical distribution of waiting times
(WTD – waiting time distribution) reflects the nature of a
process which produces the studied events. For instance,
an exponential WTD is a clear indicator of a purely

Table 3. Approximate dates (in -BC/AD) of grand maxima
in the SN-S series.

No. center duration comment

1 1960 60 a,b)
2 -265 70 -
3 -455 70 a)
4 -595 90 -
5 -1065 50 -
6 -1560 60 -
7 -1640 40 -
8 -1775 170 a)
9 -1995 210 a)
10 -2165 30 -
11 -2235 50 a)
12 -2350 80 -
13 -2515 50 a)
14 -2645 30 -
15 -2715 50 -
16 -2790 40 -
17 -2960 60 -
18 -3030 40 -
19 -3170 120 a)
20 -3415 50 a)
21 -3840 60 -
22 -4090 60 -
23 -4870 20 -

a) Exists also in the SN-L series (Table 2).
b) Center and duration of the modern maximum are prelimi-
nary since it is still ongoing.

random, ”memoryless” process (e.g., Poisson process),
when the behaviour of a system does not depend on its
preceding evolution on both short or long time-scales. Any
significant deviation of the WTD from an exponential law
implies that the probability of an event to occur is not
time-independent but is related to the previous history of
the system. We note that the occurrence of events gen-
erally is random also for a non-exponential distribution,
but the probability is not uniform in time. This can be in-
terpreted in different ways: self-organized criticality (e.g.,
de Carvalho & Prado 2000, Freeman et al. 2000), time-
dependent Poisson process (e.g., Wheatland 2003),
some memory in the driving process (e.g.,
Lepreti et al. 2001, Mega et al. 2003). The most typ-
ical non-exponential WTD is a power law which is, e.g.,
a necessary but not sufficient indication of self-organized
criticality (de Carvalho & Prado 2000). A power law im-
plies higher tails of the distribution, i.e. higher probability
(relative to the exponential function) of occurrence of
both long and short intervals between the events. A power
law distribution of the waiting time has been obtained for
many solar and terrestrial indices on different time scales
from minutes to 105 years: e.g., intervals between major
earthquakes (Bak et al. 2002, Mega et al. 2003); intervals
between successive solar flares (Pearce et al. 1993,
Boffetta et al. 1999, Moon et al. 2001); waiting
time between successive coronal mass ejections
(Wheatland 2003, Berhondo et al. 2006); intervals
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between bursts in the solar wind (Freeman et al. 2000);
repetition time of geomagnetic disturbances
(Papa et al. 2006); intervals between the geomagnetic
field reversals (Ponte-Neto & Papa 2006), etc. Note that
many of these processes, which depict different degrees of
self-organization, are related to energy accumulation and
release.

Here we study the WTD of the occurrence of grand
minima and maxima of solar activity in order to under-
stand the nature of its long-term evolution. The waiting
time is defined as the length x of an interval between cen-
ters of consequent events.

First we studied the differential distribution which is
defined as

y(x) =
N{x1, x2}
x2 − x1

, (1)

where N{x1, x2} is the number of events with the waiting
time x1 ≤ x < x2. Statistical errors of the differential
distribution are estimated from the Poisson statistics as√

N/(x2 − x1).
Since the statistics are poor (19–27 events) and differ-

ential WTD histograms are rough, we have studied also
the normalized cumulative distribution defined as

Y (x) =
N{x,∞}
N{0,∞} , (2)

which corresponds to the probability of finding a waiting
time exceeding x. In this case the statistical errors cannot
be determined since the points of the cumulative distribu-
tion are not independent.

The exponential WTD model is defined as

y(x) ∝ exp
(−x

τ

)
; Y (x) ∝ exp

(−x

T

)
; τ = T. (3)

The power law WTD model is defined as

y(x) ∝ x−γ ; Y (x) ∝ x−Γ; γ = Γ + 1. (4)

The power law serves mainly to emphasize deviations from
a purely exponential distribution, since the poor statistics
hardly allow us to distinguish between a power law and
other more-stretched-than-exponential distributions, e.g.,
log-Poisson.

We note that short intervals (shorter than a century)
cannot be reliably defined because of noise and filter-
ing. Statistics of very long intervals is not reliable ei-
ther because of the limited length of the analyzed series.
Therefore, when fitting the data we will ignore the short-
est and longest intervals, i.e. first and last points of the
cumulative distribution (the number of bins of the differ-
ential distribution is left unchanged).

