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Computer Simulations of Planetary Rings (8.3.2016)
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The local dynamics of planetary rings is governed by the

orbital motion, the frequent impacts between ring parti-

cles, their mutual self-gravity, and the perturbations ex-

erted by external satellites and embedded moonlets. In Sat-

urn’s dense A and B rings the particles collide ∼ 100 times

per orbital revolution. Although the orbital velocities are

∼ 20 km/s, the random velocities related to orbital ec-

centricities and inclinations are small, of the order of few

mm/s (this corresponds to a ring vertical thickness of few

tens of meters, excluding strongly perturbed regions). Such

gentle impacts do not lead to fragmentation, but still dis-

sipate a significant fraction of random kinetic energy in

each collision. This loss is balanced by the viscous gain

of energy from the orbital motion around the planet, re-

sulting in a local steady-state in a time scale of few tens

of impacts/particle (Hämeen-Anttila, 1978; Goldreich and

Tremaine, 1978b; Stewart et al., 1984). Characteristics of

this energy balance (such as velocity dispersion, geometric

thickness, and viscosity) are determined by the frequency

and elasticity of impacts, and by the internal density and

size distribution of particles. In much longer timescales the

ring radial evolution is governed by viscous evolution. De-

pending on the viscosity-density relation following from the

energy balance, the ring can be either stable or unstable

against the viscous growth of local perturbations. For ex-

ample, dense rings composed of quite inelastic particles can

become viscously overstable, while less dissipative particle

may be prone to viscous instability.

The fundamental importance of ring particles’ feeble mu-

tual gravity for shaping the fine structure of Saturn’s rings

is strikingly demonstrated by the Cassini stellar (Colwell

et al., 2006, 2007; Hedman et al., 2007) and radio occul-

tation measurements (Thomson et al., 2007), which con-

firm the presence of unresolved trailing structures (self-

gravity wakes (Salo, 1992a)) throughout the A and B rings.

These transient, continuously re-generated trailing density

enhancements arise as a superposition of tiny wakes excited

around each individual ring particle, amplified by the inter-

play of shear and gravity (swing-amplification mechanism,

see: Toomre, 1981; Goldreich and Lynden-Bell, 1965). Such

structures were envisioned already decades ago (Julian and

Toomre, 1966), though in a very different context (and scale

- kpcs rather than tens of meters), as a suggestion of how to

create and maintain spiral structure in galactic stellar disks.

In planetary rings the dissipative impacts between particles

provide a natural mechanism which keeps the rings dynam-

ically cool and reactive to such gravitational disturbances.

  

  

INITIAL DISTRIBUTION AFTER 150 REVOLUTIONS

Figure 1.1 Simulation example of azimuthally complete ring.

The number of particles N=2000, and the particle radius is
0.005a, where a is the mean distance of particles. The initial
width of the ring is 0.2a, yielding a dynamical optical depth
τD = 0.125. The impacts are described with a constant
coefficient of restitution ǫn = 0.5. During 150 orbital revolution
each particle has experienced on the average about 250 impacts:
the system has flattened to a few particle diameter thick disk,
and has at the same time nearly doubled its radial width.

For the same reason the excitation of spiral density waves

at satellite resonance locations (Goldreich and Tremaine,

1978a)- another concept originally developed in the context

of galaxy dynamics - has its clearest manifestation in Sat-

urn’s rings (see e.g. Burns and Cuzzi, 2006; Cuzzi et al.,

2010); Saturn’s rings also provide the most extreme exam-

ples of disk warping (Hedman et al., 2011), and the Julian-

Toomre type wakes exited around individual massive boul-

ders orbiting among the ring particles (’propellers’) (Spahn

and Sremčević, 2000).

This Chapter reviews numerical N-body simulations of

self-gravitating, mutually colliding particles, concentrating

on a local method, where the evolution of a small ring patch

co-moving with the mean orbital motion is followed. After

reviewing the main ingredients of the simulations (dynam-

ical equations, treatment of boundaries, impacts, and self-

gravity), we illustrate the basic mechanisms affecting the

local energy balance and give simulation examples of self-

gravity wakes and the nonlinear structures resulting from

viscous overstability and instability For detailed theoreti-

cal background, see Chapters XX. For simulations including

external perturbations and dealing with the large scale evo-

lution of the rings, see Chapters YY.
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1.1 Early simulation studies

The pioneering simulation studies of the collisional evolution

of planetary rings were performed in the 1970s, by Trulsen

(1972), Brahic (1977) and Hämeen-Anttila and Lukkari

(1980). All these simulations used the same basic approach:

a complete ring of particles revolving the central body in Ke-

plerian orbits. The particles were identical hard spheres, and

impacts were treated as leading to instantaneous changes of

relative velocity vectors. Since only a few hundred particles

could be followed with the available computer capacity, these

simulations were limited to low optical depth τD . 10−3.

The particle sizes were unrealistically large compared to

the width of the ring, which made it difficult, for exam-

ple, to separate the time scales for the establishment of lo-

cal steady-state velocity dispersion from the viscous radial

spreading (see Fig. 1.1). Nevertheless, many basic character-

istics of collisional systems (see Section 1.6) were discovered,

including the existence of a critical upper limit for the coeffi-

cient of restitution ǫcr, required for a stable thermal balance

in the case of constant ǫn (Trulsen, 1972), a minimum resid-

ual velocity dispersion of the order of few times nR (Brahic,

1977), where n is the local angular velocity and R the parti-

cle radius, and the establishment of equilibrium with a finite

velocity dispersion in a case of a velocity-dependent coef-

ficient of restitution (Hämeen-Anttila and Lukkari, 1980).

These simulations also served as important checks for vari-

ous analytic treatments (see Stewart et al. (1984)). Brahic

(1977) also provided the first constraints for the velocity dis-

persion in Saturn’s rings, in terms of timescales for viscous

spreading. However, a fundamental breakthrough was pro-

vided by the Wisdom and Tremaine (1988) application of

local method to planetary ring simulations.

In contrast to the simulations of a complete ring, in lo-

cal simulations all calculations are restricted to a small re-

gion co-moving with the mean orbital motion of the parti-

cles (Fig. 1.2). This allows to extend the simulations to high

optical depths, with realistic particle sizes. However, due

to systematic velocity shear individual particles will rapidly

leave the calculation region. As described in detail below,

this is taken into account by periodic boundary conditions,

returning the leaving particles to the calculation region with

properly modified position and velocity vectors. An impor-

tant advantage of the method is that it facilitates the study

of local steady-state properties as a function of fixed optical

depth. The larger-scale viscous evolution can then be de-

duced from the viscosity-density relation derived from a set

of small-scale simulations for different optical depths. This is

justified, based on the large separation of the time scale for

the establishment of the local thermal balance (∝ (τDn)−1),

and the much longer time scale for the radial evolution

(∝ W 2/ν ∝ (τDn)−1(W/H)2, where ν is the kinematic vis-

cosity, W is the radial scale of interest, and H is the ring

vertical thickness).

The local method, developed for Molecular Dynamics sim-

ulations by Lees and Edwards (1972), was first applied to

planetary rings by Wisdom and Tremaine (1988) and to

stellar disks by Toomre and Kalnajs (1991). In the former

study impacts between identical particles were taken into ac-

count, but not their mutual gravity, whereas the latter study

concentrated only on gravitational forces. In Salo (1992a)

both, gravity and impacts, were simultaneously included.

Since then, the local method has been extensively used

(e.g. Richardson, 1993, 1994; Salo, 1995; Mosqueira, 1996;

Daisaka and Ida, 1999; Lewis and Stewart, 2000; Daisaka

et al., 2001; Ohtsuki, 1999; Robbins et al., 2010; Perrine

and Richardson, 2012).

1.2 The Local Simulation Method

The coordinate system in the local method has its origin at

~r0, a reference point orbiting the planet of mass M in a circu-

lar orbit at the distance a, with a constant angular velocity

n =
p

GMp/a3. The x-axis points in the radial direction,

the y-axis in the direction of orbital motion, and the z-axis is

perpendicular to the equatorial plane, parallel to the angu-

lar velocity vector ~n = nẑ. Since a rotating reference frame

is used, the equations of motion are

~̈r + 2~n × ~̇r + ~n × (~n × ~r) = ~FG/m + ~F/m (1.1)

where ~r = (x, y, z) is a particle’s radius vector with respect

to ~r0, ~FG denotes the central force on the particle relative

to the force at ~r0, ~F the additional forces, and the two last

terms on the left hand side represent the Coriolis and cen-

trifugal terms, respectively. For the Keplerian case (spheri-

cally symmetric central body) the difference in the acceler-

ation due to central field is

~FG/m = −GM

„

~r0 + ~r

|~r0 + ~r|3 − ~r0

a3

«

(1.2)

≈ −GM

a3

„

~r − 3
~r · ~r0

a2
~r0

«

= n2(2x,−y,−z),

if only terms linear in |~r|/a are retained. In the more general

case where the azimuthal, radial, and vertical frequencies (n,

κ, and nz) are different from each other1

~FG/m =
“

(3n2 − κ2)x,−n2y,−nz
2z
”

, (1.3)

with

n2 =
Fr

r

˛

˛

˛

~r=~ro

,

κ2 =
1

r3

d

dr
(r3Fr)

˛

˛

˛

~r=~ro

,

n2
z =

d

dz
(Fz)

˛

˛

˛

~r=~ro

,

where Fr and Fz are the radial and vertical components of

the central force. Inserting this to Eq. (1.1) yields

ẍ − 2nẏ + (κ2 − 4n2)x = Fx/m,

ÿ + 2nẋ = Fy/m, (1.4)

z̈ + nz
2z = Fz/m,

1 Note that in this Chapter the symbol nz is used for the ver-
tical frequency instead of ν; the latter symbol is reserved for kine-
matic shear viscosity
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Figure 1.2 Schematic representation of the local simulation
method (“shearing brick” method) (see text for explanation).

where Fx, Fy, Fz stand for the components of additional

forces besides the central force, e.g. due to impacts and parti-

cles’ mutual gravity. This is the familiar Hill-approximation,

describing the elliptical motion in terms of epicycles super-

posed on the circular motion of the guiding centre. In the

absence of additional forces Eqs. (1.4) have the solution

x = x0 − A cos[κ(t − t0)],

y = y0 +
2nA

κ
sin [κ(t − t0)] +

κ2 − 4n2

2n
x0t,

z = B sin[nz(t − t1)], (1.5)

where x0, y0, A, t0, B, t1 are six constants of integration: x0

and y0 are given by the guiding centre location at t = 0,

while A = ea, B = Ia correspond to eccentricity and incli-

nation, and t0, t1 to the times of pericenter and ascending

node passage, respectively. The guiding centre drifts tangen-

tially with the speed sx0, where the shear rate

s =
κ2 − 4n2

2n
(1.6)

reduces to s = − 3
2n in the Keplerian case.

The use of linearized equations is physically well justified,

as the typical particle excursion from circular orbit may be

expected to be at least a factor of 10−6 smaller than a.

Furthermore, through the linearization the set of Eqs. (1.4)

is invariant under the transformation

(x′, y′, z′) = (x + ∆x, y + ∆y + ∆x st, z),

(v′x, v′y, v′z) = (vx, vy + ∆x s, vz), (1.7)

where ∆x and ∆y denote arbitrary shifts in radial and tan-

gential directions, respectively. This allows to use simple pe-

riodic boundary conditions in simulations: using ∆x = nxLx

and ∆y = nyLy, where nx and ny are integers, and Lx and

Ly denote the radial and tangential dimensions of the cal-

culation region,

(x′, y′, z′) = (x + nxLx, y + nyLy + nxLxst, z),

(v′x, v′y, v′z) = (vx, vy + nxLxs, vz), (1.8)

with |nx|, |ny| = 1, 2, ..., define a set of image particles

(replicas, see Fig. 1.3), so that each particle leaving the ac-

tual calculation region (|x| > Lx/2 or |y| > Ly/2), is re-

placed by one of its replicas which enters the region from

the opposite face, with appropriately modified position and

velocity. Especially, if the particle crosses the outer or inner

radial boundary, the tangential velocity of the particle is

modified by ∆vy = ±sLx, which corresponds to the differ-

ence of shear velocity across Lx. Since the mean tangential

velocity at the radial coordinate x equals sx, this leaves the

shear corrected tangential velocity vy − sx unaffected. With

the use of these periodic boundary conditions the evolution

of the system is independent of the choice of the origin of

the coordinate system. The resulting steady-state properties

are also independent of the size of the calculation region,

provided that the size is large compared to the mean free

path between impacts (Wisdom and Tremaine (1988), Salo

(1991)). Implicitly it is assumed in the local method that

the rings are homogeneous on a scale comparable or larger

than the size of the simulation region.

For a system of N particles moving according to Eqs. (1.4)

the quantities

U =
1

mtot

N
X

i=1

miẋi,

V =
1

mtot

N
X

i=1

mi(ẏi − sxi), (1.9)

are the analogues to centre-of-mass velocities, where mtot is

the total mass. From Eqs. (1.4),

mtot(U̇ − 2nV ) =
X

i

X

j

Fx
ij ,

mtot(V̇ + (2n + s)U) =
X

i

X

j

Fy
ij , (1.10)

where ~F ij stands for the mutual impact or gravity force,

exerted by particle j on particle i. Since the forces cancel

pairwise, the sums on the right-hand sides vanish. Also, U

and V are unaffected by boundary crossings. Thus, U and V

remain zero at all times if they vanish initially. This provides

an useful check for the accuracy of the orbit and impact cal-

culations. In the more general case, U and V oscillate about
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Figure 1.3 Schematic diagram displaying the simulation cell
(thick lines) and its eight surrounding replicas (thin lines).
Gravitational forces on the given target particle (marked by

cross) are calculated from the particles whose nearest images lie
within a given maximum distance marked by the circle. The
nearest image can either be the actual particle (solid symbols)
or one of its copies (open symbols). Likewise, collisional
calculations take into account impacts with image particles.

their initial values, but as shown in Wisdom and Tremaine

(1988), the evolution of a system with arbitrary U0 and V0

is easily determined from the evolution with U0 = V0 = 0.

Eqs. (1.4) have the energy integral (multiply with veloci-

ties and integrate once),

E =
X

i

mi

„

1

2
(ẋ2

i + ẏ2
i + ż2

i ) + nsxi
2 +

1

2
nz

2zi
2
«

− 1

2

X

i

X

j 6=i

G
mimj

|~rj − ~ri|
, (1.11)

the last term representing the self-gravitational potential en-

ergy (we have assumed that the additional forces arise from

mutual self-gravity). In contrast to centre-of-mass velocities,

the quantity E does not remain constant in boundary cross-

ings or impacts.

1.3 Impact calculations

1.3.1 Instantaneous Impacts

In most local simulations (Wisdom and Tremaine (1988),

Salo (1991, 1992b,a); Richardson (1993)) an impact model

with instantaneous velocity changes has been used. This is

well justified, as the contact time in impacts is probably

less than one second (Bridges et al., 1984), or of the order

of 10−5 orbital periods. The damping of the relative veloc-

ity between a particle pair in the direction perpendicular

to the impact plane is specified by the normal coefficient of

restitution ǫn, describing the energy loss due to irreversible

deformations during the impact. Similarly, the tangential

coefficient of restitution, ǫt, can be included, describing the

change of the relative velocity component along the impact

plane. In this case the exchange of energy with the particles’

spin motion needs also be taken into account. Surface irreg-

ularities and the overall non-spherical shape of the particles

may also affect the impact outcome. Below we summarize

the equations for the velocity and spin changes in impacts,

following from the specified elastic model and the conserva-

tion laws of linear and angular momentum. The equations

are first derived in an inertial frame, and then we discuss the

slight modifications required when a local rotating frame is

used.

1.3.1.1 Contact dynamics

The pre-collisional position, velocity, and spin vector of the

impacting particle are denoted by ~r, ~̇r , and ~ω, respectively,

and its radius and mass by R and m. The impact partner

is distinguished by the subscript 1, and the post-collisional

quantities by a prime. We define

~v = ~̇r 1 − ~̇r ,

~k =
~r1 − ~r

R + R1
, (1.12)

standing for the velocity difference of the particle centres,

and for the unit vector in the direction joining the particle

centres. For an impact to take place ~v · ~k < 0. The pre-

collisional velocity difference at the contact point, taking

into account the spins, is

~g = (~̇r 1 − R1~ω1 × ~k) − (~̇r + R~ω × ~k) (1.13)

= ~v − (R~ω + R1~ω1) × ~k. (1.14)

The post-collisional contact velocity ~g ′ is determined by the

impact model, giving its components in three orthogonal

directions ~k, ~k× (~g×~k), and ~g×~k, of which the last two lay

on the impact plane; unit vectors in these directions will be

denoted by ~kT and ~kγ , respectively. Note that these vectors

form a right-handed system. We use the notation

~g ′ = −ǫn ~k~k · ~g + ǫt ~k × (~g × ~k) + ǫγ ~g × ~k, (1.15)

which implies

~k · ~g ′ = −ǫn ~k · ~g,

~k × (~g ′ × ~k) = ǫt ~k × (~g × ~k) + ǫγ ~g × ~k (1.16)

Thus ǫn denotes the coefficient of normal restitution, and

if ǫγ = 0, then ǫt corresponds to friction. For totally elas-

tic impacts ǫn = 1 while with ǫn = 0 the post-collisional

perpendicular velocity difference vanishes. Similarly ǫt = 1

means a frictionless impact while if ǫt = 0 the whole tan-

gential velocity difference at the contact point is lost. Note

that ǫn = ǫt = 0 does not imply sticking of particles as

the orbital motion is free to separate them. In principle,

−1 ≤ ǫt < 0 is also physically meaningful, corresponding to

reversal of tangential velocity difference (Shu and Stewart,

1985). A non-zero ǫγ can be used to describe the effect of



Computer Simulations of Planetary Rings (8.3.2016) 5

surface irregularities, giving rise to a post-collisional velocity

component perpendicular to both ~k and ~g. If included, ǫγ

needs to be a random variable with a zero mean, and since

surface irregularities affect also in the direction of ~k×(~g×~k),

a similar random component needs to be present in ǫt.

The collisional changes of particles’ velocity and spin vec-

tors,

∆~̇r = ~̇r
′ − ~̇r , ∆~̇r1 = ~̇r

′
1 − ~̇r 1,

∆~ω = ~ω′ − ~ω, ∆~ω1 = ~ω′
1 − ~ω1 (1.17)

are determined by the conservation of linear momentum

m~̇r
′
+ m1~̇r

′
1 = m~̇r + m1~̇r 1, (1.18)

and the conservation of angular momentum

m~r × ~̇r
′
+ m1~r1 × ~̇r

′
1 + J~ω′ + J1~ω′

1

= m~r × ~̇r + m1~r1 × ~̇r 1 + J ~ω + J1~ω1 (1.19)

where J and J1 denote the particles’ moments of inertia.

These equations can be written into more compact form

m∆~̇r + m1∆~̇r1 = 0 (1.20)

m~r × ∆~̇r + m1~r1 × ∆~̇r1 + J∆~ω + J1∆~ω1 = 0 (1.21)

Together with the model for ~g ′ (Eq. 1.15), the conservation

laws provide nine conditions for the six post collisional ve-

locity components and six spin components. The remaining

three relations are obtained by determining how the change

of spin is distributed between the two particles. Since the

forces acting on both particles are identical except in their

sign, the torques during the impact are proportional to the

particle radii,

J∆~ω

R
=

J1∆~ω1

R1
. (1.22)

To simplify the notations in solving the above set of 12

equations, Eqs. (1.15),(1.20) - 1.22), we define

~q ≡ R~ω, ~q1 ≡ R1~ω1, ~qs ≡ ~q + ~q1 , (1.23)

J = αmR2, J1 = α1m1R2
1. (1.24)

Thus ~q denotes the surface velocity due to spin rotation,

and α describes the internal mass distribution of particles;

for homogeneous spherical particles α = α1 = 2/5. From

Eqs. (1.20) and (1.22) we find

∆~̇r = − m1

m + m1
∆~v, ∆~q =

m1α1

mα + m1α1
∆~qs, (1.25)

∆~̇r1 =
m

m + m1
∆~v, ∆~q1 =

mα

mα + m1α1
∆~qs. (1.26)

Inserting these in Eq. (1.21), using ~r1 = ~r+~k(R+R1) yields

∆~qs = meff

„

1

mα
+

1

m1α1

«

∆~v × ~k ≡ f∆~v × ~k. (1.27)

Here

meff =
m1m

m + m1
(1.28)

is the effective mass of the pair. In the case of particles with

the same internal mass distribution the factor f reduces to

f = 1/α, which equals f = 5/2 for homogeneous spheres.

