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The local dynamics of planetary rings is governed by the
orbital motion, the frequent impacts between ring parti-
cles, their mutual self-gravity, and the perturbations exerted
by external satellites and embedded moonlets. In Saturn’s
dense A and B rings the particles collide ~ 100 times per
orbital revolution. Although the orbital velocities are ~ 20
km/s, the random velocities related to orbital eccentricities
and inclinations are small, of the order of few mm/s (this
corresponds to a ring vertical thickness of few tens of meters,
excluding strongly perturbed regions). Such gentle impacts
do not lead to fragmentation, but still dissipate a significant
fraction of random kinetic energy in each collision. This loss
is balanced by the viscous gain of energy from the orbital
motion around the planet, resulting on a local steady-state
in a time scale of few tens of impacts/particle. Characteris-
tics of this energy balance (such as velocity dispersion, ge-
ometric thickness, and viscosity) are determined by the fre-
quency and elasticity of impacts, and by the internal density
and size distribution of particles. In much longer timescales
the ring radial evolution is governed by viscous evolution.
Depending on the viscosity-density relation following from
the energy balance, the ring can be either stable or unstable
against the viscous growth of local perturbations. For ex-
ample, dense rings composed of quite inelastic particles can
become viscously overstable, while less dissipative particles
may be prone to viscous instability.

The basic collisional dynamics of planetary rings is the-
oretically fairly well understood, and in the case of non-
gravitating particles the steady-state properties can be
obtained analytically from kinetic theory (Goldreich and
Tremaine, 1978b; Hameen-Anttila, 1978; Stewart et al.,
1984; Shu and Stewart, 1985; Latter and Ogilvie, 2006),
also in the case of dense flattened rings where finite-size
(nonlocal) effects become important (Hameen-Anttila, 1982;
Shukhman, 1984; Araki and Tremaine, 1986). The same is
true even if particle size distribution and pairwise gravita-
tional encounters are included (e.g. Hameen-Anttila, 1984;
Hémeen-Anttila and Salo, 1993), although the resulting an-
alytical expressions become cumbersome. Similarly, the vis-
cous stability properties of rings can be analyzed via hydro-
dynamical (Schmit and Tscharnuter, 1995; Schmidt et al.,
2001) or kinetic theory approach (Latter and Ogilvie, 2008).
Numerical simulations, however, are indispensable for many
reasons as they take automatically into account the non-
isotrophy of velocity dispersion following from orbital mo-
tion, and allow the accurate treatment of dense flattened
rings without simplifying assumptions. In particular, the re-

alistic inclusion of collective self-gravity, implying the forma-
tion of gravitational wakes and particle aggregates, is still
out of scope of analytical treatments.

The fundamental importance of ring particles’ feeble mu-
tual gravity for shaping the fine structure of Saturn’s rings
is strikingly demonstrated by the Cassini stellar (Colwell
et al., 2006, 2007; Hedman et al., 2007) and radio occul-
tation measurements (Thomson et al., 2007), which con-
firm the presence of unresolved trailing structures (self-
gravity wakes (Salo, 1992a)) throughout the A and B rings.
These transient, continuously re-generated trailing density
enhancements arise as a superposition of tiny wakes excited
around each individual ring particle, amplified by the inter-
play of shear and gravity (swing-amplification mechanism,
see: Toomre, 1981; Goldreich and Lynden-Bell, 1965). Such
structures were envisioned already decades ago (Julian and
Toomre, 1966), though in a very different context (and scale
- kpcs rather than tens of meters), as a suggestion of how to
create and maintain spiral structure in galactic stellar disks.
In planetary rings the dissipative impacts between particles
provide a natural mechanism which keeps the rings dynam-
ically cool and reactive to such gravitational disturbances.
For the same reason the excitation of spiral density waves
at satellite resonance locations (Goldreich and Tremaine,
1978a) - another concept originally developed in the con-
text of galaxy dynamics - has its clearest manifestation in
Saturn’s rings (see e.g. Shu, 1984; Burns and Cuzzi, 2006;
Cuzzi et al., 2010). Saturn’s rings also provide the most
extreme examples of disk warping (Hedman et al., 2011),
and the Julian-Toomre type wakes excited around individ-
ual massive boulders orbiting among the ring particles ("pro-
pellers’) (Spahn and Sremcevi¢, 2000; Tiscareno et al., 2006;
Sremcevié et al., 2007).

This Chapter reviews numerical N-body simulations of
self-gravitating, mutually colliding particles, concentrating
on a local method, where the evolution of a small ring patch
co-moving with the mean orbital motion is followed. After
reviewing the main ingredients of the simulations (dynam-
ical equations, treatment of boundaries, impacts, and self-
gravity), we illustrate the basic mechanisms affecting the
local energy balance and give simulation examples of self-
gravity wakes, gravitationally bound particle aggregates,
and the nonlinear structures resulting from viscous oversta-
bility and instability. Also photometric modeling of dynam-
ical simulations is addressed, and the results compared with
both Hubble Space Telescope and Cassini observations.
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Figure 1.1 Simulation example of azimuthally complete ring.
The number of particles N=2000, and the particle radius is
0.005a, where a is the mean distance of particles. The initial
width of the ring is 0.2a, yielding a dynamical optical depth

7p = 0.125. The impacts are described with a constant
coefficient of restitution e, = 0.5. During 150 orbital revolutions
each particle has experienced on average about 250 impacts: the
system has flattened to a few particle diameter thick disk, and
has at the same time nearly doubled its radial width.

1.1 Early simulation studies

The pioneering simulation studies of the collisional evolution
of planetary rings were performed in the 1970s, by Trulsen
(1972), Brahic (1977) and Hameen-Anttila and Lukkari
(1980). All these simulations used the same basic approach:
a complete ring of particles revolving around the central
body in Keplerian orbits. The particles were identical hard
spheres, and impacts were treated as leading to instanta-
neous changes of relative velocity vectors. Since only a few
hundred particles could be followed with the available com-
puter capacity, these simulations were limited to low optical
depth 7p < 1073, The particle sizes were unrealistically
large compared to the width of the ring, which made it dif-
ficult, for example, to separate the time scales for the estab-
lishment of local steady-state velocity dispersion from the
viscous radial spreading (see Fig. 1.1). Nevertheless, many
basic characteristics of collisional systems (see Section 1.7)
were discovered, including the existence of a critical up-
per limit for the coefficient of restitution ecr, required for
a stable thermal balance in the case of constant ey (Trulsen,
1972), a minimum residual velocity dispersion of the order
of few times nR (Brahic, 1977), where n is the local an-
gular velocity and R the particle radius, and the establish-
ment of equilibrium with a finite velocity dispersion in a case
of a velocity-dependent coefficient of restitution (Hameen-
Anttila and Lukkari, 1980). These simulations also served as
important checks for various analytic treatments (see Stew-
art et al. (1984)). Brahic (1977) also provided the first con-
straints for the velocity dispersion in Saturn’s rings, in terms
of timescales for viscous spreading. However, a fundamental
breakthrough was provided by the Wisdom and Tremaine
(1988) application of the local method to planetary ring sim-
ulations.

In contrast to the simulations of a complete ring, in lo-
cal simulations all calculations are restricted to a small re-
gion co-moving with the mean orbital motion of the parti-
cles (Fig. 1.2). This allows the extension of the simulations
to high optical depths, with realistic particle sizes. How-
ever, due to systematic velocity shear individual particles
will rapidly leave the calculation region. As described in de-
tail below, this is taken into account by periodic boundary
conditions, returning the leaving particles to the calculation
region with properly modified position and velocity vectors.
An important advantage of the method is that it facilitates
the study of local steady-state properties as a function of
fixed optical depth. The larger-scale viscous evolution can
then be deduced from the viscosity-density relation derived
from a set of small-scale simulations for different optical
depths. This is justified, based on the large separation of
the time scale for the establishment of the local thermal
balance (o (7pn)~ 1), and the much longer time scale for
the radial evolution (o< W?2/v o (tpn)~1(W/H)?, where v
is the kinematic viscosity, W is the radial scale of interest,
and H is the ring vertical thickness).

The local method, developed for Molecular Dynamics sim-
ulations by Lees and Edwards (1972), was first applied to
planetary rings by Wisdom and Tremaine (1988) and to
stellar disks by Toomre and Kalnajs (1991). In the former
study impacts between identical particles were taken into ac-
count, but not their mutual gravity, whereas the latter study
concentrated only on gravitational forces. In Salo (1992a)
both, gravity and impacts, were simultaneously included.
Since then, the local method has been extensively used
(e.g. Richardson, 1993, 1994; Salo, 1995; Mosqueira, 1996;
Daisaka and Ida, 1999; Lewis and Stewart, 2000; Daisaka
et al., 2001; Ohtsuki, 1999; Robbins et al., 2010; Perrine
and Richardson, 2012).

1.2 The Local Simulation Method

The coordinate system in the local method has its origin
at 7, a reference point orbiting the planet of mass Mp in
a circular orbit at the distance a, with a constant angular
velocity n = /GMp/a3. The x-axis points in the radial
direction, the y-axis in the direction of orbital motion, and
the z-axis is perpendicular to the equatorial plane, paral-
lel to the angular velocity vector 7 = nZz. Since a rotating
reference frame is used, the equations of motion are

P42 x P 47 x (A x7) = Fg/m+ F/m (1.1)

where 7 = (z,y, z) is a particle’s radius vector with respect
to 70, ﬁg denotes the central force on the particle relative
to the force at 70, F the additional forces, and the two last
terms on the left hand side represent the Coriolis and cen-
trifugal terms, respectively. For the Keplerian case (spheri-
cally symmetric central body) the difference in the acceler-
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ation due to the central field is

= T0o+7T 7o
F = —-GMp|——5— —= 1.2
G/m P(|7?0+7:‘|‘3 ag) ( )
N GMp [ 7T L
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if only terms linear in |7]/a are retained. In the more general
case where the azimuthal, radial, and vertical frequencies (n

K, and n;) are different from each other!

Fg/m = <(3n2 — &%)z, —n’y, —nzzz> , (1.3)
with
2 Fr
n® = —|
T lr=r,
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where F, and I are the radial and vertical components of
the central force. Inserting this in Eq. (1.1) yields

I —2ny + (HQ — 4'!L2) x = Fy/m,
i+ 2nd Fy/m, (1.4)
Z+4+ nZQZ = Fy/m,

where Fy, Fy, I, stand for the components of additional
forces besides the central force, e.g. due to impacts and parti-
cles’ mutual gravity. This is the familiar Hill-approximation,
describing the elliptical motion in terms of epicycles super-
posed on the circular motion of the guiding centre. In the
absence of additional forces Egs. (1.4) have the solution

x = x9— Acoslk(t — tp)],
2nA K2 — 4n?
= i t—1t ——F—  xpt,
Y Yo + ——sin[w(t — to)] + ———— zot,
z = Bsin[n:(t —t1)], (1.5)

Jun

Note that in this Chapter the symbol n is used for the ver-
tical frequency instead of v; the latter symbol is reserved for kine-
matic shear viscosity.

Figure 1.2 Schematic representation of the local simulation
method (“shearing brick” method) (see text for explanation).

where xq, yo, A, tg, B,t1 are six constants of integration: zq
and yop are given by the guiding centre location at ¢t = 0,
while A = ea, B = Ia correspond to eccentricity and incli-
nation, and tg,t; to the times of pericenter and ascending
node passage, respectively. The guiding centre drifts tangen-
tially with the speed sxg, where the shear rate

2 2
K —4n
§= ———— 1.6
2n (1.6)
reduces to s = —%n in the Keplerian case.

The use of linearized equations is physically well justified,
as the typical particle excursion from circular orbit may be
expected to be at least a factor of 1070 smaller than a.
Furthermore, through the linearization the set of Egs. (1.4)
is invariant under the transformation

(z+ Az, y + Ay + Az st, 2),
(ve, vy + Az s,0z), (1.7)

@'y,2) =
(vg, vy, v5) =
where Az and Ay denote arbitrary shifts in radial and tan-
gential directions, respectively. This allows to use simple pe-
riodic boundary conditions in simulations: using Ax = ngy Ly
and Ay = nyLy, where ny and ny are integers, and L, and
Ly denote the radial and tangential dimensions of the cal-
culation region,

(-75 + an:LfI:~, Yy + nyLy + 77/.’1:L.’1:5t, Z),
(vz, vy + naLas,vz), (1.8)

@'y,2) =
(vg, vy, v5) =

with |ng|, [ny| = 1,2, ..., define a set of image particles (repli-
cas, see Fig. 1.3), so that each particle leaving the actual
calculation region (|z| > Lz /2 or |y| > Ly/2), is replaced
by one of its replicas which enters the region from the oppo-
site face, with appropriately modified position and velocity.
Especially, if the particle crosses the outer or inner radial
boundary, the tangential velocity of the particle is modi-
fied by Avy = £sLz, which corresponds to the difference of
shear velocity across L. Since the mean tangential velocity
at the radial coordinate x equals sz, this leaves the shear
corrected tangential velocity vy — sz unaffected. With the
use of these periodic boundary conditions the evolution of



4 Salo & Ohtsuki € Lewis

the system is independent of the size of the calculation re-
gion, provided that the size is large compared to the mean
free path between impacts (Wisdom and Tremaine (1988),
Salo (1991)). Implicitly it is assumed in the local method
that the rings are homogeneous on a scale comparable or
larger than the size of the simulation region.

ORBITAL MOTION
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+
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Figure 1.3 Schematic diagram displaying the simulation cell
(thick lines) and its eight surrounding replicas (thin lines).
Gravitational forces on the given target particle (marked by
cross) are calculated from the particles whose nearest images lie
within a given maximum distance marked by the circle. The
nearest image can either be the actual particle (solid symbols)
or one of its copies (open symbols). Likewise, collisional
calculations take into account impacts with image particles.

For a system of N particles moving according to Eqgs. (1.4)
the quantities

1 &

U = mtot;mixi’

g — ﬁmi@i—smi), (1.9)
Mtot -1

are the analogues to centre-of-mass velocities, where myo¢ is
the total mass. From Eqgs. (1.4),

i
2R,
(]

where £ stands for the mutual impact or gravity force,
exerted by particle j on particle 7. Since the forces cancel

mtot(U —2nV)

miot(V + (2n 4 s)U (1.10)

pairwise, the sums on the right-hand sides vanish. Also, U
and V are unaffected by boundary crossings. Thus, U and V'
remain zero at all times if they vanish initially. This provides
a useful check for the accuracy of the orbit and impact cal-
culations. In the more general case, U and V oscillate about
their initial values, but as shown in Wisdom and Tremaine
(1988), the evolution of a system with arbitrary Uy and Vj
is easily determined from the evolution with Uy = Vj = 0.

Eqgs. (1.4) have the energy integral (multiply with veloci-
ties and integrate once)7

-2 s’
m; xz +yz +Zz)+nsxz +an Zq

mlm]

2 Z Z -7
i jF

the last term representing the self-gravitational potential en-

ergy (we have assumed that the additional forces arise from

mutual self-gravity). In contrast to centre-of-mass velocities,

the quantity £ does not remain constant in boundary cross-

ings or impacts.

(1.11)

1.3 Impact calculations

The impacts between planetary ring particles damp the rela-
tive velocity difference between the colliding particles, which
leads to dissipation of random kinetic energy. The impacts
also transfer energy between planar and vertical directions,
and between translational and spin motions. The damping
of the relative velocity component in the direction perpen-
dicular to the impact plane is specified by the normal co-
efficient of restitution en, describing the energy loss due to
irreversible deformations during the impact. Similarly, the
tangential coefficient of restitution, €t, can be included, de-
scribing the change of the relative velocity component along
the impact plane. In this case the exchange of energy with
the particles’ spin motion needs also be taken into account.
Surface irregularities and the overall non-spherical shape of
the particles may also affect the impact outcome.

Two main methods are generally used in the description
of impacts: i) instantaneous velocity changes (“hard sphere”
collisions), where the collisions are treated as discrete events,
and ii) force model method, where the impacts are treated
in terms of forces affecting during the finite-duration impact
(“soft sphere” collisions).

1.3.1 Instantaneous Impacts

In most local simulations (Wisdom and Tremaine (1988),
Salo (1991, 1992b,a); Richardson (1994)) an impact model
with instantaneous velocity changes has been used. This is
well justified, as the contact time in impacts is probably less
than one second (Bridges et al., 1984), or of the order of
1075 orbital periods. Below we summarize the equations for
the velocity and spin changes in impacts, following from the
specified elastic model and the conservation laws of linear
and angular momentum. The equations are first derived in
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an inertial frame, and then we discuss the slight modifica-
tions required when a local rotating frame is used.

1.3.1.1 Contact dynamics

The pre-collisional position, velocity, and spin vector of the
impacting particle are denoted by 7, 7 , and dJ, respectively,
and its radius and mass by R and m. The impact partner
is distinguished by the subscript 1, and the post-collisional
quantities by a prime. We define

T o= -7,

. 7 -7

k = ——— 1.12
R (1.12)

standing for the velocity difference of the particle centres,
and for the unit vector in the direction joining the particle
centres. For an impact to take place ¥ - k < 0. The pre-
collisional velocity difference at the contact point, taking
into account the spins, is

G = (11— Ri&1 xk)— (F+R& x k)
= ¥— (R&+ Ri&) x k.

