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DPG-FEM: Method for all seasons!?

I Discovered by Demkowicz and Gopalakrishnan in 2009
I Promise: Utilize hp-adaptive FEM for any (non-)linear PDE
I Main idea: compute test functions on the fly to guarantee

numerical stability automatically

Collaborators:
I Leszek Demkowicz, University of Texas at Austin
I Jay Gopalakrishnan, Portland State University
I Jamie Bramwell, Lawrence Livermore National Laboratory
I Victor Calo, KAUST
I Nathaniel Collier, Oak Ridge National Laboratory
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Petrov-Galerkin method for linear systems
I Consider

Ax = b, A ∈ Rn×n

and let Um,Vm ⊂ Rn be subspaces of dimension m
I Petrov-Galerkin method: Find u ∈ Um such that

vT (b− Au) = 0 ∀v ∈ Vm

I The choice Vm = AUm minimizes the residual ||b− Au||:

||b− A(u + d)||2 = ||b− Au||2 − 2(Ad)T (b− Au) + ||Ad||2

I Alternatively one may employ Bubnov-Galerkin method with
Vm = Um to the normal equations AT Ax = AT b

I Practical algorithms minimize the residual in the Krylov
subspace

Um = span{b,Ab,A2b, . . . ,Am−1b}

in an elegant way (Arnoldi method)



Petrov-Galerkin method for variational problems
I Variational problem: Find u ∈ U such that

B(u, v) = `(v) ∀v ∈ V ,

where U,V are (real) Hilbert spaces
I Petrov-Galerkin approximation: Find uh ∈ Uh ⊂ U such that

B(uh, v) = `(v) ∀v ∈ Vh

I Let the trial space be Uh = span{e1, . . . , en} and define the
test space as Vh = T (Uh), where T : U → V is defined as

(Tu, v)V = B(u, v) ∀v ∈ V

I The ideal PG method minimizes the residual

|||u − uh|||U + ||T (u − uh)||V = sup
v∈V

B(u − uh, v)

||v ||V



Petrov-Galerkin method for variational problems (cont.)

Theorem
If the variational formulation is wellposed, that is,

1◦ {w ∈ U : B(w , v) = 0 ∀v ∈ V} = {0}

2◦ α||v ||V ≤ sup
w∈U

B(w , v)

||w ||U
≤ C||v ||V ∀v ∈ V

and an approximation T r : U → V r is computed such that

3◦ ∃Π : V → V r s.t. ||Π|| ≤ c & B(wh, v−Πv) = 0 ∀wh ∈ Uh, v ∈ V

then it holds

||u − uh||U ≤
Cc
α

min
wh∈Uh

||u − wh||U



Diffusion problem: DPG formulation

I Poisson’s equation in R2:

−∇2u = f in Ω & u = 0 on ∂Ω.

I Variational form: Find (u, q̂n) ∈ H1
0 (Ω)× H−1/2(∂Ωh) s.t.

(∇u,∇v)Ωh − 〈q̂n, v〉∂Ωh = (f , v)Ω ∀v ∈ H1(Ωh)

I Here Ωh is a mesh of Ω and for regular functions f , g

(f , g)Ωh =
∑

K∈Ωh

∫
K

fg dx & 〈f , g〉∂Ωh =
∑

K∈Ωh

∫
∂K

fg ds

I The non-standard Sobolev spaces are:

H1(Ωh) = {v ∈ L2(Ω) : v |K∈ H1(K ) ∀K ∈ Ωh}
H−1/2(∂Ωh) = {η : ∃q ∈ H(div,Ω) s.t. η |∂K = q · n |∂K}



Diffusion problem: DPG formulation (cont.)

I The norms are:

||(w , r̂n)||2U = ||∇w ||2L2(Ω) + ||r̂n||2H−1/2(∂Ωh)

||v ||2V = (∇v ,∇v)Ωh + (v , v)Ωh

where the space of numerical fluxes is normed as

||r̂n||H−1/2(∂Ωh) = inf{||q||H(div,Ω) : q ∈ H(div,Ω) s.t. r̂n |∂K = q·n |∂K}

Theorem
The primal DPG formulation of the diffusion problem is wellposed
with mesh-independent stability constants C and α.