The change of the relative velocity at the point of contact

can thus be written (from Eq. 1.14)

∆~g = ~g ′ − ~g = ∆~v − ∆~qs × ~k

= ∆~v + f ~k × (∆~v × ~k). (1.29)

Solving for ∆~v gives

∆~v = ∆~g · ~k~k + (1 + f)−1
“

∆~g · ~kT
~kT + ∆~g · ~kγ~kγ

”

, (1.30)

and inserting the components of ∆~g which follow from the

impact model, Eq. (1.15),

∆~g = −(1 + ǫn)~g · ~k~k + (ǫt − 1)~k × (~g × ~k) + ǫγ~g × ~k (1.31)

finally gives

∆~v = − (1 + ǫn)~g · ~k~k

− 2

7

h

(1 − ǫt)~k × (~g × ~k) − ǫγ(~g × ~k)
i

. (1.32)

We have used (1 + f)−1 = 2
7 , the value for homogeneous

spheres. From Eq. (1.27) we obtain

∆~qs =
5

7

h

(1 − ǫt)(~g × ~k) + ǫγ(~k × (~g × ~k)
i

. (1.33)

The changes for the individual particles are now obtained

from Eqs. (1.25). Note that in the case with no friction

(ǫt = 1) nor irregularity (ǫγ = 0), the changes of velocity

are independent from spins and no change of spins occurs.

1.3.1.2 Energy dissipation

The total kinetic energy of a colliding pair of particles con-

sists of translational and rotational parts

E = Ekin +Erot =
1

2
(m~̇r

2
+m1~̇r

2
1)+

1

2
(mα~q 2 +m1α1~q1

2)

(1.34)

With the centre of mass velocity

~vc =
m~̇r + m1~̇r 1

m + m1
, (1.35)

the translational part can be written as

Ekin =
1

2

“

(m + m1)~v
2
c + meff~v2

”

, (1.36)

and since ~vc is conserved,

∆Ekin =
1

2
meff∆(~v2) (1.37)

The rotational contribution can be decomposed in a similar

manner by defining

~qc =
mα ~q − m1α1 ~q1

mα + m1α1
, (1.38)

leading to

Erot =
1

2

»

(mα + m1α1)~qc
2 +

meff

f
~qs

2
–

. (1.39)

Since ~qc is conserved, we have

∆Erot =
1

2

meff

f
∆(~qs

2), (1.40)

As ∆~qs = f∆~v × k, the total energy change is
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∆E =
1

2
meff

h

2~v · ∆~v + (∆~v)2 + 2∆~v × ~k · ~qs + f(~k × ∆~v)2
i

=
1

2
meff

h

2~g · ∆~v + (∆~v)2 + f(~k × ∆~v)2
i

. (1.41)

Inserting ∆~v from Eq.(1.30) gives

∆E = −1

2
meff

»

∆(gn
2) +

1

1 + f
∆(gt

2)

–

, (1.42)

where gn ≡ |~g · ~k| and gt ≡ |~k × (~g × ~k)|. In terms of the

impact model we find

∆E = − 1

2
meff

»

(1 − ǫ2n)gn
2

+
1

1 + f

“

1 − (ǫt + ǫ′γ)2 − ǫ2γ

”

gt
2
–

, (1.43)

where we have also explicitly included the random compo-

nent ǫ′γpresent in ǫt. Note that the factor 1
1+f enters by

including the exchange of energy between rotational and

translational motions. The use of ǫt to account for friction

without including particle spins, would correspond to setting

f = 0, thus leading to incorrect amount of dissipation.

1.3.1.3 Surface irregularities

In principle, irregularities can be described in terms of ǫγ ,

but this treatment has some caveats. Namely, a realistic im-

pact model must have ∆E ≤ 0. With ǫγ = ǫ′γ = 0 the energy

change implied by Eq. (1.43) is guaranteed to be negative

for all 0 < ǫn < 1,−1 < ǫt < 1, but if irregularity is in-

cluded, the allowed range of ǫγ and ǫ′γ depends on ǫn, ǫt,

and the ratio gn/gt. This makes it hard to interpret the

physical meaning of the model. An alternative description

for small-scale irregularity was introduced in Salo (1987a,b),

where the actual normal vector of the impact plane, ~k∗, is

allowed to deviate from ~k by a small random amount in each

impact,

~k∗ = ~k
q

1 − γ2
a − γ2

b + γa ~kT + γb
~kγ , (1.44)

where γa and γb are random variables with zero mean, and

using

∆~g = −(1 + ǫn)~g · ~k∗~k∗ + (ǫt − 1)~k∗ × (~g × ~k∗). (1.45)

On the other hand, the overall shape of the particles is as-

sumed to stay close to spherical, so that Eq. (1.14) can still

be used for the relative velocity at the contact point. The

advantage of this description is that the variables γa and γb

have an obvious physical interpretation, and a negative en-

ergy loss is guaranteed for any allowed impact with ~k∗·~v < 0.

1.3.1.4 Rotating frame

The calculations presented above are valid in an inertial

frame. When using a rotating frame, with same instanta-

neous axis directions, the velocities and spins are connected

to their inertial frame values as

~̇r I = ~̇r n + ~n × ~rI ,

~ωI = ~ωn + ~n, (1.46)

where subscripts I and Ω are used to distinguish between

the two frames. On the other hand, the instantaneous di-

rection vectors are unaffected. Thus the only differences to

Eqs. (1.32) and (1.33) for ∆~̇r and ∆~ω would come through

~g = ~v − (R1~ω1 + R~ω) × ~k. However, as

~vI = ~vΩ + ~n × ~k(R + R1),

(R~ω + R1~ω1)I × ~k = (R~ω + R1~ω1)Ω × ~k

+(R + R1)~n × ~k, (1.47)

the vector ~g has the same expression in both frames. Thus

no modifications are needed if both, velocities and spins,

are treated consistently. Alternatively, we may use ~ωI in the

collisional equations and add a correction term (R+R1)n×~k

to ~gΩ, as was done in Hämeen-Anttila and Salo (1993).

1.3.2 Force model for impacts

The treatment of impacts in terms of instantaneous velocity

changes leads to problems if the particles do not separate

after the impact. Even in the absence of mutual gravity, a

situation can occur where the particles’ have a net central ac-

celeration toward each other even when their post-collisional

relative velocity is zero. This corresponds to a sliding mo-

tion of the particles, before they are eventually separated

by the shear. Following Wisdom and Tremaine (1988) such

a phase is convenient to handle with a succession of small

jumps, achieved by setting ǫn = 1 whenever the perpen-

dicular impact velocity falls below a threshold value, say,

0.01nR. Since such impacts do not dissipate much energy to

start with, the energy balance of the system is not affected

by this replacement.

However, the problem becomes more severe if self-gravity

or cohesive forces between particles are included. In these

cases impacts may lead to a semi-permanent physical stick-

ing of particles. In the instantaneous impact method this

leads to particle overlaps, unless some special measure is

applied to force a separation of the particles. Further dif-

ficulties may still arise for example if gravitational aggre-

gates are formed, in which case it is insufficient to consider

only binary impacts independently from each other. A phys-

ically motivated solution, which is also computationally fea-

sible, is to include explicitly the pressure forces affecting

the particles in the impact. In Salo (1995) this was done

in terms of the linear visco-elastic model originally devel-

oped by Dilley (1993) for the theoretical parameterisation of

his measurements of velocity and size-dependent elasticity.

Likewise, frictional forces may be included in the simulations

(Salo, 1995; Morishima and Salo, 2006). Such Discrete ele-

ment method (DEM) algorithms (Cundall and Strack, 1979)

are commonly used in granular dynamics (see e.g. Pöschel

and Schwager (2005)).

The equations of motion for the impacting particles are

m~̈r = ~F imp + ~F ,

m1~̈r1 = ~F imp
1 + ~F1, (1.48)

J~̇ω = R~k × ~F imp,

J1~̇ω1 = R1(−~k) × ~F imp
1 , (1.49)
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where ~F imp
1 = −~F imp represent the impact forces, and

~F and ~F1 include additional forces affecting the particles

(central force and gravity of other particles), not causing

any torque on the impacting pair. Let us express the impact

force as

~F imp
1 = fN

~k + fT
~kT (1.50)

with the normal force (the tangential force fT will be treated

below)

fN (ξ) = β1ξ + β2ξ̇, ξ > 0

= 0, ξ ≤ 0, (1.51)

where

ξ = R + R1 − |~r − ~r1| (1.52)

is the penetration depth during the impact. Here β1 > 0 is

the spring constant of the restoring harmonic force, while

due to the dissipative term with β2 > 0 the energy stored

during the compression phase is not completely returned in

the rebound phase. From Eqs. (1.48), (1.51) and (1.52),

ξ̇ = −~v · ~k,

ξ̈ = −~̇v · ~k − ~v · ~̇k,

~̇v = (~F/m − ~F1/m1) + ~F imp
1 /meff , (1.53)

which yields

ξ̈ = − (β1ξ + β2ξ̇)

meff
+ C, (1.54)

with

C =

 

~F1

m1
−

~F

m

!

· ~k − ~v · ~̇k, (1.55)

where C contains the difference of additional accelerations

felt by the particles, as well as the change of the normal

direction during the impact.

Ignoring the term C, the solutions of Eq. (1.54) are expo-

nentially damped oscillations (impact starts at t = 0 when

ξ = 0),

ξ =
vn

ω
exp(−ωdt) sin(ωt) (1.56)

where vn ≡ ξ̇(0), and the oscillation frequency ω and the

damping rate ωd are

ω2 = ω0
2 − ωd

2,

ω0
2 =

β1

meff
,

ωd =
1

2

β2

meff
, (1.57)

with ω0 denoting the undamped frequency. The duration

of the impact (the length of the first half-cycle) and the

coefficient of restitution are

Tdur = π/ω ≈ π/ω0

ǫn = − ξ̇(Tdur)

ξ̇(0)
= exp

“

−π
ωd

ω

”

(1.58)
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Figure 1.4 The steady-state velocity dispersion in
force-method simulations using different impact duration Tdur.
Results with instantaneous impact method are indicated by the
horizontal lines. A constant ǫn = 0.5 is used. In the

non-gravitating simulation (NG) elongation of impact duration
(Tper/Tdur . 100) enhances dissipation, resulting in a lower
velocity dispersion. In self-gravitating simulations (SG) this

extra dissipation is compensated by the enhanced energy gain
due to gravitational viscosity for (Tper/Tdur . 50), caused by
the longer time the particles spend in the vicinity of each other.
For long enough Tdur the particles may even stick together,

leading to strongly enhanced gravitational viscosity. The inserts
show snapshot from the self-gravitating simulations with
different Tper/Tdur ratios.

Thus specifying β1/meff gives the approximate impact du-

ration, and then β2 is determined by ǫn,

β2

meff
=

2ω0
r

“

π
ln ǫn

”2
+ 1

. (1.59)

Note that a velocity-dependent elasticity law ǫn(vn) can also

be used in simulations: in this case the value of β2 is chosen

for each impact based on the pre-impact relative velocity vn

of the pair and the desired ǫn.

In the force method the particle motion is integrated

through the impact, so that the time step is basically de-

termined to be a small fraction of Tdur. On the other hand,

the total span of any simulation is determined by the orbital

time-scale Tper = 2π/n. Since the physical Tdur << Tper, it

is advantageous to speed up the calculations by scaling the

simulated impact duration to be larger than the physical

duration. Otherwise most of the computing time would be

spent on calculating the motion of particles which are not

currently colliding with much smaller steps than required to

resolve their motion due tidal and self-gravitational forces.

Indeed, the most attractive feature of the above linear force

model is that the impact duration is independent of impact

velocity, and is easily adjusted via β1.

However, there is an upper limit for the allowed Tdur, as

the solution obtained above ignored the term C: preserv-

ing this term may change the implied elasticity. Likewise,

the maximum penetration in impacts ξmax ≈ (vn/π)Tdur

should not be too large compared to the particle size. Also,
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if the impact duration is extended to Tdur > 1/ωc, where

ωc is the impact frequency, the binary nature of collisions

is not retained. It is thus important to address what is the

maximum Tdur one can use. According to simulation tests

(see Fig. 1.4), using Tdur/Tper < 10−2 leads to a practically

same steady state as the instantaneous impact method. Most

of the simulations of Sect. 1.6.2 use ω0/n = 400, correspond-

ing to Tdur/Tper = 1/800. In this case ξmax/R is typically

of the order of 10−3.

1.3.2.1 Surface friction

A straightforward way to include friction to the force model

is to use

fT = µfN (1.60)

in Eq. (1.51), where µ < 0 denotes the coefficient of friction.

This description is quite different from using ǫt in the in-

stantaneous impact model, as there is no single choice of µ

that would corresponds to a given ǫt. To connect µ to ǫt, we

write ~̇g in terms of Eqs. (1.48) and (1.49) as

~̇g = ~̇v − (R1 ~̇ω1 + R ~̇ω) × ~k

=
1

meff

“

~F imp
1 + f ~k × (~F imp

1 × ~k)
”

=
1

meff

“

fN
~k + (1 + f)µ fN

~kT

”

, (1.61)

where f is the factor defined in connection to Eq. (1.29),

reducing to 5/2 for homogeneous spheres; we have ignored

here the extra forces due to orbital motion and self-gravity

(C = 0). Thus, the total change of normal and tangential

velocity difference are

∆gn = ∆~̇g · ~k =

Z

Tdur

fN

meff
dt ≡ (1 + ǫn)gn,

∆gt = ∆~̇g · ~kT =
7

2
µ

Z

Tdur

fN

meff
dt ≡ (ǫt − 1)gt, (1.62)

where the force model results are identified with those of the

instantaneous impact model. Thus

ǫt = 1 +
7

2
µ(1 + ǫn)gn/gt (1.63)

implying ǫt ≤ 1 since µ < 0. Nevertheless, the regime ǫt < 0

can not be modeled, as the frictional force acts against the

relative tangential contact velocity. In practice, if friction

is strong enough to suppress the tangential velocity differ-

ence, gt = 0 appears as a discontinuity in the force and the

solution oscillates around ǫt = 0.

In principle, more realistic theoretical models for both fric-

tion and normal restitution (Spahn et al., 1995) can also be

used in simulations, but then the various scalings become

more complicated, as the impact duration will generally de-

pend on the impact velocity.

1.3.3 Search of impact pairs

The speed of the collisional simulation depends crucially on

the efficient search of impact pairs. For example, in their sim-

ulations of non-gravitating particles Wisdom and Tremaine

(1988) used the fact that orbits between impacts are Kep-

lerian epicycles, and solved iteratively for the intersection

time of each pair of epicycles. The impact of the pair with

the smallest impact time was executed with instantaneous

velocity changes, and the post-impact orbital elements were

calculated, leading to updated intersection times with all the

other particles. The system was thus moved on from one

impact to the next (the method is called “event-driven”).

Similar methods were used also in the early simulations of

rarefied azimuthally complete rings: due to extremely long

intervals between impacts elaborate schemes were developed

for detecting orbital intersections taking place after even

several hundreds of synodic periods (Hämeen-Anttila and

Lukkari, 1980).

Event-driven methods are fairly fast for small particle

numbers (N ≈ 50 in Wisdom and Tremaine (1988)), but

as N increases, the checking of next orbital intersections

between all N(N − 1)/2 pairs gets excessively slow. Also,

the inclusion of additional forces besides the central gravity

poses problems. Therefore, in the self-gravitating case the

equations of motions are integrated with small time steps,

and the potential intersections during each step are searched

only among the neighboring particles. Similar stepwise time

integration is advantageous also in the case of high parti-

cle density and large N , even if self-gravity is not included.

Provided that the step size is small, the distances between

particles can be expanded as a second-order Taylor poly-

nomial, providing a fast method for constructing a list of

potential impacts during the step (Salo, 1991). From this

list, the impacts during the time step are then executed as

in the event-driven method.

Regardless of the time-advancement method a consider-

able speedup can be achieved if the number of pairs ex-

amined for potential impacts is kept as small as possible.

This can be done quite efficiently by keeping track of the

maximum pre-step separation which has actually led to an

impact during previous steps, and by checking in each step

only those pairs whose distance does not exceed this max-

imum, multiplied by some threshold factor. This threshold

must be chosen in a manner which ensures that no impacts

are lost, and it also must be dynamically adjusted as the

velocity dispersion of the system evolves. A useful trick is

to sort the particles according to their radial coordinate and

choose first only pairs whose radial distances fall below the

threshold. In the optimal case, the number of pairs exam-

ined is proportional to c
nRN . Note that the actual orbital

integration needs not to be performed by a Taylor-series:

for example in Salo (1995) a fourth order Runge-Kutta in-

tegration was utilized, and the impact locations initially es-

timated by the second-degree polynomial expansion were

iteratively improved to correspond to the full accuracy of

the integration.

It must be stressed that it is important to take correctly

into account impacts taking place over boundaries of the

local calculation region. For small calculation regions this

fraction can be quite significant, and the omission of such

impacts will considerably modify the energy balance, and

thus, all steady-state properties of the system. Also, if the

force method is used, even a single non-detected impact may
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Figure 1.5 Snapshots of self-gravitating simulations with

different sized calculation regions, after 50 orbital periods. In
each simulation τD = 0.5, ǫn = 0.5 ρ = 900 kg/m3, R = 1m, and
a = 100, 000 km (rh = 0.82). The width of the square-shaped

region is L/λT = 32, 16, 8, 4, 2. In physical units the Toomre
critical wavelength λT = 41.6m. The self-gravity is calculated
from all particles within a cylindrical radius ∆max = L/2.
Gravitational forces from within ∆min = 0.25λT are calculated

with the PP-method and beyond that with the PM-method,
using a grid spacing of λT /16. The graph shows the
gravitational viscosity (Eq. 1.87) as a function L/λT ( average
between 25-50 orbits).

lead to large injection of energy to the system if it happens

to lead to a deep overlap on the next step. However, such

a situation is easy to detect by monitoring the ξmax during

the simulation.

1.4 Calculation of self-gravity

1.4.1 Force evaluation

Inclusion of gravitational forces increases the computational

burden significantly, as in principle the forces between each

particle pair need to be included (as well as to account for

the contribution of the replicas of the local calculation re-

gion). Moreover, self-gravity typically enhances the veloc-

ity dispersion and increases the impact frequency (see Sec-

tion 1.6). Both factors make the collisional calculations more

time consuming. These problems are especially pronounced

in the case of a weak tidal field, i.e. far from the planet,

when gravitationally bound particle aggregates form. Proper

simulation of self-gravity also sets additional constraints for

the required minimum size of the calculation region, since

it must exceed the scale of the self-gravity wake structures

formed via gravity (roughly of the order of Toomre critical

wavelength λT , see Fig 1.5). In practice this means using

at least 104 − 105 simulation particles. On the other hand,

for non-gravitating spatially uniform systems a fairly mod-

est particle number (102 − 103) is usually sufficient to give

the steady-state properties with a good accuracy.

The most straight-forward way of force evaluation is the

particle-particle (PP) method, using a direct summation

over particle pairs. The obvious advantage is that no approx-

imations are involved, the gravitational field correspond-

ing exactly to that implied by the particle ensemble. The

method can also be fairly efficient (Daisaka et al., 2001)

when using a special-purpose processor, like GRAPE, with

a hardware calculation of gravity forces (Makino and Fu-

nato, 1993). With standard-type processors the implied N2

time consumption becomes however prohibitively large al-

ready for a few thousand particles, so that other methods are

needed. Also, due to partial cancellation of distant forces it

is in fact unnecessary to calculate the contribution from dis-

tant particles with the same accuracy as that of the nearby

particles.

This fact is utilized in hierarchical tree-codes, where the

distant particles are grouped together in force calculation,

so that only few low order moments of their distribution are

included (see e.g. the galaxy simulation codes described in

Barnes and Hut, 1986; Hernquist and Katz, 1989). The es-

sential part of the method is the efficient construction of the

connected particle lists (’tree’), leading to a N ln N depen-

dence of the CPU-time consumption. Richardson (1994) first

applied this method to self-gravitating rings. On the other

hand, N-body simulations of galactic dynamics often employ
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Figure 1.6 The near (PP) and far (PM) contributions to

self-gravity, measured in terms of gravitational viscosity, are
compared for different dividing distances ∆min. Simulation
parameters are the same as in the previous figure, and the total
extent of the simulation region is 4λT × 4λT . The rightmost

point corresponds to using solely PP method. Two set of
simulations are shown, with λT /16 (thin lines, small symbols)
and λT /32 (thick lines, large symbols) PM grid spacing. Within
error bars, the total gravitational viscosity is the same in all

simulations.

particle-mesh (PM) method (see Sellwood, 2014): the den-

sity of the system is tabulated in a regular mesh, and the

forces (or gravity potential) at each mesh location are eval-

uated by convolving the density with the interaction law,

and then interpolating to the particle locations. The speed

of the method relies on the use of a Fast Fourier Transform

for performing the force convolution, and in the optimal case

the CPU-time consumption of gravity calculations is deter-

mined mainly by the interpolation of forces, being linear in

N . In current large-scale cosmological simulations the tree

and PM methods are often combined (Springel, 2005).