(1.13)
(1.14)

The post-collisional contact velocity §’ is determined by the
impact model, giving its components in three orthogonal
directions k, k x (g % E), and § x k, of which the last two lay
on the impact plane; unit vectors in these directions will be
denoted by ET and EW, respectively. Note that these vectors
form a right-handed system. We use the notation

G =—enkk-G+e kx (Gxk)+ey Gxk,  (1.15)
which implies

kg = —enk-g,
Ex (G ' xk) = ekx(§xk) +e gxk (1.16)

Thus ey denotes the coefficient of normal restitution, and
if ey = 0, then ey corresponds to friction. For totally elas-
tic impacts en = 1 while with €5 = 0 the post-collisional
perpendicular velocity difference vanishes. Similarly ¢ = 1
means a frictionless impact while if ¢ = 0 the whole tan-
gential velocity difference at the contact point is lost. Note
that en = ¢¢ = 0 does not imply sticking of particles as
the orbital motion is free to separate them. In principle,
—1 < € < 0 is also physically meaningful, corresponding to
reversal of tangential velocity difference (Shu and Stewart,
1985). A non-zero ey can be used to describe the effect of
surface irregularities, giving rise to a post-collisional velocity
component perpendicular to both k and g. If included, ey
needs to be a random variable with a zero mean, and since
surface irregularities affect also in the direction of k x (§x E),
a similar random component needs to be present in €.

The collisional changes of particles’ velocity and spin vec-
tors,

/

2, . :, =/ .
=7 -7, AT =71 — 71,

=y

A
A

g -3, AG =3 - (1.17)

&1
Il

are determined by the conservation of linear momentum

mi +mii] = mi +mi7y, (1.18)

and the conservation of angular momentum

N N -/ - -
mr X r 4+ miry XT1+Jw/+J1w/1

= mMFXT +mF X714+ J 3+ J1d) (1.19)

where J and J; denote the particles’” moments of inertia.
These equations can be written in a more compact form

MAF +miAF =0 (1.20)

mi X AF+miF X AF) + JAG + J1AG =0 (1.21)

Together with the model for §’ (Eq. 1.15), the conservation
laws provide nine conditions for the six post collisional ve-
locity components and six spin components. The remaining
three relations are obtained by determining how the change
of spin is distributed between the two particles. Since the
forces acting on both particles are identical except in their
sign, the torques during the impact are proportional to the
particle radii,
JAG  J1AG

R R (1.22)

To simplify the notations in solving the above set of 12
equations, Egs. (1.15), (1.20) - (1.22), we define

7 = Ra, (1.23)

(1.24)

q_:S = §+ 51 ’
J = amRQ, J = almlR%.

@1 = Ry,

Thus ¢ denotes the surface velocity due to spin rotation,
and « describes the internal mass distribution of particles;
for homogeneous spherical particles « = a3 = 2/5. From
Egs. (1.20) and (1.22) we find

Af= -0 Aj A7 =1 Ag, (1.25)
m+mq ma +miog
: m mao
AP — AT, AGg = ————— AGs. (1.2
= AT AG e (1.26)

Inserting these in Eq. (1.21), using 7 = 7+ k(R+ R;) yields

Ads = meg (i - ) AT X k= fAT X k. (1.27)
mao mio
Here
mim
=— 1.2
Meff m4+ my ( 8)

is the effective mass of the pair. In the case of particles with
the same internal mass distribution the factor f reduces to
f = 1/a, which equals f = 5/2 for homogeneous spheres.
The change of the relative velocity at the point of contact
can thus be written (from Eq. 1.14)

/ —

—§ = AT—AG xk
AT+ [k x (AT xE).

Ag =

Qy

(1.29)
Solving for Av gives
AT=AG kk+ 1+ )" (Ag- ek + A EWEW) , (1.30)

and inserting the components of Ag which follow from the
impact model, Eq. (1.15),

AG=—(1+en)F-kk+ (ex — 1)k x (G x k) + ey x k (1.31)
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finally gives
Av= — (1+e€en)g- kk

[l—eth( xl;:‘)—ev(g'xlz)}.

= o

(1.32)

We have used (1+ f)~! = 2/7, the value for homogeneous
spheres. From Eq. (1.27) we obtain

Ady =2 [(1— )@ x B) + ey (F x (3% F)]

- (1.33)

The changes for the individual particles are now obtained
from Egs. (1.25). Note that in the case with no friction
(et = 1) nor irregularity (ey = 0), the changes of velocity
are independent from spins and no change of spins occurs.

1.3.1.2 Energy dissipation

The total kinetic energy of a colliding pair of particles con-
sists of translational and rotational parts
E= Ekin +Erot -

1 -2 -2 1 5 N
Q(mr +mi71)+ g(maq 2 rmiard ?)

(1.34)
With the centre of mass velocity
N mF +mi7
= = - 1.35
Ve m+m ( )
the translational part can be written as
1 ) )
Ekin by (m +m1)ve +meg?” ), (1.36)
and since v is conserved,
1 2
AEkin = imeffA(v ) (137)

The rotational contribution can be decomposed in a similar
manner by defining

L mad —miol q1

Gc = Tmatmia; (1.38)
leading to

Erot = % (ma+mia1)d.> + mj‘jﬂ gs > (1.39)
Since @ is conserved, we have

AByor = 5 AG?), (1.40)

As Ags = fAU X k, the total energy change is

AE = %mcﬁ- [zv- AT+ (AD)2 + 20T x k- Gs + f(k x AD)?
1 o A _ e -
= Meft [Zg CAT+ (AD)? + fk % Av)2] . (1.41)
Inserting A¥ from Eq.(1.30) gives
1 2 1 2
AE = —gmef Agn”™) + mA(Qt )| (1.42)

-

where gn = |§- k| and g; = |k x (§ x k)|. In terms of the

impact model we find

1
AFE = — imeﬂc [(1 — e%)gnz

+ ﬁ (1—(€t+€fy)2_€'y)gt },
where we have also explicitly included the random compo-
nent €/, present in €;. Note that the factor (1 + Nt
by including the exchange of energy between rotational and
translational motions. The use of ¢; to account for friction
without including particle spins, would correspond to setting
f =0, thus leading to an incorrect amount of dissipation.

(1.43)

enters

1.8.1.3 Surface irreqularities

In principle, irregularities can be described in terms of e,
but this treatment has some caveats. Namely, a realistic im-
pact model must have AE < 0. With e, = e’7 = 0 the energy
change implied by Eq. (1.43) is guaranteed to be negative
for all 0 < en < 1,—1 < ¢ < 1, but if irregularity is in-
cluded, the allowed range of ey and ei, depends on €n, €,
and the ratio gn/g:. This makes it hard to interpret the
physical meaning of the model. An alternative description
for small-scale irregularity was introduced in Salo (1987a,b),
where the actual normal vector of the impact plane, E*, is
allowed to deviate from k by a small random amount in each
impact,

k*=k\1-22 -2 +7a kr +7 kv,

where v, and +;, are random variables with zero mean, and

(1.44)

using

AG=—(14en)F - kE* + (e — 1)k* x (G x k¥).  (1.45)

On the other hand, the overall shape of the particles is as-
sumed to stay close to spherical, so that Eq. (1.14) can still
be used for the relative velocity at the contact point. The
advantage of this description is that the variables 4 and
have an obvious physical interpretation, and a negative en-
ergy loss is guaranteed for any allowed impact with k*.7 < 0.

1.3.1.4 Rotating frame

The calculations presented above are valid in an inertial
frame. When using a rotating frame, with same instanta-
neous axis directions, the velocities and spins are connected
to their inertial frame values by

;o= To4nxrr,

dr = do+, (1.46)
where subscripts ; and o are used to distinguish between
the two frames. On the other hand, the instantaneous di-
rection vectors are unaffected. Thus the only differences to
Egs. (1.32) and (1.33) for A7 and A& would come through

G=7— (R131 + R3) x k. However, as
7 = Ug+7xk(R+Ry),
(RS + R1&1); x k (RG + R1@1)q x k
+(R+ Ry)7i % k,

(1.47)
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the vector § has the same expression in both frames. Thus
no modifications are needed if both, velocities and spins,
are treated consistently. Alternatively, we may use &y in the
collisional equations and add a correction term (R+ R1)7 X E
to G, as was done in Hameen-Anttila and Salo (1993).

1.3.2 Force model for impacts

The treatment of impacts in terms of instantaneous velocity
changes leads to problems if the particles do not separate
after the impact. Even in the absence of mutual gravity or
attractive contact forces, a situation can occur where the
particles have a net central acceleration toward each other
even when their post-collisional relative velocity is zero. This
corresponds to a sliding motion of the particles, before they
are eventually separated by the shear. Following Wisdom
and Tremaine (1988) such a phase is convenient to handle
with a succession of small jumps, achieved by setting e, =
1 whenever the perpendicular impact velocity falls below
a threshold value, say, 0.01nR. Since such impacts do not
dissipate much energy to start with, the energy balance of
the system is not affected by this replacement.?

However, the problem becomes more severe if self-gravity
or cohesive forces between particles are included. In these
cases impacts may lead to a semi-permanent physical stick-
ing of particles. In the instantaneous impact method this
leads to particle overlaps, unless some special measure is
applied to force a separation of the particles. Further dif-
ficulties may still arise for example if gravitational aggre-
gates are formed, in which case it is insufficient to consider
only binary impacts independently from each other. A phys-
ically motivated solution, which is also computationally fea-
sible, is to include explicitly the pressure forces affecting
the particles in the impact. In Salo (1995) this was done
in terms of the linear visco-elastic model originally devel-
oped by Dilley (1993) for the theoretical parameterisation of
his measurements of velocity and size-dependent elasticity.
Likewise, frictional forces may be included in the simulations
(Salo, 1995; Morishima and Salo, 2006). Such Discrete ele-
ment method (DEM) algorithms (Cundall and Strack, 1979)
are commonly used in granular dynamics (see e.g. Poschel
and Schwager (2005)).

The equations of motion for the impacting particles are

mit = F™P 4 F,
m1%1 = ﬁlimp+ﬁ1, (1.48)
J& = REkxF™,

JiB1 = Ry(=k) x F/™, (1.49)

where ﬁlimp = —F " yepresent the impact forces, and
F and ﬁl include additional forces affecting the particles
(central force and gravity of other particles), not causing

any torque on the impacting pair. Let us express the impact

2 Note that setting e, = 1 for g, — 0 is just a useful com-
putational trick: in reality small impact velocity favors particle
sticking, thus formally corresponding to €, = 0,¢; = 0.

force as
Flimp = fNE-i- fT];T (1.50)

with the normal force (the tangential force f7 will be treated
below)

In(§) Bi€+ B2k, £>0

= 0, £ <0, (1.51)
where
=R+ R —|F—r| (1.52)

is the penetration depth during the impact. Here 31 > 0 is
the spring constant of the restoring harmonic force, while
due to the dissipative term with B > 0 the energy stored
during the compression phase is not completely returned in
the rebound phase. From Egs. (1.48), (1.51) and (1.52),

é = —- E?
£ = b k-a-k
& = (F/m—Fi/m1)+ F"™ meg, (1.53)
which yields
Meff
with
C:(FlF>-Eﬁ-k, (1.55)
mi m

where C' contains the difference of additional accelerations
felt by the particles, as well as the change of the normal
direction during the impact.

Ignoring the term C, the solutions of Eq. (1.54) are expo-
nentially damped oscillations (impact starts at ¢ = 0 when

§=0),
€= %” exp(—wqt) sin(wt) (1.56)

where v, = 5 (0), and the oscillation frequency w and the
damping rate w, are

2 2 2
w = Wy —Wwq ,
2

wo = ﬁl )
Meff
1

wg = P2 (1.57)
2 Mg

with wg denoting the undamped frequency. The duration
of the impact (the length of the first half-cycle) and the
coefficient of restitution are

Taur = ﬂ'/w ~ 71'/"‘)0
é(Tdur) _ wWq
€n = _W = exp (—71' :) (1.58)

Thus specifying (1 /meg gives the approximate impact du-
ration, and then (3 is determined by en,

Po 2o (1.59)

TMeft (m/Inen)? +1
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Figure 1.4 The steady-state velocity dispersion in
force-method simulations using different impact duration Tg,,..
Results with instantaneous impact method are indicated by the
horizontal lines. A constant €, = 0.5 is used. In the
non-gravitating simulation (NG) elongation of impact duration
(Tper/Taur < 100) enhances dissipation, resulting in a lower
velocity dispersion. In self-gravitating simulations (SG) this
extra dissipation is compensated by the enhanced energy gain
due to gravitational viscosity, caused by the longer time the
particles spend in the vicinity of each other. For long enough
T4ur the particles may even stick together (Tper/Taur < 50),
leading to strongly enhanced gravitational viscosity. The inserts
show snapshot from the self-gravitating simulations with
different Tper /T gy, ratios.

Note that a velocity-dependent elasticity law en (vr) can also
be used in simulations: in this case the value of (2 is chosen
for each impact based on the pre-impact relative velocity vn,
of the pair and the desired ep.

In the force method the particle motion is integrated
through the impact, so that the time step is basically de-
termined to be a small fraction of Ty,,.. On the other hand,
the total span of any simulation is determined by the orbital
time-scale Tper = 27 /n. Since the physical Ty, << Tper, it
is advantageous to speed up the calculations by scaling the
simulated impact duration to be larger than the physical
duration. Otherwise most of the computing time would be
spent on calculating the motion of particles which are not
currently colliding with much smaller steps than required to
resolve their motion due tidal and self-gravitational forces.
Indeed, the most attractive feature of the above linear force
model is that the impact duration is independent of impact
velocity, and is easily adjusted via (.

However, there is an upper limit for the allowed Ty, as
the solution obtained above ignored the term C': preserv-
ing this term may change the implied elasticity. Likewise,
the maximum penetration in impacts Emaz = (Vn /)T gur
should not be too large compared to the particle size: we
may write this dependence in the form

Taur __ Emaa (i)_l
Ttper R nR ’

(1.60)

Also, if the impact duration is extended to Ty, > 1/we,
where w, is the impact frequency, the binary nature of col-

lisions is not retained. It is thus important to address what
is the maximum 7Ty, one can use. According to simula-
tion tests (see Fig. 1.4), using Ty /Tper < 1072 leads to
a practically same steady state as the instantaneous im-
pact method. Most of the simulations of Sect. 1.7.2 use
wo/n = 400, corresponding to Ty, /Tper = 1/800. In this
case Emaz /R is typically of the order of 1073 — 1072,

1.8.2.1 Surface friction

A straightforward way to include friction in the force model
is to use

fr = kpfn

in Eq. (1.51), where ky < 0 denotes the coefficient of fric-
tion. This description is quite different from using € in the
instantaneous impact model, as there is no single choice of
ks that would corresponds to a given €. To connect ky to

(1.61)

et, we write ¢ in terms of Eqs. (1.48) and (1.49) as

;}' = 13—(R1@;1+RL4L5)><E
_ 1 o imp o o imp o
= (B2 + 75 (B x F))
1 - -
= (ka+(1+f)kfkaT)7

(1.62)

where f is the factor defined in connection to Eq. (1.29),
reducing to 5/2 for homogeneous spheres; we have ignored
the extra forces due to orbital motion and self-gravity (C' =
0). Thus, the total change of normal and tangential velocity
difference are

),

Ag-kp = Zkf/ IV g
20 1y, Mett

-

Agn = Ag- IV g

Meff

T

= (1 + En)gTM

Agt =

where the force model results are identified with those of the
instantaneous impact model. Thus

7
e =1+ §kf(1+en)gn/gt (1.64)

implying ¢ < 1 since ky < 0. Nevertheless, the regime ¢; < 0
can not be handled with this model, as the frictional force
acts against the relative tangential contact velocity. In prac-
tice, if friction is strong enough to suppress the tangential
velocity difference, g+ = 0 appears as a discontinuity in the
force and the solution oscillates around e = 0.

1.3.2.2 Nonlinear impact models and adhesion

In principle, more realistic theoretical models, for both fric-
tion and normal restitution (Spahn et al., 1995) are also
available. For example, in Brilliantov et al. (1996) the non-
linear elastic collision model of Hertz (1882) was generalized
to include visco-elastic dissipation. In this case the perpen-
dicular relative motion during impacts is described by

=A% — A6%%, (1.65)

with the constants Aj, Az following from material proper-
ties. With reasonable choice of parameters this model can

= (et — 1)ge, (1.63)
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reproduce quite successfully the Bridges et al. (1984) labo-
ratory measurements of ey (vp) relation of icy particles (see
Sect. 1.7). This treatment has also been extended to tangen-
tial friction, in terms of deforming surface asperities (allows
also the reversal of tangential velocity difference, i.e. e¢ < 0;
Brilliantov et al., 2007), and to include adhesion between
particles (Albers and Spahn, 2006; Brilliantov et al., 2007).
Adhesion is included by a term of the form A3£O'75 to Eq.
(1.65), derived from considering the surface energy associ-
ated with the cohesive bonds between particles. With the
inclusion of cohesive forces the particles may stick in colli-
sions where the normal component of impact velocity is be-
low a critical threshold value v,qp, (see Fig. 1.5). According
to Albers and Spahn (2006) v,qp is of the order cm/sec for
cm-sized particles (either in mutual impacts, or in impacts
with larger particles), but drops rapidly for larger particles.

Although more realistic than the simple linear force
model, the disadvantage of nonlinear collision models is that
the scaling of physical impacts to simulations is more com-
plicated, as the impact duration will generally depend on the
impact speed. Therefore in simulations of Sect 1.7 the linear
force model is used, with the desired en (vy, ) relation achieved
by adjusting the (2 parameter in each impact according to
Eq. (1.59), while keeping the impact duration fixed. Simu-
lations of particle sticking will be briefly addressed, but in
the context of linear force model. Since the functional forms
of Egs. (1.54) and (1.65) are different, using an adhesion
term proportional to 50‘75 is not reasonable with the linear
force model (too close to harmonic force). However, adding
a constant extra attractive force F,4;, between slightly over-
lapping colliding particles can reproduce the same qualita-
tive behavior as more realistic nonlinear collision models:
impacts with vn, < vgqp will lead to sticking. In the linear
model the critical v,qy, is directly proportional to F, 4, (Fig.
1.5).