4. Analysis and results

4.1. Sunspot number distribution

First we have constructed histograms of the sunspot num-
bers. The histogram for the SN-L series is shown in Fig. 5.
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Fig. 5. Histogram of the sunspot number SN series recon-
structed here for 9,500 BC – 2000 AD. Hatched areas cor-
respond to directly observed sunspots after 1610. The curve
represents the best fit normal distribution.

While being close to a normal distribution (mean=31,
σ = 30), there is an apparent excess both at very low
sunspot numbers, corresponding to the grand minima, and
at very high values, corresponding to grand maxima. The
overall distribution is consistent with the direct observa-
tional record after 1610, suggesting that the latter is a
representative sample for the sunspot activity statistics,
including grand minimum and maximum 2. This distribu-
tion with these excesses suggests that grand minima and
maxima are special states of the solar dynamo that cannot
be explained by random fluctuations or noise in the data
(see also forthcoming sections).

4.2. Grand minima

4.2.1. Waiting time distribution

The distribution of the waiting time between grand min-
ima is shown in the left-hand panel of Fig. 6 together with
the best fit approximations. Parameters of the best-fit ap-
proximations are shown in Table 4 (row A). The best fit
exponential model (Eq. 3) gives τ = 330±50 years, which
roughly corresponds to the mean frequency of grand min-
ima occurrence. The exponential model agrees only rela-
tively poorly with the observed WTD. The best fit power
law model (Eq. 4) agrees reasonably with the observed
WTD.

The cumulative WTD is shown in the right-hand
panel of Fig. 6 together with the best fit approximations
(Table 4, row A, columns 4 and 5). The power law model
agrees well with the bulk of the data except for the very
far tail (x >1000 years). However, this tail contains only
two events and is not representative. (The χ2-test cannot
be applied to the cumulative distribution since the points
are not independent.) The exponential model poorly re-

2 Note that in Fig. 5 intermediate SN values are seemingly
underepresented in modern times, but this is due to the loga-
rithmic scale.
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Table 4. Fitting of power law and exponential models to distributions of the grand minima and maxima occurrence: For the
differential distribution the value of χ2 is shown together with the corresponding confidence level (in parentheses) for 4 degrees
of freedom.

Differential distribution Cumulative distribution

Series Power law Exponential Power law Exponential

A) SN-L γ = 1.61± 0.1 τ = 330± 50 yr Γ = 0.95± 0.02 T = 435± 15 yr
min WTD χ2 = 0.35 (0.99) χ2 = 2.2 (0.7)

B) SN-L γ = 1.36± 0.1 τ = 430± 30 yr Γ = 0.77± 0.05 T = 355± 20 yr
max WTD χ2 = 0.26 (0.992) χ2 = 1.8 (0.79)

C) SN-S γ = 1.82± 0.06 τ = 250± 40 yr Γ = 0.95± 0.04 T = 290± 25 yr
max WTD χ2 = 0.22 (0.994) χ2 = 6.5 (0.16)

D) SN-L γ = 1.25± 0.18 τ = 51± 5 yr Γ = 1.22± 0.12 T = 55± 2 yr
max duration χ2 = 1.06 (0.9) χ2 = 0.58 (0.97)

E) SN-S γ = 1.5± 0.6 τ = 50± 10 yr Γ = 1.44± 0.14 T = 59± 6 yr
max duration χ2 = 7.0 (0.14) χ2 = 3.3 (0.51)
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Fig. 6. Differential (left panel) and cumulative (right panel)
distribution of the waiting time between subsequent grand min-
ima. The histogram (left) and circles (right) represent the ob-
served distribution, while solid and dotted lines depict best fit
power law and exponential approximations, respectively.

produces the WTD. As an additional test we compare the
parameters of the models describing differential and cu-
mulative distributions, viz. T≈ τ and γ ≈ Γ + 1. Both
models pass this test.

We conclude that a power law model better describes
the observed WTD for grand minima, although an expo-
nential decay cannot be completely ruled out. This is valid
also for the SN-S series whose grand minima (except of one
ca. 1385 BC) coincide with those in the SN-L series after
5000 BC.

