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Abstract. Shivering is the only universal facultative thermogenic mechanism in 
endothermic vertebrates. Skeletal muscle constitutes a large proportion of body 
mass and a high scope of metabolic rate, and thus heat production, between 
resting level and active contraction. Its contractile activity is under rapid and 
accurate neural control. Together with the inherently low metabolic efficiency 
of muscle, these “preadaptive” factors have led to an independent evolution of 
shivering as the main facultative thermogenic effector in birds and mammals as 
well as other modes of contraction-related muscle thermogenesis in some hetero-
thermic animals. Shivering fulfils the requirements of a facultative mechanism, 
since it accurately and rapidly tracks variations in thermal conditions and obliga-
tory thermogenesis and is adjusted accordingly to maintain thermal balance. 
In contrast to the other facultative thermogenic tissue, mammalian brown fat, 
aerobic muscle has a high inherent capacity for ATP-splitting, which drives the 
combustion of cellular fuels. Thus, any uncoupling of mitochondrial respiration 
for thermogenic purposes would incur little selective advantage.

Introduction

Endothermy in birds and mammals, including humans, is based on high basal 
metabolism and facultative thermogenesis. By definition, facultative thermogen-
esis is specifically activated in response to cooling during cold exposure (IUPS 
Thermal Commission, 2003). All biochemical reactions in the cell produce heat 
as their byproduct (Hochachka, 1974; Block, 1994), and in the resting state 
at thermoneutrality, these reactions comprise the obligatory basal metabolic 
rate (BMR). The much higher rate of this basal metabolism forms the basis of 
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homeothermy in endotherms (Hulbert and Else, 2000; Ruben, 1995). Its origin 
is itself an intriguing question, but outside the scope of this overview. When the 
organism is in a steady state and no external work is done, anabolic and cata-
bolic reactions balance each other, and the amount of heat liberated equals total 
oxidative metabolism (oxygen consumption). Thus, any reaction has the poten-
tial to become a thermogenic effector. 

Despite this, only certain reactions were recruited for the specific function of 
cold-induced thermogenesis during the evolution of endothermy in birds and 
mammals. This is because there are at least three prerequisites for a reaction to 
function as a thermogenic effector: (1) It must occur in a sufficiently large tissue 
mass or be very intense in order to have enough capacity for defending the body 
against cooling. (2) It must be under instantaneous nervous control so that the 
level of thermogenesis is accurately set according to the needs imposed by swiftly 
varying thermal conditions. (3) It must be capable of long-term activation in 
order to be adaptive during seasonal changes in ambient temperature.

Perhaps not surprisingly, heat production by cold-induced involuntary 
muscle contraction, known as shivering, was “selected” as the main thermo-
genic mechanism in both endothermic vertebrate groups, birds and mammals 
(Hohtola, 2002). Muscle tissue comprises a significant part of their body mass, 
and the same motoneurons that control normal muscle contraction also form 
the final commanding pathway for shivering (Hemingway, 1963; Kleinebeckel 
and Klussmann, 1990). Muscle tissue also has a very large metabolic scope. 
Its factorial increase from resting to active surpasses that of most other tissues 
(Clark et al., 2000). 

Another indication of the suitability of muscle for thermoregulatory heat 
production can be found in some heterothermic species. These include brooding 
python (Hutchison et al., 1966), moths, and honeybees warming up for flight 
(e.g., Esch et al., 1991), and swimming tunas (Altringham and Block, 1997), 
all of which use muscular heat production analogous to shivering (i.e. driven 
by alpha-motoneurons and including muscle contraction) for warming up, or 
defending against heat loss and thus attain partial endothermy. The other well 
established thermogenic effector, mammalian brown adipose tissue, fulfils these 
criteria despite its small mass because it can sustain an intense metabolism and 
is under sympathetic nervous control (Cannon and Nedergaard, 2004). It is in-
teresting to note that evolution has produced fewer effectors for facultative heat 
production than for heat dissipation. This probably attests to the higher acute 
lethality of overheating compared with cooling.
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In the following overview, examples and evidence of shivering as a true fac-
ultative mechanism that fulfills the criteria listed above are given. Furthermore, 
evidence for an independent evolution of shivering in mammals and birds is 
discussed.