1.3.3 Search for impact pairs

The speed of the collisional simulation depends crucially
on the efficient search for impact pairs. For example, in
their simulations of non-gravitating particles Wisdom and
Tremaine (1988) used the fact that orbits between impacts
are Keplerian epicycles, and solved iteratively for the inter-
section time of each pair of epicycles. The impact of the pair
with the smallest impact time was executed with instanta-
neous velocity changes, and the post-impact orbital elements
of the pair members were re-calculated, leading to updated
intersection times with all the other particles. The system
was thus moved on from one impact to the next (the method
is called “event-driven”). Similar methods were used also in
the early simulations of rarefied azimuthally complete rings:
due to extremely long intervals between impacts elaborate
schemes were developed for detecting orbital intersections
taking place after even several hundreds of synodic periods
(Hameen-Anttila and Lukkari, 1980).

Event-driven methods are fairly fast for small particle
numbers (N =~ 50 in Wisdom and Tremaine (1988)), but
as N increases, the checking of next orbital intersections
between all N(N — 1)/2 pairs gets excessively slow. Also,

0.8 T T
r linear model: b
; — Fu/Fe=0 o—o F/F, =4
0.6 _“ O—E8 Fg/Fo =1 *%—% F/F,=8
L o—aA FoylF,=2 ]

c
w

1 2
IMPACT VELOCITY g, (cm/sec)

Figure 1.5 Effect of contact forces on e, (vy,) relation. The
thick dashed lines correspond to nonlinear visco-elastic model
from Albers and Spahn (2006): the upper dashed curve,
omitting contact forces, provides a close match to the Bridges
et al. (1984) laboratory measurements (compare with Fig. 1.11).
In the lower dashed curve, contact force is included, which for
the assumed 2 cm particle size implies sticking for impact
velocities vy, < vqqp = 0.88 cm/sec. The curves with symbols
follow from the linear force model, with various magnitudes of
constant attractive force F,g, between particles in contact. The
parameters 31 and (32 are chosen to yield e, = 0.25 in the
absence of contact forces. For the nominal value Fj,, sticking
occurs for v, < 0.17 cm/sec; for larger attractive forces,

Vadh X Fadn-

the inclusion of additional forces besides the central gravity
poses problems. Therefore, in the self-gravitating case the
equations of motions are integrated with small time steps,
and the potential intersections during each step are searched
only among the neighboring particles. Similar stepwise time
integration is advantageous also in the case of high parti-
cle density and large N, even if self-gravity is not included.
Provided that the step size is small, the distances between
particles can be expanded as a second-order Taylor poly-
nomial, providing a fast method for constructing a list of
potential impacts during the step (Salo, 1991). From this
list, the impacts during the time step are then executed as
in the event-driven method.

Regardless of the time-advancement method a consider-
able speedup can be achieved if the number of pairs ex-
amined for potential impacts is kept as small as possible.
This can be done quite efficiently by keeping track of the
maximum pre-step separation which has actually led to an
impact during previous steps, and by checking in each step
only those pairs whose distance does not exceed this max-
imum, multiplied by some threshold factor. This threshold
must be chosen in a manner which ensures that no impacts
are lost, and it also must be dynamically adjusted as the
velocity dispersion of the system evolves. A useful trick is
to sort the particles according to their radial coordinate and
choose first only pairs whose radial distances fall below the
threshold. In the optimal case, the number of pairs exam-
ined is proportional to ¢/(nR)N. Note that the actual or-
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bital integration needs not to be performed by a Taylor se-
ries: for example in Salo (1995) a fourth order Runge-Kutta
integration was utilized, and the impact locations initially
estimated by the second-degree polynomial expansion were
iteratively improved to correspond to the full accuracy of
the integration. See section 1.6 for more detailed consider-
ations of how to speed up various parts of the numerical
calculations.

It must be stressed that it is important to take correctly
into account impacts taking place over boundaries of the
local calculation region. For small calculation regions this
fraction can be quite significant, and the omission of such
impacts will considerably modify the energy balance, and
thus, all steady-state properties of the system. Also, if the
force method is used, even a single non-detected impact may
lead to large injection of energy to the system if it happens
to lead to a deep overlap on the next step. However, such
a situation is easy to detect by monitoring the &maz during
the simulation.

1.4 Calculation of self-gravity

1.4.1 Force evaluation

Inclusion of gravitational forces increases the computational
burden significantly, as in principle the forces between each
particle pair need to be included (as well as to account for
the contribution of the replicas of the local calculation re-
gion). Moreover, self-gravity typically enhances the velocity
dispersion and increases the impact frequency (see Section
1.7.2). Both factors make the collisional calculations more

2
Vgrav/(nR )
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Figure 1.6 Snapshots of self-gravitating simulations with
different sized calculation regions, after 50 orbital periods. In
each simulation 7p = 0.5, ey = 0.5 p = 900 kg/m?3, R = 1m, and
a = 100,000 km (rp, = 0.82). The width of the square-shaped
region is L/Ar = 32,16, 8,4, 2. In physical units the Toomre
critical wavelength Ay = 41.6m. The self-gravity is calculated
from all particles within a cylindrical radius Apqe = L/2.
Gravitational forces from within A,,;», = 0.25\7 are calculated
with the PP-method and beyond that with the PM-method,
using a grid spacing of Ap/16. The graph shows the
gravitational viscosity (Eq. 1.89) as a function L/Ap (averaged
between 25-50 orbits).

time consuming. These problems are especially pronounced
in the case of a weak tidal field, i.e. far from the planet,
when gravitationally bound particle aggregates form. Proper
simulation of self-gravity also sets additional constraints for
the required minimum size of the calculation region, since
it must exceed the scale of the self-gravity wake structures
formed via gravity (roughly of the order of Toomre critical
wavelength A7, see Fig 1.6). In practice this means using
at least 10* — 10° simulation particles. On the other hand,
for non-gravitating spatially uniform systems a fairly mod-
est particle number (102 — 103) is usually sufficient to give
the steady-state properties with a good accuracy.

The most straight-forward way of force evaluation is the
particle-particle (PP) method, using a direct summation
over particle pairs. The obvious advantage is that no approx-
imations are involved, the gravitational field correspond-
ing exactly to that implied by the particle ensemble. The
method can also be fairly efficient (Daisaka et al., 2001)
when using a special-purpose processor, like GRAPE, with a
hardware calculation of gravity forces (Makino and Funato,
1993). With standard-type processors the implied N? time
consumption becomes prohibitively large for a few thousand
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Figure 1.7 The near (PP) and far (PM) contributions to
self-gravity, measured in terms of gravitational viscosity (Eq.
1.89), are compared for different dividing distances A, ip.
Simulation parameters are the same as in the previous figure,
and the total extent of the simulation region is 4Ap X 4Ap. The
rightmost point corresponds to using solely PP method. T'wo set
of simulations are shown, with Ay /16 (thin lines, open squares)
and Ar /32 (thick line, filled circles) PM grid spacing. Within
error bars, the total vgrqy is the same in all simulations.

particles, so that other methods are needed. Also, due to
partial cancellation of distant forces it is in fact unnecessary
to calculate the contribution from distant particles with the
same accuracy as that of the nearby particles.

This fact is utilized in hierarchical tree-codes, where the
distant particles are grouped together in force calculation,
so that only few low order moments of their distribution are
included (see e.g. the galaxy simulation codes described in
Barnes and Hut, 1986; Hernquist and Katz, 1989). The es-
sential part of the method is the efficient construction of the
connected particle lists (“tree”), leading to a N In N depen-
dence of the CPU-time consumption. Richardson (1994) first
applied this method to self-gravitating rings. On the other
hand, N-body simulations of galactic dynamics often employ
particle-mesh (PM) method (see Sellwood, 2014): the den-
sity of the system is tabulated in a regular mesh, and the
forces (or gravity potential) at each mesh location are eval-
uated by convolving the density with the interaction law,
and then interpolating to the particle locations. The speed
of the method relies on the use of a Fast Fourier Transform
for performing the force convolution, and in the optimal case
the CPU-time consumption of gravity calculations is deter-
mined mainly by the interpolation of forces, being linear in
N. In current large-scale cosmological simulations the tree
and PM methods are often combined (Springel, 2005).

The important difference between planetary rings and
galaxy disks is that binary gravitational encounters between
ring particles are not insignificant compared to the mean
gravitational field (rings are not ’collisionless’). Therefore
the smoothing of forces implied by the gravity mesh (or by
explicit gravity softening) is incorrect. On the contrary, the
most important contributions from self-gravity come from
the fluctuating gravitational forces exerted by the nearest
neighboring ring particles (within ~ Ap, see Fig. 1.8).

An obvious way to speed up the calculations, while retain-
ing the accurate treatment of nearby gravity encounters, is

to combine PP and PM methods, for example in a manner
that was employed in Salo et al. (2001). In this treatment
the gravitational force exerted on each particle is divided in
a nearby and distant contribution,

F_:i _ F;inear n F;ifar’
— /r_-’ _ 77
E o= e Y my (1.66)
Aij<Apmin ‘7"]‘ o T'L|
= e e Il (1.67)
A>Apin |7 — 7]

where A denotes the projected 2D distance in the xy-
plane. The near contribution is calculated by direct particle-
particle summation, in order to include accurately the effects
of close gravitational encounters, as well as the gravitational
sticking of particles. Typically Ain << L, Ly, so that just
a few percents of all N(N —1)/2 particle pairs are involved.
The latter, usually smaller distant contribution is calculated
with a particle-mesh method.

An efficient way to calculate the PM contribution is to
use FFT in a sheared coordinate system, defined by the

transformation
u = x,
v = y—tsx mod Ly, (1.68)

where ¢ is the time since the beginning of the simulation
and s = —%n in the Keplerian case. In these coordinates
the Egs. (1.8) for the image particles transform into

/
u =

/
v

U+ ng Ly,

= v+ nyLy. (1.69)

indicating that the system is double periodic in the pla-
nar directions. We define a 3D Cartesian mesh with m, X
my X mz cells, and tabulate the mass dm(u,v,z) in each
cell by a cloud-in-cell (CIC) assignment. The size of the
cells is denoted with Awu, Av, and Az. In planar direc-
tions the mesh has the same size as the calculation region,
lu| < Lz/2,|v| < Ly/2. The vertical coverage of the mesh,
|z| < L./2, can be either a constant, or varied according to

the vertical thickness of the system, using L./2 = k. \/2:2,
for example with k. = 3: the small fraction of particles with
|z| > L»/2 contribute insignificantly to the total density
and can be ignored. The force on each cell center (labeled
with i, 7, k) is obtained with a convolution over other cells
(labeled with I, m,n)

Fi,j,k = Z 5ml,m,n Fl—i,m—j,n—k

lm,n

(1.70)

where T' (with same number of elements as dm) denotes the
Green function for the gravitational interaction between the
cells. Written in terms of the newly defined coordinates,

Cope = G [aAu, b(Av + stAu), cAz] /dabc3 (1.71)
with

dupe = [(aAu)2 + (b(Av + stAuw))® + (cAz)2] 1z (1.72)
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To exclude the near contribution I',p. is set to zero for
(aAu)? + (b(Av + stAu))? < Apin’.

If carried out by direct summation, the convolution in
Eq. (1.70) would require o (mymymz)? operations. Even
for moderate spatial resolution this would mean an exces-
sive number of calculations (even larger than that for the
direct summation over all N(N —1)/2 pairs). It is therefore
essential to utilize the Fourier convolution theorem, accord-
ing to which the inverse transform of mesh forces equals
the product of the inverse transforms of density and Green
function,

ﬁi,j,k = 6ml,m,n 1::lfi,mfj,nfl»c' (1'73)
In order to be able to apply the convolution theorem, we
double the mesh size in the vertical direction, padding
the extra cells with zeros. Using a Fast Fourier Trans-
form, the number of calculations becomes proportional to
(muy Inmy) (my Inmy ) (2m2 In 2m: ), making the method fea-
sible. The forces at the particle locations are interpolated
from the grid, with the same CIC-assignment as in the
tabulation of density. The forces on the few particles with
|z| > L./2 are calculated with an extrapolation from the
grid. In this manner the force on each particle is due to the
density in the region which corresponds in size to the whole
original rectangular calculation region (see Fig. 1.3). If a cir-
cular region is desired (to avoid any artificial 'polarization’
of forces due to corners of the region) we can set the I'gpe
to zero beyond some distance Apaq (< max{Lz/2, Ly/2}).

Figure 1.7 shows the gravitational viscosity (Eq. (1.89))
from 4Ap X 4Ap simulations where different dividing dis-
tances A,,in between PP and PM methods are used, con-
firming that similar results are obtained in all cases. How-
ever, the gravity calculation is about 10 times faster when
using PP4+PM with A,,;n/Ar = 1/8 in comparison with
using just the PP method to calculate gravity from within
2A7. For larger calculation regions and particle numbers,
the gain in speed becomes even more important.

1.4.2 Approximate treatments of self-gravity

Fully self-consistent calculation of particles’ mutual gravity,
as described above, is quite CPU time intensive. Wisdom
and Tremaine (1988) devised a simple method for mimicking
self-gravity in terms of an enhanced vertical frequency n, >
n in the dynamical equations. They estimated the vertical
self-gravity inside the ring layer from Poisson’s equation,

T () = —47r(,§20

—Zz

Fsg(z) = —2nG z, (1.74)
where the ring is approximated with a homogeneous infinite
layer with a vertical half-thickness h and constant surface
mass density ¥p. Combining with the vertical component of
the central field, F. = an,z, gives

F.(z) = — (n2 + 47ri20) z = 7nz22

Most of their simulations used a constant n./n = 3.6, which
corresponds to Fsg/Fe &~ 12, assumed to approximate the
enhancement in vertical gravity due self-gravity in the dense

(1.75)

B-ring of Saturn. Such a treatment mimics qualitatively
quite well the effects of vertical gravity, like the enhanced
impact frequency (see Sect. 1.7), which leads to strongly
increased non-local viscosity, thus promoting viscous over-
stability. Indeed, the use of n./n > 1, even if not realis-
tic for exploring the full effects of self-gravity, is a useful
method when analyzing overstability in terms of hydrody-
namic transport coefficients evaluated from N-body simu-
lations (Salo et al., 2001; Schmidt et al., 2001). Neverthe-
less, since the approximation ignores the planar components
of gravity, which are responsible for the emergence of self-
gravity wakes, it is questionable how useful it is for describ-
ing real systems in any quantitative way. Also, the originally
used enhancement factor 3.6 is likely to overestimate the
vertical field considerably, since it is based on space density
ps = Y0/(2h) = 400 kg/m? inside the ring layer (Wisdom
and Tremaine, 1988). For example, with the current esti-
mate ¥9 ~ 700kg/m? (Hedman and Nicholson, 2016) this
would correspond to unlikely small vertical thickness h ~ 1
meters.

Another useful approximation can be applied to the cal-
culation of axisymmetric component of self-gravity, in terms
of a superposition of infinite plane waves. We first make a
radial Fourier decomposition of the tangentially averaged
surface density

1+ i A cos (mi—i(x - xm))] . (176)

m=1

3(z) =X

where A, and x,, are the fractional amplitude and phase
of different m-components with wavelengths A = Lz /m. We
then treat each component as an infinite plane wave, and
use the Poisson equation for an infinite 2D sheet to calculate
the corresponding radial force. Superposition of modes with
different m gives

Mmax
Fr(z) = —21GXg Z Am sin [mi—ﬂ(x - (1.77)
m=1

x

om)].

A finite mmaqz 1s used in order to suppress small scale noise.
Such a treatment was applied in Salo and Schmidt (2010) to
compare viscous instability in N body simulations to Schmit
and Tscharnuter (1995) hydrodynamic predictions in the
case axisymmetric self-gravity is included.

1.4.3 Time integration

In the force method the basic timestep of integration is de-
termined by the need to resolve the rebound of individual
particle pairs. Depending on the chosen spring constant of
the restoring harmonic force, this requires time step of the
order of AT, = (0.01 — 0.1)Tgyr ~ (107 = 107°)T, 4,
where T}, is the impact duration. On the other hand, self-
gravitational forces are practically constant over such sort
time scales. To speed up calculations, one can therefore use a
larger time step, say ATgrav ~ 1073T(,Tb7 for updating the
gravity forces. This simple method works well in the case
of gravity wake structures: the errors made in keeping the
self-gravity constant tend to cancel each other on the aver-
age. However, when particles stick physically, this method
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may lead to artificial destabilization of gravity aggregates
via rotational instability (Karjalainen and Salo, 2004). This
is solely a numerical artifact, rising from the fact that then
the force integration errors do not cancel each other, but
lead to a net torque on particles attached to the aggregate.
As illustrated in Karjalainen and Salo (2004) a totally suf-
ficient remedy is to calculate both the forces and their time
derivatives at the beginning of each gravity step, and then
apply linear extrapolation of self-gravity during the step.

1.5 Extracting quantities from simulations

The fundamental® quantity describing both the dynamics
and observed structures of Saturn’s rings is the dynamical
(geometric) optical depth, defined as the total surface area
of particles divided by the total area. For identical particles
with radius R

NrR?
LoLy

D = (1.78)
One of the main advantages of the local method is that the
optical depth (and surface density in case of self-gravitating
particles) of the system is fixed. Thus, after the establish-
ment of local energy balance, all dynamical properties char-
acterizing the steady-state corresponding to this 7p can be
obtained with an arbitrary accuracy, by time averaging over
sufficiently long time intervals over all particle orbits and im-
pacts. The efficiency of time averaging was strikingly demon-
strated in Wisdom and Tremaine (1988), who made a prac-
tically complete study of identical, non-gravitating particles,
up to 7p ~ 3, using experiments with only N = 50 particles.