The important difference between planetary rings and

galaxy disks is that binary gravitational encounters between

ring particles are not insignificant compared to the mean

gravitational field (rings are not ’collisionless’). Therefore

the smoothing of forces implied by the gravity mesh (or by

explicit gravity softening) is incorrect. On the contrary, the

most important contributions from self-gravity come from

the fluctuating gravitational forces exerted by the nearest

neighboring ring particles (within ∼ λT , see Fig. 1.7).

An obvious way to speed up the calculations, while retain-

ing the accurate treatment of nearby gravity encounters, is

to combine PP and PM methods, for example in a manner

that was employed in Salo et al. (2001). In this treatment

the gravitational force exerted on each particle is divided in

a nearby and distant contribution,

~Fi = ~Fi
near

+ ~Fi
far

,

~Fi
near

= G
X

∆ij<∆min

mj
~rj − ~ri

|~rj − ~ri|3
, (1.64)

(1.65)

~Fi
far

= G

Z

∆>∆min

ρ(~r)
~r − ~ri

|~r − ~ri|3
d3r,

where ∆ denotes the projected 2D distance in the xy-

plane. The near contribution is calculated by direct particle-

particle summation, in order to include accurately the effects

of close gravitational encounters, as well as the gravitational

sticking of particles. Typically ∆min << Lx, Ly, so that just

a few percents of all N(N − 1)/2 particle pairs are involved.

The latter, usually smaller distant contribution is calculated

with a particle-mesh method.

An efficient way to calculate the PM contribution is to

use FFT in a sheared coordinate system, defined by the

transformation

u = x,

v = y − tsx mod Ly, (1.66)

where t is the time since the beginning of the simulation

and s = − 3
2n in the Keplerian case. In these coordinates

the Eqs. (1.8) for the image particles transform into

u′ = u + nLx,

v′ = v + mLy. (1.67)

indicating that the system is double periodic in the pla-

nar directions. We define a 3D Cartesian mesh with mu ×
mv × mz cells, and tabulate the mass δm(u, v, z) in each

cell by a cloud-in-cell (CIC) assignment. In planar direc-

tions the mesh has the same size as the calculation re-

gion, |u| < Lx/2, |v| < Ly/2. The vertical coverage of

the mesh,|z| < Lz/2 can be either a constant, or var-

ied according to the vertical thickness of the system, using

Lz/2 = k
p

z2, for example with k = 3: the small fraction of

particles with |z| > Lz/2 contribute insignificantly to the to-

tal density and can be ignored. The force on each cell center

is obtained with a convolution

~Fi,j,k = G
X

l,m,n

δml,m,n
~Γl−i,m−j,n−k (1.68)

where ~Γ (with same number of elements as δm) denotes the

Green function for the gravitational interaction between the

cells. Written in terms of the newly defined coordinates,

~Γabc = [a∆u, b(∆v + st∆u), c∆z] /dabc
3 (1.69)

with

dabc =
h

(a∆x)2 + (b(∆v + st∆u))2 + (c∆z)2
i1/2

. (1.70)

To exclude the near contribution Γabc is set to zero for

(a∆x)2 + (b(∆v + st∆u))2 < ∆min
2.

If carried out by direct summation, the convolution in

Eq. (1.68) would require ∝ (mxmymz)2 operations. Even

for moderate spatial resolution this would mean an exces-

sive number of calculations (even larger than that for the

direct summation over all N(N − 1)/2 pairs). It is therefore

essential to utilize the Fourier convolution theorem, accord-

ing to which the inverse transform of mesh forces equals

the product of the inverse transforms of density and Green

function,

e~F i,j,k = fδml,m,n
e~Γl−i,m−j,n−k. (1.71)

In order to be able to apply the convolution theorem, we

double the mesh size in the vertical direction, padding
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the extra cells with zeros. Using Fast Fourier Trans-

form, the number of calculations becomes proportional to

(mx ln mx)(my ln my)(2mz ln 2mz), making the method fea-

sible. The forces at the particle locations are interpolated

from the grid, with the same CIC-assignment as in the

tabulation of density. The forces on the few particles with

|z| > Lz/2 are calculated with an extrapolation from the

grid. In this manner the force on each particle is due to the

density in the region which corresponds in size to the whole

original rectangular calculation region (see Fig. 1.3). If a cir-

cular region is desired (to avoid any artificial ’polarization’

of forces due to corners of the region) we can set the Γabc

to zero beyond some distance ∆max(< max{Lx/2, Ly/2}).
Figure 1.6 shows the gravitational viscosity (Eq. (1.87))

from 4λT × 4λT simulations where different dividing dis-

tances ∆min between PP and PM methods are used, con-

firming that similar results are obtained in all cases. How-

ever, the gravity calculation is about 10 faster when using

PP+PM with ∆min/λT = 1/8 in comparison with using

just the PP method to calculate gravity from within 2λT .

For larger calculation regions and particle numbers, the gain

in speed becomes even more important.

1.4.2 Approximate treatments of self-gravity

Fully self-consistent calculation of particles’ mutual gravity,

as described above, is quite CPU time intensive. Wisdom

and Tremaine (1988) devised a simple method for mimicking

self-gravity in terms of an enhanced vertical frequency nz >

n in the dynamical equations. They estimated the vertical

self-gravity inside the ring layer from Poisson’s equation,

Fsg(z) = −2πG

Z z

−z
ρ(z′)dz′ = −4πGΣ

H
z, (1.72)

where the ring is approximated with a homogeneous infinite

layer with a vertical half-thickness H. Combining with the

vertical component of the central field, Fc = −n2z, gives

Fz(z) = −(n2 +
4πGΣ

H
)z ≡ −nz

2z (1.73)

Most of their simulations used a constant nz/n = 3.6, which

corresponds to Fsg/Fc ≈ 12, assumed to approximate the

enhancement in vertical gravity due self-gravity in the dense

B-ring of Saturn. Such a treatment mimics qualitatively

quite well the effects of vertical gravity, like the enhanced

impact frequency (see Sect. 1.6), which leads to strongly in-

creased non-local viscosity, thus promoting viscous oversta-

bility. Indeed, the use of nz/n > 1, even if not realistic for ex-

ploring the full effects of self-gravity, is a useful method when

analyzing overstability in terms of hydrodynamic transport

coefficients evaluated from N-body simulations (Salo et al.,

2001; Schmidt et al., 2001). Nevertheless, since the approxi-

mation ignores the planar components of gravity, which are

responsible for the emergence of self-gravity wakes, it is ques-

tionable how useful it is for describing real systems in any

quantitative way. Also, the originally used enhancement fac-

tor 3.6 is likely to overestimate the vertical field consider-

ably, since it is based on space density ρs = Σ/(2H) = 400

kg/m3 inside the ring layer (Wisdom and Tremaine, 1988).

For example, with the current estimate Σ ≈ 700kg/m2 (Hed-

man and Nicholson, 2016) this would correspond to H ≈ 1

meters.

Another useful approximation can be applied to the cal-

culation of axisymmetric component of self-gravity, in terms

of a superposition of infinite plane waves. We first make a

radial Fourier decomposition of the tangentially averaged

surface density

Σ(x) = Σ0

"

1 +

∞
X

m=1

Am cos

„

m
2π

Lx
(x − xm)

«

#

, (1.74)

where Am and xm are the fractional amplitude and phase

of different m-components with wavelengths λ = Lx/m. We

then treat each component as an infinite plane wave, and

use Poisson equation for an infinite 2D sheet to calculate

the corresponding radial force. Superposition of modes with

different m gives

Fx(x) = −2πGΣ0

mmax
X

m=1

Am sin

»

m
2π

Lx
(x − xm)

–

. (1.75)

A finite mmax is used in order to suppress small scale noise.

Such a treatment was applied in Salo and Schmidt (2010) to

compare viscous instability in N body simulations to Schmit

and Tscharnuter (1995) hydrodynamic predictions in the

case axisymmetric self-gravity is included.

1.4.3 Time integration

In the force method the basic timestep of integration is de-

termined by the need to resolve the rebound of individual

particle pairs. Depending on the chosen spring constant of

the restoring harmonic force, this requires time step of the

order of ∆Timp = (0.01 − 0.1)Tdur ∼ (10−4 − 10−5)Torb,

where Tdur is the impact duration. On the other hand, self-

gravitational forces are practically constant over such sort

time scales. To speed up calculations, one can therefore use a

larger time step, say ∆Tgrav ∼ 10−3Torb, for updating the

gravity forces. This simple method works well in the case

of gravity wake structures: the errors made in keeping the

self-gravity constant tend to cancel each other on the aver-

age. However, when particles stick physically, this method

may lead to artificial destabilization of gravity aggregates

via rotational instability (Karjalainen and Salo, 2004). This

is solely a numerical artifact, rising from the fact that then

the force integration errors do not cancel each other, but

lead to a net torque on particles attached to the aggregate.

As illustrated in Karjalainen and Salo (2004) a totally suf-

ficient remedy is to calculate both the forces and their time

derivatives at the beginning of each gravity step, and then

apply linear extrapolation of self-gravity during the step.
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1.5 Extracting quantities from simulations

The fundamental2 quantity describing both the dynamics

and observed structures of Saturn’s rings is the dynamical

(geometric) optical depth, defined as the total surface area

of particles divided by the total area. For identical particles

with radius R

τD =
NπR2

LxLy
. (1.76)

One of the main advantages of the local method is that the

optical depth (and surface density in case of self-gravitating

particles) of the system is fixed. Thus, after the establish-

ment of local energy balance, all dynamical properties char-

acterizing the steady-state corresponding to this τD can be

obtained with an arbitrary accuracy, by time averaging over

sufficiently long time intervals over all particle orbits and im-

pacts. The efficiency of time averaging was strikingly demon-

strated in Wisdom and Tremaine (1988), who made a prac-

tically complete study of identical, non-gravitating particles,

up to τD ∼ 3, using experiments with only N = 50 particles.

1.5.1 Steady-state quantities

The interesting dynamical quantities include the impact fre-

quency ωc, the velocity dispersion tensor bCαβ , the pressure

tensor bPαβ and shear viscosity η = − 1
s
bPxy. Other impor-

tant properties are the geometric thickness H, and the vol-

ume filling factor D3(z), useful for connecting the dynamical

estimates to photometric observations of rings. The steady-

state values of all these quantities are determined by the

optical thickness of the system τD, the size distribution of

particles n(R), and by their internal density ρ and elastic

properties ǫn, ǫt.

The extraction of the impact frequency ωc is straight-

forward both in the instantaneous impact and force

method simulations (total number of impact detec-

tions/particle/time interval, divided by factor 2 to avoid

counting twice the same impact), as long as the tendency

for particle sticking is weak (weak to moderate self-gravity

not leading to bound aggregates). In the calculation of

impact related mean values, like the average of ǫn in the

case of velocity dependent elasticity, one can weight with

vn to exclude the contribution of possible sliding motion, if

described by small, totally elastic rebounds in the instanta-

neous impact method.

The flow of momentum across the ring consists of a lo-

cal contribution, related to the momentum carried with the

particles during their random motions between successive

impacts, and of a nonlocal contribution, arising due to mo-

mentum transferred via impacts or via gravitational forces,

between particles at different radial distances (Wisdom and

Tremaine, 1988). We denote the particle positions by ~r and

2 Observationally the importance comes from the close corre-
spondence of τD to the normal photometric optical depth τ⊥,
which is the quantity inferred from occultation experiments: in
the limit of homogeneous low filling factor systems τD and τ⊥ are
identical. However, in a typical case of non-homogeneous and/or
high filling factor rings they generally differ, see Ect. 1.8.2.1

their random velocities by ~c = ~̇r −~u, with ~u standing for the

mean flow velocity at ~r. For simplicity, we restrict our at-

tention to the case of a linear shear profile ~u = sx~̂ey, where

~̂ey denotes the unit vector in tangential direction.

By definition, the components of the pressure tensor Pαβ

give the amount of β-component of momentum transferred

in α-direction, per unit area and unit time. When evaluat-

ing the momentum flow in simulations, it is convenient to

include all particles and impacts, regardless of their vertical

coordinate. This corresponds to a vertical averaging

bPαβ =

Z ∞

−∞

bPαβ dz (1.77)

From hereon we denote bPαβ simply by bPαβ , thus having the

units of momentum/unit time/unit length.

The local contribution to the pressure tensor is obtained

by adding the momenta pβ = mcβ of the N particles, mov-

ing with velocity cα with respect to the mean flow,

Pαβ
local =

1

Ao

N
X

i

(cα)i(mcβ)i = n mcαcβ , (1.78)

where Ao is the area of the simulation region and n = N/Ao

denotes the surface number density. The bar indicates aver-

age over particles. Once the steady-state has been achieved,

one can improve the accuracy by averaging over arbitrarily

long time intervals.

The standard formula for nonlocal momentum transfer is

(Wisdom and Tremaine 1988)

Pαβ
nl =

1

Ao∆t

X

impacts

∆rα m>δcβ>
, (1.79)

where the summation is over all impacts occurring during

the time interval ∆t, and m> δcβ>
denotes the change of the

momentum of the particle with the larger rα in each impact,

and ∆rα the absolute difference in the rα-coordinates of the

impacting particles. However, application of this formula is

problematic in the case of strong particle grouping, as it may

be difficult to identify the separate impacts. For the case of

force-method impact calculation, the collisional change of

momentum is

m>δcβ>
=

Z

Tdur

Fβ>
dt, (1.80)

where Fβ denotes the impact force felt by the particle with

the larger rα coordinate, and Tdur is the duration of the

impact. By defining

Fβ>
=
X

i

X

j
(rα)j>(rα)i

F ij
β , (1.81)

where ~F ij stands for the impact force exerted by particle

i on the particle j, with ~F ij 6= 0 for colliding, overlapping

pairs, and zero otherwise, the integral (1.80) can be extended

to the whole interval ∆t, also covering the possibility of par-

ticles experiencing multiple simultaneous impacts, or even a

permanent sticking of particles. Summing over all particles
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then gives an equation corresponding to Eq. (1.79),

Pαβ
nl =

1

Ao

fi

X

i

X

j
(rα)j>(rα)i

((rα)j − (rα)i)F
ij
β

fl

, (1.82)

where the average is taken over an arbitrary time interval.

Furthermore, Eq. (1.82) can obviously be generalized to the

momentum flow due to long-range forces, e.g in the case of

self-gravity,

Pαβ
grav =

1

Ao

fi

X

i

X

j
(rα)j>(rα)i

−Gmimj
((rα)j − (rα)i)((rβ)j − (rβ)i)

|~rj − ~ri|3
fl

. (1.83)

Likewise, ~F ij can be identified with adhesive forces, Eq.

(1.82) then giving their contribution to the nonlocal pres-

sure. In the case of well defined separate impacts, Eqs. (1.79)

and (1.82) give identical results for the nonlocal pressure

tensor.

The corresponding contributions to the (vertically inte-

grated) dynamic shear viscosity are readily evaluated from

η = − 1
sP12. In the case of Keplerian shear, s = − 3

2n, and

we have

ηlocal =
2

3n
n
˙

mcxcy
¸

, (1.84)

ηnl =
2

3n

1

Ao∆t

X

impacts

m>∆x>(δcy)> (1.85)

=
2

3n

1

Ao

fi

X

i

X

j
xj>xi

∆x>(F ij
y)>

fl

, (1.86)

ηgrav =
2

3n

1

Ao

fi

X

i

X

j
xj>xi

−Gmimj
(xj − xi)(yj − yi)

|~rj − ~ri|3
fl

.

(1.87)

The kinematic shear viscosities are obtained from these,

dividing by the surface mass density of the system Σ = nm.

In particular, in the case of identical particles (Wisdom and

Tremaine, 1988)

νlocal =
2

3n
cxcy, (1.88)

νnl =
2

3n

1

N∆t

X

impacts

∆x>(δcy). (1.89)

The above formula for gravitational viscosity is identical

to that in Daisaka et al. (2001). Fig. 1.7 shows the contri-

butions to the integrand of Eq. 1.87, arising from different

relative locations ∆x = x′ − x, ∆y = y′ − y. Largest grav-

itational torques are exerted by material within ∼ 0.25λT ,

and almost all of νgrav is due to particles within one λT .

The velocity dispersion tensor is collected by sampling

the random velocity components of each particle with short

intervals and tabulating the averages values as a function of

simulation time. In particular, in Sect. 1.6 we will use the

time-averaged 1-d velocity dispersion c to characterize the
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Figure 1.7 a) The contributions to gravitational viscosity (Eq.
1.87). The contours indicate the mean torque density exerted

from relative location (∆x, ∆y): positive (white contours) by the
particles on the trailing quadrants and negative (gray contours)
from the leading quadrants. The gray scale background image is
the 2D auto-correlation function (Eq.1.93) for the same

simulation. Note the slightly larger positive net torques arising
due to overdensities in the trailing quadrants. In b) the

cumulative gravitational viscosity due to material within a
cylindrical radius ∆ is shown as a function of ∆/λT .

dynamical ’temperature’ of the system

c2 =
1

3

fi

c12 + c22 + c32

fl

=
1

3

trP̂ local

Σ
(1.90)

where c1, c2, and c3 are the principal axis components of

the velocity dispersion tensor. At the low optical depth the

largest principal axis points to the radial direction: at this

limit c2/c1 = cy/cx = 0.5 and c3/c1 = cz/cx ≈ 0.65. The

vertical thickness is defined as

H =
p

12z2, (1.91)

which corresponds to the full thickness of a uniform layer

with the same vertical dispersion as the simulated particle

field. At τD ∼ 0, we have H ≈ 3c/n. The vertical distri-

bution can be further characterized by tabulating the ver-

tical density profile of the simulation particles. This can

be based on the locations of particle centers (Wisdom and

Tremaine, 1988), or by D3(z) indicating the fraction of vol-

ume filled by particles as a function of z (Salo and Kar-

jalainen, 2003). In particular, the filling factor at the equa-

torial plane D3(z = 0) (often denoted as FF (0)) is useful in

comparison to theoretical treatments of dense rings (Araki

and Tremaine, 1986; Araki, 1991).

Other hydrodynamic quantities besides ν can also be ex-

tracted from simulations, like the radial heat conductivity

and bulk viscosity, and the temperature derivatives of pres-

sure, shear viscosity and energy dissipation. Such tabula-

tions were made in Salo et al. (2001) for non-gravitating sim-

ulations assuming three different values of nz/n. However,

compared to the shear viscosity that can be extracted at the

steady-state, these other quantities require that the system

is perturbed and the measurement is carried out while the

system relaxes back toward the uniform steady-state. Be-

sides the technical difficulties involved, the exact relation of
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Figure 1.8 a) Fourier amplitudes |eΣl,m| (see Eq. 1.92) in the
simulations of Fig. 1.5, as a function of wavenumbers
kx = 2π/λx and ky = 2π/λy , where λx and λy are the radial

and tangential wavelengths. The contours indicate amplitude
levels 0.1,...0.9 times the maximum amplitude. The dashed line
indicates ky = 0.25kx, corresponding to a pitch angle ≈ 14◦. In
b) time averaged 2D auto-correlation functions of the same
simulations (Eq. 1.93). Solid black and dashed white contours
correspond to 16λT × 16λT and 8λT × 8λT simulations. Dashed
black line indicates a 14◦ asymptotic pitch angle.

the derived quantities to their hydrodynamic interpretation

is not clear. Mainly this is due to the non-isotropic velocity

distribution (see Fig. 1.14e) following from particle’s orbital

motion around the planet. Such a distribution has more de-

grees of freedom than taken into account in hydrodynamical

treatment. Nevertheless, such ’fitted’ quantities applied to

hydrodynamic stability analysis are quite successful in de-

scribing the viscous stability properties of larger-scale sim-

ulations (Schmidt et al., 2001; Schmidt and Salo, 2003). 3

1.5.2 Characterization of self-gravity wakes

Examples of self-gravitating simulations were shown in Fig.

1.5 comparing snapshots from simulations with different

sized calculation regions, while keeping other parameters the

same. The snapshots indicated that the typical appearance

of wake structure is evident even for calculation regions as

small as 2λT × 2λT . However, comparison of gravitational

viscosity (see Sect. 1.5) indicates that the strength of wakes

is not fully developed unless a few times larger region, say

8λT ×8λT is simulated. Similarly, the spacing and pitch an-

gle of wakes is affected by the periodic boundaries: this is

illustrated in Fig. 1.8a in terms of 2D Fourier decomposition

of surface density4

Σ(x, y) = Σ0

X

l,m

eΣl,m exp

„

i
2πl

Lx
x + i

2πm

Ly
y

«

(1.92)

where |eΣl,m| gives the normalized amplitude corresponding

to the radial and tangential wavelengths λx = Lx/l and

3 Isothermal hydrodynamical models which ignore bulk viscos-
ity and temperature derivatives (Schmit and Tscharnuter, 1995)
give qualitatively correct picture of viscous behavior but fail to
predict quantitatively the correct regime of viscous overstability.

4 A convenient way to calculate the amplitudes is to perform
2D FFT on the system whenever the image regions happen to
be aligned along the x-axis, which takes place 3πLx/Ly times
per orbit; at these instants FFT can be readily applied as Σ is
periodic in both x and y.