4.2.2. Duration of grand minima

A histogram of the duration of grand minima (Table 1)
is shown in Fig. 7. The mean duration is 70 year but the
distribution is not uniform. The minima tend to be either
of a short duration, between 30 and 90 years similar to
the Maunder minimum, or rather long, longer than 110
years similar to the Spörer minimum. This agrees with
the earlier conclusion on two different types of grand min-
ima (Stuiver & Braziunas 1989, Goslar 2003). This sug-
gests that a grand minimum is a special state of the dy-
namo whose duration is not random but is defined by
some intrinsic process. Note, however, that only 3 of the 5
Spörer-like minima are clear long grand minima while the
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Fig. 7. Histogram of the duration of grand minima.

other 2 are composed of multiple sub-minima (# 25 and
27 in Table 1 – see Sect. 3.1).

4.3. Grand maxima

4.3.1. Waiting time distribution

The distribution of the waiting time intervals between sub-
sequent maxima, listed in Table 2, is shown in Fig. 8,
with the parameters of best-fit approximations shown in
Table 4, row B. The differential distribution (left panel)
can be well fitted by the power law model. An exponential
model gives a formally insignificant fit to the distribution.

The cumulative distribution is shown in the right panel
and is also close to a power law (see Table 4, rowB). The
exponential model fits short-to-long intervals even better,
but cannot reproduce the far tail, with three intervals ex-
ceeding 1000 years. Indices for the differential and cumu-
lative models are barely consistent with each other (T≈ τ
and γ ≈ Γ+1). Accordingly, for the SN-L series we cannot
give a clear preference to either model.

The statistics of WTD for the grand maxima using the
SN-S series is shown in Fig. 9, with the best-fit parameters
listed in Table 4, row C. The power law model satisfac-
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Fig. 8. Differential (left panel) and cumulative (right panel)
distributions of the waiting time between grand maxima ac-
cording to the SN-L series.
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Fig. 9. Differential (left panel) and cumulative (right panel)
distributions of the waiting time between grand maxima ac-
cording to the SN-S series.

tory fits the differential WTD, while the exponential law
displays only a poor correspondence to it. The cumula-
tive WTD (right panel) is nicely fitted by a power law but
poorly by an exponential. Both models pass the additional
test (γ ≈ Γ + 1 vs. T ≈ τ).

Therefore we conclude that, although the exponential
model cannot be totally excluded, the power law model is
more preferable in describing the WTD of grand maxima.

4.3.2. Duration of grand maxima

The distribution of the lengths of maxima in the SN-L se-
ries is shown in Fig. 10, with best-fit parameters listed in
Table 4, row D. The differential distribution (left panel) is
reasonably fitted by an exponential law but is poorly de-
scribed by a power law. Although both models are seem-
ingly good in fitting the observed cumulative WTD (right
panel of Fig. 10), the additional test excludes the power
law model, since T≈ τ but γ 6= Γ + 1. Therefore, we con-
clude that the distribution of the lengths of grand maxi-
mum episodes is close to exponential, as noticed by Solanki
et al. (2004).

The differential distribution of the duration of maxima
for the SN-S series is fitted by none of the two models (see
Table 4, row E). The best-fit parameters for the cumu-
lative distribution also favor the exponential distribution
(τ ≈ T ) over the power law (Γ 6= γ + 1).
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Fig. 10. Histogram of the duration of grand maxima.

4.4. Quasi-periodicities

We have also studied possible quasi-periodicities in the
rate of grand minima/maxima occurrence. We have
found that the occurrence of grand minima depicts a
weak (marginally significant) quasi-periodicity of 2000-
2400 years, which is a well-known period in 14C data
(e.g., Damon & Sonett 1991, Vasiliev & Dergachev 2002).
No other periodicities are observed in the occurrence rate
of grand minima. We have found no periodic feature
in the occurrence of grand maxima in the SN-L series,
while a marginal hint for a periodicity of about 1200
years and its harmonics (about 600 and 400 years - cf.
Usoskin et al. 2004) is found in SN-S data. This indicates
that the 2400-year periodicity is related likely to the clus-
tering of grand minima rather than to a long-term ”mod-
ulation” of solar activity. Therefore, we conclude that the
occurrence of grand minima and maxima is not a result
of long-term cyclic variability but is defined by stochas-
tic/chaotic processes as discussed in Sect. 6.

5. Summary of the results

We have studied the statistics of occurrence of grand min-
ima and maxima over the last 7–11 millennia. The main
results can be summarized as follows.