1.5.1 Steady-state quantities

The interesting dynamical quantities include the impact fre-
quency we, the velocity dispersion tensor @a 3, the pressure
tensor ]3(15 and shear viscosity n = 7(1/5)13%. Other im-
portant properties are the geometric thickness H, and the
volume filling factor D3(z), useful for connecting the dynam-
ical estimates to photometric observations of rings. In non-
gravitating case the steady-state values of all these quanti-
ties are determined by the optical thickness of the system
Tp, the size distribution of particles N(R), and their elastic
properties €n, €;. The effects of self-gravity depend on the
internal density p of the particles, and the planetocentric
distance.

The extraction of the impact frequency we is straight-
forward both in the instantaneous impact and force
method (total number of impact detec-
tions/particle/time interval, divided by factor 2 to avoid

simulations

counting twice the same impact), as long as the tendency

3 Observationally the importance comes from the close corre-
spondence of 7p to the normal photometric optical depth 7, ,
which is the quantity inferred from occultation experiments: in
the limit of homogeneous low filling factor systems 7p and 7, are
identical. However, in a typical case of non-homogeneous and/or
high filling factor rings they generally differ, see Sect. 1.11.2.1

for particle sticking is weak (weak to moderate self-gravity
not leading to bound aggregates). In the calculation of
impact related mean values, like the average of €, in the
case of velocity dependent elasticity, one can weight with
vn, to exclude the contribution of possible sliding motion, if
described by small, totally elastic rebounds in the instanta-
neous impact method.

The flow of momentum across the ring consists of a lo-
cal contribution, related to the momentum carried with the
particles during their random motions between successive
impacts, and of a nonlocal contribution, arising due to mo-
mentum transferred via impacts or via gravitational forces,
between particles at different radial distances (Wisdom and
Tremaine, 1988). We denote the particle positions by 7 and
their random velocities by ¢ = 7 — 1, with @ standing for the
mean flow velocity at 7. For simplicity, we restrict our at-
tention to the case of a linear shear profile 4 = smé’y, where
é'y denotes the unit vector in the tangential direction.

By definition, the components of the pressure tensor P,g
give the amount of the 8-component of momentum trans-
ferred in the a-direction, per unit area and unit time. When
evaluating the momentum flow in simulations, it is conve-
nient to include all particles and impacts, regardless of their
vertical coordinate. This corresponds to a vertical averaging
_ o0
Pog = / Pus dz (1.79)

—0o0
From hereon we denote ﬁa 3 simply by ﬁag, thus having the
units of momentum/unit time/unit length.

The local contribution to the pressure tensor is obtained
by adding the momenta pg = mcg of the N particles, mov-
ing with velocity co with respect to the mean flow,

N

1 -
Paﬁlocal o Z(Ca)i(mcﬁ)i = Ny mcacg, (180)
[

T A
where A, is the area of the simulation region and Ny =
N/A, denotes the surface number density. The bar indi-
cates average over particles. Once the steady-state has been
achieved, one can improve the accuracy by averaging over
arbitrarily long time intervals.

The standard formula for nonlocal momentum transfer is
(Wisdom and Tremaine 1988)

1 Z Ara m>6cﬁ>,

P nl -t
o AoAt impacts

(1.81)

where the summation is over all impacts occurring during
the time interval A¢, and m> 505> denotes the change of the
momentum of the particle with the larger r in each impact,
and Ar, the absolute difference in the ro-coordinates of the
impacting particles. However, application of this formula is
problematic in the case of strong particle grouping, as it may
be difficult to identify the separate impacts. For the case of
force-method impact calculation, the collisional change of
momentum is

m>6c[3> = /T
d

where Fg denotes the impact force felt by the particle with

Fg_dt, (1.82)

ur

the larger ro coordinate, and Ty, is the duration of the



14 Salo & Ohtsuki € Lewis

impact. By defining
_ ij
=2 >
K3

J
(ra)j>(ra)i

(1.83)

where F stands for the impact force exerted by particle
i on the particle j, with Fi # 0 for colliding, overlapping
pairs, and zero otherwise, the integral (1.82) can be extended
to the whole interval At, also covering the possibility of par-
ticles experiencing multiple simultaneous impacts, or even a
permanent sticking of particles. Summing over all particles
then gives an equation corresponding to Eq. (1.81),

P = (Y S (- CaEs ) s

(ra)j>(ra)i

where the average is taken over an arbitrary time interval.
Furthermore, Eq. (1.84) can obviously be generalized to the
momentum flow due to long-range forces, e.g in the case of
self-gravity,

P = <Z Z

(ra); >(Ta)¢
((ra)j = (ra)i)((rp);

7 = 7l

—Gmym, — (r3)i) > (1.85)

Likewise, F% can be identified with adhesive forces, Eq.
(1.84) then giving their contribution to the nonlocal pres-
sure. In the case of well defined separate impacts, Egs. (1.81)
and (1.84) give identical results for the nonlocal pressure
tensor.

The corresponding contributions to the (vertically inte-
grated) dynamic shear viscosity are readily evaluated from
n = —(1/s)Pi2. In the case of Keplerian shear, s = (—3/2)n,
and we have

2 [
Mocal = ?N2<mcmcy>, (1.86)
Tl = 5 A A > msAzs (Gey)s (1.87)
impacts
2 1 J
_37147 Z Z A$> F (188)
ac]>z1
— i) (y; —yz)>
rav — Gm im; —————————
" < Z ! ey
m]>m1
(1.89)

The kinematic shear viscosities are obtained from these,
dividing by the surface mass density of the system ¥ = Nom.
In particular, in the case of identical particles (Wisdom and
Tremaine, 1988)

2

Viocal %Cmcyv (1.90)
2 1

impacts

The above formula for gravitational viscosity is identical
to that in Daisaka et al. (2001). Fig. 1.8 shows the contri-

1,=0.5 8A;x8A;

a) 2

b)

5.00

1.00

Ay,
o

Vgay (<0) [ R?]

Figure 1.8 a) The contributions to gravitational viscosity (Eq.
1.89). The contours indicate the mean torque density exerted
from relative location (Axz, Ay): positive (white contours) by the
particles on the trailing quadrants and negative (gray contours)
from the leading quadrants. The gray scale background image is
the 2D auto-correlation function (Eq.1.95) for the same
simulation. Note the slightly larger positive net torques arising
due to overdensities in the trailing quadrants. In b) the
cumulative gravitational viscosity due to material within a
cylindrical radius A is shown as a function of A/Arp.

butions to the integrand of Eq. 1.89, arising from different
relative locations Az = 2’ — z, Ay = ¢y — y. Largest grav-
itational torques are exerted by material within ~ 0.25A7,
and almost all of vgrqv is due to particles within one Ap.

The velocity dispersion tensor is collected by sampling
the random velocity components of each particle with short
intervals and tabulating the averages values as a function of
simulation time. In particular, in Sect. 1.7 we will use the
time-averaged 1-d velocity dispersion ¢ to characterize the
dynamical “temperature” of the system

1 1 Plocal
02 = §<Cl2 +022 +032> = gt?ﬂT

where c¢1,co, and c3 are the principal axis components of
the velocity dispersion tensor. At the low optical depth the
largest principal axis points to the radial direction: at this
limit ca/c1 = ¢y/ce = 0.5 and ¢3/c; = ¢z /ce ~ 0.65. The
vertical thickness is defined as

= V12:2,

which corresponds to the full thickness of a uniform layer
with the same vertical dispersion as the simulated particle
field. At 7p ~ 0, we have H =~ 3c/n. The vertical distri-
bution can be further characterized by tabulating the ver-
tical density profile of the simulation particles. This can
be based on the locations of particle centers (Wisdom and
Tremaine, 1988), or by D3(z) indicating the fraction of vol-
ume filled by particles as a function of z (Salo and Kar-
jalainen, 2003). In particular, the filling factor at the equa-
torial plane D3(z = 0) (often denoted as F'F(0)) is useful in
comparison to theoretical treatments of dense rings (Araki
and Tremaine, 1986; Araki, 1991).

(1.92)

(1.93)
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Other hydrodynamic quantities besides v can also be ex-
tracted from simulations, like the radial heat conductivity
and bulk viscosity, and the temperature derivatives of pres-
sure, shear viscosity and energy dissipation. Such tabula-
tions were made in Salo et al. (2001) for non-gravitating sim-
ulations assuming three different values of n./n. However,
compared to the shear viscosity that can be extracted at the
steady-state, these other quantities require that the system
is perturbed and the measurement is carried out while the
system relaxes back toward the uniform steady-state. Be-
sides the technical difficulties involved, the exact relation of
the derived quantities to their hydrodynamic interpretation
is not clear. Mainly this is due to the non-isotropic velocity
distribution (see Fig. 1.15¢) following from particle’s orbital
motion around the planet. Such a distribution has more de-
grees of freedom than taken into account in hydrodynamical
treatment. Nevertheless, such ’fitted’ quantities applied to
hydrodynamic stability analysis are quite successful in de-
scribing the viscous stability properties of larger-scale sim-
ulations (Schmidt et al., 2001; Schmidt and Salo, 2003). 4

1.5.2 Characterization of self-gravity wakes

Examples of self-gravitating simulations were shown in Fig.
1.6 comparing snapshots from simulations with different
sized calculation regions, while keeping other parameters the
same. The snapshots indicated that the typical appearance
of wake structure is evident even for calculation regions as
small as 2\ X 2\p. However, comparison of gravitational
viscosity (see Sect. 1.5) indicates that the strength of wakes
is not fully developed unless a few times larger region, say
8\ X 8\ is simulated. Similarly, the spacing and pitch an-
gle of wakes is affected by the periodic boundaries: this is

4 Isothermal hydrodynamical models which ignore bulk viscos-
ity and temperature derivatives (Schmit and Tscharnuter, 1995)
give a qualitatively correct picture of viscous behavior but fail to
predict quantitatively the correct regime of viscous overstability.
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Figure 1.9 a) Fourier amplitudes |il,m| (see Eq. 1.94) in the
simulations of Fig. 1.6, as a function of wavenumbers

ks = 2w /A\z and ky = 27/\y, where A\; and A, are the radial
and tangential wavelengths. The contours indicate amplitude
levels 0.1,...0.9 times the maximum amplitude. The dashed line
indicates ky = 0.25k,, corresponding to a pitch angle ~ 14°. In
b) time averaged 2D auto-correlation functions of the same
simulations (Eq. 1.95). Solid black and dashed white contours
correspond to 16A7r X 16A7r and 8\ X 8\ simulations. Dashed
black line indicates a 14° asymptotic pitch angle.

illustrated in Fig. 1.9a in terms of 2D Fourier decomposition
of surface density5

= 2ml 2
Y(z,y) =20 Z Xy m exp ('LL—ZQU + z%y)

I,m

(1.94)

where ‘il,m| gives the normalized amplitude corresponding
to the radial and tangential wavelengths Ay = L./l and
Ay = Ly/m. In the 2Ap X 2Ap simulation the peak am-
plitude occurs at (Az, Ay) = (1,2)Ap, but when the region
is increased, (Az, \y) approaches (2, 8)Ap. This corresponds
to a pitch angle tan~1(Az/\y) ~ 14° between tangential
direction and the the average direction of wakes.

The shape and orientation of the wakes is best illustrated
in terms of 2D auto-correlation function of surface density,

1
Az, Ay) = ——
C2d( T y) EOQAO
//E(x+A:v,y+Ay)E(m,y) dxdy.

Taking the time average of this describes the typical density
structure the particle sees around its location. It can be
calculated directly from stored particle snapshots (e.g. Salo

(1.95)

5 A convenient way to calculate the amplitudes is to perform
2D FFT on the system whenever the image regions happen to
be aligned along the x-axis, which takes place 3wLy/L, times
per orbit; at these instants FFT can be readily applied as X is
periodic in both x and y.



16 Salo & Ohtsuki € Lewis

1995), or more conveniently (e.g. Toomre and Kalnajs 1991)
with the FFT, by taking the inverse Fourier transform of
the squared density amplitudes, Cog = |§l}m|2‘ Figure 1.9b
displays the auto-correlation functions, together with a line
corresponding to 14° pitch angle.

1.5.3 Energy budget in local simulations

In the steady-state, the energy dissipation rate is connected
to momentum flow by

Egiss — sP12 =0 (1.96)

where Ediss is the energy loss in impacts, per unit time and
unit area. Although this formula is valid for any shear flow,
it is instructive to check how the formula actually arises in
a local calculation region with periodic boundaries.

As mentioned in section 1.2, the quantity (Eq. 1.11)

E = Eyin + Epot + Egrav (1.97)
with
1 2 .2 .2
Egin Z omildi + i + 2) (1.98)
7
1
Epot = Zmi(nsmf + gnzzziz) (1.99)
i
1 m;m;
Egrav —SGY Y (1.100)
2 7 — 7]

is conserved along the orbital motion of particles. On the
other hand, E changes both due to crossing of radial bound-
aries and due to impacts, via changes in FE};,, while both
Epot and Egrqy remain unchangedG.

The above expression for Ej;,, using the actual velocities
of the simulation particles, includes both, the kinetic energy
associated to their random motions, E,,4, and the kinetic
energy associated to the systematic shear flow Egj e,

Ekin = Ernd + Eshear (1~101)
where
1 2 10 2, .2
Erpa = 3 Zmici = Z gmalds + (9i — swi)” + &7,
1 K2
(1.102)
1
Eshear = 3 Z m;[2sai(cy); + 57w (1.103)
1

Since E,.,q, rather than E};, is of interest in many appli-
cations, we next look how it evolves in local simulations,
subject to periodic boundaries, collisions, and gravitational
forces.

In crossing of boundaries, the random velocity relative to
mean flow is unaffected, so that AFE,.,,4 remains constant,
the change of Fy;, being associated solely with Egjeq.-. In

6 Assuming that gravitational forces are constructed using the
nearest image pairs, in which case the distances |7; — 7| are not
affected.
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Figure 1.10 Energy balance in the 4\7 X 4\p simulation of
Fig 1.6. Different contributions to viscous gain are shown
separately: in the steady-state they balance the collisional
dissipation. The small negative net value of the cumulative sum
of gain and dissipation (G+D, dashed curve) equals the change
in the total energy (AE = AE,,,4 + AEgrqv + AE,) when the
system settled toward steady-state values from an initially “hot”
state: the upper insert shows the random velocity components,
and the lower insert the various components of energy change.
The energies are shown in units of m(nR)2, where m is the total
mass of simulation particles.

an impact of a particle pair
1 R R 1 R N
55(77117)12 —|—m2v2) = 55(7711012 +m2622)
+  s[miz1(dey)1 + maza(dey)2], (1.104)

where the last term can be combined to s ma(dcy)2(x2—x1),
using the conservation of momentum (the subscript 2 la-
bels the particle with the larger radial coordinate). Summing
over all impacts during the time interval At we have

(ABpng) ™" = ABgiss —s Y m>(dcy)>Azs.  (1.105)
impacts

To obtain the change of E,.,4 due to self-gravity and orbital
motion, we use Egs. (1.97) and (1.101) to write

Ernd E — Egrav — Epot — Fspear
E — Egrav — E- (1.106)
- > mil(ns + %Sz)fﬂf + sz (Yi — s24)]
i
where
E, = % Zminz2zi2 (1.107)
i

denotes the potential energy associated with vertical mo-
tions. Since F is conserved during orbital motion, the change
of E,.,q during time interval At equals

(AE,q)"'=—(AEgrav + AE;)

t+AL
—/ Z m; [(2115 + 52)331:@
t

i

+Sj3i (yl — Sl‘i) + Sl},(yz - Sl‘i):| dt. (1.108)
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Substituting § = —2nd; + (Fy);/m; from the equation of
motion, where (Fy);/m; is the y-component of the gravita-
tional force felt by particle i, and taking into account that
Cx = X,

(AErnd)orb = 7(AEgrav + AEz)
. 3At< Zmi(cx)i(cy)i + in(Fy)i> (1.109)

Adding (AE,,,9)%" and (AE,nq)°",

AE’rnd:AE‘diss - A(Egrav + Ez) — S Z m>(6cy)>A3:>

impacts

fsAt< Zijmi(cx),;(cy)i> - sAt< Z mi(Fy)¢> (1.110)

Clearly, the summation in the last term in the right-hand
side can be arranged to a form involved in the formula for
gravitational viscosity Eq. (1.89), while the two other sums
correspond to non-local and local viscosities. Dividing by At
and A, thus gives

Ernd + Egrav + B2 = Egjos — $Pry = Egies +s°n  (1.111)

where the total viscous gain —sPzy consists of local, nonlocal
and gravitational viscosity contributions

Pry = Pwylocal +nynl + Pwygrav (1_112)

In the steady-state the left hand side of Eq. (1.111) is zero,
leading to the anticipated result in Eq. (1.96).

An example of energy balance in simulations is shown in
Fig. 1.10 for a system that starts with a velocity dispersion
exceeding the steady-state value. Initially both Emd and E,
are negative as the system cools and flattens down toward
steady-state. Also the negative contribution of gravitational
energy increases when the particles collect to dense wakes. In
steady-state, the left-hand side of Eq. (1.111) vanishes and
the rates of viscous gain and dissipation balance each other
exactly. Thus, we can obtain the viscosity of the system by
calculating Fy;ss in steady-state by N-body simulation (Salo
et al. 2001, Tanaka et al. 2003, Yasui et al. 2012).