λy = Ly/m. In the 2λT × 2λT simulation the peak am-

plitude occurs at (λx, λy) = (1, 2)λT , but when the region

is increased, (λx, λy) approaches (2, 8)λT . This corresponds

to a pitch angle tan−1(λx/λy) ≈ 14◦ between tangential

direction and the the average direction of wakes.

The shape and orientation of the wakes is best illustrated

in terms of 2D auto-correlation function of surface density,

ζ2d(∆x, ∆y) =
1

Σ0
2A0

Z Z

Σ(x + ∆x, y + ∆y)Σ(x, y) dxdy (1.93)

Taking the time average of this describes the typical density

structure the particle sees around its location. It can be

calculated directly from stored particle snapshots (e.g. Salo

1995), or more conveniently (e.g. Toomre and Kalnajs 1991)

with the FFT, by taking the inverse Fourier transform of

the squared density amplitudes, eζ2d = |eΣl,m|2. Figure 1.8b

displays the auto-correlation functions, together with a line

corresponding to 14◦ pitch angle.

1.5.3 Energy budget in local simulations

In the steady-state, the energy dissipation rate is connected

to momentum flow by

Ėdiss − sP12 = 0 (1.94)
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where Ėdiss is the energy loss in impacts, per unit time and

unit area. Although this formula is valid for any shear flow,

it is instructive to check how the formula actually arises in

a local calculation region with periodic boundaries.

As mentioned in section 1.2, the quantity (Eq. 1.11)

E = Ekin + Epot + Egrav (1.95)

with

Ekin =
X

i

1

2
mi(ẋ

2
i + ẏ2

i + ż2
i ) (1.96)

Epot =
X

i

mi(nsxi
2 +

1

2
nz

2zi
2) (1.97)

Egrav = −1

2
G
X

i

X

j 6=i

mimj

|~rj − ~ri|
(1.98)

is conserved along the orbital motion of particles. On the

other hand, E changes both due crossing of radial bound-

aries and due impacts, via changes in Ekin, while both Epot

and Egrav remain unchanged5.

The above expression for Ekin, using the actual velocities

of the simulation particles, includes both, the kinetic energy

associated to their random motions, Ernd, and the kinetic

energy associated to the systematic shear flow Eshear,

Ekin = Ernd + Eshear (1.99)

where

Ernd =
1

2

X

i

mi~c
2
i =

X

i

1

2
mi[ẋ

2
i + (ẏi − sxi)

2 + ż2
i ],

(1.100)

Eshear =
1

2

X

i

mi[2sxi(cy)i + s2xi
2] (1.101)

Since Ernd, rather than Ekin is of interest in many appli-

cations, we next look how it evolves in local simulations,

subject to periodic boundaries, collisions, and gravitational

forces.

In crossing of boundaries, the random velocity relative to

mean flow is unaffected, so that ∆Ernd remains constant,

the change of Ekin being associated solely with Eshear. In

an impact of a particle pair

1

2
δ(m1~v

2
1 + m2~v

2
2 ) =

1

2
δ(m1~c

2
1 + m2~c

2
2 )

+ s [m1x1(δcy)1 + m2x2(δcy)2] , (1.102)

where the last term can be combined to s m2(δcy)2(x2−x1),

using the conservation of momentum (the subscript 2 la-

bels the particle with the larger radial coordinate). Summing

over all impacts during the time interval ∆t we have

(∆Ernd)coll = ∆Ediss − s
X

impacts

m>(δcy)>∆x>. (1.103)

5 Assuming that gravitational forces are constructed using the
nearest image pairs, in which case the distances |~ri −~rj |’s are not
affected.
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Figure 1.9 Energy balance in the 4λT × 4λT simulation of Fig
1.5. Different contributions to viscous gain are shown separately:
in the steady-state they balance the collisional dissipation. The
small negative net value of the cumulative sum of gain and

dissipation (G+D, dashed curve) equals the change in the total
energy (∆E = ∆Ernd + ∆Egrav + ∆Ez) when the system
settled toward steady-state values from an initially ’hot’ state:

the upper insert shows the random velocity components, and

the lower insert the various components of energy change. The
energies are shown in units of m(nR)2, where m is the total
mass of simulation particles.

To obtain the change of Ernd due to self-gravity and orbital

motion, we use Eqs. (1.95) and (1.99) to write

Ernd = E − Egrav − Epot − Eshear

= E − Egrav − Ez (1.104)

−
X

i

mi[(ns +
1

2
s2)xi

2 + sxi(ẏi − sxi)]

where

Ez =
1

2

X

i

minz
2zi

2 (1.105)

denotes the potential energy associated with vertical mo-

tions. Since E is conserved during orbital motion, the change

of Ernd during time interval ∆t equals

(∆Ernd)orb=−∆(Egrav + Ez)

−
Z t+∆t

t

X

i

mi

»

(2ns + s2)xiẋi

+sẋi(ẏi − sxi) + sxi(ÿi − sẋi)

–

dt. (1.106)

Substituting ÿ = −2nẋi + (Fy)i/mi from the equation of

motion, where (Fy)i/mi is the y-component of the gravita-

tional force felt by particle i, and taking into account that

cx = ẋ,

(∆Ernd)orb = −∆(Egrav + Ez)

− s∆t

fi

X

i

mi(cx)i(cy)i +
X

i

xi(Fy)i

fl

(1.107)
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Adding (∆Ernd)coll and (∆Ernd)orb,

∆Ernd=∆Ediss − ∆(Egrav + Ez) − s
X

impacts

m>(δcy)>∆x>

−s∆t

fi

X

i

mi(cx)i(cy)i

fl

− s∆t

fi

X

i

xi(Fy)i

fl

(1.108)

Clearly, the summation in the last term in the right-hand

size can be arranged to a form involved in the formula for

gravitational viscosity Eq. (1.87), while the two other sums

correspond to non-local and local viscosities. Dividing by ∆t

and Ao thus gives

Ėrnd + Ėgrav + Ėz = Ėdiss − sPxy = Ėdiss + s2η (1.109)

where the total viscous gain −sPxy consists of local, nonlocal

and gravitational viscosity contributions

Pxy = Pxy
local + Pxy

nl + Pxy
grav (1.110)

In the steady-state the left hand side of Eq. (1.109) is zero,

leading to the anticipated result in Eq. (1.94).

An example of energy balance in simulations is shown in

Fig. 1.9 for a system that starts with a velocity dispersion

exceeding the steady-state value. Initially both Ėrnd and Ėz

are negative as the system cools and flattens down toward

steady-state. Also the negative contribution of gravitational

energy increases when the particles collect to dense wakes.

In steady-state, the left-hand size of Eq. (1.109) vanishes

and the rates of viscous gain and dissipation balance each

other exactly.

1.6 Survey of simulation results

This Section collects simulation examples illustrating the in-

trinsic local dynamics of planetary ring systems. We start by

discussing the simplest case of identical, non-selfgravitating

particles, and demonstrate how the characteristics of the

system’s steady-state, e.g. the frequency of impacts and the

velocity dispersion, depend on the coefficient of restitution

and particle size. We show that the simulation results are

consistent with heuristic hydrodynamical estimates. Parti-

cles’ spin rotation, induced by surface friction and irregular-

ities, is also briefly examined. We then proceed to systems

with a distribution of particle sizes, and finally also include

the particles’ mutual self-gravity.

Our main goal is to understand how the dynamic viscosity

varies with surface density, and how this relation depends on

particles’ physical properties. As mentioned above, this η(Σ)

relation is crucial for the large-scale viscous stability prop-

erties of the particle ensemble. For non-gravitating systems

the surface density is replaced with optical depth and dy-

namic viscosity then corresponds to η = ντD. Two models

(Fig 1.10) for velocity-dependent coefficient of restitution

are systematically compared, corresponding to laboratory

measurements made by Bridges et al. (1984; ’frosty’ ice) and

Hatzes et al. (1988; ’smooth’ ice). The former model, with

a steeper drop of ǫn with impact velocity leads to an energy

balance where the velocity dispersion corresponds to ring
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Figure 1.10 Two velocity-dependent elasticity models
describing laboratory measurements of icy particles. The curve
labeled ’frosty’ is for frost-covered ice (Bridges et al., 1984) ,
ǫn(vn) = 0.32(vn)−0.234 < 1, while the curve ’smooth’ refers to

particles with compacted-frost surfaces (Hatzes et al., 1988) ,
ǫn(vn) = 0.90e−0.22vn + 0.01vn

−0.6. The normal component of
impact velocity vn is expressed in cm/sec. The Bridges et al.

(1984) model can also be written as ǫn = (vn/vc)−0.234, with
vc = vB = 0.0077cm/s.

vertical thickness H ∼ 10 meters, (when assuming 1 meter

ring particles), while the latter model implies a much hotter

multilayer ring with H ∼ 100 meters: these two models serve

to illustrate the uncertainty in ring particles’ elastic proper-

ties. The viscosity versus density relation is constructed from

small-scale simulations whose radial size is smaller than the

shortest unstable wavelength so that no viscous perturba-

tions can grow. It turns out that the two models predict

drastically different viscous behavior: viscous instability in

the case of thick rings and overstability in the case of flat-

tened rings. Indeed, when the size of the simulation system

is made sufficiently large both viscous instabilities and over-

stabilities can be directly verified in simulations (see Sect

1.7).

1.6.1 Simulations of non-selfgravitating systems

1.6.1.1 Impact frequency

The ring system rapidly establishes an energy balance where

the collisional dissipation is compensated by the viscous

transfer of energy from the systematic orbital motion to

random motions (Sect. 1.5.3). The time scale to reach this

steady-state is determined by the frequency of particles’

mutual impacts, ωc. As expected, the impact frequency in-

creases proportional to optical depth τD. An important pe-

culiarity of planetary ring dynamics is that the steady-state

ωc is practically independent from the velocity dispersion.

This results from the partitioning of vertical and horizontal

random motions via impacts. Thus for example an increase

in velocity dispersion, which in itself would enhance ωc,

is compensated by a corresponding vertical thickening and
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Figure 1.11 Impact frequency ωc in 3D and 2D simulations,

normalized to nτD. In a) simulations with fixed τD = 0.1 are
compared as a function of velocity dispersion c, normalized to
nR; the points correspond to steady-state values in simulations
with different coefficient of restitution. In b) ωc as a function of

optical depth for simulations with constant ǫn = 0.4 (circles)
and using the Hatzes et al. (1988) velocity-dependent ǫn (see
Fig 1.10). The vertical line indicates the τDmax for 2D systems.

thereby reduced space density.6 Analytic treatments taking

into account the anisotropic distribution of impact direc-

tions and a Gaussian vertical profile (e.g Hämeen-Anttila,

1978), indicate

ωc ∼ 3nτD ∼ 20τD impacts/orbit, (1.111)

The independence of ωc on velocity dispersion is illustrated

in Fig. 1.11a, together with the approximation of Eq. 1.111

(dashed line). For comparison, the figure also shows ωc in a

2D simulation where the motion of particles is limited to the

central plane. In this case no adjustment between velocity

dispersion and space density is possible and the explicit ve-

locity dispersion dependence in ωc is retained. As discussed

in Salo and Schmidt (2010) this leads to fundamental differ-

ences in the viscosity versus density relations and thus the

stability properties of 2D and 3D simulation systems.

The linear dependence of ωc on τD breaks down for flat-

tened systems (ǫn = 0.4, yielding H/R ∼ 1) when τD & 1,

in which case the particles’ own volume limits the free

space available for motion (Hämeen-Anttila 1978). Simi-

larly in a 2D system the impact frequency increases dra-

matically when the maximum 2D packing limit (maximum

τD = π/
√

12 ≈ 0.907 for identical particles) is approached.

On the other hand, for a hot 3D multilayer ring (’smooth’

ice, H/R >> 1) the simple approximation holds quite well

even for τD > 1.

1.6.1.2 Establishment of Local Energy balance

Figure 1.12 displays the time evolution of the velocity dis-

persion c in simulations with different elasticity models. For

6 The basic formula is ωc ∝ N3c1σc, where N3 is the volume
number density, c1 is the 1-dimensional velocity dispersion and
σc the collisional cross-section: σc = 4πR2 assuming identical
particles with radius R. The volume number density N3 ≈ N2/H,
where N2 = τD/(πR2) is the surface number density and H the
vertical thickness. Due to collisional coupling of horizontal and
vertical motions, cz ∼ c1, while due to orbital motion H ∝ cz/n.
The explicit N3 and c1 dependencies thus cancel out, leading to
the formula 1.111,
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Figure 1.12 a) Evolution of velocity dispersion in simulations
with different value of constant coefficient of restitution ǫn, for
optical depth τD = 0.1. The critical value ǫn ≈ 0.65 separates
the thermally stable (solid) and unstable (dashed) systems. (b)

Simulations with two velocity dependent elasticity models of
Fig. 1.10, starting from different initial states. Now the system
attains a steady-state with the final velocity dispersion

depending on the ǫn(vn) relation: the ’smooth’ ice model with a
shallower drop of elasticity with vn leads to a much hotter
steady-state than the ’frosty’ ice model where ǫn drops very fast
with vn.

a constant ǫn sufficiently close to unity c increases exponen-

tially with time, and clearly no steady-state is achieved7. A

constant ǫn closer to zero leads to an exponential drop until

c levels at a few times nR, corresponding to a few parti-

cle diameter thick ring. On the other hand, in the case of

ǫn(vn) the steady-state depends on the functional form of

the relation. The Bridges et al. (1984) model (’frosty’ ice)

leads to a flattened system very similar to ǫn ≈ 0.5, whereas

the Hatzes et al. (1988) model (’smooth’ ice) leads to a mul-

tilayer ring. Fig 1.12b also illustrates the rapid time scale

of evolution: here the system forgets the initial conditions

in roughly 50 orbital periods, which for the used τD = 0.1

corresponds to about 100 impacts/particle.

The above velocity evolution can be qualitatively ex-

plained with a simple heuristic description of the energy

balance between dissipation and viscous gain (see Stewart

et al (1984), Schmidt et al. (2009)). According to Eq. (1.109),

the rate of kinetic energy change/unit mass is

Ėrnd/Σ + Ėz/Σ = Ėdiss/Σ + s2ν (1.112)

Inserting the Keplerian shear rate s = − 3
2n and averag-

ing the energy dissipation in individual impacts (Eq. 1.43;

keeping just the ǫn contribution, and absorbing the term Ėz

7 These simulations were carried out with the instantaneous
impact method, since the force method would in any case require
very small Tdur for such dynamically very hot simulations, in
order to keep ξmax << R.
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which relates to vertical flattening into Ėrnd), we can write

1

2
dc2/dt = −k1 ωc c2(1 − ǫn

2)

+
9

4
n2
»

k2c2
ωc

ωc
2 + n2

| {z }

νlocal

+ k3 ωcR
2

| {z }

νnl

–

, (1.113)

where the viscosity has been written as a sum of local and

nonlocal contributions, and k1, k2, k3 are all constants of

the order of unity. The basic expression for local viscosity

is νlocal = ωcλ
2, where λ is the radial mean free path be-

tween impacts. In the high impact frequency regime the im-

pacts limit the mean free path to λ ∼ c/ωc while for low ωc

an upper bound is set by the amplitude of epicyclic excur-

sions, λ ∼ c/n. Combining these estimates (Goldreich and

Tremaine, 1978b) leads to the form in Eq. (1.113). For the

non-local term the λ is set equal to the particle radius R.

The Eq. (1.113) describes qualitatively quite well the sim-

ulated behavior for a given elasticity of particles. In particu-

lar, if the system is very hot, c/(nR) ≫ 1, the nonlocal gain

term can be ignored. In this case both the gain and dissi-

pation terms in the right hand side are proportional to c2.

Thus, no balance is possible unless ǫn equals a critical value

ǫcr, which (approximating ωc ∼ nτD) depends on the optical

depth via the well-known Goldreich-Tremaine formula

(1 − ǫcr
2)(1 + τD

2) =
9k2

4k1
≈ 0.61. (1.114)

If the constant ǫn > ǫcr, velocity dispersion increases con-

tinuously, as the dissipation is too weak to balance the local

viscous gain. Similarly, if the constant ǫn < ǫcr, then dis-

sipation exceeds the local viscous gain, leading to reduced

c. The eventual steady-state is determined by the nonlocal

gain implying a final c ∝ nR. According to Eq. (1.114),

ǫcr ≈ 0.65 for τD → 0, in good agreement with the low τD

simulations of Fig. 1.12. In the case of velocity dependent

ǫn, the behavior is different, since the effective value of ǫn
depends on the average impact velocity ∼ c. In the limit

νlocal >> νnl (equivalent to c >> nR), the steady state c

would be adjusted to a value that yields ǫeff = ǫcr, where

ǫeff is the weighted mean of ǫn(vn) in impacts.

Figure 1.13 shows the Goldreich-Tremaine ǫcr as a func-

tion of τD, delineating the thermally stable (ǫn < ǫcr) and

unstable (ǫn > ǫcr) regimes. When τD is increased, less and

less dissipation is allowed for a thermally stable state to

exist, so that ǫcr approaches unity. This follows from the

weakening of the local contribution to viscous gain, due to

reduced mean free path λ as τD increases. Similarly, in the

case of a reduced central shear rate, the ǫcr would rise toward

unity in order to compensate for the less effective viscous

gain (for example ǫcr ≈ 0.85 at τD → 0 for a flat rotation

curve with s = −n).

Also shown in the Fig. 1.13 are mean values of ǫn mea-

sured from simulations. Open symbols show simulations

which lead to a dynamically hot steady-state with c >> nR,

thus mimicking the conditions leading to Eq. (1.114). In this

case the agreement with theoretical approximation is quite

obvious. For comparison, filled circles show mean ǫn in simu-

lations which lead to a steady-state with c/(nR) not far from
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Figure 1.13 Thick solid line is the Goldreich-Tremaine ǫcr(τD)
relation; thin solid line is the ǫcr from (Hämeen-Anttila, 1978).
Systems with constant ǫn < ǫcr(τD) (shaded region) flatten
toward a stable near-monolayer state, while those with

ǫn > ǫcr(τD) disperse via growing random velocities. Dashed
line shows an approximate critical curve for a flat velocity field
with s/n = −1 (obtained by replacing 9/4 with 1 in 1.114).
Open symbols indicate effective mean values of ǫn in

dynamically hot simulations with c/(nR) ≫ 1 (Bridges-type
elasticity formula with vc = 100vB = 0.77 cm/sec). For
comparison, solid symbols indicate effective ǫn in simulations

with the original Bridges elasticity law. Note that the effective
mean of ǫn depends on how impacts are weighted (Salo, 1987b);
here we use ǫeff =< ǫn(vn)vn

2 > / < vn
2 >.

unity: in this case both local and nonlocal viscous gains are

important, and the steady-state dissipation rate is larger

(mean ǫn closer to zero) than implied by the Goldreich-

Tremaine formula which takes into account only the local

viscous gain.

1.6.1.3 Steady-state as a function of optical depth

Figure 1.14 collects the various steady state properties as a

function τD, for the above two ǫn(vn) models. As mentioned

earlier, the main difference between the models is the about

10-fold larger velocity dispersion for the smooth ice model

at the low τD regime. This follows from the shallower slope

in the ǫn(vn) relation, indicating that on the average must

faster impacts are needed to yield the required dissipation

rate. When optical depth increases, there is a strong drop in

the c: this results from the above mentioned reduced local

viscous gain: energy dissipation rate adjust by reducing the

average impact velocities. This was illustrated in Fig. 1.10

by indicating the effective ǫn values a hot system adjusts to

when τD = 0 and τD = 1, implying a factor ∼ 3 difference

in average impacts velocities - this corresponds to the drop

of c in Fig. 1.14. For the ’frosty ice’ model there is hardly

any change of c with τD: this is because the local gain term

dominates for all τ ′Ds. For the ’smooth ice’ model the large

drop in c reflects also in the strong flattening of the system

and the drop of local kinematic viscosity.

The resulting viscosity versus density relations is quan-

tified in Fig. 1.14d where the slope β = d log ν/d log τD is

displayed. Values of β < −1 correspond to negative dη/dτD,
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Figure 1.14 Steady-state quantities as a function of τD in

simulations with velocity-dependent coefficient of restitution: a)
the velocity dispersion c (dashed lines include also the
contribution from nonlocal pressure, obtained by using P̂ nl in
Eq. (1.90)), b) the vertical thickness H, c) the kinematic

viscosity (dashed lines indicate the local contribution), and d)
the slope of ν ∝ τD

β relation; the values of β < −1 predict
viscous instability and β & 1 viscous overstability (large filled

symbols), e) shows the axial ratios of the velocity ellipsoid c2/c1
and c3/c1, and the angle δ between the radial direction and the
largest principal axis component, and f) the central plane
volume filling factor FF (0).

the condition for viscous instability (collision-induced mo-

mentum flux tends to enhance density fluctuations; see Fig.