1. We have presented lists of grand minima (Table 1)
and maxima (Tables 2 and 3), using updated
physics-based reconstruction of solar activity from
14C data measured by the INTCAL collaboration
(Stuiver et al. 1998). The identification of grand min-
ima is found to be more robust to the exact correction
of the geomagnetic field than the grand maxima.

2. The occurrence of grand minima and maxima does not
depict a dominant periodic behaviour. Only a weak
tendency exists for grand minima to cluster with a
quasi-period of about 2400 years, and no clear period-
icities are observed in the occurrence of grand maxima.

3. The waiting time between grand minima depicts a dis-
tribution which deviates significantly from the expo-
nential distribution 3, although the latter cannot be
completely ruled out because of poor statistics.

3 We confronted the data with a power law WTD, but can
hardly distinguish it from other non-exponential distributions.
The most important point here is the deviation from a purely
exponential WTD.
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4. The distribution of the duration of grand minima is bi-
modal, with a dominance of short (30-90 yr) Maunder-
like minima and a smaller number of long (longer than
110 yr) Spörer-like minima.

5. The distribution of the waiting time between grand
maxima also deviates from an exponential distribution
(especially for the last 7000 years in the SN-S data
series), but the latter cannot be completely ruled out.

6. Lengths of grand maxima correspond to an exponential
distribution.

We have tested that the obtained results are ro-
bust with respect to the uncertainties of the reconstruc-
tion. The results remain qualitatively the same when
varying the parameters of Eq. (A.17) or when using
the sunspot data obtained earlier (Solanki et al. 2004,
Usoskin et al. 2006a) based on the old open flux model.

6. Discussion and Conclusions

Using the above results we can formulate additional con-
straints on a dynamo model aiming to describe the long-
term evolution of solar magnetic activity.

1. The Sun spends around 3/4 of the time at moderate
magnetic activity levels (averaged over 10 years). The
remainder of the time is spent in the state of a grand
minimum (about 17%) or a grand maximum (9% or
22% for the SN-L or SN-S series, respectively). The
solar activity during modern times corresponds to the
grand maximum state.

2. The occurrence of grand minima/maxima is not a
result of long-term cyclic variations but is defined
by stochastic/chaotic processes. This casts significant
doubts on attempts of a long-term prediction of solar
activity using multi-periodic analyses.

3. The observed waiting time distribution of the occur-
rence of both grand minima and grand maxima dis-
plays a deviation from an exponential distribution. A
relative excess of short and long waiting times indicates
that the occurrence of these events is not a time inde-
pendent ”memoryless” Poisson-like process, but tends
to either cluster events together or produce long event-
free periods. Similar waiting time distributions are typ-
ical for many processes with, e.g. self-organized criti-
cality or processes related to accumulation and release
of energy (see Sect. 3.3).

4. We distinguish between grand minima of two different
types: short minima of Maunder type and long minima
of Spörer type (cf., Stuiver & Braziunas 1989). This
suggests that a grand minimum is a special state of
the dynamo. Once falling into the grand minimum as a
result of a stochastic/chaotic but non-Poisson process,
the dynamo is ”trapped” in this state and its behaviour
is driven by deterministic intrinsic features.

5. The duration of grand maxima follows an exponen-
tial distribution, in accord with the earlier finding of
Solanki et al. (2004). This indicates that leaving a

grand maximum is a random process, in contrast to
the grand minimum case.

In conclusion, we have presented an analysis of the oc-
currence of grand minima and maxima of solar activity on
time scales up to 11,000 years. The results put important
observational constraints upon the long-term behaviour of
the solar dynamo. In view of the solar paradigm for the
magnetic activity of cool stars, we expect these results
to be applicable also to stellar dynamo models. We note,
however, that the current results depend on the reliabil-
ity of the reconstruction of the sunspot numbers, which
in turn depends on the reliability of the employed geo-
magnetic field and other factors. This mainly affects the
definition of grand maxima, while the statistics of grand
minima occurrence remain fairly robust against these un-
certainties.
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Foundation.