1.6 Advanced computational techniques

1.6.1 Finding Collisions

For hard sphere collisions, where collisions are treated as
discrete events, there are two main ways of dealing with
them. One is to model each collision in order based on the
time when it should happen (e.g. Trulsen, 1972; Wisdom
and Tremaine, 1988; Salo, 1991; Richardson, 1994; Lewis
and Stewart, 2000, 2003). A second is to advance parti-
cles, check if they are overlapping, and adjust their positions
based on when the collision should have occurred (Rein and
Liu, 2012). This latter option can be faster as it is trivial to
determine if particles are currently overlapping, but it isn’t
currently clear what impact there is on results from not re-
solving and handling collisions in the order they occur.

The simplest case for finding the collision time for two
particles is to approximate their relative motion with a sec-
ond degree Taylor polynomial, using the particle positions,
velocities, and accelerations at the current time ty. Denoting
07 (t) = 7 (t) — 7;(t), we may write

5T(t) = 67(t0) + OF (o) (£ — o) + %5%@0)@ “t)? (1.113)

The impact time ¢ is found by setting |07(t)| = R; + R;.
Squaring both sides, keeping terms quadratic in time, and
rearranging gives

(67 (t0)” + o7 (t0) - 67 (t0) ) (¢ — t0)” +
267 (to) - 67 (t0)(t — to) + 67 (t0)* — (R + R;)* =0 (1.114)

If the roots of this quadratic equations are complex, there
is no collision. Otherwise, the smaller non-negative root for
t—to gives the approximative time of the next collision. The
collision time can then be iteratively improved to correspond
to the full accuracy of the orbital calculations.

1.6.2 Collision Pair Searching

The process of finding the collision time for particles can be
expensive, and for that reason, should only be done for pairs
of particles that actually have a chance of colliding during
the current time step. The computational problem of finding
pairs of particles that collide in hard-sphere simulations has
a number of similarities to calculating gravitational forces.
The brute force approach of checking every particle against
every other particle is an O(N?) operation that is easy to
code, but which is unacceptably slow for larger simulations.
Gravity calculations can be done faster by approximating
the force from particles at a distance. For collisions, one can
simply ignore pairs of particles that are too far away and
could not collide during a certain interval of time.

Salo (1991) used an approach where they kept lists of
neighbors for each particle. Collision searches only had to
run through the neighbor lists, and those lists only had to
be updated occasionally. This speeds things up significantly
for the actual searching process, but building the neighbor
lists is still an O(N?) operation. For simulations with 107
or more particles, any O(N?) operation will be prohibitively
expensive, even if it only has to be done very rarely. To get
around this, one can use data structures that allow the entire
process to be done in O(N) or O(N log N) time.

1.6.2.1 2-D Grid

The simplest approach is to make a 2-D grid of lists. Rings
are remarkably flat, so for any simulation of reasonable size,
the radial and azimuthal extent of the particle distribution
will be much larger than the vertical extent, and the use of
a grid that does resolve vertical separation is unnecessary.
The grid can be built in O(XN) time if one has a size for each
grid cell. The size of the grid cells can be selected so that
searches only need to extend out a fixed number of grid cells
from the one a particle is located in. Only having to search
immediate neighbor cells is ideal in a number of ways. To
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make this safe, the grid cell size must not be smaller than
the search radius of
Rsearch = 2Rmaz + AcAt, (1.115)
where Rpae is the maximum particle radius, A is a small
constant on the order of 5, ¢ is the 1-D velocity dispersion,
and At is the time step used in the simulation. The ideal
grid size depends on many elements in the simulation code,
and must be determined empirically, but it is possible for
sparse grids with several times as many grid cells as there
are particles to be optimally efficient.

The fact that the search radius depends on At (Eq.1.115)
has an interesting effect. For gravity, one uses the longest
time step that is numerically accurate because the total run
time scales as T'/At, where T is the total time being sim-
ulated. The run time of a collision simulation includes a
T/At factor for the number of time steps, but the amount
of work done in a time step scales as Rfeamh. Since Rgeqreh
is proportional to At, this means that there is a compet-
ing component in the run time that scales as At, which will
tend to make shorter time steps more optimal. Based on the
details of the code and the simulated system, there will be
an optimal value for A¢ that minimizes the total run time.
Note that the optimal value can change during a simulation
as the system changes due to formation of structures like
gravity wakes or perturbations from moons.

The building and use of the grid are both O(N) opera-
tions, so the time required to process collisions using a grid
scales at O(NN), assuming that the scaling is increasing the
size of the simulation cell when running a larger simulation.
Scaling the problem up in ways that increase the particle
density, such as using smaller particles for higher resolu-
tion, can lead to increases in the number of particles in the
search radius. This tends to alter the ideal value of At, and
the overall scaling of run time with number of particles gets
more complex.

1.6.2.2 Collision Trees

If the simulation is using a tree to calculate gravitational
forces, one can use the same data structure to find potential
collision pairs. The nodes in the tree have to be augmented
with some additional information beyond what is needed
for gravity calculations to help with finding collisions. This
includes bounds for the particles below that node, velocity
dispersion below that cell, and the maximum particle size
below that cell. While the grid has the advantage of O(1)
access time, the search area is basically fixed by the grid
cell sizes, which are constant over the full grid. The tree
has O(logN) access time, but in many situation it can get a
significant boost from the fact that the search radius from
Eq. (1.115) can use local values in the tree. This can be a
tremendous benefit when the simulation has a small number
of much larger particles, such as in moonlet simulations. It
also helps when gravity wakes and aggregates form, as the
particles in the wakes have small local velocity dispersion.

1.6.3 Handling Collisions

The collisions need to be handled locally in proper time or-
der as one collision can prevent or alter a later collision.
The initial search for potential collisions will produce all
the collisions that would occur during the time step assum-
ing that all particles remained on their initial trajectories.
These potential collisions can be placed on one or more pri-
ority queues so that they can be handled in the order of
when they should occur. The term “potential collision” is
used here intentionally, as these might not wind up being
actual collisions. During the search, there is no a priori way
of knowing if a given potential collision will be an actual
collision or not, so they are simply all added to the appropri-
ate priority queue. The determination of whether a collision
actually occurs only happens when it is taken off of the pri-
ority queue and handled in the manner described in section
1.3. When that happens, the velocities of the two particles
involved change, so all future potential collisions involving
those two particles should no longer be considered.

That last requirement places some constraints on what
data structures are optimal. For most applications, the op-
timal priority queue is based on a binary heap. However,
because elements move around fairly randomly in memory
as part of the binary heap operations, the act of finding
an element to remove it later is O(NN), which is unaccept-
able when you have to check for subsequent potential colli-
sions after every collision is processed. Other standard pri-
ority queue data structures like Fibonacci heaps have actual
nodes, which can be threaded through with links that allow
one to find the potential collisions involving any particu-
lar particle in O(1) time. Due to the nature of collisions,
this O(1) performance can also be achieved using a bucket
priority queue where again each node is threaded through
with links to other potential collisions that involve the same
particle. Assuming that collisions are roughly uniformly dis-
tributed in time, and that the number of collisions from one
time step to the next is fairly consistent, the bucket prior-
ity queue can provide a fairly simple structure with optimal
performance.

After a collision is processed and the subsequent potential
collisions involving those particles have been removed, new
potential collisions must be identified for each of the two
particles using whatever data structure is being used for
efficient searches. Any that are found between the time of the
current collision and the end of the time step are added to
the appropriate priority queue. This process continues until
the priority queues are empty, at which point all particles
can be advanced to the end of the time step.

1.6.4 Parallelizing Collisions

Modern computers require simulations to be run in paral-
lel to take full advantage of the hardware. The parallelism
comes in several different forms: multiple threads on a single
machine, multiple processes across machines or in a single
machine, as well as utilizing GPUs and other co-processors.

Clusters of reasonably inexpensive servers became popu-
lar as a high performance computing platform in the 1990s.
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To take advantage of this, programs need to support mul-
tiprocessing with message passing between machines. The
way ring simulations work on these systems differs a bit
based on the details of the network connections. The PKD-
Grav code (Stadel et al., 2002), which has been modified to
do rings simulations, breaks the simulation region up across
machines using the tree structure. It requires low-latency
network interconnects to work efficiently as the machines
communicate frequently. This is because machines commu-
nicate during the time step when they get to a point in the
calculation that requires information from other machines.
Caching schemes help to reduce the frequency of commu-
nication, but because of the frequency of communication,
standard Ethernet connections, which typically have high
latency, do not work well with this code.

A less flexible approach was developed by Lewis and Wing
(2002) that can only divide the simulation region along the
azimuthal direction. This method sends additional informa-
tion, including adjacent particles and parts of the tree used
for gravity calculations, at the beginning of each time step
so that no communication has to occur during a time step.
Using that additional information, each machine can run in-
dependently of the others for the duration of a time step.
This makes it possible to use higher latency interconnects
without suffering a significant speed reduction.

Beginning around 2005, nearly all workstation and server
class processors began to include multiple cores. As of the
time of this writing, it is not uncommon for these machines
to have 20+ cores. This has made it important to use mul-
tithreading, in addition to multiprocessing. In multithread-
ing, multiple threads share the same memory space and can
work simultaneously. The fact that collisions have a natural
ordering causes a challenge for multithreading. Solving this
challenge using a single shared collision queue per process
was explored in Lewis and Massingill (2006) and Lewis et al.
(2009). Not all collisions have to be handled in time order,
only those that are spatially close to one another, because
the “sound speed” of the medium limits how far information
can propagate through the medium during a time step. Col-
lisions that are spatially separated can be processed out of
order as long as they are far enough apart that the outcome
of one couldn’t alter the inputs of another.

Even more recently, graphics processors (GPUs) have be-
come highly programmable, and are now being used broadly
to accelerate calculation intensive computations such as
gravitational calculations (Belleman et al., 2008). The ap-
plicability to ring simulations is less clear, and work in this
area is still in an early stage. The primary challenge is the
dependence on ordering. Even soft-sphere methods often use
variable time step integrators where the order in which par-
ticles are processed is significant, and hard sphere methods
generally require nearby collisions to be handled in proper
time order. Some work has been done in the area of hard
sphere collisions on GPUs. The primary adjustment is the
use of many small priority queues, which are better suited
to the GPU hardware instead of a single, more complex,
priority queue (Langbert and Lewis, 2014).

1.7 Survey of simulation results

This Section collects simulation examples illustrating the in-
trinsic local dynamics of planetary ring systems. We start by
discussing the simplest case of identical, non-selfgravitating
particles, and demonstrate how the characteristics of the sys-
tem’s steady-state, e.g. the frequency of impacts and the ve-
locity dispersion, depend on the coefficient of restitution and
particle size. We show that the simulation results are con-
sistent with heuristic hydrodynamical estimates. Particles’
spin rotation, induced by surface friction and irregularities,
is also briefly examined. We then proceed to systems with
a distribution of particle sizes, and finally also include the
particles’ mutual self-gravity. Most of the non-gravitating
simulations are made with the event-driven method (Salo,
1995) described on Sect. 1.3.1, since it is typically somewhat
faster than the force method. The force code (Salo et al.,
2001) described in Sect. 1.3.2 is used in the self-gravitating
simulations of this section.
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Figure 1.11 Two velocity-dependent elasticity models
describing laboratory measurements of icy particles. The curve
labeled “frosty” is for frost-covered ice (Bridges et al., 1984) ,
en(vn) = 0.32(vy,) %234 < 1, while the curve “smooth” refers to
particles with compacted-frost surfaces (Hatzes et al., 1988) |
en(vn) = 0.90e70-22Yn 4 0.01v, 26, The normal component of
impact velocity vy, is expressed in cm/sec. The Bridges et al.
(1984) model can also be written as en = (vy,/ve) ~0234, with
ve =vp = 0.0077 cm/s.

Our main goal is to understand how the dynamic viscosity
varies with surface density, and how this relation depends on
particles’ physical properties. As mentioned above, this n(X)
relation is crucial for the large-scale viscous stability prop-
erties of the particle ensemble. For non-gravitating systems
the surface density is replaced with optical depth and dy-
namic viscosity then corresponds to n = v7p. Two models
(Fig 1.11) for velocity-dependent coefficient of restitution
are systematically compared, corresponding to laboratory
measurements made by Bridges et al. (1984; “frosty” ice)
and Hatzes et al. (1988; “smooth” ice). The former model,
with a steeper drop of e, with impact velocity leads to an
energy balance where the velocity dispersion corresponds
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to ring vertical thickness H ~ 10 meters, (when assum-
ing 1 meter ring particles), while the latter model implies
a much hotter multilayer ring with H ~ 100 meters: these
two models serve to illustrate the uncertainty in ring parti-
cles’ elastic properties.7 The viscosity versus density relation
is constructed from small-scale simulations whose radial size
is smaller than the shortest unstable wavelength so that no
viscous perturbations can grow. It turns out that the two
models predict drastically different viscous behavior: viscous
instability in the case of thick rings and overstability in the
case of flattened rings. Indeed, when the size of the simula-
tion system is made sufficiently large both viscous instabili-
ties and overstabilities can be directly verified in simulations
(see Sect. 1.8).
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Figure 1.12 Impact frequency w. in 3D and 2D
non-gravitating simulations, normalized to n7p. In a)
simulations with fixed 7p = 0.1 are compared as a function of
velocity dispersion ¢, normalized to nR; the points correspond
to steady-state values in simulations with different constant
coefficients of restitution. In b) w. as a function of optical depth
for simulations with constant e, = 0.4 (circles) and using the
Hatzes et al. (1988) velocity-dependent e (see Fig 1.11). The
vertical line indicates the 7p . for 2D systems.

7 Unless otherwise indicated, the nongravitating simulations
are performed for the Saturnocentric distance a = 100000 km. In
the case of constant e, the distance is irrelevant as all results are
expressed scaled to particle size R and angular frequency n.

1.7.1 Simulations of non-selfgravitating systems
1.7.1.1 Impact frequency

The ring system rapidly establishes an energy balance where
the collisional dissipation is compensated by the viscous
transfer of energy from the systematic orbital motion to
random motions (Sect. 1.5.3). The time scale to reach this
steady-state is determined by the frequency of particles’
mutual impacts, we. As expected, the impact frequency in-
creases proportional to optical depth 7. An important pe-
culiarity of the dynamics of dilute non-gravitating rings is
that the steady-state w, is practically independent from the
velocity dispersion. This results from the partitioning of ver-
tical and horizontal random motions via impacts. Thus for
example an increase in velocity dispersion, which in itself
would enhance we, is compensated by a corresponding ver-
tical thickening and thereby reduced space density.® Ana-
lytic treatments taking into account the anisotropic distri-
bution of impact directions and a Gaussian vertical profile
(e.g Hameen-Anttila, 1978), indicate

we ~ 3nTp ~ 20Tp impacts/orbit, (1.116)

The independence of we on velocity dispersion is illustrated
in Fig. 1.12a, together with the approximation of Eq. 1.116
(dashed line). For comparison, the figure also shows we¢ in a
2D simulation where the motion of particles is limited to the
central plane. In this case no adjustment between velocity
dispersion and space density is possible and the explicit ve-
locity dispersion dependence in we is retained. As discussed
in Salo and Schmidt (2010) this leads to fundamental differ-
ences in the viscosity versus density relations and thus the
stability properties of 2D and 3D simulation systems.

The linear dependence of w. on 7 breaks down for flat-
tened systems (en = 0.4, yielding H/R ~ 1) when 7p > 1,
in which case the particles’ own volume limits the free
space available for motion (H&dmeen-Anttila 1978). Simi-
larly in a 2D system the impact frequency increases dra-
matically when the maximum 2D packing limit (maximum
p = m/v/12 & 0.907 for identical particles) is approached.
On the other hand, for a hot 3D multilayer ring (“smooth”
ice, H/R > 1) the simple approximation holds quite well
even for 7p > 1.

1.7.1.2 Establishment of Local Energy balance

Figure 1.13 displays the time evolution of the velocity dis-
persion c in simulations with different elasticity models. For
a constant e sufficiently close to unity ¢ increases exponen-
tially with time, and clearly no steady-state is achieved”. A

8 The basic formula is we & N3cioe, where N3 is the volume
number density, c¢1 is the 1-dimensional velocity dispersion and
o the collisional cross-section: o, = 4wR2 assuming identical
particles with radius R. The volume number density N3 &~ Na/H,
where Ny = 7p /(7 R?) is the surface number density and H the
vertical thickness. Due to collisional coupling of horizontal and
vertical motions, ¢, ~ c¢1, while due to orbital motion H ¢ /n.
The explicit N3 and c1 dependencies thus cancel out, leading to
the formula 1.116,

9 These simulations must be carried out with the instantaneous
impact method, since the force method would require impracti-
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Figure 1.13 a) Evolution of velocity dispersion in simulations
with different constant coefficients of restitution ey, for

7p = 0.1. The critical value e, = 0.65 separates the thermally
stable (solid) and unstable (dashed) systems. (b) Simulations
with two velocity dependent elasticity models of Fig. 1.11,
starting from different initial states. Now the system attains a
steady-state with the final velocity dispersion depending on the
en(vn) relation: the “smooth” ice model with a shallower drop of
elasticity with v, leads to a much hotter steady-state than the
“frosty” ice model where €, drops very fast with v,

constant e, closer to zero leads to an exponential drop until
c levels at a few times nR, corresponding to a few particle
diameter thick ring. On the other hand, in the case of en(vn)
the steady-state depends on the functional form of the re-
lation. The Bridges et al. (1984) model (“frosty” ice) leads
to a flattened system very similar to en &~ 0.5, whereas the
Hatzes et al. (1988) model (“smooth” ice) leads to a mul-
tilayer ring. Fig 1.13b also illustrates the rapid time scale
of evolution: here the system forgets the initial conditions
in roughly 50 orbital periods, which for the used 7p = 0.1
corresponds to about 100 impacts/particle.