Mechanism of Thermogenesis: 
Simple Principles and Some Misconceptions

The term shivering (cf. Kältezittern, frisson thermique etc.) is actually rather 
misleading, since the mechanical consequences of thermoregulatory muscle 
tone, tremor and microvibrations, which arise from the motor unit contraction 
cycle, are not prerequisites for thermogenesis and do not add to it in any way. 
Similar mechanical events accompany all types of static muscle activation, e.g., 
postural tone. Tremor can actually increase heat loss by increasing convection. 
The amplitude of tremor and surface vibrations depends very much on the gross 
anatomy and motor unit function of the species, being invisible in birds but 
very prominent in some mammals (Kleinebeckel and Klussmann, 1990). Cold 
acclimation decreases shivering-related tremor in quails (Hohtola and Stevens, 
1986). Tremor and microvibrations can be reliable indicators of shivering inten-
sity (May, 2003; Hohtola, unpubl.), but since tremor amplitude depends heavily 
on motor unit synchronization, it does not always accurately reflect the amount 
of active motor units (thermogenesis). Although electromyograms (EMGs) also 
have several limitations in estimating total shivering activity, it is the preferred 
and most common method to measure shivering (West, 1965; Hohtola, 1982; 
Tøien, 1992; Hohtola et al., 1998).

Another misleading term, “chemical thermogenesis,” for modes of heat pro-
duction other than shivering (as if shivering thermogenesis was nonchemical) 
has been a source of much confusion regarding the simple principles of all cel-
lular thermogenesis. Fortunately, not many textbooks perpetuate this confusing 
definition any more. All heat emanates, of course, from the chemical combus-
tion of cellular fuels driven by the ATP-consuming cycle at the myofilaments. In 
a shivering muscle these reactions are exactly the same as during normal isomet-
ric muscle contraction. Some of the chemical energy is temporarily transformed 
into elastic and other types of mechanical potential energy within a muscle cell 
even when it is contacting isometrically, only to be released as heat when the 
contraction cycle proceeds. Since no external work is done in shivering, all the 
chemical energy liberated by cellular combustion is released as heat within the 
muscle tissue from where it is transported by the convective effect of circulation. 
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The efficiency of the chemical reactions resulting in muscle contraction is inher-
ently low: only about one fifth of the input energy (in cellular fuels) is converted 
to external work, even in exercising muscles. 

There is also a long-lasting standpoint that shivering is somehow “uncomfort-
able” and disturbs normal muscle functions (Hochachka and Somero, 2002) 
and “must” be replaced by some other mechanism during cold acclimation. 
Although this happens in a number of small mammals, most endothermic ver-
tebrates use shivering thermogenesis even when they are cold-acclimated. It has 
been repeatedly shown, for example, that winter-acclimatized birds always in-
crease shivering below their lower critical temperature (e.g. Aulie, 1976; Saarela 
and Hohtola, 2003). Winter-acclimatized arctic fox shiver to increase heat pro-
duction (Korhonen et al., 1985). Shivering resembles postural activity and inter-
acts with actual muscle contraction with equal flexibility. Firstly, of course, the 
need for shivering is decreased during activity because of the heat production 
from the concomitant normal muscle contraction. Secondly, it has been shown 
both in birds (Nomoto and Nomoto, 1985a; Hohtola et al., 1998) and mam-
mals (Meigal et al., 1998) that shivering can persist during voluntary muscle 
activity. This is seen as an increased muscle tone in EMGs during a motor task. 
Furthermore, the increased muscle tone in cold does not affect the accuracy of 
muscle force control in a biofeedback situation (Meigal et al., 1998). 

Interaction of Shivering with Obligatory Thermogenesis

A crucial point for a facultative thermogenic mechanism is that it tracks the rate 
of heat loss and internal nonthermoregulatory heat production. A vast body of 
data exists showing that shivering is accurately adjusted to counteract changes in 
ambient and body temperature (see e.g., Kleinebeckel and Klussmann, 1990). 
Less data exist, however, on the interaction of shivering with obligatory heat 
production.

The major components of obligatory thermogenesis besides BMR are mo-
tor activity and feeding-related processes (digestion-related thermogenesis, 
DRT). Facultative heat production should be accurately adjusted according 
to the changes in these modes of obligatory heat production. Several reports 
show that the obligatory DRT-related postprandial increase in metabolic rate is 
absent or lower in cold environments. This suggests that shivering (or NST, in 
some species) is the facultative component of thermogenesis that is adjusted to 
a lower level, but this is not usually verified by direct measurements. In pigeons, 
it was shown that the increase in body temperature from nocturnal to diurnal 
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levels towards the end of the dark phase incurs an increase in thermogenesis. 
Electromyographic recordings of shivering show that in fasted or food-restricted 
pigeons, a higher shivering intensity is needed for this as DRT is less or absent 
(Rashotte et al., 1999). Furthermore, in a thermoneutral environment, pigeons 
retain food in the crop and preferably digest it at this time (Laurila et al., 2003). 
Thus, the heat that would otherwise would have to be dissipated, can be used 
adaptively.