Appendix A: Conversion between the solar open
magnetic flux and sunspot numbers

Here we invert the updated model relating the
sunspot number R to the open magnetic flux Fo

(Krivova, Balmaceda & Solanki 2007 - referred hence-
forth as KBS07) to reconstruct the decadal sunspot num-
bers from the open flux (cf. Usoskin et al. 2004) as fol-
lows. From Eq. (3) of KBS07 one can obtain (henceforth
〈...〉 denotes 10-year averaging):
〈dFo

dt

〉
= 〈S〉 − 〈Fo〉

τo
, (A.1)

where

〈S〉 =
〈Fact〉

τta
+
〈Feph〉

τte
. (A.2)

From Eq. (1) of KBS07 it follows

dFact

dt
= εact(t)− Fact

τ1
, (A.3)

where

1
τ1

=
1

τact
+

1
τta

. (A.4)

Hereafter we adopt the parameter values from Table 1
(line 1) and Sect. 2.1 of KBS07 and express magnetic flux
in units of 1014 Wb/month and time in months. Eq. (5)
of KBS07 takes the form

εact(t) ≈ 0.128R(t), (A.5)
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Since τ1 ≈ 3 months is much shorter than the cycle length,
one can assume that Fact(t) ≈ τ1 ·εact(t), and after 10-year
averaging we obtain:

〈Fact〉 ≈ 0.38〈R〉. (A.6)

Similarly, since τeph ≈ 0.019 months is very small, one
expects

Feph(t) ≈ τeph · εeph(t), (A.7)

where

εeph(t) = 117 · εact,max,i · sin2(t′). (A.8)

Here t′ runs over the length of ephemeral region cycle,
which is longer than a sunspot cycle. With the actual RG

data since 1700 (Hoyt & Schatten 1998) we have tested
that the amplitude of a solar cycle is related to the 10-yr
averaged sunspot value as

Rmax = (2.2± 0.4)〈R〉. (A.9)

Therefore, from (A.5)

εact,max.i = 0.128Rmax,i ≈ (0.28± 0.05)〈R〉. (A.10)

Since εeph displays long cycles (of the mean duration of
about 18 years) that partially overlap, the mean value
of 〈sin2(t′)〉 is numerically found to be 0.74±0.02, and
Eq. (A.7) becomes

〈Feph〉 ≈ (0.46± 0.08)〈R〉. (A.11)

From the above consideration one obtains that 〈S〉 ≈
(0.0028± 0.0001)〈R〉 and

〈R〉 ≈ (8.5± 0.3) · 〈Fo〉+ (357± 13) ·
〈dFo

dt

〉
. (A.12)

In order to evaluate the decadal mean derivative we sub-
stitute the derivative by a slope.
〈dF (t)

dt

〉
≈ ∆〈F 〉

∆t
. (A.13)

However, from decadal data we cannot evaluate the value
of ∆〈F 〉 over a calendar decade:

∆〈F 〉i = 〈F (ti + 10yr)〉 − 〈F (ti)〉, (A.14)

where ti denotes the start year of a decade. Instead we
have to use the value of

〈F 〉i+1 − 〈F 〉i = 〈F (ti+1 + 5yr)〉 − 〈F (ti + 5yr)〉, (A.15)

which is displaced in time with respect to the exact defi-
nition of ∆〈F 〉. From the open flux computed by KBS07
we have evaluated that
〈dFo

dt

〉
= (0.73± 0.06) · 〈Fo〉i+1 − 〈Fo〉i

120months
. (A.16)

Entering Eq. (A.16) into Eq. (A.12), one gets

〈R〉i ≈ (8.5±0.3)·〈Fo〉i+(2.2±0.2)·
(
〈Fo〉i+1−〈Fo〉i

)
.(A.17)
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Fig.A.1. Relation between the decadal group sunspot num-
bers (Hoyt & Schatten 1998) and sunspot numbers computed
using relation (A.17) from the open magnetic flux (KBS07) for
1610–2000. The diagonal, representing the expectation value,
is shown by the solid line.

We have tested the relation between actual 10-year av-
eraged GSN and SN computed using Eq. (A.17) from the
open flux (KBS07) for the period 1611–2000. The scatter
plot shown in Fig. A.1 displays a good correspondence be-
tween GSN and SN obtained from Eq. (A.17). The cross
correlation is r = 0.96, and the difference displays a nearly
Gaussian distribution with an offset of -0.4 and σ = 5.4.

Thus, we conclude that the conversion between Fo

and SN decadal data can be done including the influ-
ence of ephemeral regions in a straightforward manner via
Eq. (A.17) with an uncertainty of a few units in sunspot
numbers.
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