The above velocity evolution can be qualitatively ex-
plained with a simple heuristic description of the energy
balance between dissipation and viscous gain (see Stewart
et al., 1984; Schmidt et al., 2009). According to Eq. (1.111),
the rate of kinetic energy change/unit mass is

Brpa/S+ B2 /S = Bgigs /S + 57y (1.117)

Inserting the Keplerian shear rate s = —%n and averag-

ing the energy dissipation in individual impacts (Eq. 1.43;
keeping just the en contribution, and absorbing the term E.
which relates to vertical flattening into E,.,q), we can write

—k1 we 62(1 — en2)

%ch/dt
+ 92 ke — 2 hyweR? (1.118)
4 w2 +n2 ]
Vnl

Viocal

cally small Ty, for such dynamically very hot simulations, in
order to keep Emas << R; see Eq. (1.60).

where the viscosity has been written as a sum of local and
nonlocal contributions, and ki, k2, k3 are all constants of
the order of unity. The basic expression for local viscosity
iS Vipeal = weA?, where X is the radial mean free path be-
tween impacts. In the high impact frequency regime the im-
pacts limit the mean free path to A ~ ¢/w. while for low wc
an upper bound is set by the amplitude of epicyclic excur-
sions, A ~ ¢/n. Combining these estimates (Goldreich and
Tremaine, 1978b) leads to the form in Eq. (1.118). For the
non-local term the A is set equal to the particle radius R.
The Eq. (1.118) describes qualitatively quite well the sim-
ulated behavior for a given elasticity of particles. In particu-
lar, if the system is very hot, ¢/(nR) > 1, the nonlocal gain
term can be ignored. In this case both the gain and dissi-
pation terms in the right hand side are proportional to .
Thus, no balance is possible unless e¢n equals a critical value
€cr, which (approximating we ~ n7p) depends on the optical
depth via the well-known Goldreich-Tremaine formula

(1-ead)(1+7p2) = 92 < 0.61.

T (1.119)

If the constant ey > €cr, velocity dispersion increases con-
tinuously, as the dissipation is too weak to balance the local
viscous gain. Similarly, if the constant en < €cr, then dis-
sipation exceeds the local viscous gain, leading to reduced
c. The eventual steady-state is determined by the nonlocal
gain implying a final ¢ o« nR. According to Eq. (1.119),
€cr &~ 0.65 for 7p — 0, in good agreement with the low 7p
simulations of Fig. 1.13. In the case of velocity dependent
€n, the behavior is different, since the effective value of e,
depends on the average impact velocity ~ c. In the limit
Vigeal > Vni (equivalent to ¢ > nR), the steady state c
would be adjusted to a value that yields e,g = €cr, where
€off is the weighted mean of en(vp) in impacts.

Figure 1.14 shows the Goldreich-Tremaine ec as a func-
tion of 7p, delineating the thermally stable (en < €cr) and
unstable (en > €cr) regimes. When 7p is increased, less and
less dissipation is needed for a thermally stable state to exist,
so that ecr approaches unity. This follows from the weaken-
ing of the local contribution to viscous gain, due to reduced
mean free path A as 7p increases. Similarly, in the case of a
reduced central shear rate, the ecr would rise toward unity
in order to compensate for the less effective viscous gain (for
example ecr &~ 0.85 at 7p — 0 for a flat rotation curve with
s = —n; dashed line in Fig. 1.14).

Also shown in the Fig. 1.14 are mean values of e, mea-
sured from simulations. Open symbols show simulations
which lead to a dynamically hot steady-state with ¢ > nR,
thus mimicking the conditions leading to Eq. (1.119). In this
case the agreement with theoretical approximation is quite
obvious. For comparison, filled circles show mean ey in simu-
lations which lead to a steady-state with ¢/(nR) not far from
unity: in this case both local and nonlocal viscous gains are
important, and the steady-state dissipation rate is larger
(mean e, closer to zero) than implied by the Goldreich-
Tremaine formula which takes into account only the local
viscous gain.
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Figure 1.14 Thick solid line is the Goldreich-Tremaine ecr(7p)
relation; thin solid line is the e from (Hameen-Anttila, 1978).
Systems with constant e, < ecr(7p) (shaded region) flatten
toward a stable near-monolayer state, while those with

en > ecr(Tp) disperse via growing random velocities. Dashed
line shows an approximate critical curve for a flat velocity field
with s/n = —1 (obtained by replacing 9/4 with 1 in 1.119).
Open symbols indicate effective mean values of €, in
dynamically hot simulations with ¢/(nR) > 1 (Bridges-type
elasticity formula with v, = 100vg = 0.77 cm/sec). For
comparison, solid symbols indicate effective €, in simulations
with the original Bridges elasticity law. Note that the effective
mean of ¢, depends on how impacts are weighted (Salo, 1987b);
here we use eo =< €n(vn)vn? >/ < vn2 >.

1.7.1.8 Steady-state as a function of optical depth

Figure 1.15 collects the various steady state properties as a
function of 7p, for the above two en(vn) models. As men-
tioned earlier, the main difference between the models is the
about 10-fold larger velocity dispersion for the “smooth” ice
model at the low 7p regime. This follows from the shallower
slope in the en(vy) relation, indicating that on the average
much faster impacts are needed to yield the required dissi-
pation rate. When optical depth increases, there is a strong
drop in the c¢: this results from the above mentioned reduced
local viscous gain: energy dissipation rate adjust by reduc-
ing the average impact velocities. This was illustrated in Fig.
1.11 by indicating the effective en values a hot system ad-
justs to when 7p = 0 and 7p = 1, implying a factor ~ 3
difference in average impacts velocities - this corresponds to
the drop of ¢ in Fig. 1.15a. For the “frosty” ice model there is
hardly any change of ¢ with 7p: this is because the nonlocal
gain term dominates for all 7},s. For the “smooth” ice model
the large drop in c¢ reflects also in the strong flattening of
the system and the drop of local kinematic viscosity.

The resulting viscosity versus density relations is quan-
tified in Fig. 1.15d where the slope 8 = dlogv/dlogTp is
displayed. Values of 3 < —1 correspond to negative dn/drp,
the condition for wviscous instability (collision-induced mo-
mentum flux tends to enhance density fluctuations; see Fig.
1.28 for a schematic illustration). In principle 8 > —1 in-
dicates viscous stability (collisions smooth density fluctua-
tions). However, particle simulations (Salo et al. 2001) and
hydrodynamical models (Schmidt et al 2001) indicate that
for B = 1 the system may be prone to wviscous overstabil-

ity. The “smooth” ice elasticity model implies instability for
0.7 < 7p < 2, while the “frosty” ice fulfills condition for
overstability if 7p 2 4. We check these predictions in Sec-

tion 1.8 with radially more extended simulations.
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Figure 1.15 Steady-state quantities as a function of 7p in
simulations with velocity-dependent coefficient of restitution: a)
the velocity dispersion ¢ (dashed lines include also the
contribution from nonlocal pressure, obtained by using Pnlin
Eq. (1.92)), b) the vertical thickness H, c) the kinematic
viscosity (dashed lines indicate the local contribution), and d)
the slope of v &< 7p? relation; the values of 8 < —1 predict
viscous instability and 3 2 1 viscous overstability (large filled
symbols), e) shows the axial ratios of the velocity ellipsoid c2/c1
and c3/c1, and the angle ¢ (in radians) between the radial
direction and the largest principal axis component, and f) the
central plane volume filling factor FF(0).

The lowermost row in Fig. 1.15 shows the shape and ori-
entation of the velocity ellipsoid. Regardless of the large
difference in the steady-state velocity dispersion, the prin-
cipal axial ratios are not very different for the two mod-
els. At the limit 7p — 0 the ratio ca/c; — 0.5 for both
models, being determined solely by the systematic gradient
in the Keplerian velocity field. On the other hand, the ra-
tio ¢3/c1 depends somewhat on the effectivity of collisions
in transferring energy from horizontal to vertical motions:
this ratio is smaller in the case of more inelastic models
yielding flatter systems. With increased 7p, both ca/c; and
c3/c1 increase toward unity, though even at the largest stud-
ied value, 7p = 10, the velocity ellipsoid is still far from
isotropic, even if the impact frequency already corresponds
to over 100 impacts/orbital period. Likewise, the deviation
6 of the longest principal axis from the radial direction, in-
creases with 7p, but is still below the hydrodynamical limit
m/4 even at Tp = 10. Also shown in Fig. 1.15f is the cen-
tral plane volume filling factor of the two models: for the
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Figure 1.16 Dependence of a) geometric thickness H, b)
kinematic viscosity v , and c¢) dynamic viscosity n = v7p on
optical depth 7p, for the “frosty” ice model of the previous
figure, but with different sized simulation particles. Large solid
circles in ¢) indicate viscously unstable regime. In b) dotted and
dashed lines indicate separately the local and nonlocal
contributions.

“frosty” ice model, FF(0) exceeds 0.2 for 7p > 1, while for
the “smooth” ice model the same requires 7p > 3. Compar-
ison to Fig. 1.12 indicates that this is roughly the regime
where the nonlinearity of w. versus 7p becomes apparent.

The above simulation survey for “frosty” and “smooth”
elasticity models was done using 1 meter particles. In this
case the “smooth” ice model was dominated by local vis-
cosity at low 7p, while with the “frosty” ice model nonlocal
viscosity dominated at all 7p’s. Consequently, the former
model is susceptible for viscous instability while the latter
model is not. The basic reason for the instability is the rapid
drop of steady-state ¢ with 7p, so that the dynamic viscos-
ity of dense regions falls below that of low density regions.
To remind that this behavior depends on the assumed parti-
cle size/elasticity model combination, Fig 1.16 compares the
expected behavior of the “frosty” ice model when using par-
ticles sizes of 0.01, 0.10 and 1 meters. For a rough estimate of
the relative importance of local and nonlocal contributions,
note that at 7p — 0 the local contribution tries to establish
a state with a mean ey ~ 0.65. For the Bridges et al. (1984)
“frosty” ice model this corresponds to ¢joear &~ 0.05 cm/s.
On the other hand, the nonlocal contribution maintains a
minimum ¢penlocal & PR = 0.2 cm/sec with the nominal
values of the previous figures. Thus with 1 meter particles
Cnonlocal €xceeds Cloeal by a factor of 4. However, with 1 cm
simulation particles, chonlocal << Clocal, and a strong drop
in the steady-state ¢ around 7p ~ 1 is again present. This
would again lead to viscously unstable behavior for interme-
diate Tp’s.

1.7.1.4 Surface friction and Particle spins

In contrast to the normal coefficient of restitution, relatively
few laboratory measurements exist for the friction of icy par-
ticles. According to Supulver et al. (1995) experiments, fric-
tion is weak, corresponding to tangential coefficient of resti-
tution ey ~ 0.9 in the case of relatively smooth ice surfaces
at temperatures near 100 K. Nevertheless, to illustrate the

possible effects of tangential friction we will briefly examine
the whole allowable range of 1 > ¢, > —1, the latter extreme
corresponding to the case where friction is able to reverse
the tangential relative velocity in impact. Also, as discussed
in Section 1.3, a consistent treatment of tangential friction
between freely moving particles requires the inclusion of par-
ticle spins, which allows for energy transfer between random
and rotational motions.

With the addition of frictional dissipation the steady-state
velocity dispersion is reduced, the importance of this reduc-
tion depending on both the value of ¢; and the model for ¢;.
This is illustrated in Fig. 1.17, comparing different ¢ val-
ues for “frosty” and “smooth” ice elasticity models. A fixed
7p = 0.5 is studied, but the relative effect is only weakly
dependent on 7p. The influence of ¢; is much more pro-
nounced for the dynamically hot “smooth” ice model. This
follows since the energy gain is then determined by the local
viscosity. Inclusion of friction adds a dissipation term pro-
portional to we ¢2(1 — €2) to Eq. (1.118), which means that
the effective en required for thermal balance moves closer
to unity (Salo, 1987a,b; Araki, 1988, 1991; Ohtsuki, 2006a),
thus indicating smaller c. The extra dissipation is most pro-
nounced when ¢ is close to zero, leading to minimum of
¢ near this value. On the other hand, a much smaller ad-
justment in ¢ takes place when the balance is dominated by
nonlocal viscosity (“frosty” ice model in the figure).
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Figure 1.17 Effect of tangential coefficient of restitution ¢ on
a) the steady-state velocity dispersion, and b) the energy ratio
between the rotation and random velocities. The “frosty” and
“smooth” ice elasticity models are compared for 7p = 0.5. The
solid line is the theoretical approximation (Eq. 1.122) for the
energy ratio in the limit ¢ > nR.

Friction also induces spin motion of particles, which pro-
vides a feedback of energy from rotation to random motions
(explains why the minimum of ¢ is not exactly at ¢; = 0). An
equilibrium ratio between random and rotational energies is
established when the net transfer equals zero. In practice the
equilibrium implies that the dispersion of the surface veloc-
ities due to spins follows the dispersion of random velocities

(Rw)? =k ¢2, (1.120)
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the proportionality factor k depending mainly on e, and to
lesser degree on ¢y and 7p. For a thick multilayer system the
resulting equilibrium ratio of spin and random energies can
be estimated by averaging the formula for the change of spin
energy in individual impacts (Eq. 1.43), and by assuming an
isotropic distribution of impact directions (should be valid
in the case ¢ > nR). For homogeneous spheres with

1
Erot = gm(QIQ + 922 + QS2)7

1
Erpg = Qm(qz +e? 4 e3?),

(1.121)

this yields (Salo, 1987a,b; Morishima and Salo, 2006)

Erot ~ 2(1 - ft)
Ernd 14—5(1 —et)’

(1.122)

indicating that the energy ratio grows roughly proportional
to 1 — ¢ for ¢ close to unity. At the limit ¢, — —1 a total
equipartition between rotation and random energies is pre-
dicted, in agreement with Shu and Stewart (1985). A simi-
lar result is obtained based on the three-body formalism for
dilute rings (Ohtsuki, 2006a). Based on Fig. 1.17, the Eq.
(1.122 holds quite well for the “smooth” ice model, espe-
cially in the limit |e;| — 1 where the system has the largest
velocity dispersion. For a more flattened system (“frosty”)
the simulated Eyot/E,.nq ratio is somewhat larger, reflecting
the non-isotropic orientations of impact directions.

In addition to dispersion of spins, the particles also acquire
a small residual mean vertical spin

@z ~ (0.2 —0.3)n (1.123)

(Salo, 1987a,b; Richardson, 1994; Ohtsuki and Toyama,
2005; Morishima and Salo, 2006). This mean value is only

weakly dependent on e, ey or Tp. Since \/w.2 is pro-
portional to ¢/R while @ is independent of ¢, the ratio

wz/1\/w>2 can be significantly non-zero only for very flat-
tened systems with small ¢/(nR).

1.7.1.5 Surface irregularity/deviations from spherical
shape

Almost all planetary ring simulations have assumed spheri-
cal particles. Mainly this is due to the technical simplifica-
tions it affords for detection and modeling of impacts. Also,
the need for more complicated models is not obvious, since
in many respects the effect of small deviations from spherical
shape can be expected to average out, or to be accommo-
dated by the uncertainties in the other model parameters
like the elasticity of particles. However, irregular shape may
have a significant contribution to particle spins, even if the
tangential friction is small.

The effect of slightly non-spherical shape in promoting
spin dispersion is illustrated in Figure 1.18, in terms of the
energy ratio between rotation and random motions. The
simulations use the irregularity model of Salo (1987a,b),
where the normal vector of the local tangent plane of impact
(k*) deviates slightly from the direction vector joining the
particle centers (/;) In the figure the tilts v, and ~; in Eq.
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Figure 1.18 The effect of small irregularities/deviation from
spherical shape on the energy ratio between rotation and
random motions. Simulations with different f (the maximum
local tilt of the impact plane, see the text) are compared as a
function of € for two €y (vy,) models. The optical depth

7p = 0.5. The theoretical energy ratio for mass point systems,
Eq (1.124) applies to a constant en: the gray filled areas
correspond to this approximation with ¢, = 0.5 — 0.8. The insert
shows the relative change in velocity dispersion ¢ compared to
the case f = 0. Two values of f are compared (larger symbols
f = 0.4, smaller symbols f = 0.2).

(1.44) are assumed to get independent random values uni-
formly from the interval [— f, f]: the maximum studied value
f = 0.4 corresponds to rms tilt angle ~ 10°. Such a model is
very efficient in inducing spin rotation even if the particles
are almost frictionless: for example e, = 0.99, f = 0.05 (cor-
responds to ~ 1° rms tilt) gives about the same amount of
spin rotation than e; = 0.5 for spherical particles with f = 0.
Curiously enough, the energy ratio at the limit ¢, — 1 is in-
dependent of f. The figure also shows an estimate of the
equilibrium energy ratio (again setting the net transfer to
zero; Salo 1987a), which is in good agreement with the sim-
ulation results,

Erot 2 3 (et en)1+en)+3(1—e)?
Ernd 7 (1_€t)+%f2(€t+€n) - %(1_&)2.

(1.124)

The theoretical estimate is for a constant ¢y, but the depen-

dence on €y is weak (see Fig. 1.18) This agrees with the fact
that the simulated Eyot/Fyyq are very similar for both stud-
ied en(vp) models. At the limit ¢, = 1 this approximation
predicts Erot/Epng = %(1 + €n) ~ 0.5.

Irregularity also affects the equilibrium velocity disper-
sion, the effect depending on e; and e, (see the insert in
Fig.1.18). In the case of a hot system (“smooth” ice en(vn)
model), the reduction in ¢ for f = 0.4 is close to 50% for
e; < 0.8. However, for € very close to unity, irregularity
may also slightly increase ¢ due to feedback of energy from
rotation (Salo 1987b). For a cool system (“frosty” ice en(vn)
model) the effect of irregularity, like that of friction, is much
smaller.
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Figure 1.19 In a) the geometric thickness as a function of
particle size in simulations with a power law size distribution,
dN/dr < r=9, for Rpin < R < Rmaz. Different widths of the
distribution, W = Rmaz/Rmin, in the range W = 4.64 — 100
are compared, both for ¢ = 2 and ¢ = 3. In each case Tp = 1.0
and a constant e, = 0.5 is used. In b) two different en(vy)
models are compared for the same size distribution. Dashed
lines show the effect of friction with ¢; = 0.5.