1.25 for a schematic illustration). In principle β > −1 in-

dicates viscous stability (collisions smooth density fluctua-

tions). However, particle simulations (Salo et al. 2001) and

hydrodynamical models (Schmidt et al 2001) indicate that

for β > 1 the system may be prone to viscous overstabil-

ity. The ’smooth ice’ elasticity model implies instability for

0.7 . τD . 2, while the ’frosty ice fulfills condition for over-

stability if τD & 4. We check these predictions in Section

1.7 with radially more extended simulations.

The lowermost row in Fig. 1.14 shows the shape and ori-

entation of the velocity ellipsoid. Regardless of the large

difference in the steady-state velocity dispersion, the prin-

cipal axial ratios are not very different for the two mod-

els. At the limit τD → 0 the ratio c2/c1 → 0.5 for both

models, being determined solely by the systematic gradient

in the Keplerian velocity field. On the other hand, the ra-

tio c3/c1 depends somewhat on the effectivity of collisions

in transferring energy from horizontal to vertical motions:

this ratio is smaller in the case of more inelastic models

yielding flatter systems. With increased τD, both c2/c1 and

c3/c1 increase toward unity, though even at the largest stud-
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Figure 1.15 Dependence of a) geometric thickness H, b)

kinematic viscosity ν , and c) dynamic viscosity η = ντD on
optical depth τD, for the ’frosty’ ice model of the previous figure,
but with different sized simulation particles. Large solid circles

in c) indicate viscously unstable regime. In b) dotted and dashed
lines indicate separately the local and nonlocal contributions.

ied value, τD = 10, the velocity ellipsoid is still far from

isotropic, even if the impact frequency already corresponds

to over 100 impacts/orbital period. Likewise, the deviation

δ of the longest principal axis from the radial direction, in-

creases with τD, but is still below the hydrodynamical limit

π/4 even at τD = 10. Also shown is the central plane volume

filling factor of the two models: for the ’frosty’ ice model,

FF (0) exceeds 0.2 for τD > 1, while for the ’smooth ice’

model the same requires τD > 3. Comparison to Fig. 1.11

indicates that this is roughly the regime where the nonlin-

earity of ωc versus τD becomes apparent.

The above simulation survey for ’frosty’ and ’smooth’ elas-

ticity models was done using 1 meter particles at the dis-

tance of 100 000 km. In this case the ’smooth ice’ model

was dominated by local viscosity at low τD, while with the

’frosty’ ice model nonlocal viscosity dominated at all τD’s.

Consequently, the former model is susceptible for viscous

instability while the latter model is not. To remind that

this behavior depends on the assumed particle size/elasticity

model combination, Fig 1.15 compares the expected behav-

ior of the ’frosty ice’ model when using particles sizes of

0.01, 0.10 and 1 meters. For a rough estimate of the rel-

ative importance of local and nonlocal contributions, note

that at τD → 0 the local contribution tries to establish a

state with a mean ǫn ≈ 0.65. For the Bridges et al. (1984)

frosty ice model this corresponds to clocal ≈ 0.05 cm/s. On

the other hand, the nonlocal contribution maintains a min-

imum cnonlocal ≈ nR = 0.2 cm/sec with the nominal values

of the previous figures. Thus with 1 meter particles cnonlocal

exceeds clocal by a factor of 4. However, with 1 cm simula-

tion particles, cnonlocal << clocal, and a strong drop in the

steady-state c around τD ∼ 1 is again present. This would

again lead to viscously unstable behavior for intermediate

τD’s.

1.6.1.4 Surface friction and Particle spins

In contrast to the normal coefficient of restitution, relatively

few measurements exist for the friction of icy particles. Ac-
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cording to Supulver et al. (1995) experiments, friction is

weak, corresponding to tangential coefficient of restitution

ǫt ∼ 0.9 in the case of relatively smooth ice surfaces at tem-

peratures near 100 K. Nevertheless, to illustrate the possi-

ble effects of tangential friction we will briefly examine the

whole allowable range of 1 ≥ ǫt ≥ −1, the latter extreme

corresponding to the case where friction is able to reverse

the tangential relative velocity in impact. Also, as discussed

in Section 1.3, a consistent treatment of tangential friction

between freely moving particles requires the inclusion of par-

ticle spins, which allows for energy transfer between random

and rotational motions.

With the addition of frictional dissipation the steady-state

velocity dispersion is reduced, the importance of this reduc-

tion depending on both the value of ǫt and the model for ǫn.

This is illustrated in Fig. 1.16, comparing different ǫt val-

ues for ’frosty’ and ’smooth’ ice elasticity models. A fixed

τD = 0.5 is studied, but the relative effects is only weakly

dependent on τD. The influence of ǫt is much more pro-

nounced for the dynamically hot ’smooth’ ice model. This

follows since the energy gain is then determined by the local

viscosity. Inclusion of friction adds a dissipation term pro-

portional to ωc c2(1 − ǫ2t ) to Eq. (1.113), which means that

the effective ǫn required for thermal balance can be closer

to unity (Salo, 1987a,b; Araki, 1988, 1991; Ohtsuki, 2006),

thus indicating smaller c. The extra dissipation is most pro-

nounced when ǫt is close to zero, leading to minimum of

c near this value. On the other hand, a much smaller ad-

justment in c is possible when the balance is dominated by

nonlocal viscosity (’frosty’ ice model in the figure).
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Figure 1.16 Effect of tangential coefficient of restitution ǫt on

a) the steady-state velocity dispersion, and b) the energy ratio
between the rotation and random velocities. The ’frosty’ and
’smooth’ ice elasticity models are compared for τD = 0.5. The
solid line is the theoretical approximation (Eq. 1.117) for the

energy ratio in the limit c >> nR.

Friction also induces spin motion of particles, which pro-

vides a feedback of energy from rotation to random motions

(explains why the minimum of c is not exactly at ǫt = 0). An

equilibrium ratio between random and rotational energies is

established when the net transfer equals zero. In practice the

equilibrium implies that the dispersion of the surface veloc-

ities due to spins follows the dispersion of random velocities

(Rω)2 = k c2, (1.115)

the proportionality factor k depending mainly on ǫt, and to

lesser degree on ǫn and τD. For a thick multilayer system the

resulting equilibrium ratio of spin and random energies can

be estimated by averaging the formula for the change of spin

energy in individual impacts (Eq. 1.43), and by assuming an

isotropic distribution of impact directions (should be valid

in the case c >> nR). For homogeneous spheres with

Erot =
1

5
m(q1

2 + q2
2 + q3

2), (1.116)

Ernd =
1

2
m(c1

2 + c2
2 + c3

2),

this yields (Salo 1987a,b, Morishima and Salo (2006))

Erot

Ernd
≈ 2(1 − ǫt)

14 − 5(1 − ǫt)
, (1.117)

indicating that the energy ratio grows roughly proportional

to 1 − ǫt for ǫt close to unity. At the limit ǫt → −1 a total

equipartition between rotation and random energies is pre-

dicted, in agreement with Shu and Stewart (1985). Based on

Fig. 1.16, the Eq. (1.117 holds quite well for the ’smooth’ ice

model, especially in the limit |ǫt| → 1 where the system has

the largest velocity dispersion. For a more flattened system

(’frosty’) the simulated Erot/Ernd ratio is somewhat larger,

reflecting the non-isotropic orientations of impact directions.

In addition to dispersion of spins, the particles also acquire

a small residual mean vertical spin

ωz ∼ (0.2 − 0.3)n (1.118)

(Salo, 1987a,b; Richardson, 1994; Ohtsuki and Toyama,

2005; Morishima and Salo, 2006). This mean value is only

weakly dependent on ǫt, ǫn or τD. Since

q

ωz
2 is pro-

portional to c/R while ωz is independent of c, the ratio

ωz/

q

ωz
2 can be significantly non-zero only for very flat-

tened systems with small c/(nR).

1.6.1.5 Surface irregularity/deviations from spherical
shape

Almost all planetary ring simulations have assumed spheri-

cal particles. Mainly this is due to the technical simplifica-

tions it affords for detection and modeling of impacts. Also,

the need for more complicated models is not obvious, since

in many respects the effect of small deviations from spherical

shape can be expected to average out, or to be accommo-

dated by the uncertainties in the other model parameters

like the elasticity of particles. However, irregular shape may

have a significant contribution to particle spins, even if the

tangential friction is small.

The effect of slightly non-spherical shape in promoting

spin dispersion is illustrated in Figure 1.17, in terms of the

energy ratio between rotation and random motions. The

simulations use the irregularity model of Salo (1987a,b),

where the normal vector of the local tangent plane of impact

(~k∗) deviates slightly from the direction vector joining the
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Figure 1.17 The effect of small irregularities/deviation from
spherical shape on the energy ratio between rotation and
random motions. Simulations with different f (the maximum
local tilt of the impact plane, see the text) are compared as a
function of ǫt for two ǫn(vn) models. The optical depth
τD = 0.5. The theoretical energy ratio for mass point systems,
Eq (1.119) applies to a constant ǫn: the gray filled areas

correspond to this approximation with ǫn = 0.5− 0.8. The insert
shows the relative change in velocity dispersion c compared to
the case f = 0. Two values of f are compared (larger symbols
f = 0.4, smaller symbols f = 0.2).

particle centers (~k). In the figure the tilts γa and γb in Eq.

(1.44) are assumed to get independent random values uni-

formly from the interval [−f, f ]: the maximum studied value

f = 0.4 corresponds to rms tilt angle ∼ 10◦. Such a model is

very efficient in inducing spin rotation even if the particles

are almost frictionless: for example ǫt = 0.99, f = 0.05 (cor-

responds to ∼ 1◦ rms tilt) gives about the same amount of

spin rotation than ǫt = 0.5 for spherical particles with f = 0.

Curiously enough, the energy ratio at the limit ǫt → 1 is in-

dependent of f . The figure also shows an estimate of the

equilibrium energy ratio (again setting the net transfer to

zero; Salo 1987a), which is in good agreement with the sim-

ulation results,

Erot

Ernd
=

2

7

2
3f2(ǫt + ǫn)(1 + ǫn) + 1

2 (1 − ǫt)
2

(1 − ǫt) + 2
3f2(ǫt + ǫn) − 5

14 (1 − ǫt)2
. (1.119)

The theoretical estimate is for a constant ǫn, but the depen-

dence on ǫn is weak (see Fig. 1.17) This agrees with the fact

that the simulated Erot/Ernd are very similar for both stud-

ied ǫn(vn) models. At the limit ǫt = 1 this approximation

predicts Erot/Ernd = 2
7 (1 + ǫn) ∼ 0.5.

Irregularity also affects the equilibrium velocity disper-

sion, the effect depending on ǫt and ǫn (see the insert in

Fig.1.17). In the case of a hot system (’smooth’ ice ǫn(vn)

model), the reduction in c for f = 0.4 is close to 50% for

ǫt < 0.8. However, for ǫt very close to unity, irregularity

may also slightly increase c due to feedback of energy from

rotation (Salo 1987b). For a cool system (’frosty’ ice ǫn(vn)

model) the effect of irregularity, like that of friction, is much

smaller.
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Figure 1.18 In a) the geometric thickness as a function of
particle size in simulations with a power law size distribution,

dN/dr ∝ r−q , for Rmin < R < Rmax. Different widths of the
distribution, W = Rmax/Rmin, in the range W = 4.64 − 100
are compared, both for q = 2 and q = 3. In each case τD = 1.0
and a constant ǫn = 0.5 is used. In b) two different ǫn(vn)

models are compared for the same size distribution. Dashed
lines show the effect of friction with ǫt = 0.5.

1.6.1.6 Size distribution

So far all our simulation examples have assumed identical

particles. In the more realistic case of size distribution, the

energy balance is modified by the energy transfer in impacts

(and via gravitational encounters) from larger to smaller

particles (see Stewart et al. (1984), Hämeen-Anttila (1984)).

However, in contrast to gas dynamical systems this tendency

toward energy equipartitioning is opposed by the inelastic-

ity of impacts: simulations indicate that near equipartition

is possible only for particle mass ratios below about 10 (Oht-

suki 1991, Salo 1992a). In practice the ratio between velocity

dispersion of smallest and largest is less than about five, the

maximum ratio depending on the functional form of the size

distribution and the elasticity model.

Figure 1.18a shows how the vertical thickness H of differ-

ent sized particles depends on the width W = Rmax/Rmin

and index q of the power-law size distribution with dN/dR ∝
R−q. A constant ǫn = 0.5 is used, in which case all simu-

lation quantities scale with the assumed maximum particle

size. Therefore, quantities normalized to Rmax are shown.

For q = 3 the maximum ratio in the vertical thickness of the
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bin of smallest and largest particles (Hsmall/Hlarge) depends

only weakly on W , while for q = 2 it slightly increases with

W . For q = 2 most of the mass is on the largest particles:

consequently the influence of small particles on the largest

particles is small and Hlarge is independent of W . For q = 3

each logarithmic size increment corresponds to same frac-

tion of total mass, and increasing the width W pushes Hlarge

down. The lower panel of Fig. 1.18 compares the two differ-

ent ǫn(vn) models for q = 3, W = 50, Rmax = 5m, empha-

sizing how the difference between small and large particles

becomes stronger for hot systems. In terms of steady-state

velocity dispersion, the csmall/clarge ≈ Hsmall/Hlarge ≈ 10

for the ’smooth’ model, and about 3 for the ’frosty’ ice. For

comparison, for a constant ǫn → 0, the csmall/clarge ≈ 1.5.

All simulations of Fig.1.18 have τD = 1.0, but the results

are only weakly dependent on τD (Salo 1992a).

The effect of friction on c is roughly the same on all parti-

cle size bins (dashed lines in Fig. 1.18b). Also the equilibrium

dispersion of surface spin velocities, (Rω)2 scales with c2 of

the size bin. The relatively weak dependence of c on R thus

indicates that the spin dispersion
p

ω2 is roughly inversely

proportional to the particle radius. Therefore, small parti-

cles spin much faster than the large ones. On the other hand,

the residual mean spin is always a fraction of n indepen-

dent of particle size. Therefore, while the mean spin of the

largest particles can be significant compared to its disper-

sion, the spin axis of the smallest ones are always practically

randomly distributed. For an illustration of progradely ro-

tating large particles embedded in a population of randomly

oriented small particles, see Salo(1987b).

1.6.2 Self-Gravitating simulations

At low optical depth the main effect of self-gravity is through

2-body scattering in close binary encounters. Although they

correspond to completely elastic impacts in the sense that

the kinetic energy of the encountering pair is conserved,

the deflection of the orbits during encounter leads to en-

ergy transfer from systematic to random motions. This extra

heating increases c until it becomes roughly comparable to

the 2-body escape velocity of the particles (Safranov, 1969;

Hämeen-Anttila, 1978; Cuzzi et al., 1979). For larger sur-

face densities, the collective effects become increasingly im-

portant. For example, in Saturn’s dense B the vertical self-

gravity may exceed the vertical component of the central

force by a large factor (Wisdom and Tremaine, 1988). Nev-

ertheless, then also the planar components of gravity need

to be taken into account, leading to a strongly non-uniform

density distribution.

1.6.2.1 Formation of self-gravity wakes

Figure 1.19 compares different ways to approximate ring

self-gravity: using in b) the factor nz/n > 1 to mimic the

increased vertical field and in d) the self-consistently calcu-

lated Fz . Clearly, a right choice of nz/n > 1 (depending on

the surface density) would capture quite well the effects of

vertical gravity: the flattening of the ring and the strongly

enhanced impact frequency. However, with the inclusion of

Figure 1.19 Snapshots from 2λT × 2λT simulations with
τD = 0.75, using the ’frosty’ ice elasticity model. In the upper
row non-gravitating simulations with a) nz/n = 1 and b)

nz/n = 3.6. In the lower left, in d) the vertical component of
self-gravity is self-consistently included, while e) the full
self-gravity is taken into account. The internal density
ρ = 900kgm−3 which corresponds to rh = 0.82 at the simulated

Saturnocentric distance 100 000 km (see Eq. 1.124). Also shown
in c) is the impact frequency (normalized by τDn and in f) the
vertical thickness (averaged over the whole system) as a
function of optical depth.

full self-gravity (Fig. 1.19e) the picture is completely dif-

ferent from that when only the vertical component of self-

gravity is taken into account. The system now forms gravi-

tational condensations which shear into elongated trailing

density enhancements. Such structures, in the context of

Saturn’s rings, were first simulated in Salo (1992a). How-

ever, the phenomenon itself was envisioned already a few

decades earlier, in the context of galaxy disks.

Toomre (1964) showed that a self-gravitating differentially

rotating disk is locally unstable against the growth of ax-

isymmetric disturbances if its radial velocity dispersion cx

falls below a critical value ccr. The closeness to the stability

boundary is measured by the Toomre QT parameter

QT =
cx

ccr
=

cxκ

3.36GΣ
(1.120)

While QT ≥ 1 guarantees stability against the growth of ax-

isymmetric perturbations, already for QT . 2−3 the system

is susceptible to the growth of local non-axisymmetric dis-

turbances (Julian and Toomre, 1966; Goldreich and Lynden-

Bell, 1965). Such a near-instability manifests as an emer-

gence of trailing filamentary density enhancements just as

those seen in the self-gravitating simulations. As was illus-

trated in Sect. 1.4, in Keplerian velocity field such wakes

form ∼ 150 − 20o angle with respect to the tangential direc-

tion, and their radial separation is of the order of Toomre’s

critical wavelength

λT = 4π2GΣ/κ2. (1.121)
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Figure 1.20 Establishment of statistical steady-state in
8λT × 8λT simulations starting from a hot (QT = 5) and cold

(QT = 0) uniform initial state. The parameters are τD = 0.5,
rh = 0.82, ǫn = 0.5.

Individual filaments are rapidly destroyed by shear, but new

condensations are continuously generated. Due to enhanced

densities and systematic motions associated with the wakes,

the ωc is even more strongly enhanced than in the case of

vertical gravity (Fig. 1.19c). Also, the vertical thickness in-

creases as the scattering by wakes more than compensates

the flattening caused by the enhanced vertical field (Fig.

1.19f).

Figure 1.20 illustrates the role of wakes/impacts in estab-

lishing a ’thermostat’ which keeps the system near a con-

stant QT regardless of the initial state of the system. In

the case of stellar disks, the gravitational scattering accom-

panying the growing disturbances would heat the system so

that the wakes are eventually suppressed. In the case of par-

ticulate rings, the collisional dissipation provides a physical

regulating mechanism which makes it possible to reach and

maintain a statistical steady-state with sufficiently low QT ,

so that new structures continuously emerge and dissolve in a

timescale comparable to the orbital period. As emphasized

by Toomre and Kalnajs (1991), the gravity wakes do not

represent an instability in the sense that there would be a

strict threshold for the emergence of the wakes - rather they

manifest the enhanced reactivity of the selfgravitating disk

whenever QT is sufficiently small. In particular, any small

leading perturbation, while evolving into a trailing one due

to shear, is significantly amplified by the interplay of gravity

and differential rotation (the ’swing amplification’ mecha-

nism (Toomre, 1981; Goldreich and Lynden-Bell, 1965).

The self-gravity structures seen in simulations can be in-

terpreted as a superposition of numerous individual Julian

and Toomre (1966) wakes, excited by each particle when

other particles flow past it - this justifies the name (’wake’)

commonly adopted to the phenomenon. This identification

is supported by the 2D auto-correlation analysis of the simu-

lated structures (Toomre and Kalnajs, 1991; Salo, 1995; Salo

et al., 2004). To further strengthen the argument, Fig. 1.21

compares auto-correlation functions from ring simulations

with the Julian and Toomre (1966) theoretical calculations

of the density response around an orbiting mass enhance-

ment, performed for different central shear rates. The trend

in the pitch angle of the density crest as a function of s/n is

strikingly similar. Also as expected, the scale of structures is

Figure 1.21 The upper row shows snapshots from simulation
with different shear rates s: the physical width of the calculation

region is fixed (∼ 170 particle radii) and corresponds to 12, 8,
and 4λT for s/n = −0.5,−1.0 and −1.5. The middle row shows
2D auto-correlation plots from the same simulations, covering

2λT × 2λT . The lowermost row shows Julian-Toomre (1966)
analytic calculations for the same shear rates of the wake
response around an orbiting point mass-point: their graphs have
been rotated to same orientation as our simulation plots. In the

simulations τD = 0.5, constant ǫn = 0.5, rh = 0.82.

in all cases proportional to λT , which is different by a factor

of 3 for the studied shear rates (λT ∝ (2s/n + 4)−1 accord-

ing to Eqs. (1.6 and 1.121). A more quantitative compari-

son is not attempted, since the Julian and Toomre (1966)

response-calculations assumed a fixed QT for the disk and

did not account for the finite particle size - in simulations

of Fig. 1.21 the velocity dispersions adjusts self-consistently

to balance the dissipation and viscous gain.