Proof.
See [DG13].



Diffusion problem: DPG approximation

I Assume that Ωh is a shape-regular partitioning of Ω into
convex quadrilaterals

I Conforming DPG-FE trial space of degree k and test space
of degree r :

Uh = {(w , r̂n) ∈ U : w|K∈ Qk (K ), r̂n ∈ Pk−1(∂K )}
V r = {v ∈ V : v|K∈ Qr (K )}

where

Qk (K ) = {w ∈ L2(K ) : w = ŵ ◦ F−1
K , ŵ ∈ Pk ,k (K̂ )}

Pk (∂K ) = {r̂n ∈ L2(∂K ) : r̂n|E∈ Pk (E) for each edge E on ∂K}

I FK : K̂ → R2 is the bilinear mapping onto K = FK (K̂ )



Diffusion problem: error estimate

Theorem
Let (uh, q̂n,h) be the DPG approximation of degree k to the
diffusion problem with r = k + 2. Then

||u − uh||H1(Ω) + ||q̂n − q̂n,h||H−1/2(∂Ωh)

≤ C min
(wh ,̂rn,h)∈Uh

(
||u − wh||H1(Ω) + ||q̂n − r̂n,h||H−1/2(∂Ωh)

)

Proof.
There exists a bounded projector Πk+2 : H1(K )→ Qk+2(K ) such
that ∫

K
(Πk+2v − v)wk dx = 0 ∀wk ∈ Qk (K ),∫

∂K
(Πk+2v − v)µk ds = 0 ∀µk ∈ Pk (∂K ),

see [CCN14].



Diffusion problem: convergence rates

Theorem
Let (uh, q̂n,h) be the DPG approximation of degree k to the
diffusion problem with r = k + 2. Then

||u−uh||H1(Ω)+||q̂n−q̂n,h||H−1/2(∂Ωh) ≤ Chk
(
|u|Hk+1(Ω) + | div q|Hk (Ω)

)

Proof.
The first term is bounded by standard approximation theory. The
second term can be bounded by using H(div)-projection of the flux
q = −∇u on the space

ABFk−1(K̂ ) = Pk+1,k−1(K̂ )× Pk−1,k+1(K̂ )

since the normal components are polynomials of degree k − 1.



Diffusion problem: comparison with LS-FEM
I Least squares FEM for the first order system minimizes

F(w , r) = ||r +∇w ||2L2(Ω) + || div r − f ||2L2(Ω)

over a subspace Wh × Rh ⊂ H1(Ω)× H(div,Ω)

I For any choice of the subspace

||u − uh||H1(Ω) + ||q − qh||H(div,Ω)

≤ C
(

min
wh∈Wh

||u − wh||H1(Ω) + min
rh∈Rh

||q − rh||H(div,Ω)

)
I If Rh is based on Raviart-Thomas space

RTk−1(K̂ ) = Pk ,k−1(K̂ )× Pk−1,k (K̂ )

the best known projection estimate is

|| div(q − Πk q)||L2(Ω) ≤ Chk−1| div q|Hk (Ω)



Diffusion problem: manufactured solution

I Consider Poisson’s equation in Ω = (0, 1)2 with the solution

u(x1, x2) = cos(πx1) cos(πx2)

I Lowest-order DPG-FEM vs. LS-FEM on trapezoidal 2N × 2N

-meshes, N = 1, 2, 3, . . .



Diffusion problem: DPG-FEM vs. LS-FEM

Error e = ||u − uh||L2(Ω), when N = 1, 2, 3, 4, 5:
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Summary and remarks

I DPG-FEM is automatically numerically stable
I DPG-FEM has a built-in local error evaluator
I The computational cost of DPG-FEM is comparable to mixed

finite methods
I The robustness of the method can be improved by changing

the test space inner product
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