1.7.1.6 Size distribution

So far all our simulation examples have assumed identical
particles. In the more realistic case of size distribution, the
energy balance is modified by the energy transfer in impacts
(and via gravitational encounters) from larger to smaller
particles (see Stewart et al., 1984; Hameen-Anttila, 1984).
However, in contrast to gas dynamical systems this tendency
toward energy equipartitioning is opposed by the inelastic-
ity of impacts: simulations indicate that near equipartition
is possible only for particle mass ratios below about 10 (Oht-
suki, 1992; Salo, 1992a). In practice the ratio between veloc-
ity dispersion of smallest and largest is less than about five,
the maximum ratio depending on the functional form of the
size distribution and the elasticity model.

Figure 1.19a shows how the vertical thickness H of differ-
ent sized particles depends on the width W = Rmaaz/Rmin
and index ¢ of the power-law size distribution with dN/dR
R™9. A constant e, = 0.5 is used, in which case all simu-
lation quantities scale with the assumed maximum particle
size. Therefore, quantities normalized to Rpaez are shown.
For ¢ = 3 the maximum ratio in the vertical thickness of the
bin of smallest and largest particles (Hgmall /Hiarge) depends
only weakly on W, while for ¢ = 2 it slightly increases with
W. For ¢ = 2 most of the mass is on the largest particles:

consequently the influence of small particles on the largest
particles is small and H),pgc is independent of W. For ¢ = 3
each logarithmic size increment corresponds to same frac-
tion of total mass, and increasing the width W pushes Hjarge
down. The lower panel of Fig. 1.19 compares the two differ-
ent en(vn) models for ¢ = 3, W = 50, Rimas = 5m, empha-
sizing how the difference between small and large particles
becomes stronger for hot systems. In terms of steady-state
velocity dispersion, the csmanl/Clarge ® Hsmall/ Hiarge = 10
for the “smooth” model, and about 3 for the “frosty” ice. For
comparison, for a constant en — 0, the comall/Clarge =~ 1.5.
All simulations of Fig.1.19 have 7p = 1.0, but the results
are only weakly dependent on 7p (Salo 1992a).

The effect of friction on ¢ is roughly the same on all parti-
cle size bins (dashed lines in Fig. 1.19b). Also the equilibrium
dispersion of surface spin velocities, (Rw)?2 scales with 2 of
the size bin. The relatively weak dependence of ¢ on R thus

indicates that the spin dispersion \/wii2 is roughly inversely
proportional to the particle radius. Therefore, small particles
spin much faster than the large ones. This was also confirmed
by N-body simulations of self-gravitating rings (Richardson,
1994; Ohtsuki, 2005; Ohtsuki and Toyama, 2005; Morishima
and Salo, 2006). On the other hand, the residual mean spin
is always a fraction of n independent of particle size. There-
fore, while the mean spin of the largest particles can be
significant compared to its dispersion, the spin axis of the
smallest ones are always practically randomly distributed.
For an illustration of progradely rotating large particles em-
bedded in a population of randomly oriented small particles,
see Salo(1987b).

1.7.1.7 Adhesive forces

Figure 1.20 displays an example of simulations with surface
adhesion. The linear force model is combined with an ex-
tra constant attraction between impacting, slightly overlap-
ping particles. With the nominal value F,q;, = F, (second
row), the critical impact speed v,q;, which implies stick-
ing in a pairwise impact is about 4-fold compared to the
steady-state mean impact speed in the absence of adhesive
force (uppermost row). Consequently, the particles experi-
ence quite rapid pairwise sticing, leading to small particle
aggregates, roughly 4 times larger than individual particles
(see the 2D autocorrelation plot in the right). In the succes-
sive frames, the increased F,gj, leads to progressively larger
aggregates. Note that the snapshots, corresponding to 30 or-
bital periods, already represent a new steady-state situation:
due to shear the typical impact speeds between the aggre-
gates (or between a free particle and an aggregate) increase
when the aggregates grow, and consequently the sticking is
eventually hindered when typical speeds approach the stick-
ing threshold value. Note that the example uses parameter
values which exaggerate the role of adhesion: the v, 4 corre-
sponds to sticking of cm-sized particles, while the simulation
particles have 1 meter radius. Nevertheless, in real systems
significant accretion of cm-size particles can be expected (Al-
bers and Spahn, 2006).

Tremaine (2003) suggested that the B ring irregular struc-
ture could manifest a shear-rate instability, where the system
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Figure 1.20 Influence of adhesive force in simulations. The
linear force model is combined with a constant attractive force
F,an affecting between each impacting, slightly overlapping
particle pair. The values of I’ correspond to those of Fig. 1.5.
The optical depth 7p = 1 and €, = 0.25: with F' = 0 the mean
steady-state impact velocity for 1 m particles is < g, >~ 0.04
cm/sec. The critical velocity for sticking in the case F,qn = Fo
is 0.17 cm/sec. The left frames show snapshots of the simulation
after 30 orbital periods, for F,gn/F, = 0,1,2,4,8,16: the size of
the simulation region is Ly X Ly =400R x 80R. The frames in
the right display the 2D autocorrelation function of the same
snapshot; the black contours corresponds to 10% and 100%
overdensities. The labels indicate the full radial width (in
particle radii) of the 10% overdensity region.

is divided into rigidly rotating zones, separated by zones
where the shear-rate locally exceeds the Keplerian value.
Such an instability could arise if the dynamic viscosity is
a decreasing function of local shear rate. It was envisioned
that this might be the case with sufficiently strong cohe-
sive bonds between particles. In the simulations of Fig. 1.20
there is no signs of such instability: instead of forming ra-
dial zones with locally reduced shear rate, the system divides
into irregular aggregates with roughly equal dimensions in
radial and tangential directions (and slightly flattened in the
vertical direction).

1.7.2 Self-Gravitating simulations

At low optical depth the main effect of self-gravity is through
2-body scattering in close binary encounters. Although they
correspond to completely elastic impacts in the sense that
the kinetic energy of the encountering pair is conserved,
the deflection of the orbits during encounter leads to en-
ergy transfer from systematic to random motions. This extra
heating increases ¢ until it becomes roughly comparable to
the 2-body escape velocity of the particles (Safranov, 1969;
Héameen-Anttila, 1978; Cuzzi et al., 1979). For larger sur-
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Figure 1.21 Snapshots from 2A7 X 2\p simulations with

7p = 0.75, using the “frosty” ice elasticity model. In the upper
row non-gravitating simulations with a) n./n =1 and b)

n./n = 3.6. In the lower left, in d) the vertical component of
self-gravity is self-consistently included, while e) the full
self-gravity is taken into account. The internal density

p = 900kgm—3 which corresponds to 7, = 0.82 at the simulated
Saturnocentric distance 100000 km (see Eq. 1.129). Also shown
in c) is the impact frequency (normalized by 7pn and in f) the
vertical thickness (averaged over the whole system) as a
function of optical depth.

face densities, the collective effects become increasingly im-
portant. For example, in Saturn’s dense B the vertical self-
gravity may exceed the vertical component of the central
force by a large factor (Wisdom and Tremaine, 1988). Nev-
ertheless, then also the planar components of gravity need
to be taken into account, leading to a strongly non-uniform
density distribution.

1.7.2.1 Formation of self-gravity wakes

Figure 1.21 compares different ways to approximate ring
self-gravity: using in b) the factor n./n > 1 to mimic the
increased vertical field and in d) the self-consistently calcu-
lated F. Clearly, a right choice of n./n > 1 (depending on
the surface density) would capture quite well the effects of
vertical gravity: the flattening of the ring and the strongly
enhanced impact frequency. However, with the inclusion of
full self-gravity (Fig. 1.21e) the picture is completely dif-
ferent from that when only the vertical component of self-
gravity is taken into account. The system now forms gravi-
tational condensations which shear into elongated trailing
density enhancements. Such structures, in the context of
Saturn’s rings, were first simulated in Salo (1992a). How-
ever, the phenomenon itself was envisioned already a few
decades earlier, in the context of galaxy disks.

Toomre (1964) showed that a self-gravitating differentially
rotating disk is locally unstable against the growth of ax-
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Figure 1.22 Establishment of statistical steady-state in

8\ X 8\ simulations starting from a hot (Qr = 5) and cold
(Qr = 0) uniform initial state. The parameters are 7p = 0.5,
= 0.82, en = 0.5.

isymmetric disturbances if its radial velocity dispersion cg
falls below a critical value cqr. The closeness to the stability
boundary is measured by the Toomre Q1 parameter
Op = Cx ek

Cor | 3.36G%°

While Q7 > 1 guarantees stability against the growth of az-
isymmetric perturbations, already for Q7 < 2—3 the system
is susceptible to the growth of local non-axisymmetric dis-
turbances (Julian and Toomre, 1966; Goldreich and Lynden-
Bell, 1965). Such a near-instability manifests as an emer-
gence of trailing filamentary density enhancements just as
those seen in the self-gravitating simulations. As was illus-
trated in Sect. 1.4, in a Keplerian velocity field such wakes
form ~ 15" —20° angle with respect to the tangential direc-
tion, and their radial separation is of the order of Toomre’s
critical wavelength

(1.125)

Ap = 4G /K2, (1.126)

Individual filaments are rapidly destroyed by shear, but new
condensations are continuously generated. Due to enhanced
densities and systematic motions associated with the wakes,
the we is even more strongly enhanced than in the case of
vertical gravity (Fig. 1.21c). Also, the vertical thickness in-
creases as the scattering by wakes more than compensates
the flattening caused by the enhanced vertical field (Fig.
1.21f).

Figure 1.22 illustrates the role of wakes/impacts in es-
tablishing a “thermostat” which keeps the system near a
constant Q7 regardless of the initial state of the system. In
the case of stellar disks, the gravitational scattering accom-
panying the growing disturbances would heat the system so
that the wakes are eventually suppressed. In the case of par-
ticulate rings, the collisional dissipation provides a physical
regulating mechanism which makes it possible to reach and
maintain a statistical steady-state with sufficiently low Q,
so that new structures continuously emerge and dissolve in a
timescale comparable to the orbital period. As emphasized
by Toomre and Kalnajs (1991), the gravity wakes do not
represent an instability in the sense that there would be a
strict threshold for the emergence of the wakes - rather they
manifest the enhanced reactivity of the selfgravitating disk
whenever Qr is sufficiently small. In particular, any small

s/n =-1.50

Figure 1.23 The upper row shows snapshots from simulation
with different shear rates s: the physical width of the calculation
region is fixed (~ 170 particle radii) and corresponds to 12,8,
and 4\ for s/n = —0.5,—1.0 and —1.5. The middle row shows
2D auto-correlation plots from the same simulations, covering
2A1 X 2A7. The lowermost row shows Julian-Toomre (1966)
analytic calculations for the same shear rates of the wake
response around an orbiting point mass-point: their graphs have
been rotated to same orientation as our simulation plots. In the
simulations 7p = 0.5, constant ¢, = 0.5, r, = 0.82.

leading perturbation, while evolving into a trailing one due
to shear, is significantly amplified by the interplay of gravity
and differential rotation (the “swing amplification” mecha-
nism (Toomre, 1981; Goldreich and Lynden-Bell, 1965).
The self-gravity structures seen in simulations can be in-
terpreted as a superposition of numerous individual Julian
and Toomre (1966) wakes, excited by each particle when
other particles flow past it - this justifies the name ("wake’)
commonly adopted to the phenomenon. This identification
is supported by the 2D auto-correlation analysis of the simu-
lated structures (Toomre and Kalnajs, 1991; Salo, 1995; Salo
et al., 2004). To further strengthen the argument, Fig. 1.23
compares auto-correlation functions from ring simulations
with the Julian and Toomre (1966) theoretical calculations
of the density response around an orbiting mass enhance-
ment, performed for different central shear rates. The trend
in the pitch angle of the density crest as a function of s/n is
strikingly similar. Also as expected, the scale of structures is
in all cases proportional to Ay, which is different by a factor
of 3 for the studied shear rates (Ap o< (2s/n 4+ 4) ™1 accord-
ing to Egs. (1.6) and (1.126). A more quantitative compar-
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ison is not attempted, since the Julian and Toomre (1966)
response-calculations assumed a fixed Q7 for the disk and
did not account for the finite particle size - in simulations
of Fig. 1.23 the velocity dispersions adjusts self-consistently
to balance the dissipation and viscous gain.

1.7.2.2 Survey of self-gravity wakes

In the non-gravitating case the optical depth 7p and the
elasticity model determine the ring steady-state for a given
particle size distribution (see Sect. 1.7). When self-gravity is
included, just one new parameter is required to characterize
both the pairwise and collective gravitational effects. This
is the r;, parameter, the ratio of the mutual Hill-radius for

Figure 1.24 Survey of self-gravity wakes as a function of rj,
and 7p. The labels a indicate the Saturnocentric distance (in
units of 1000 km) for particles with solid ice internal density: for
other densities the distances scale o (p/900kgm—3)~1/3. The
size of the simulation system is 4\p x 4\p, with Ap/R ~
1507p 71 3; the side view covers 4\ X 1Ap. The number of
simulation particles N ~ 116 - 1037p37,%. In a) the “frosty” ice
and in b) the “smooth” ice elasticity model is used. The inserts
sketch the regimes where various physical factors dominate,
based on the estimates given in the text. The dashed curves
indicate what is the radial velocity dispersion which corresponds
to Q7 = 2. In a) the boundary between wakes and impacts is
drawn at ¢,./(nR) = 3, while in b) ¢,/(nR) = 10 is assumed.
Note the region 7p 2 1 and rp < 0.6 in a) leading to viscous
overstability (see Sect. 1.8.1). Similarly in b) simulations with
7p = 0.9, rj, ~ 0.8 show viscous instability (see Sect. 1.8.2). The
numbers in the frames indicate the amplitude of azimuthal
brightness asymmetry for the simulation (see Sect. 1.11.4).
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a pair of particles to the sum of their physical radii,

1
Ry P\ (o) @+ps
Th(#) =% b —\a - = )
Ry + Ra 3pp Rp) 14 pu3
where p is the internal density of the particles, and pu =
M /My = (Rl/R2)3 is their mass ratio. Here

(1.127)

Ry = ((My + My)/3Mp)*3a (1.128)

is the radius of the Hill-sphere, inside which the pair’s mu-
tual gravity dominates over the tidal pull from the planet at
the distance a. The Mp,Rp, and pp are the mass, radius, and
mean density of the planet. When r;, decreases, the particle
pair extends more and more out from its Hill-sphere: 7, = 0
corresponds to the non-gravitating case, while if r, = 1
the attraction between two synchronously rotating, radially
aligned ring particles in contact equals the disruptive tidal
force. For a pair of identical particles p = 1, and inserting
the typical numerical values for Saturn’s rings gives

Mp ) _%

0.82 (7
5.69 - 1026 kg

p 3 a

(900 kgm*?’) (100 000 km)' (1.129)
We will denote 7, (u = 1) simply by r},. For u = 0 or p — oo
(a test particle attached to surface of a large particle), the
rp, would be a factor 22/3 ~ 1.59 larger. With the formula
(1.129), the simulation results for a given 7, can be scaled
to any other pl/ 34 combination.

To demonstrate that rj, is the only additional parameter
needed to characterize self-gravity wakes. '°
the Toomre critical wavelength and velocity dispersion as

, We may write

A gy TR, (1.130)
R

C

% =128 Tprp°. (1.131)

Here we have assumed identical particles; in the case of a
size distribution the numerical pre-factors would depend on
dN/dR. Similarly, the minimum velocity dispersion main-
tained by gravitational encounters, cene ~ Uesc, Where
vese = \/2GM/R is the 2-body escape speed, can be ex-
pressed as
% =49 Ths/ 2
Figure 1.24a depicts a simulation survey of wake struc-
tures for the “frosty” ice elasticity model. The strength of
wakes increases when the optical depth 7p, or the distance
(measured with rj) increases. The wakes get clumpier and
eventually degrade into semi-permanent gravitational aggre-
gates for rj, 2 1.2. Same takes place at low 7p via pairwise

(1.132)

accumulation. The exact boundary for aggregate formation
depends on the elasticity of particles and also the particle

10" This is strictly valid only in the case of constant e,. If €, =
€en(vn /ve), with a scale parameter v., then the ratio nR/v. which
determines the relative magnitudes of local and nonlocal viscous
gains (see Fig. 1.16) will depend on distance via n. However, for
example for the “frosty” ice model this dependence is weak and
the r, scaling works well (see Karjalainen and Salo (2004)).

size distribution (Salo, 1995; Karjalainen and Salo, 2004).
The fact that r > 1 is required for stable aggregates to
form is because not only shear, but also particle impacts
and velocity dispersion act to destroy any forming conden-
sations.

The insert in Fig. 1.24a sketches the parameter regimes
where different factors (impacts, encounters, wakes) dom-
inate the dynamics, based on the velocity dispersion this
factor alone would be able to maintain (Salo, 1995; Ohtsuki
and Emori, 2000). For the “frosty” ice model (or constant
en < 0.5) the minimum velocity dispersion due to impacts
is

Cimp
‘nR
Comparing to Eq. (1.132), we may expect that velocity dis-
persion is governed by gravitational encounters rather than
by physical impacts for r, 2 0.7. A rough criterion for the

~2-3 (1.133)

emergence of collective wake-structure is obtained by assum-
ing that wakes become apparent whenever the minimum ve-
locity dispersion drops below cygre = QT Cor With Qp ~ 2.
According to Egs. (1.131) and (1.133) this corresponds to
TDrh3 2 0.1. In the insert figure the condition cyygke > Cimp
(and cypgke > Cenc) defines the sketched boundary between
wakes and impacts (or wakes and encounters). The other
dashed curves in the insert indicate where Q7 = 2 corre-
sponds to ¢/(nR) = 5,10, 20.