1.6.2.2 Survey of self-gravity wakes

In the non-gravitating case the optical depth τD and the

elasticity model determine the ring steady-state for a given

particle size distribution (see Sect. 1.6). When self-gravity is

included, just one additional parameter is required to char-

acterize both the pairwise and collective gravitational ef-

fects. This is the rh parameter, the ratio of the mutual Hill-

radius for a pair of particles to the sum of their physical

radii,

rh(µ) =
RH

R1 + R2
=

„

ρ

3ρplan

«

1

3

„

r

rplan

«

(1 + µ)
1

3

1 + µ
1

3

,(1.122)
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Figure 1.22 Survey of self-gravity wakes as a function of rh

and τD. The labels r indicate the Saturnocentric distance (in
units of 1000 km) for particles with solid ice internal density: for
other densities the distances scale ∝ (ρ/900kgm−3)−1/3. The
size of the simulation system is 4λT × 4λT , with λT /R ≈

150τDrh
3; the side view covers 4λT × 1λT . The number of

simulation particles N ≈ 116 · 103τD
3rh

6. In a) the ’frosty’ ice
and in b) the ’smooth’ ice elasticity model is used. The inserts
sketch the regimes where various physical factors dominate,

based on the estimates given in the text. The dashed curves
indicate what is the radial velocity dispersion which corresponds
to QT = 2. In a) the boundary between wakes and impacts is

drawn at cr/(nR) = 3, while in b) cr/(nR) = 10 is assumed.
Note the region τD & 1 and rh . 0.6 in a) leading to viscous
overstability (see Sect. 1.7.1). Similarly in b) simulations with
τD = 0.9, rh ∼ 0.8 show viscous instability (see Sect. 1.7.2). The

numbers in the frames indicate the amplitude of azimuthal
brightness asymmetry for the simulation (see Sect. 1.8.4)

where ρ is the internal density of the particles, and µ =

M1/M2 = (R1/R2)
3 is their mass ratio. Here

RH = ((M1 + M2)/3MP )1/3r (1.123)

is the radius of the Hill-sphere, inside which the pair’s mu-

tual gravity dominates over the tidal pull from the planet at

the distance r. When rh decreases, the particle pair extends

more and more out from its Hill-sphere: rh = 0 corresponds

to the non-gravitating case, while if rh = 1 the attraction

between two synchronously rotating, radially aligned ring

particles in contact equals the disruptive tidal force. For a

pair of identical particles µ = 1, and inserting the typical
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numerical values for Saturn’s rings gives

rh(µ = 1) = 0.82
“ MP

5.69 · 1026 kg

”− 1

3

“ ρ

900 kgm−3

”

1

3

“ r

100 000 km

”

. (1.124)

We will denote rh(µ = 1) simply by rh. For µ = 0 or µ → ∞
(a test particle attached to surface of a large particle), the

rh would be a factor 22/3 ≈ 1.59 larger. With the formula

1.124, the simulation results for a given rh can be scaled to

any other ρ1/3r combination.8

To demonstrate that rh is the only additional parameter

needed to characterize self-gravity wakes, we may write the

Toomre critical wavelength and velocity dispersion as

λT

R
= 48π τDrh

3, (1.125)

ccr

nR
= 12.8 τDrh

3. (1.126)

Here we have assumed identical particles; in case of size

distribution the numerical pre-factors would depend on

dN/dR. Similarly, the minimum velocity dispersion main-

tained by gravitational encounters, cenc ∼ vesc, where

vesc =
p

2GM/R is the 2-body escape speed, can be ex-

pressed as
cenc

nR
= 4.9 rh

3/2 (1.127)

Figure 1.22a depicts a simulation survey of wake struc-

tures for the ’frosty’ ice elasticity model. The strength of

wakes increases when the optical depth τD, or the distance

(measured with rh) increases. The wakes get clumpier and

eventually degrade into semi-permanent gravitational aggre-

gates for rh & 1.2. Same takes place at low τD via pairwise

accumulation. The exact boundary for aggregate formation

depends on the elasticity of particles and also the particle

size distribution (Salo, 1995; Karjalainen and Salo, 2004).

The fact that rh > 1 is required for stable aggregates to

form is because not only shear, but also particle impacts

and velocity dispersion act to destroy any forming conden-

sations.

The insert in Fig. 1.22a sketches the parameter regimes

where different factors (impacts, encounters, wakes) dom-

inate the dynamics, based on the velocity dispersion this

factor alone would be able to maintain (Salo, 1995; Oht-

suki and Emori, 2000). For the frosty ice model (or constant

ǫn . 0.5) the minimum velocity dispersion due to impacts

is
cimp

nR
∼ 2 − 3 (1.128)

Comparing to Eq. (1.127), we may expect that velocity dis-

persion is governed by gravitational encounters rather than

by physical impacts for rh & 0.7. A rough criterion for the

8 This is strictly valid only in the case of constant ǫn. If ǫn =
ǫn(vn/vc), with a scale parameter vc, then the ratio nR/vc which
determines the relative magnitudes of local and nonlocal viscous
gains (see Fig. 1.15) will depend on distance via n. However, for
example for the frosty ice model this dependence is weak and the
rh scaling works well (see Karjalainen and Salo (2004)).

Figure 1.23 a) Identical particle simulation with τD = 0.5,

rh = 0.85, using ’frosty’ particle elasticity model and 4λT × 4λT

calculation region. b) Simulation with same parameters, except
having a q = −3 power-law size distribution with
Rmax/Rmin = 10. c) Particles with R > Rmax/2 = 2.1 meters

are shown separately: they comprise 30% of the optical depth
and 55% of surface mass density. The inserts in a) and b)
display 2D auto-correlation for the simulations, indicating about

5◦ larger average pitch angle of wakes in the size distribution
simulation.

emergence of collective wake-structure is obtained by assum-

ing that wakes become apparent whenever the minimum ve-

locity dispersion drops below cwake = QT ccr with QT ∼ 2.

According to Eqs. (1.126) and (1.128) this corresponds to

τDrh
3 & 0.1. In the insert figure the condition cwake > cimp

(and cwake > cenc) defines the sketched boundary between

wakes and impacts (or wakes and encounters). The other

dashed curves in the insert indicate where QT = 2 corre-

sponds to c/(nR) = 5, 10, 20.

Figure 1.22b shows a similar survey, except with the

’smooth ice’ elasticity model. No wake structures are vis-

ible for optical depths τD = 0.25 or τD = 0.50 for any rh,

but for higher τD the picture is very similar to that in a).

The reason for the suppression of wakes at low τD is the high

velocity dispersion maintained by impacts alone: according

to Fig. 1.14, we have c/(nR) > 10 for τD . 1. In the inset

figure this value is used to delineate the boundary between

impacts and wakes. Now the velocity dispersion of the sys-

tem is too high to allow for bound aggregates to form at any

of the studied rh values.

The wake structure is also affected by the particle size

distribution (Fig. 1.23). For example, the average pitch an-

gle increases when size distribution is included (Salo et al.,

2004; French et al., 2007b; Michikoshi et al., 2015). Also, al-

though the large particles still form distinct wakes, the over-

all contrast is reduced due to the more uniform distribution

of small particles. This implies that at least in principle a

system can exhibit dynamically significant wake structure,

though it might be almost hidden in photometric observa-

tions (Salo et al., 2004).

1.6.2.3 Gravitational viscosity

The effect of gravity wakes on viscosity is depicted in Fig.

1.24. The upper row compares self-gravitating simulations

with constant ǫn = 0.5 as a function of rh and τD. For
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Figure 1.24 Comparison of various contributions to total
viscosity, in a) as a function of rh and b) as a function of τD.
They are from a constant ǫn = 0.5 simulations similar to Fig.

1.22. In c) the viscosity as a function of scale parameter vc in
velocity-dependent elasticity model ǫn(vn) = (vn/vc)−0.234:
with vc = vB = 0.000077m/s this corresponds to the Bridges et
al. (1984) ’frosty’ ice model. Frame d) displays the slope of

ν ∝ τD
β in simulations of frame b), reaching values β ≈ 2 − 3 in

selfgravitating simulations; also non-gravitating simulations and
simulations including only the vertical self-gravity are shown.

τD & 0.5 and rh & 0.75, the νgrav contribution associated

with the gravitational torques from inclined wakes becomes

dominant (Daisaka et al., 2001; Tanaka et al., 2003). Also

νlocal is strongly enhanced due to systematic motions asso-

ciated with the wakes, whereas the νnl has less significance.

The results of Fig. 1.24 agree with the trend originally found

in Daisaka et al. (2001),

νtot ≈ (νgrav + νlocal) ≈ 2νgrav ∝ rh
5G2Σ2

n3
. (1.129)

The Σ2 (∝ τD
2 in the figure) dependence is similar to

the standard continuum fluid formula for spiral torques in

galaxy disks (Lynden-Bell and Kalnajs, 1972), while the rh

dependence can be interpreted as an extra effect related to

the finite size of particles: the smaller the rh, the closer is

the scale of wakes compared to physical size of particles (see

Eq. 1.125). This limits the maximum contrast the wakes

can attain as the density of wakes is limited by the internal

density of particles. The estimates of Saturn’s ring viscos-

ity in Tiscareno et al. (2007), based on the damping of A

ring satellite density waves are in good agreement with Eq.

(1.129).

The slope of ν(τD) relation is shown in more detail in Fig.

1.24d and also compared with non-gravitating simulations

and to simulations including only the vertical component

of self-gravity (compare to Fig. 1.19). With the inclusion of

self-consistent vertical gravity the slope β & 1 for τD & 1,

which is higher than in the non-gravitating case (β ≈ 0.5),

but clearly smaller than with full-self-gravity (β ≈ 2). Note

that when using nz/n to mimic vertical gravity, the value of

β can be increased by choosing a larger enhancement factor.

Based on Fig, 1.22 it is clear that the gravitational vis-

cosity depends strongly on the adopted elasticity model. In

Fig.1.24c this is illustrated by comparing simulations with

different ǫn(vn) models, parameterized by the velocity scale

factor in the Bridges et al, (1984) type elasticity law (’frosty

ice’ model has vc/vB = 1; the ’smooth ice’ model would

correspond to vc/vB ∼ 30). The more inelastic the impacts

are, the larger is the contribution from gravitational viscos-

ity. For the simulated τD = 0.5, the gravitational viscosity is

completely negligible for vc/vB = 30, in agreement with the

total absence of wake structure in the simulations depicted

in 1.22b. At the same time for very elastic impacts the local

viscosity increases proportional to (vc/vB)2. This follows as

the system tries to establish a thermal balance with a mean

elasticity whose value depends on the optical depth via the

Goldreich-Tremaine formula. The resulting steady-state c is

proportional to vc and thus νtot ≈ νlocal ∝ vc
2. Because of

the opposite trends of νlocal and νgrav, and the relatively

insignificant role of νnl, the total viscosity has a minimum

at intermediate vc/vB ≈ 3.

1.7 Viscous instability and overstability

The Voyager and Cassini data have revealed overwhelming

amount of structure in Saturn’s rings. Some of the structure

is unambiguously connected to resonance perturbations by

external satellites (in particular in the outer A ring), but the

majority of the finest optical depth variations, extending

down to shortest resolved length scales, are likely to have

some internal origin.

Right after Voyager discoveries viscous instability was

evoked to explain the intrinsic variations (Lukkari, 1981;

Lin and Bodenheimer, 1981; Ward, 1981; Hämeen-Anttila,

1982). In this type of instability (see Fig. 1.25), the col-

lisional flux of particles, proportional to dynamic viscos-

ity η = ντD ∝ τD
β+1, is directed toward density maxima

(equivalent to β < −1). Thus any small density fluctuation

is amplified by collisional diffusion, in contrast to a stable

ring where diffusion smooths density variations. In the non-

linear limit the growth of fluctuations is saturated to a state

where the flux from dense but dynamically cool ringlets is

balanced by the flux from rarefied, dynamically hot regions.

This model was soon discarded, mainly as the first labo-

ratory measurements (Bridges et al., 1984) indicated too

dissipative particles for the instability mechanism to work

(Wisdom and Tremaine, 1988; Araki and Tremaine, 1986).

Also, the observed structures do not quite agree with the

predictions of simple instability models, according to which

the ring should separate into high τD ringlets surrounded

by almost empty gaps (Hämeen-Anttila, 1978).

Other alternatives for explaining the ring fine structure

gained more attention, among them the possibility that

dense rings might be viscously overstable (Borderies et al.,

1985; Longaretti and Rappaport, 1995). In the axisymmet-

ric overstability the radial particle flux is directed away from

density maxima, like in a stable ring (see Fig. 1.25). How-

ever, the flux now increases so strongly with density (large
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Figure 1.25 Schematic illustration of viscous stability

properties. The radial mass flux is proportional to - ∂η/∂Σ,
where η is the dynamic viscosity and Σ is the surface mass
density. This indicates that the ring tries to establish a locally

constant η profile. In stable ring dη/dΣ > 0 so that local density
fluctuation are smoothed, in contrast to dη/dΣ < 0 which leads
to viscous instability. However, if dη/dΣ >> 0 the suppression
overshoots leading to periodic oscillations with amplitude

growing with time until saturated at some finite value (viscous
overstability). In case of non-selfgravitating system optical
depth τD replaces Σ and η is obtained from kinematic viscosity

as η = τDν.

β), that the system overshoots in trying to smooth the den-

sity variations: this leads to density oscillating with time.

Although it appears unlikely that overstability could ac-

count for large scale structures in the densest rings (Latter

and Ogilvie, 2010), there are clear indications of small-scale

∼ 100 meter axisymmetric oscillations in moderate τ loca-

tions in the rings (Colwell et al., 2007; Thomson et al., 2007;

Hedman et al., 2014) likely to be related to such overstable

oscillations.

1.7.1 Viscous overstability (Oscillatory instability)

Early hydrodynamical models for Saturn’s rings predicted

that practically any flattened ring system with β & 0 should

be overstable (Schmit and Tscharnuter, 1995, 1999), man-

ifesting as axisymmetric oscillations in density and veloc-

ity components. The mechanism itself can be confirmed in

direct N-body simulations (Fig. 1.26, Salo et al., 2001;

Daisaka et al., 2001), which however indicate considerably

more stringent conditions for the onset of overstability.

In non-gravitating simulations, and in simulations includ-

ing vertical self-gravity, the condition (Salo et al., 2001;

Schmidt et al., 2001)

β & 1 overstability condition (non − gravitating)

seems to provide a sufficient condition for the onset of over-

stability, provided that the size of the system exceeds the

Figure 1.26 Snapshots from self-gravitating simulations for
τD = 1.4, smooth ice elasticity model, using a 10λT × 4λT

calculation region. The top and side snapshot of the system and

the radial velocity profile after 50 orbital periods are shown, for
four simulations with ρ = 450, 360, 300, 225 kgm−3. For the
saturnocentric distance a = 100 000 km these correspond to
rh = 0.651, 0.605, 0.569, 0.517, respectively. Figure from Salo
et al. (2001).

shortest scale of overstable oscillations, about 100 particle

radii. For example, in the non-gravitating simulations with

the ’frosty ice’ elasticity model have β > 1 if τD & 4 (Fig.

1.14d). Similarly, simulations where vertical self-gravity is

approximated with nz/n = 3.6, fulfill this condition for

τD & 1 (Fig. 1.24d). Indeed, in both cases simulations

with sufficiently large calculation regions lead to sponta-

neous growth of overstable oscillations (Salo et al., 2001).9

Transport coefficients derived from simulations with dif-

ferent values of nz/n, in combination with improved hydro-

dynamical models (Salo et al., 2001; Schmidt et al., 2001),

have been useful in analyzing the linear growth rates of os-

cillations, and also in allowing analytic treatment of satu-

ration in weakly nonlinear case (Schmidt and Salo, 2003).

Significant progress has also been made using the kinetic

theory approach (Latter and Ogilvie, 2008). Recently, non-

linear hydrodynamical analysis (Latter and Ogilvie, 2009,

2010) has shown that the wavelength growth of overstable

oscillations is limited via interactions of traveling wavetrains

at a few hundred meter to kilometer range, the maximum

scale increasing with β. The non-gravitating, very large-scale

simulations in Rein and Latter (2013) confirm this, and also

demonstrate the richness of structures that result from the

non-linear interaction of such wavetrains.

However, it is still unclear what the overstability con-

dition for a fully self-gravitating ring is. The simulations

in Salo et al. (2001) indicate that self-gravitating systems

may exhibit overstability for τD & 1, but only if the wake-

structure is not too strong. For example, in the survey of

Fig. 1.22a, overstability is seen only in the upper left cor-

ner with rh . 0.6. For stronger wakes the overstability is

9 The same condition, β & 1 holds also in non-gravitating 2D
simulations where the steep rise of νnl when the close-packing
limit is approached, makes the system strongly overstable already
for τD & 0.4. This fact was utilized in Salo (2001) to directly
demonstrate the overstability mechanism, before it was techni-
cally feasible in 3D simulations.
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Figure 1.27 Comparison of overstable oscillations in Lx = 2

km wide non-gravitating and self-gravitating simulations
(τD = 1.2, ’frosty’ ice). The frames in left show the evolution of
the density profile with time, while in the right the amplitude
spectrum (Am(λ) in Eq. (1.74) is shown. In a) vertical

self-gravity is mimicked with an enhanced nz/n = 3.6. This
leads to overstable oscillations whose radial wavelength grows
until ∼ 400 meters. In b) gravity is treated self-consistently

(rh = 0.57), and now the growth of overstable oscillations is
limited to less than 100 meters. In the amplitude spectra the
10% contour is indicated with thick line. The dashed line in a)
indicates the radial wavelength with the largest amplitude

during the initial growth period. For comparison, the same line
is also shown in b).

clearly suppressed (see also Fig. 1.26), although the over-

stability condition for non-gravitating rings, β & 1, should

be satisfied with ample margin (see Fig. 1.24d). This sup-

pression might be related to different phase and pitch angle

of the velocity and density oscillations for overstability and

wakes, combined with the fact that they occur at practically

similar wavelength range. In any case, even an approximate

analytic theory is missing, making fully self-gravitating nu-

merical simulations indispensable in looking the interplay of

wakes/overstability.

As mentioned above Rein and Latter (2013) recently car-

ried out simulations with radially very extended calculations

regions (radial width even 50 km), facilitating the detailed

study of interactions between non-linear wavetrains. How-

ever, these simulations use the nz/n > 1 approximation, and

it is not clear how realistically they describe self-gravitating

rings. Fig. 1.27 compares this approximation with the fully

self-consistently calculated gravity, in moderately large-scale

simulations (radial width 2 km). In the former case the

evolution is similar to Rein and Latter (2013) simulations,

leading to formation of traveling wavetrains with increas-

ing wavelengths, until a maximum scale of ∼ 400 meters

is reached after about 1000 orbital periods. In the begin-
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Figure 1.28 Overstable oscillations followed over one full
oscillation cycle (∼ 1.2 orbital periods; the prolongation is due
to self-gravity). The calculation region 10λT × 2λT . Note the

vertical ’splashing’Borderies et al. (1985) associated with the
density crests: the ring behaves in a nearly incompressible
manner. The vertical scale in the plot is exaggerated by factor 5.
Constant ǫn = 0.5 with τD = 5, rh = 0.57

ning several left and right traveling waves compete, but after

about 500 orbits a single traveling mode starts to dominate.

The amplitude spectrum indicates that no further wave-

length evolution takes place during the span of the simu-

lation (10000 orbits): the shorter modes represent the har-

monics of the prevailing mode, related to its non-sinusoidal

waveform.

In the self-gravitating simulation with same parameter

values (Fig. 1.27b), the initial evolution is quite similar, in

addition to weak wakes being superposed with the rapidly

evolving axisymmetric overstable oscillations. However, the

wavelengths of oscillations do not grow beyond about 100

meter level, although there should be enough time and spa-

tial room for further growth (see the amplitude spectrum).

Unfortunately, such self-gravitating simulations are much

more time-consuming than non-gravitating runs, since they

must have also a tangential width sufficiently large to al-

low the gravity wakes properly evolve: the simulations with

nz/n > 1 stay axisymmetric so their tangential width can

be very narrow.

Figure 1.28 illustrates overstable oscillations over one os-

cillation period in a dense system (τD = 5) with moder-

ate strength of self-gravity (rh = 0.57). Unlike strong self-

gravity wakes at larger rh, both the maximum and minimum

optical depths stay very high (τD & 2 − 3). If this type of

behavior is typical to the densest part of the B ring, then ac-

cording to the survey of Fig. 1.22 the internal density should
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Figure 1.29 Emergence of viscous instability in large-scale

simulations (2km radial extent) using the ’smooth’ ice elasticity
model. The value of β is for the uniform initial state, β ≤ −1
indicates linear instability. Figure from Salo and Schmidt (2010)

be order of ρ ∼ 450 kgm−3, to yield rh ≈ 0.6. This would

require the ring particles to be quite porous. Also, it would

seem to rule out very elastic particles.