Although vigorous activity can suppress shivering to some extent via direct 
neural inhibition (Arnold et al 1986; Nomoto et al., 1985b) the thermal conse-
quences of activity have been shown to modulate the intensity of shivering, and 
shivering can continue during voluntary muscle activity (Nomoto and Nomoto-
Kozawa, 1985b; Hohtola et al., 1998; Meigal et al.; 1998).

Capacity and Endurance 

Not all muscle types are suitable for shivering, however. Since the need for 
thermogenesis can last for hours or even days, only the most aerobic, fatigue-
resistant muscles and motor units can be recruited for shivering. In man, it has 
been shown that the contraction level of a shivering muscle reaches maximally 
16–20% of the maximal voluntary contraction (Bell et al., 1992; Haman et al., 
2004). This indicates that only a very limited population of muscle fibers are 
recruited for shivering, these being obviously of the most fatigue-resistant type. 
Thus shivering can increase the rate of oxygen consumption maximally 4–
5-fold, while bouts of running or flying can incur a 20-fold increase. The dura-
tion of such bouts is limited to hours, while shivering goes on for days or weeks. 
In that sense, shivering resembles very much the activity of postural muscles.

The metabolic fuel for shivering is either carbohybdrate or lipid (fatty acids), 
as in normal muscle contraction. Many species differ in the pattern of shivering, 
showing either a bursting or continuous electrical activity (Hohtola and Stevens, 
1986). In man, it has been shown that the pattern of shivering has an influence 
on the partition of fuels for shivering, the bursting and continuous pattern fa-
voring carbohydrates and lipids, respectively. Cold exposure often causes chang-
es in muscle metabolism that increase aerobic capacity and fatty acid oxidation 
(see Dawson et al., 1992). In addition, changes in fiber composition (Ballantyne 
and George, 1978) and mitochondrial biogenesis (Wu et al., 1999) have been 
observed.
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Phylogeny of Shivering

A survey of literature reveals that all mammals and birds that have been appro-
priately tested show electromyographic signs of shivering when exposed to cold 
(Kleinebeckel and Klussmann, 1990). By contrast, no such response is seen in 
reptiles, although the evidence is mostly indirect, i.e., based on measurements 
of metabolic rate in cold-exposed animals. At least one experiment, however, 
shows a complete lack of muscle tone during cooling in a lizard (Tubinambis sp., 
Hohtola and Johansen, unpublished).

Phylogenetic evidence shows that mammals and birds evolved from separate 
reptilian ancestors. Although the possible endothermy of theropod dinosaurs 
(the ancestor of birds) has been widely discussed, there is no evidence of a com-
mon endothermic ancestor for both birds and mammals. Therefore, shivering 
thermogenesis probably evolved in both groups independently. 

Shivering is basically an increase in muscle tone and thus resembles postural 
activity of skeletal muscles. The differences in the postural system of reptiles and 
endothermic vertebrates have prompted the suggestion that postural activity 
formed the neuromuscular substrate that was transformed to shivering (Heath, 
1968). Subsequent studies have provided indirect theoretical and experimental 
evidence for this (Hohtola, 1981; see also Muir, 2000). 

Can we find any differences in shivering between birds and mammals, which 
would support the notion that they originated independently? Since the bio-
chemical reactions producing the heat are certainly identical, eventual differ-
ences must be sought in the function of motor units, the basic contractile units 
of skeletal muscle, and the central nervous system pathways that drive shivering. 
Motor unit function can be studied by recording the electrical events coupled to 
muscle contraction. Using such electromyographic methods, the size and syn-
chronization of contracting motor units can be analyzed.

Both in birds and mammals, small motor units are first recruited for shiver-
ing. In birds, there is a gradual recruitment of larger units with increasing level 
of shivering in a smooth “crescendo” pattern (Hohtola, 1982, Tøien, 1992). In 
mammals, however, the initial recruitment of small units produce a “thermo-
regulatory muscle tone” that is followed by grouped discharges of motor units 
(“true shivering”) at higher contraction intensities (Klussmann et al., 1969; 
Lupandin, 1980). Thus, there seems to be a clear difference of motor unit con-
trol during shivering between birds and mammals, which could be used to shed 
more light on the notion of an independent evolutionary origin.
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Another interesting difference in the motor control of shivering exists be-
tween birds and mammals: in both groups the intensity of shivering is modulat-
ed by the respiratory cycle but in opposite directions. In mammals, shivering is 
facilitated during inspiration (Kleinebeckel and Klussmann, 1990) , but in birds 
during expiration (Hohtola and Johansen, 1987; Tøien, 1993).

