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Shell finite elements

• In the finite element modelling of shell structures parametric 
error amplification, or locking, is detected for various shell 
deformation types.

• The numerical phenomenon is especially harmful for the 
lowest-order (p=1) finite element approximation and 
significant mesh over-refinement is sometimes needed.

• A long-standing approach is the derivation of special low-
order formulations that avoid the parametric error growth.
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Shell Finite Elements

• The error estimates for standard finite elements for shells 
are of the form

• There are special formulations (like quadrilateral MITC 
elements) for which

under very specific geometric assumptions.
• Practical shell finite element formulations are validated 

using benchmark computations
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Shell theory for 
FEM



Shell coordinates

• Assume that the shell body has a constant thickness t and 
that its mid-surface is discretized using triangular elements.

• The stiffness over each triangle K is calculated using shell 
theory in a local curvilinear coordinate system            , where

• are some chosen Cartesian coordinates on K
• is the coordinate along the unit normal vector

to the shell mid-surface

• The (reasonable) meshing assumption is that each K is so 
small that the coordinates can be assumed orthogonal on K.
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Shell kinematics

• According to the standard kinematic hypothesis the 
displacement vector field is assumed to be of the form

where
• are the tangential displacements of the mid-surface
• is the transverse deflection
• are the angles of rotation of the normal

• The tangential displacements and the rotations follow here 
the tangential directions     and     along the x- and y-
coordinate lines, respectively.
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Curvilinear strains

• Referring to the curvilinear coordinates            , the in plane 
components of the linearized Green-Lagrange strain tensor 
can be expanded as

• The membrane strain tensor can be written as

where

are the coefficients of the second fundamental form of the 
mid-surface.
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Curvilinear strains (cont.)

• Introducing the coefficients of the third fundamental form

the elastic curvature tensor comes out as

• Because                     , it is possible to write
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Curvilinear strains (cont.)
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• The transverse shear strains can be written as

• The strain energy functional reads

where, assuming linearly elastic isotropic material,



Finite element
formulations



Courant triangle

• We assume linear approximation for each displacement 
component separately on each K.

• The membrane and transverse shear strains must be 
reduced to circumvent numerical locking.

• To introduce the different methods, we denote by 
the affine mapping of the reference triangle    onto    and 
define the Jacobian as
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Strain reductions
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• We define on the reference triangle the FE spaces

• The associated DOFs are 



Strain reductions (cont.)

• The corresponding spaces associated to a general K are

• The projectors are defined as

where                                                                              are well-
defined on the reference triangle.

• The DOFs (tangential components) are preserved. 
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The element family

• MITC3C:

• MITC3S: 

• Stabilized variants of both elements can be introduced by 
modifying the shear modulus as 

• Here      is a positive stabilization parameter independent of 
and 
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Implementation



Skew coordinate transformations

• Geometric input data: triangulation of the middle surface 
and nodal normal vectors.

• Two orthogonal directions          to the nodal normals are 
generated and a skew coordinate transformation

is employed when enforcing the continuity of the 
displacements between elements.

• The geometric curvatures can be calculated from the 
interpolated normal vector     as
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Computer methods

• Surface meshes generated by Gmsh, manually, or imported 
from other software

• Current implementation in Wolfram language (Mathematica)

• Can handle about million degrees of freedom 
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Numerical Results



Pitkäranta’s cylinder
J. Pitkäranta et. al. CMAME 128 (1995), pp. 81-121
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• Cylindrical shell with half-length H = radius R:

• Features all asymptotic categories of shell deformations:
• Clamped ends -> Membrane-dominated
• Free ends -> Bending-dominated
• Simply supported ends -> Intermediate state (edge effect 

dominates)



Mesh sequences
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We consider two mesh sequences with N elements per edge: 

Uniform Delaunay



Error indicator

• We measure the quality of the numerical solution using the 
strain energy error indicator

• This error indicator is not completely reliable for non-
conforming FE methods, but its computation is very easy

• Ideally, for our linear elements, we should have

where the constant C does not depend on the ratio
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Cylinder with free ends (bending)
COMSOL (linear triangular)
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Cylinder with free ends (bending)
MITC3S/Delaunay triangulation
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Cylinder with free ends (bending)
Stabilized MITC3S/Delaunay
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Cylinder with clamped ends
MITC3S/Uniform
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Cylinder with free ends (bending)
MITC3S/Uniform
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Cylinder with clamped ends
Stabilized MITC3C/Delaunay
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Doubly curved hyperboloid
Hiller and Bathe, COMPUT STRUCT 81 (2003), pp. 639–654

• Similar problem setup as in Pitkäranta’s cylinder but the 
Gaussian curvature is not zero:
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Hyperboloid with free ends (bending)
Stabilized MITC3S/Uniform mesh
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Concluding Remarks

• We have presented a family of triangular shell elements
based on shell theory.

• The formalism allows explicit reduction of both membrane
and transverse shear strains.

• The (stabilized) MITC3S element can provably approximate
the inextensional modes of circular cylindrical shells when
the mesh is aligned with the axis of the cylinder.
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