1.7.2 Viscous instability

In the case of viscous instability, the hydrodynamic stability

criterion

β < −1 instability condition

is fully consistent with direct N-body simulations (Salo and

Schmidt, 2010), although the shortest unstable wavelengths

(∼ 200 particle radii) are about a factor of ten larger

than what a simple hydrodynamical linear stability anal-

ysis predicts. Figure 1.29 displays large scale (radial width

1 km) simulations, which illustrate how the non-gravitating

’smooth’ ice elasticity model leads to spontaneous amplifi-

cation of density fluctuations for 0.75 . τD . 2, in very

good agreement with the range of τD’s where the steady-

state β < −1 in the small scale simulations of Fig. 1.14.

The system is initially uniform and it takes about 100-500

orbital periods for random fluctuations to amplify to a non-

linear regime. Fig. 1.22b illustrated that viscous instability

may arise also when self-gravity is included provided that

β < −1 (see the snapshots with τD = 0.9, rh ∼ 0.7). 10

Figure 1.30 depicts in more detail the nonlinear steady-

state after the saturation of viscous instability. The state is

characterized by a balance of radial particle flux between

flattened dense ringlets surrounded by rarefied, large ve-

locity dispersion regions, exactly as envisioned in Hämeen-

Anttila (1978). The dynamic viscosity (obtained by tabu-

lating pressure tensor separately at different radial zones)

10 The same condition applies to 2D systems. Due to differ-
ent functional form of impact frequency (see Sect. 1.6.1.1) hot
2D systems have β < −1 at the limit τD → 0, which makes di-
rect demonstrations of viscous instability numerically much easier
than in 3D systems where τD ∼ 1 is required (Salo, 2001; Salo
and Schmidt, 2010).

Figure 1.30 Nonlinear radial balance between dense and
rarefied regions resulting from viscous instability. The upper two
frames show the top (a) and side views (b) of a simulation with

τD = 0.92, using the ’smooth ice’ elasticity model. The frame c)
depicts the dynamic viscosity profile (solid curve), showing

separately the local and nonlocal contributions. Figure from

Salo and Schmidt (2010).

has a nearly constant value through the simulation system.

Note that one of the ringlets has a slightly lower τD than the

other three. This ringlet corresponds to a small bump in η

and is accordingly slowly dissolving. With time, the ringlets

slowly merge (see Fig 1.29), their typical separation grow-

ing ∝
√

t. In contrast to overstability, there is no mechanism

known which would stop this growth. Thus at least in prin-

ciple, large scale structure may emerge as a result of viscous

instability.

Nevertheless, viscous instability is typically not regarded

as a candidate for the ring fine-structure, basically since it

requires fairly elastic particles in order to operate. In such

a case the self-gravity wakes are harder to form. Also, the

basic instability model in its simplest forms always requires

a balance between a rarefied and a dense region, and thus,

does clearly not apply, say, to the structure of the dense B

ring.

1.7.2.1 Selective viscous instability

There is a variant of the standard instability model that

would allow both the minimum and maximum optical

depths to be high, namely the possibility of a selective in-

stability of small particles against the more uniform back-

ground of larger ones (Stewart et al., 1984). Direct simu-

lations (Salo and Schmidt, 2010) indicate that under cer-

tain conditions such a behavior occurs if the coefficient of

restitution is smaller in mutual impacts between small par-

ticles, than in impacts involving large particles. Such size-

dependence of ǫn adds a new degree of freedom to the sys-

tem, and in principle allows a balance of radial flux also

between two dense regions, provided that they have a dif-

ferent mixture of small and large particles. Importantly, the

contrast can also have very different values depending on

the details of the elasticity model assumed (Fig. 1.31). Nev-
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Figure 1.31 Two examples of selective viscous instability in
simulations (after 700 orbital periods). The systems consist of
two particle sizes with R2/R1=3, and both population have
τD = 0.5. Small (large) particles are indicated by gray (black)

color, and the solid (dashed) white curve indicates their radial
density profile. In the upper frame the impacts between small
particles are much more inelastic than those between large
particles, leading to strong density contrast among the small

particles. In the lower frame the size-dependence of elasticity is
smaller, leading to less pronounced variations. For exact
parameter values, see Figs. 21 and 22 in Salo and Schmidt
(2010).

ertheless, this mechanism has yet been very little studied,

and due to lack of relevant laboratory measurements it re-

mains unclear whether real particles possess suitable size

dependence of ǫn required by this type of instability.

1.8 Photometric modeling of dynamical

simulation

The dynamical simulations described above operate with

surface density and particle number densities. However,

these are not directly observable quantities, as the obser-

vations give the amount of sunlight reflected or transmitted

through the rings, and the attenuation of stellar light when

observed through the ring. The ring brightness is measured

with I/F , the observed brightness in comparison to an ideal

Lambert surface illuminated with the incident solar flux πF .

In general, the I/F for a given ring region depends on the

illumination elevation B⊙, the viewing elevation B, and the

corresponding azimuthal angles θ0 and θ. Often the phase

angle α between the illumination and viewing directions is

specified instead of azimuthal angles,

α = cos−1 [cos(θ − θ0) cos B cos B⊙ + sin B sin B⊙] . (1.130)

In case of homogeneous systems this angle is sufficient. How-

ever, in case of self-gravitating systems also the direction

with respect to self-gravity wakes matters, so that the az-

imuths themselves need to be specified. The line-of-sight

optical depth relates to the fraction of light I/I0 passing

through the ring at a given direction (B, θ), with

τLOS = − ln I/I0 (1.131)

Figure 1.32 Schematic presentation of Monte Carlo ray

tracing: path of a photon, initially arriving from the direction of
the sun, is shown through two successive scatterings. The
post-scattering direction is Monte Carlo sampled from the single
scattering phase function. In each scattering event also the

probability of being scattered toward the observer is stored
(taking into account the visibility of the observer’s direction).
Figure from Salo and Karjalainen (2003).

Usually τLOS is converted to the normal optical depth, cor-

responding to B = 90◦ with the formula

τ⊥ = τLOS sin B. (1.132)

A quantitative comparison of dynamical models to ob-

servations requires calculating the photometric properties

(I/F, τ⊥) of the simulated particle fields for various illumina-

tion and observing geometries. A large amount of modeling

has been done in the framework of classical radiative trans-

fer, which however is strictly applicable only to low filling

factor rings (D3 → 0) where particle separations are much

larger than their sizes. If the rings are densely-packed and

highly inhomogeneous, as suggested by dynamical models

and many observations (see Dones et al. (1993)), an effi-

cient modeling method is to use radiative ray tracing. Since

the ring particles are much larger than visible light wave-

length geometric optics can be used. For example the effects

of dense packing (Salo and Karjalainen, 2003; Porco et al.,

2008) and self-gravity wakes (Salo and Karjalainen, 2003;

French et al., 2007b; Porco et al., 2008) have been studied

with a combination of photometric and dynamical simula-

tions.

1.8.1 Photometric ray tracing method

The idea in photometric ray-tracing simulations is to shoot

a large number of photons (Nphot) from the light source and

follow their paths through successive scatterings from parti-

cle surfaces until they leave the particle layer (Fig. 1.32). The

simplest way to obtain the brightness would be to count the

number of photons Nobs which leave to the solid angle dΩs

around the observer’s direction. However, even if relatively

large dΩs is used (poor angular resolution), Nobs ∝ ΩsNphot
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would be very small. Since the relative error in I/F is pro-

portional to Nobs
−1/2, such a calculation would be very in-

accurate even for a large Nphot. It is therefore crucial to

combine such direct ray tracing with an indirect (’back-

ward’) method, where each scattering event, regardless of

the direction of the post-scattering photon, is registered also

from the viewpoint of the observer. If the scattering point

is not blocked behind any ring particle, then the contribu-

tion of the scattering is added to the observed brightness by

calculating what the probability of scattering to the direc-

tion of the observer would be. Now in principle every ini-

tial photon and scattering event contributes to the obtained

I/F , and the uncertainty in I/F becomes proportional to

Nphot
−1/2 << Nobs

−1/2. Salo and Karjalainen (2003) es-

timated that the use of indirect method can speed-up the

calculations by a factor > 1000, for the same accuracy of

the results.

The obtained I/F will depend on the spatial distribution

of particles, and on how the individual particles absorb and

scatter light. The scattering can be defined either by specify-

ing the surface element’s reflection law 11 , or alternatively,

via a particle phase function P (α) which describes the phase

angle distribution of emerging photons from a particle as a

whole; this corresponds to integrating over the surface ele-

ments of the illuminated hemi-sphere. The particle albedo A

gives the total fraction of scattered radiation over all angles.

Photometric ray tracing methods applied to Saturn’s rings

have been described in detail in Salo and Karjalainen (2003)

and in Porco et al. (2008). The main difference of the meth-

ods is in the handling of multiple scattering: in the former

study in each scattering event a single photon is Monte

Carlo sampled from the particle phase function (or surface

element’s scattering law) to represent the scattered light,

whereas in the latter study the light ray is divided in a deter-

ministic fashion into a bundle of rays after each scattering,

and each of these new light rays is then followed (and re-

divided in the next scattering etc.). The two methods yield

similar results, and they have both been verified by exten-

sive comparisons to classical results in the low filling factor

limit, both with Chandrasekhar (1960) analytic al single and

multiple scattering results and with Dones et al. (1993) cal-

culations with the doubling method. However, the method of

Porco et al. (2008) is much more CPU-intensive for a given

accuracy since it spends most of the time in the calculation

of the higher scattering orders whose contribution to the to-

tal I/F is very small. Since the former Monte Carlo method

spends less and less CPU time on each higher scattering or-

11 The surface element’s reflection law gives the probability
S(µi, φi, µe, φe)dµedφe that a photon arriving the surface from
the direction (µi, φi) will scatter to an interval dµe, dφe around
the direction (µe, φe), where µi = cos(i) and µe = cos(ǫ), with
i and e denoting the angles of incident and emergent rays with
respect to the local normal of the surface element at the scat-
tering point, and φi and φe are the corresponding azimuthal di-
rections. A simple example is the Lambert reflection law, S =
SL(µi, µe) = µe/π, corresponds to a diffusively scattering surface
whose brightness (∼ S/µe) is independent of viewing direction.
For a spherical particle the integration over the illuminated hemi-
sphere gives the corresponding spherical particle Lambert phase
function P (α) = 8

3π
[sin α + (π − α) cos α].

der (or at most an equal amount), it can be extended to

very high orders of scattering with very little extra CPU-

time consumption. The same MC method has been recently

adopted in Ciarniello et al. (2014) for testing Hapke (2008)

theoretical models.

With the indirect method one can tabulate separately the

contributions of different orders of scattering. There is thus

no need to specify the albedo before the calculations, but

instead one can re-construct the final I/F for any choice of

albedo (Salo and Karjalainen 2003),

I =
max
X

k=1

Ak∆Ik, (1.133)

where ∆Ik is the tabulated contribution from photons after

k’th scattering and A is the particle albedo; during the cal-

culation itself the albedo has been treated as unity so that

the ’weight’ of the photon is kept constant over its path.

The calculation of the photon path trough successive scat-

terings involves finding the intersection points with all par-

ticles along the current photon direction, and then choosing

the closest intersection for the next scattering. If no inter-

sections are found then the photon leaves the ring layer. The

calculation has many similarities with the finding of particle

impacts in dynamical simulations. In particular, if the simu-

lated particle field contains a large number of particles it is

crucial not to check every particle for a possible intersection.

A simple but very efficient solution is to place a 2D grid on

top of the particle field, and find first the grid cells the cur-

rent photon path is crossing, and then search intersections

only among the particles in these cells. A 3D grid can also

be used, but since the systems of interest are usually very

flattened this does not yield significant improvement over a

2D grid.

It is important to take accurately into account the peri-

odic boundaries of the dynamical simulations: when the pho-

ton leaves the actual calculation region through its radial or

tangential boundaries, it enters an identical copy of the par-

ticle field (see Eq. 1.8). Thus the photon should leave (enter)

the particle field only from below (above). In practice it is

easier to handle the periodic image particles in terms of an

image-photon re-entering the original particle field, so that

there is no need to store any extra particle locations. The

correct treatment of boundaries is particularly important in

case of small illumination/viewing angles, where the light

rays can, at least in principle, travel very long horizontal

distances before leaving the particle layer. Similarly, taking

into account periodic images is essential for the calculation

of τLOS, in particular when the true probability of passing

the particle layer is small: even a few missed intersections

might then bias the result.

The brightness due to the illumination by the planet can

be calculated in a similar manner as that due to Sun, ex-

cept that the directions of the incoming photons are sampled

from the solid angle extended by the planet. A model for the

brightness distribution of the planet’s globe is needed: both

in Salo and Karjalainen (2003) and in Porco et al. (2008),

the Dones et al. (1993) model based on Barkstrom (1973)

law was used.
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Figure 1.33 Relation between dynamical and photometric

optical depth. In a) and b) homogeneous particle fields were
simulated with various τD and H/R; the curve labeled H/R = 0
refers to a 2D monolayer. In c) the self-gravitating simulation
depicted in Fig. 1.38 was analyzed, both along the wake major
axis direction (’min’), perpendicular to it (’max’), and at the
ring ansa. The curve labeled ’NG’ refers to a corresponding
non-gravitating simulation with τD = 0.5, yielding practically

constant τ⊥ ≈ 0.55 for all B’s. Figure from Salo and Karjalainen
(2003); Salo et al. (2004).

1.8.2 Examples of photometric modeling

1.8.2.1 Dynamical and photometric optical depth

In low volume filling factor rings the vertical thickness of

the system is much larger than particle radius: for a pla-

narly homogeneous, vertically uniform system of identical

particles we have H/R = 4τD/(3D3). At the limit D3 → 0

the photometric and dynamical optical depths are equal.

However, for vertically flattened systems the photometric τ⊥
exceeds τD. To justify these assertions, consider a vertically

extended ring, and divide it into k layers each contributing

∆τD = τD/k to the total dynamical optical depth. The frac-

tion of flight passing through a single layer is 1−∆τD, and

assuming that the layers are independent, the fraction of

light passing through all layers is (1− τD/k)k → exp (−τD)

as k → ∞. Clearly the two definitions of optical depth are

then equal. On the other extreme, consider a 2D monolayer

with k = 1. Now τ⊥ = − ln(1 − τD) > τD.

Figure 1.33, based on quantitative ray tracing calculations

(Salo and Karjalainen, 2003), illustrates the dependence of

τ⊥/τD on D3 and τD. The particle fields in a) and b) were

constructed by random placing of identical non-overlapping

particles into a cuboidal volume. In the case of many particle

thick layer (H/R = 100 in the figure; implies D ∼ 0.01) we

have τ⊥ ≈ τD, but as H/R is reduced τ⊥/τD increases.

Similar result holds also for realistic dynamical simulations

with vertically non-uniform particle distribution, although

in the case of size distribution the difference between τ⊥
and τD is somewhat decreased with increasing Rmax/Rmin.

As a rule of thumb,

τ⊥/τD ≈ 1 + kD3, with k = 0.7 − 1.5, (1.134)

in good agreement with the theoretically estimated enhance-

ment factor of 1/(1 − D3) (Esposito, 1979).

Photometric simulations also show that Eq. (1.132) for

converting slanted τLOS to τ⊥ works well for non-gravitating
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Figure 1.34 The effect of non-zero D3 on the brightness of
perpendicularly illuminated layer. Lambert phase function is
used with A=0.5. Monte Carlo simulations with τD = 1 for four
different non-zero filling factors (D3 = 0.001, 0.02, 0.10, 0.20) are

compared. Single scattering and and multiply scattered fluxes
are shown separately. Also shown are theoretical Iss(D3 = 0) for
τ⊥ = 1.0. Figure from Salo and Karjalainen (2003)

simulation systems, regardless of their vertical flattening

(excluding strict monolayers, see (Salo and Karjalainen,

2003)). On the other hand, in the case of self-gravity (Fig.

1.33c), the deduced τ⊥ depends on the observing elevation

and the direction with respect to wakes (Salo et al., 2004;

Robbins et al., 2010; Tiscareno et al., 2010).

1.8.2.2 Non-zero volume density and enhanced
single-scattering

Besides optical depth, non-zero volume density has a signif-

icant effect on the observed I/F . In general, a reduced ring

vertical thickness leads to brightening of the reflected com-

ponent and reduction of the transmitted one. In Fig. 1.34 the

upper row shows the reflected and transmitted single scat-

tering components for various values of D3, in comparison

to theoretical values at the limit D3 → 0,
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4µ0
exp[−τ⊥/µ0], (if µ = µ0)(1.135)

where µ0 = | sin B⊙| and µ = | sin B|. The calculations in

the figure use perpendicular illumination B⊙ = 90◦, but

similar qualitative results hold for slanted illumination ge-

ometries. Also, Lambert phase function is assumed, although

the ring particles are known to be more strongly backward-

scattering (see Dones et al. 1993); the used phase function

does not affect the relative change of Iss. According to the

figure, the calculated Iss agrees with the theoretical value

at D3 ≈ 0 but is significantly larger for non-zero D3: for ho-
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Figure 1.35 In a) Voyager observations at 122 500 km are
compared with D3 ≈ 0 models, using same power-law phase

functions as the classical radiative models in Dones et al. (1993).
The anisotropy parameter −1 ≤ g ≤ 1 describes how strongly
backward scattering the particles are: g = −1 means perfectly
backscattering particle. A particle albedo A = 0.5 matches well

the low α brightness but overestimates the high α brightness by
a factor of 2. In b) D3 = 0.1 and the models can now match
both low and high α, provided that a somewhat smaller albedo

is assumed. The plot uses scaled reflectivity 4(µ + µ0)/µ0

×(I/F ), so that observations with different µ, µ0 can be
combined. Figure from Salo and Karjalainen (2003).

mogeneous systems the enhancement in Iss at intermediate

viewing elevations is about 30% for D3 = 0.2. The enhance-

ment is particularly strong at small phase angles (here close

to B = 90◦), which is the well-known shadow-hiding op-

position effect: as the zero phase angle is approached, the

shadows cast by particles are hidden by the particles them-

selves. The shadow-hiding opposition peak extends to larger

phase angles as D3 increases, in good agreement with theo-

retical models in Lumme and Bowell (1981). The figure also

shows an enhancement of Iss near B = 0◦: this is somewhat

specific to the perpendicular illumination, and follows from

the fact that at low viewing angles mainly the illuminated

upper surfaces of the outermost particles are visible.

In simulations with realistic size distributions the en-

hancement Iss(D3)/Itheory decreases when the width of the

size distribution is extended. This reduction is related to the

effective D3 at the vertical layer where τLOS ∼ 1, respon-

sible for most of the reflected light. As illustrated in Salo

and Karjalainen (2003), the effective D3 gets smaller when

more extended distributions are simulated. Because of this,

the angular width of the opposition brightening is reduced,

in good agreement with Hapke (1986) theoretical estimates.

For the same reason, the opposition peak becomes narrower

for lower viewing elevations: τLOS ∼ 1 is achieved at more

rarefied upper layers. In practice, dynamical/photometric

simulations indicate

HWHM ∝ B, (1.136)

where HWHM is the Half-width half-maximum of the op-

position peak (Salo and French, 2010).

Dones et al. (1993) pointed out problems when trying to

explain Voyager observations of Saturn’s ring photometry in

the framework of classical radiative transfer, such as match-

ing simultaneously the low and high phase angle I/F of the

B and the inner and middle A ring: the rings appeared too

dark at high α compared to what the classical models fitted

at low α predicted (Fig. 1.35a). They proposed that the dis-

crepancies stem from vertical flattening of the rings. Indeed,

when including the enhancement of Iss due non-zero D3,

the fit to the observed low phase I/F indicates a smaller A.

This leads to reduced multiple scattering and thus smaller

high phase brightness since this is mainly due to Ims. Also,

the nonzero D3 itself reduces the high α multiple scattering

compared to that in the classical limit: together these two

effects bring the model and observations to a good match

(Salo and Karjalainen, 2003, Fig. 1.35b). Similar conclusion

was reached by Porco et al. (2008).

1.8.3 Opposition brightening

Saturn’s rings show a strong opposition effect: a steep rise

in I/F when the Sun-observer phase angle α → 0◦. Hub-

ble Space Telescope observations during the 2005 opposition

(French et al., 2007a) indicated that the brightness increase

continues all the way to zero phase angle: the I/F increases

by about 2/3 for α < 6◦, half of this increase taking place

within α < 0.5◦. Most strikingly the opposition ’spike’ is

demonstrated by the zero-phase Cassini images (Déau et al.,

2013), which show a bright localized spot on the ring loca-

tion centered at exact opposition.

Two main explanations for the Saturn ring’s opposition

brightening are i) the reduced amount of mutual interparti-

cle shadowing, and ii) the intrinsic brightening of the ring

particles themselves. As demonstrated by Fig. 1.34, the mu-

tual shadow hiding effect is inevitable in a densely packed

ring, although it depends on the spatial and size distribu-

tion of ring particles whether the brightening is as strongly

peaked at α = 0◦ as observed. Similarly, theoretical and

laboratory studies suggest that icy particles exhibit a sig-

nificant intrinsic brightening at α → 0◦ due to construc-

tive interference between the incoming and outgoing light

rays (coherent backscattering (CB), see e.g. Hapke, 1990;

Mishchenko, 1992; Nelson et al., 2000). The expected mag-

nitude and width of CB depends on the surface structure

and optical properties of particles. Rough particle surfaces

can also exhibit an intrinsic shadow hiding effect.