Because of the differential control of motor units and body shape differences, 
shivering in mammals usually incurs clear visible tremors, while in birds with 
smooth muscle contraction and compact body form, shivering-related tremors 
are rarely observed. Birds probably benefit from this as the convective heat loss 
is smaller with low tremor intensities. Small birds are known to be more cold-
resistant than small mammals. In humans, tremors and the basic recruitment of 
motor units for shivering can influence muscle function in cold. However, by 
adaptive use of distal and proximal muscles for work and shivering, such prob-
lems can be minimized (Meigal et al., 1998).

Muscle NST?

Muscle NST, by definition, would mean thermally driven heat production 
without contractile activity. There are several studies that report an increase in 
thermogenesis (oxygen consumption) either without an associated increase in 
muscle electromyograms (EMGs) or a disparity between the two, even in species 
that do not have brown adipose tissue (El Halawani et al., 1970; Hohtola et al., 
1989; Saarela and Heldmaier, 1987). Although electromyography is the most re-
liable method for measuring muscle activity related to shivering, the correlation 
between EMG and thermogenesis is influenced by a host of confounding factors 
(Tøien, 1992; Hohtola et al., 1998, Marjoniemi and Hohtola, 1999). Different 
muscles may have different thermal thresholds for shivering (Carey et al., 1989), 
shivering may be highly localized if a species has only a few very aerobic muscles 
(Aulie and Tøien, 1988). Thus such disparities should not be taken as evidence 
of (muscle) NST without careful analysis. To date, the strongest evidence for 
nonshivering thermogenesis in muscle in true endotherms comes from cold-
acclimated juvenile ducks (Duchamp et al., 1999). 

The recent discovery of various of uncoupling proteins (UCPs) both in mam-
mals and birds has of course precipitated hypotheses on their role in facultative 
heat production. It now seems clear, however, that they have a role in the regula-
tion of muscle metabolism rather that actual cold-induced thermogenesis (for 
examples, see Brand, 2000; Talbot et al., 2003). Interestingly, UCP1-ablated 
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mice acclimate to cold by shivering thermogenesis despite an increase in other 
types of UCPs (Golozoubova et al., 2001).

That muscle has a very high capacity of heat production without any uncou-
pling of oxidative phosphorylation is shown by malignant hyperthermia, a path-
ological condition, where abnormal Ca2+-cycling can induce a lethal hyperther-
mia. At least one example exists where the contractile activity of muscle has been 
sacrificed for increased heat production. In swordfish, an anatomically circum-
scribed endothermy in the eye region is maintained by a specially transformed 
muscle (Block, 1994) that produces heat by the sarcoplasmic calcium-cycling 
without contraction but obviously under the control of alpha-motoneurons. It is 
noteworthy that the modifications that serve heat production in swordfish have 
resulted in gross anatomical changes, which cannot be seen in true endotherms.

Resting muscle metabolism is known to vary significantly with changes in 
blood flow. By diverting arterial blood to intramuscular arteries or to connective 
tissues of the muscle, blood flow can be nutritive or non-nutritive (Clark et al., 
2000). This brings about a significant change in muscle metabolism. Whether 
this could be thermally driven and be rapidly controlled to enable it to act as a 
facultative thermogenic mechanism is not known (Eldershaw et al., 1997).

It should be once more emphasized that because muscle has an high inher-
ent capacity for ATP-splitting, there is no need for any uncoupling mechanism 
for heat production (see Hochachka, 1974). Although it could be argued that 
such a mechanism without muscle contraction would be more adaptive since the 
tremor and “uncomfortable” muscle tension would be absent, the basic function 
of muscle, contraction, would be severely compromised. It is difficult to envi-
sion such a selective force. Theoretically, this could work if uncoupling could be 
turned on and off rapidly by some neuronal system, but neither the motor or 
autonomic system are known to influence the function of muscle UCPs. 

From a viewpoint of the history of science, it seems that the search for ther-
moregulatory thermogenic mechanisms has recently become reductionistic as 
physiologists want to find specific molecule or reaction that would explain the 
facultative thermogenesis in muscle (Lowell and Spiegelman, 2000). This may 
be because of the renowned success in the discovery of the reactions involved in 
non-shivering thermogenesis in brown adipose tissue (Cannon and Nedergaard, 
2004). However, it is well known that temperature regulation and endothermy 
are largely based on existing physiological functions (Satinoff, 1978). Shivering 
thermogenesis is an excellent example of this: normal muscle tone has been 
modified such that it is driven by thermal stimuli.
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