A long-term challenge has been to separate interparticle

and intrinsic contributions to the opposition effect: unless

this can be done it is not possible to extract reliable infor-

mation of the particle surface properties by fitting the ob-

served curves with theoretical CB models, without including

the interparticle shadow hiding (see e.g. Poulet et al., 2002;

Déau, 2015). Likewise, the early volume density estimates

for Saturn’s rings (D3 ≈ 0.02, Lumme et al. (1983)), based

on interpreting the brightening solely in terms of interparti-

cle shadow hiding were prone to lead to wrong answers.

The expected functional forms of the intrinsic and inter-

particle opposition effects are very similar (see e.g. Hapke,

1986, 1990), so that their contributions can not be entangled

based on an individual phase curve. However, such a sepa-

ration becomes possible with multi-wavelength observations
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Figure 1.36 In the left: The symbols show the near-opposition
brightness enhancement in HST observations of Saturn’s C and
B rings, measured in terms of OE = I(α = 0.5◦)/I(α = 6◦).

Lines indicate the modeled OE in size distribution simulations
with different Rmin (all have Rmax = 5m and q = 3). In the
right, the OE is normalized with that at 20◦ opening angle:
note that normalized OE is practically independent of the

wavelength. Figure from Salo and French (2010).

covering a whole range of observing/illumination elevations.

Namely, while the interparticle shadowing effect depends on

B (Eq. (1.136)), it should be independent of the wavelength

λ. On the other hand, CB is expected to depend on λ but

not on B.

Salo and French (2010) exploited the full set of Saturn

ring phase curves obtained with the Hubble Space telescope

WFPC2 instrument during 1996-2005 (Cuzzi et al., 2002;

Poulet et al., 2002; French et al., 2007a). In this data set,

covering 4.5◦ < Beff < 26◦ in 5 broadband filters, the op-

position brightening gets significantly more pronounced as

Beff decreases, confirming the expected contribution of in-

terparticle shadowing.12. Fig. 1.36 illustrates this in terms of

OE = I(0.5◦)/I(6◦) for ring regions selected from the C and

B rings. Both rings exhibit clearly larger OE at Beff = 4.5◦

compared to larger opening angles (left frames). The rel-

ative increase of OE with elevation is also independent of

wavelength, as seen when OE is normalized to its value at

Beff = 20◦ (right frames).

The Fig. 1.36 shows also results from a grid of dynam-

ical/photometric simulations performed for different τD’s

and different size distributions. For example, the Beff de-

pendence of the C ring OE is best matched with τD ∼ 0.1

and a wide size distribution with Rmin/Rmax . 0.01. On

the other hand, the B ring comparisons suggest τD & 2 and

a much narrower distribution Rmin/Rmax & 0.1.

12 The HST observations at slightly different B,B⊙ are re-
duced to a geometrically corrected (I/F )corr corresponding to
an effective common elevation angle Beff , defined by µeff =
2µµ0/(µ + µ0) and (I/F )corr = µeff/µ(I/F ). With this trans-
formation the theoretical (I/F )corr depends only on Beff .

Figure 1.37 Illustration of the opening angle dependence of
opposition phase curves (normalized by I/F (α = 6◦)). A

sideview of a dynamical τD = 1.25 model is displayed, together
with HST phase curves observed at Beff = 23◦ and 4.5◦. The
modeled contributions of intrinsic (filled; both CB and SH) and
interparticle contributions (hatched lines; mutual shadowing)

are shown separately. In the fits, the intrinsic contribution is
assumed to be independent of Beff , and the opening angle
dependent part is fitted by comparison to a grid of simulation

models. Figure from Salo and French (2010).

Figure 1.37 summarizes the results of photometric mod-

eling of opposition brightening based on the Hubble Space

telescope observations (Salo and French, 2010). When ring

opening angle is large (here 23◦), the reflection is mainly due

to particles in the densely packed equatorial plane: conse-

quently the inter-particle shadow hiding contribution to the

peak in I/F is relatively wide. For low Beff , the reflection is

mainly due to the uppermost, low filling factor layers, which

produce a stronger peak. The insert figures illustrate the fi-

nal separations of observed phase curves into interparticle

shadow hiding (dependent on Beff) and intrinsic contribu-

tions (same for all Beff). The intrinsic component is also sep-

arated to CB and surface shadow hiding components, using

the Hapke (2002) models which are commonly applied for

the whole phase curve, without taking into account the mu-

tual shadow hiding between particles. Since the interparticle

shadow hiding accounts about half of the total opposition

brightening, its inclusion has an effect on the estimated CB

parameters.

1.8.4 Self-gravity wakes and azimuthal brightness

asymmetry

Several types of observations support the existence of self-

gravity wakes in Saturn’s rings. Due to their small scale,

λcr ∼ 100 meters, they are unresolved in direct images.

Nevertheless, the wakes have a global signature on how the

rings reflect and transmit light, since the reflecting surface

area will depend on the viewing direction with respect to the

average direction of wakes (see Fig. 1.38). Similarly, the illu-

mination of wakes will depend on the longitude with respect

to solar longitude.
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Figure 1.38 The effect of unresolved self-gravity wakes on
global brightness: at intermediate ring opening angles the
reflecting surface area has a minimum at longitudes where the
rings are viewed along the average major axis of wakes, and
correspondingly a maximum when wakes are viewed
perpendicularly. Figure from Salo et al. (2004).

The wakes provide a natural explanation to the A ring az-

imuthal brightness asymmetry, discovered already in 1950’s

(Camichel, 1958), intensively studied in the pre-Voyager era

(Ferrin, 1975; Reitsema et al., 1976; Lumme et al., 1977;

Thompson et al., 1981). In the ground-based observations

the brightness at the mid A ring exhibits two symmetri-

cal minima at the ring longitude θmin ∼ 70◦ and ∼ 250◦

with respect to sub-observer direction. The detailed analy-

sis of low-phase Voyager images (Dones et al., 1993) showed

that the amplitude of variations peaks very strongly in the

mid-A ring, reaching a full amplitude ≈ 35% in reflected

light at the saturnocentric distance of 128,000 km. The A

ring asymmetry was also seen in Voyager transmitted light

images (Franklin et al., 1987), whereas for the B ring no

asymmetry was detectable. Wakes have also been inferred

from the radar echo of rings (Nicholson et al., 2005), and

from the way how Saturn’s microwave radiation is transmit-

ted through the rings (Dunn et al., 2004). Wakes also affect

the ring opacity: the most detailed observations of wakes

have been made with the Cassini stellar (Colwell et al., 2006,

2007; Hedman et al., 2007, 2014) and radio occultation mea-

surements (Thomson et al., 2007). Wakes have also a clear

signature on the ring’s thermal emission (Ferrari et al., 2009;

Morishima et al., 2014).

The likely connection of azimuthal brightness asymmetry

to Goldreich and Lynden-Bell (1965) and Julian and Toomre

(1966) type self-gravity structures was pointed out already

by Colombo et al. (1976) (see also Franklin et al., 1987;

Dones and Porco, 1989; Dones et al., 1993). The first detailed

comparisons between dynamical self-gravitating simulations

and Voyager observations were made in Salo et al. (2004),

using the photometric Monte Carlo method described above.

It was shown that the trailing self-gravity wakes, systemati-

cally tilted by about 20◦ with respect to the local tangential

direction can indeed explain the A ring asymmetry ampli-
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Figure 1.39 HST observations of the A ring azimuthal
asymmetry at two different ring opening angles, with
corresponding simulation models assuming identical ’frosty ice’
particles. Note the narrower minimum and the increased overall

I/F for Beff = 4.5◦. Figure from French et al. (2007b).

tude and longitude of minimum, both in the reflected and

transmitted light observations (in the latter case one also

needs to take into account the Saturn-shine contribution

which also depends on ring longitude). A somewhat sur-

prising result was (and still is) that the observed θmin is

better matched by dynamical models consisting of identi-

cal particles, than by the presumably more realistic models

with an extended size distribution. The shift ∆θmin ≈ 5◦

between size distribution and identical particle models, is

the same as the difference in the wake pitch angle implied

by the auto-correlation analysis of simulated wakes (see Fig.

1.23). Same conclusion was reached in French et al. (2007b)

when comparing identical particle and size distribution sim-

ulations with the HST observations; similar shift is also seen

in Porco et al. (2008) models of Cassini phase curves.

French et al. (2007b) carried out detailed analysis of the

azimuthal brightness variations on the above described Hub-

ble Space telescope data set, covering the full elevation and

phase angle ranges accessible from Earth. The change in

the asymmetry amplitude, and the width and location of

the brightness minima were all found to be in accordance

with the predictions of the dynamical wake models (see Fig.

1.39). For example, the asymmetry amplitude is largest at

Beff ∼ 10◦: when Beff → 0◦ the sparse inter-wake regions

are not anymore visible, while for larger Beff the reflect-

ing surface area is less sensitive to azimuthal orientation.

The observed width of minimum gets narrower at small Beff

which is expected since then the inter-wake gaps are visi-

ble only when viewed very precisely along the major axis

of wakes. Similar very narrow peak is seen in the amount

transmitted light in the low elevation (3.45◦) stellar occul-

tations (Hedman et al., 2007). Moreover, the HST observa-

tions made it possible to fully separate the dependence of

θmin on the sun-earth longitude difference.

The presence of wakes explains also the A-ring inverse tilt

effect (the overall I/F drops with Beff ; Cuzzi et al., 2002):
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Figure 1.40 The observed radial dependence of the asymmetry
amplitude is compared with dynamical simulations performed
for various internal particle densities (labels indicate ρ in units

of kgm−39. Simulations assumed τD = 0.5 and the ’frosty ice’ ǫn
model. Both the Hubble Space Telescope observations (filled
light gray squares) and models correspond to Beff = 10◦. The
asymmetry amplitude from Voyager images (Dones et al., 1993)

is also shown as a solid line, multiplied by a factor of 0.5 to
account for the difference in definitions of asymmetry
amplitude. Figure from French et al. (2007b).

with increasing opening angle more light leaks through the

gaps. In contrast to the A ring, the B ring has a strong

positive tilt effect, its brightness increasing by ∼ 30% be-

tween Beff = 4◦ − 26◦. Early on, this was interpreted in

terms of multiple scattering (Esposito and Lumme, 1977;

Lumme et al., 1983), but as shown in detail in Salo and

French (2010) the observed positive tilt effect follows nat-

urally by the same models which account for the elevation

angle dependent opposition effect: in observations at fixed

α, the brightness increases with opening angle since the op-

position brightening extends to larger α for larger Beff (see

Eq. 1.136).

The Hubble Space telescope observations in French et al.

(2007b) confirmed the very strong peaking of asymmetry

amplitude in the mid A-ring, matching very well the Dones

et al. (1993) measurements. Weak asymmetry was also dis-

covered in the inner B ring, consistent with the stellar occul-

tation observations (Colwell et al., 2007). Fig. 1.40 shows the

observed asymmetry amplitude as a function of Saturnocen-

tric distance, and also compares it to a set of dynamical

and photometric simulation models. The simulations assume

four different internal densities of particles (varying from

solid ice density 900 kgm−3 to 1/3 of solid ice density),

while all the other simulation parameters are kept fixed.

Depending on the assumed internal density of the particles,

the self-gravity wake structure emerges at different distances

(at certain rh, so that a ∝ ρ−1/3, see Fig. 1.22) leading to

growth of asymmetry amplitude. With increasing distance,

the wakes become clumpier, eventually degrading into par-

ticle aggregates. This reduced the longitude-dependence of

the reflecting area and thus the amplitude of asymmetry.

Clearly, the distance dependence of the simulation mod-

els of Fig. 1.40, following solely from the slow change in the

tidal environment, is much too weak compared to the ob-

served strong peaking at the mid A-ring. As demonstrated

in French et al. (2007b), using higher τD, different ǫn(vn)

or different size distributions would modify the trends, if

the parameters are allowed to vary with distance. For ex-

ample, the rapid drop of the asymmetry amplitude at the

outer A-ring could be related to a rapid increase in the frac-

tional amount of small particles, suggested to rise due to

higher impact speeds associated with the stronger pertur-

bations by external satellites (Dones et al., 1993), or per-

haps by the self-gravity wakes themselves Salo and Schmidt

(2007). The increased pitch angle of wakes at the outer A-

ring (French et al., 2007b; Colwell et al., 2006; Hedman et al.,

2007) would also be consistent with more extended size dis-

tribution. However, truly successful models should account

for such distance-dependent changes in a fully self-consistent

manner.

1.9 Summary

1.9.1 What has been covered

In this chapter we have reviewed the basic ingredients of lo-

cal planetary ring simulations: the use of linearized dynami-

cal equations in a co-moving coordinate system, the shearing

periodic boundaries, the modeling of particle impacts, and

the calculation of self-gravity. Impacts were treated both

as instantaneous velocity changes, and in terms of visco-

elastic forces affecting partially overlapping colliding par-

ticles. We described different methods for calculating the

ring self-gravity, including the often-used approximation in

terms of enhanced nz/n . The establishment of local energy

balance between collisional dissipation and viscous gain (in-

cluding local, nonlocal and gravitational contributions) was

discussed in quite a detail, as well as how to measure from

simulations various pressure tensor related quantities char-

acterizing this steady state.

Extensive numerical simulation examples were given, and

our aim was to go systematically through the main free pa-

rameters of the models, the elasticity and friction in im-

pacts, the size distribution of particles, and their internal

density. When possible, the results were given a hydrody-

namic interpretation (see Stewart et al., 1984; Schmidt,

2009) The central theme was to illustrate how the ν vs. τD

relation, deduced from small scale simulations, can be used

to make predictions concerning the viscous stability proper-

ties of the ring system. We then gave examples of how the

predicted viscous overstabilities and instabilities manifest

in larger-scale simulations. Also, we presented a systematic

survey of the expected self-gravity wake structure, when us-

ing two quite different elasticity laws representing the range

of uncertainty for the ring particle physical properties. The

Bridges et al. (1984) ’frosty ice’ models implies strongly flat-

tened rings (H ∼ 10 m at all τD) susceptible to oscillatory

instability (viscous overstability) and the formation of grav-

itational wakes, whereas the Hatzes et al. (1988) ’smooth

ice’ model leads to multilayer rings (H ∼ 100 m at low τD)



Computer Simulations of Planetary Rings (8.3.2016) 37

where self-gravity wake structure is harder to obtain, but

which might be susceptible to viscous amplification of fluc-

tuations (viscous instability).

Finally, we discussed the photometric ray tracing model-

ing of the particle fields produced by dynamical simulations,

and illustrated how the dynamical models for dense flat rings

(with D3 ∼ 0.1) explain in a natural manner many photo-

metric observations of the rings, like the azimuthal bright-

ness asymmetry related to self-gravity wakes, and the overall

deviations from classical radiative transfer theory applicable

at the limit D3 = 0. Also, we demonstrated the importance

to take into account the mutual shadow hiding effect when

deducing particle intrinsic properties from the modeling of

opposition brightening.

1.9.2 Material not covered

Several important aspects of ring dynamics have not been

covered by this review, both related to physical mechanisms

operating in planetary rings, and to technical aspects of

simulations. For example, we have not discussed the effects

of adhesive forces and particle coagulation and fragmenta-

tion (see e.g. Perrine et al., 2011; Perrine and Richardson,

2012), nor described in detail the formation of gravitational

aggregates (see e.g. Ohtsuki, 1993; Salo, 1995; Karjalainen

and Salo, 2004; Albers and Spahn, 2006; Porco et al., 2007;

Yasui et al., 2014; Hyodo and Ohtsuki, 2014, 2015). Also,

we have not described dynamical simulations of embedded

moonlets (e.g. Seiß et al., 2005; Lewis and Stewart, 2005,

2009; Pan et al., 2012) nor dynamical/photometric simula-

tions of propeller structures (Sremčević et al., 2007), or those

addressing rings perturbed by satellite resonance perturba-

tions, either by using azimuthally complete rings (Hänninen

and Salo, 1994, 1995) or with local calculation regions with

a time-variable radial width (Mosqueira, 1996), or by ap-

plying streamline formalisms (Hahn and Spitale, 2013). On

the technical side, we have not addressed parallelization of

the calculations, nor current codes utilizing such methods,

like pkdgrav (Richardson et al., 2000; Porco et al., 2008), or

the publicly available rebound code (Rein and Liu, 2012).

Similarly, we have not covered simulations addressing the

large scale evolution of rings, in terms of viscous radial evo-

lution (Charnoz et al., 2010), or via ballistic transport of

mass and angular momentum (Durisen et al., 1989; Estrada

et al., 2015).

1.9.3 Some open questions

There are several open problems in the ring dynamics, which

in principle can be tackled by improved local simulations.

• What is behind the ubiquitous fine-structure observed in

Saturn’s rings?

The viscous overstability of dense, strongly flattened sys-

tems is the leading candidate for the regular axisymmet-

ric density variations seen in the inner A ring and the

B ring. As such, this would favor dissipative particle im-

pacts (“frosty ice”) and a low internal density of particles

(ρ ≤ 300 − 450kgm−3). Nevertheless, viscous instability

would provide an attractive alternative for the almost bi-

modal variations seen in many locations of the B ring. In its

simplest form it seems to require very elastic particles and

dynamically hot rings, which is not easy to reconcile with

the existence of self-gravity wakes.

• What is interplay between self-gravity wakes and viscous

overstability?

Inclusion of self-gravity leads to steeper density-viscosity

relation, and is thus be expected to promote viscous over-

stability. Indeed, this is seen when the effect of self-gravity is

approximated via enhanced nz/n. However, when full self-

gravity is included the inclined self-gravity wakes, which

have rougly the same radial scale, seem to suppress the

growth of axisymmetric overstable oscillations. Is this due

to the limitations in the current fully self-gravitating simu-

lations?

• What is the relation between ring optical depth and sur-

face mass density variations?

Several recent studies have indicated that there is a poor

correlation between ring optical depth and surface density

(Baillié et al., 2011; Tiscareno et al., 2013; Hedman and

Nicholson, 2016). For example, the C ring plateaux are found

to have similar Σ as the background ring, regardles of hav-

ing a factor of four larger τ⊥ (Hedman and Nicholson, 2014).

The easiest explanation would be a larger fraction of smaller

particles in the plateaux: such a difference might arise due to

size-selective viscosity instability described in Sect. 1.7.2.1.

However, this is not supported by the radio occultation mea-

surements, whith indicate that the plateux have a larger av-

erage particle size (Cuzzi et al., 2009). Differences in particle

densities and compositions have been suggested (Hedman

and Nicholson, 2014) but no definite model yet exists.

• Why does the amplitude of azimuthal asymmetry peak

so strongly in the mid A ring?

The effective viscosities obtained from the damping of A

ring weak density waves (Tiscareno et al., 2007) are con-

sistent with the viscosities estimated from self-gravitatating

simulations (Daisaka et al., 2001, Sect. 1.6.2.3) performed

with solid ice density. Likewise, the outer edge of the A

ring fits well to the distance where frosty ice particles with

ρ ≈ 900kgm−3 start rapidly collapsing into gravitation-

ally bound aggregates (see Karjalainen and Salo, 2004, for

simulation survey exploring the effects of elastic properties

and size distribution). Still, such parameters would yield

much stronger wake structure than observed, with a maxi-

mum amplitude attained much closer to planet, and with

much shallower dependence on distance. Another puzzle

with asimuthal asymmetry is the longitude of minimum,

which matches very well with models of identical particles,

but deviates clearly from that currently predicte by size dis-

tribution models.

• Combination of photometric and dynamical simulations

is a very powerful modeling tool, which needs to be applied

to Cassini data in a similar manner as the HST data has

been analysed. The superior imaging resolution (∼ km in

comparison to ∼ 103 km in HST) and coveragae of wide
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range of geometries provides extremely strong constraints

for any dynamical model.

Improved simulation models, including both adhesion and

fully consistent self-gravity, and allowing for the possibility

of size-dependent or otherwise variable particle properties

(elasticity, frictions, internal density) are clearly needed for

better understanding of the real planetary rings.
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Hämeen-Anttila, K. A., and Lukkari, J. 1980. Numerical simu-

lations of collisions in Keplerian systems. Astrophys. Space

Sci., 71, 475–497.
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Spahn, F., and Sremčević, M. 2000. Density patterns induced

by small moonlets in Saturn’s rings? Astron. & Astrophys.,

358, 368–372.

Spahn, F., Hertzsch, J.-M., and Brilliantov, N.V. 1995. The role of

particle collisions for the dynamics in planetary rings. Chaos,

Solitons and Fractals, 5, 1945–1964.

Springel, V. 2005. The cosmological simulation code GADGET-2.

Mon. Not. Royal Astron. Soc., 364, 1105–1134.
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