Figure 1.24b shows a similar survey, except with the
“smooth” ice elasticity model. No wake structures are visible
for optical depths 7p = 0.25 or 7p = 0.50 for any 7, but
for higher 7 the picture is very similar to that in a). The
reason for the suppression of wakes at low 7p is the high
velocity dispersion maintained by impacts alone: according
to Fig. 1.15, we have ¢/(nR) > 10 for 7p < 1. In the inset
figure the Q7 = 2 line corresponding to this ¢ value is used
to delineate the boundary between impacts and wakes. Now
the velocity dispersion of the system is too high to allow for
bound aggregates to form at any of the studied rj, values.

The wake structure is also affected by the particle size
distribution (Fig. 1.25). For example, the average pitch an-
gle increases when size distribution is included (Salo et al.,
2004; French et al., 2007b; Michikoshi et al., 2015). Also, al-
though the large particles still form distinct wakes, the over-
all contrast is reduced due to the more uniform distribution
of small particles. This implies that at least in principle a
system can exhibit dynamically significant wake structure,
though it might be almost hidden in photometric observa-
tions (Salo et al., 2004).

1.7.2.3 Gravitational viscosity

The effect of gravity wakes on viscosity is depicted in Fig.
1.26. The upper row compares self-gravitating simulations
with constant e, = 0.5 as a function of r, and 7p. For
7p 2 0.5 and 7, = 0.75, the vgrav contribution associated
with the gravitational torques from inclined wakes becomes
dominant (Daisaka et al., 2001; Tanaka et al., 2003). Also
Vjocal 1S strongly enhanced due to systematic motions asso-
ciated with the wakes, whereas the v,,; has less significance.
The results of Fig. 1.26 agree with the trend originally found
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Figure 1.25 a) Identical particle simulation with 7p = 0.5,

rp, = 0.85, using “frosty” particle elasticity model and

4\ x 4\ calculation region. b) Simulation with same
parameters, except having a ¢ = —3 power-law size distribution
with Rimaz/Rmin = 10. ¢) Particles with R > Rymaz/2 =2.1 m
are shown separately: they comprise 30% of the optical depth
and 55% of surface mass density. The inserts in a) and b)
display 2D auto-correlations, indicating about 5° larger average
pitch angle of wakes in the size distribution simulation.
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Figure 1.26 Comparison of various contributions to total
viscosity, in a) as a function of rj, and b) as a function of 7p.
They are from a constant e, = 0.5 simulations similar to Fig.
1.24. The light dashed gray lines in a) and b) indicate Eq.
(1.134). In ¢) the viscosity as a function of scale parameter v, in
velocity- dependent elasticity model e (vy,) = (vn/vc)_0‘234:
with v. = vg = 0.0077cm/s this corresponds to the Bridges et
al. (1984) “frosty” ice model. Frame d) displays the slope of

v oc 7p” in simulations of frame b), reaching values 3 ~ 2 — 3 in
selfgravitating simulations; also non-gravitating simulations and
simulations including only the vertical self-gravity are shown.

in Daisaka et al. (2001),
Th5G222

= (1.134)

Vtot ~ (Vgrav + Vlocal) R 2Vgrav X

The %2 (x 7p2 in the figure) dependence is similar to
the standard continuum fluid formula for spiral torques in
galaxy disks (Lynden-Bell and Kalnajs, 1972), while the rp,
dependence can be interpreted as an extra effect related to
the finite size of particles: the smaller the r;,, the closer is the
scale of wakes compared to physical size of particles (see Eq.
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Figure 1.27 Various measurements of the A ring kinematic
viscosity, based on damping of density waves (symbols). The
thick solid line indicates the viscosity calculated from Eq.
(1.134), using the surface densities measured for this distance,
and assuming solid ice internal density for the particles. The
dashed lines indicate viscosities from the same formula, using

p = 900,600, and 450 kgm 3, and a fitted surface density
(linear rise from 300 kgm =2 to 500 kgm~2 between 122, 000 km
and 132, 000 km). Figure modified from Tiscareno et al. (2007).

1.130). This limits the maximum contrast the wakes can at-
tain as the density of wakes is limited by the internal density
of particles. The estimates of Saturn’s ring viscosity in Tis-
careno et al. (2007), based on the damping of A ring satellite
density waves are in good agreement with Eq. (1.134), pro-
vided that the internal density of particles is close to that
of solid ice (see Fig. 1.27).

The slope of v(7p) relation is shown in more detail in Fig.
1.26d and also compared with non-gravitating simulations
and to simulations including only the vertical component
of self-gravity (compare to Fig. 1.21). With the inclusion of
self-consistent vertical gravity the slope g 2 1 for 7p 2 1,
which is higher than in the non-gravitating case (8 =~ 0.5),
but clearly smaller than with full-self-gravity (8 = 2). Note
that when using n/n to mimic vertical gravity, the value of
[ can be increased by choosing a larger enhancement factor.

Based on Fig, 1.24 it is clear that the gravitational vis-
cosity depends strongly on the adopted elasticity model.
In Fig.1.26¢ this is illustrated by comparing simulations
with different en(vn) models, parameterized by the veloc-
ity scale factor in the Bridges et al, (1984) type elasticity
law (“frosty” ice model has ve/vp = 1; the “smooth” ice
model would correspond to ve/vp ~ 30). The more inelastic
the impacts are, the larger is the contribution from gravi-
tational viscosity. For the simulated 7p = 0.5, the gravita-
tional viscosity is completely negligible for ve/vp = 30, in
agreement with the total absence of wake structure in the
simulations depicted in 1.24b. At the same time for very
elastic impacts the local viscosity increases proportional to
(ve/vg)?. This follows as the system tries to establish a ther-
mal balance with a mean elasticity whose value depends
on the optical depth via the Goldreich-Tremaine formula.
The resulting steady-state ¢ is proportional to v, and thus
Viot = Vipeal X ve2. Because of the opposite trends of Viocal
and vgrqv, and the relatively insignificant role of v, the
total viscosity has a minimum at intermediate ve/vp ~ 5.
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1.8 Viscous instability and overstability

The Voyager and Cassini data have revealed an overwhelm-
ing amount of structure in Saturn’s rings. Some of the struc-
ture is unambiguously connected to resonance perturbations
by external satellites (in particular in the outer A ring), but
the majority of the finest optical depth variations, extend-
ing down to shortest resolved length scales, are likely to have
some internal origin.

Right after Voyager discoveries wiscous instability was
evoked to explain the intrinsic variations (Lukkari, 1981;
Lin and Bodenheimer, 1981; Ward, 1981; Hameen-Anttila,
1982). In this type of instability (see Fig. 1.28), the col-
lisional flux of particles, proportional to dynamic viscos-
ity n = vrp x TD’BJFI, is directed toward density maxima
(equivalent to 8 < —1). Thus any small density fluctuation
is amplified by collisional diffusion, in contrast to a stable
ring where diffusion smooths density variations. In the non-
linear limit the growth of fluctuations is saturated to a state
where the flux from dense but dynamically cool ringlets is
balanced by the flux from rarefied, dynamically hot regions.
This model was soon discarded, mainly as the first labo-
ratory measurements (Bridges et al., 1984) indicated too
dissipative particles for the instability mechanism to work
(Wisdom and Tremaine, 1988; Araki and Tremaine, 1986).
Also, the observed structures do not quite agree with the
predictions of simple instability models, according to which
the ring should separate into high 7p ringlets surrounded
by almost empty gaps (Hameen-Anttila, 1978).

Other alternatives for explaining the ring fine structure
gained more attention, among them the possibility that
dense rings might be viscously overstable (Borderies et al.,
1985; Longaretti and Rappaport, 1995). In the axisymmet-
ric overstability the radial particle flux is directed away from
density maxima, like in a stable ring (see Fig. 1.28). How-
ever, the flux now increases so strongly with density (large
(), that the system overshoots in trying to smooth the den-
sity variations: this leads to density oscillating with time.
Although it appears unlikely that overstability could ac-
count for large scale structures in the densest rings (Latter
and Ogilvie, 2010), there are clear indications of small-scale
~ 100 meter axisymmetric oscillations in moderate 7 loca-
tions in the rings (Colwell et al., 2007; Thomson et al., 2007;
Hedman et al., 2014) likely to be related to such overstable
oscillations.

1.8.1 Viscous overstability (Oscillatory instability)

Early hydrodynamical models for Saturn’s rings predicted
that practically any flattened ring system with 8 = 0 should
be overstable (Schmit and Tscharnuter, 1995, 1999), man-
ifesting as axisymmetric oscillations in density and veloc-
ity components. The mechanism itself can be confirmed in
direct N-body simulations (Fig. 1.29, Salo et al., 2001;
Daisaka et al., 2001), which however indicate considerably
more stringent conditions for the onset of overstability.

In non-gravitating simulations, and in simulations includ-
ing vertical self-gravity, the condition (Salo et al., 2001;

STABLE RING: dn/dt>0
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radial direction
VISCOUS INSTABILITY: on/dt <0
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Figure 1.28 Schematic illustration of viscous stability
properties. The radial mass flux is proportional to - /9%,
where 7 is the dynamic viscosity and ¥ is the surface mass
density. This indicates that the ring tries to establish a locally
constant 7 profile. In stable ring dn/d% > 0 so that local density
fluctuation are smoothed, in contrast to dn/d%X < 0 which leads
to viscous instability. However, if dn/d% > 0 the suppression
overshoots leading to periodic oscillations with amplitude
growing with time until saturated at some finite value (viscous
overstability). In case of non-selfgravitating system optical
depth 7p replaces ¥ and 7 is obtained from kinematic viscosity
as 11 = TpvV.
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Figure 1.29 Snapshots from self-gravitating simulations for
Tp = 1.4, “frosty” ice elasticity model, using a 10Ap X 4\
calculation region. The top and side snapshot of the system and
the radial velocity profile after 50 orbital periods are shown, for
four simulations with p = 450, 360, 300, 225 kgm 3. For the
Saturnocentric distance a = 100 000 km these correspond to

rn, = 0.651,0.605,0.569,0.517, respectively. Figure from Salo

et al. (2001).

Schmidt et al., 2001)

B2 1  overstability condition (non — gravitating)

seems to provide a sufficient condition for the onset of over-
stability, provided that the size of the system exceeds the
shortest scale of overstable oscillations, about 100 particle
radii. For example, in the non-gravitating simulations with
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the “frosty” ice elasticity model have g > 1 if 7p 2> 4 (Fig.
1.15d). Similarly, simulations where vertical self-gravity is
approximated with n,/n = 3.6, fulfill this condition for
7p 2 1 (Fig. 1.26d). Indeed, in both cases simulations
with sufficiently large calculation regions lead to sponta-
neous growth of overstable oscillations (Salo et al., 2001).11

Transport coefficients derived from simulations with dif-
ferent values of n:/n, in combination with improved hydro-
dynamical models (Salo et al., 2001; Schmidt et al., 2001),
have been useful in analyzing the linear growth rates of os-
cillations, and also in allowing analytic treatment of satu-
ration in weakly nonlinear case (Schmidt and Salo, 2003).
Significant progress has also been made using the kinetic
theory approach (Latter and Ogilvie, 2008). Recently, non-
linear hydrodynamical analysis (Latter and Ogilvie, 2009,
2010) has shown that the wavelength growth of overstable
oscillations is limited via interactions of traveling wavetrains
at a few hundred meter to kilometer range, the maximum
scale increasing with 3. The non-gravitating, very large-scale
simulations in Rein and Latter (2013) confirm this, and also
demonstrate the richness of structures that result from the
non-linear interaction of such wavetrains.

However, it is still unclear what the overstability con-
dition for a fully self-gravitating ring is. The simulations
in Salo et al. (2001) indicate that self-gravitating systems
may exhibit overstability for 7p 2 1, but only if the wake-
structure is not too strong. For example, in the survey of
Fig. 1.24a, overstability is seen only in the upper left cor-

ner with 7, < 0.6. For stronger wakes the overstability is

clearly suppressed (see also Fig. 1.29), although the over-
stability condition for non-gravitating rings, 8 2 1, should
be satisfied with ample margin (see Fig. 1.26d). This sup-
pression might be related to different phase and pitch angle
of the velocity and density oscillations for overstability and
wakes, combined with the fact that they occur at practically
similar wavelength range. In any case, even an approximate
analytic theory is missing, making fully self-gravitating nu-
merical simulations indispensable for looking at the inter-
play of wakes/overstability.

As mentioned above Rein and Latter (2013) recently car-
ried out simulations with radially very extended calculations
regions (radial width even 50 km), facilitating the detailed
study of interactions between non-linear wavetrains. How-
ever, these simulations use the n,/n > 1 approximation, and
it is not clear how realistically they describe self-gravitating
rings. Fig. 1.30 compares this approximation with the fully
self-consistently calculated gravity, in moderately large-scale
simulations (radial width 2 km). In the former case the
evolution is similar to Rein and Latter (2013) simulations,
leading to formation of traveling wavetrains with increas-
ing wavelengths, until a maximum scale of ~ 400 meters
is reached after about 1000 orbital periods. In the begin-

1 The same condition, 3 > 1 holds also in non-gravitating
2D simulations where the steep rise of v,,; when the close-packing
limit is approached, makes the system strongly overstable already
for 7p 2 0.4. This fact was utilized in Salo (2001) to directly
demonstrate the overstability mechanism, before it was techni-
cally feasible in 3D simulations. In all these cases the large value
of (3 is related to high impact frequency.
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Figure 1.30 Comparison of overstable oscillations in Ly, = 2
km wide non-gravitating (upper frames) and self-gravitating
(lower frames) simulations (7p = 1.2, “frosty” ice elasticity).
The frames in left show the evolution of the density profile with
time, while in the right the corresponding amplitude spectrum is
shown (A, (A); see Eq. (1.76)). In a) vertical self-gravity is
mimicked with an enhanced n./n = 3.6. This leads to overstable
oscillations whose radial wavelength grows until ~ 400 meters;
before saturation the Amax grows proportional to \/f In b)
gravity is treated self-consistently (r;, = 0.57), and now the
growth of overstable oscillations is limited to less than 100
meters. In the amplitude spectra the 10% contour is indicated
with a thick line. The dashed line in a) indicates the radial
wavelength with the largest amplitude during the initial growth
period. For comparison, the same line is also shown in b).

ning several left and right traveling waves compete, but after
about 500 orbits a single traveling mode starts to dominate.
The amplitude spectrum indicates that no further wave-
length evolution takes place during the span of the simu-
lation (10000 orbits): the shorter modes represent the har-
monics of the prevailing mode, related to its non-sinusoidal
waveform.

In the self-gravitating simulation with same parameter
values (Fig. 1.30b), the initial evolution is quite similar, in
addition to weak wakes being superposed with the rapidly
evolving axisymmetric overstable oscillations. However, the
wavelengths of oscillations do not grow beyond about 100
meter level, although there should be enough time and spa-
tial room for further growth (see the amplitude spectrum).
Unfortunately, such self-gravitating simulations are much
more time-consuming than non-gravitating runs, since they
must have also a tangential width sufficiently large to allow
the gravity wakes properly evolve (at least 2 Ar): the non-
gravitating simulations with n./n > 1 stay axisymmetric
so their tangential width can be very narrow (even just few
particle diameters).
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1,=5 r,=0.57 ¢,=0.5

Figure 1.31 Overstable oscillations followed over one full
oscillation cycle (~ 1.2 orbital periods; the prolongation over
one orbital period is due to self-gravity). The 10 Ap X 2Ap
calculation region is shown from the top (left; the curve
indicates the optical depth profile in the range from 0 to 10) and
from the side (right; vertical scale exaggerated by a factor of 5).
Note the strong vertical “splashing” (Borderies et al., 1985)
associated with the density crests: the ring behaves in a nearly
incompressible manner. Constant €, = 0.5 with mean

Tp = 5,1, = 0.57.

Figure 1.31 illustrates overstable oscillations over one os-
cillation period in a very dense system (7p = 5) with mod-
erate strength of self-gravity (r, = 0.57). Unlike strong self-
gravity wakes at larger rjp, both the maximum and mini-
mum optical depths stay very high (minimum 7p 2 2 — 3
and maximum 7p = 10 ). If this type of oscillatory behavior
is typical to the densest part of the B ring (~ 110,000 km),
then according to the survey of Fig. 1.24 the internal den-
sity p ~ 300 kgm_3, in order to yield rj &~ 0.6. This would
require the ring particles to be quite porous. Moreover, the
presence of overstabilities would seem to rule out very elastic
particles. Even smaller internal densities (p ~ 225 kgm_3)
are suggested by the presence of axisymmetric overstable os-
cillations in the innermost A ring at 124, 000 -125, 000 km
(Thomson et al., 2007; Hedman et al., 2014). A remarkable
observation is the very long azimuthal coherence length of
the oscillations, over thousands of kilometers, verified by the
Hedman et al. (2014) high radial resolution stellar occulta-
tion observations with the Cassini VIMS (see Fig 1.32).
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Figure 1.32 Cassini VIMS stellar occultation measurements of
viscous overstability in the inner A ring. The upper frame
illustrates the 4 Crucis occultation track behind the ring, with a
radial turnaround at 124,413 km. The lowermost frame displays
the radial profiles of the transmitted signal, both before
(“ingress”) and after (“egress”) the turnaround point. The
middle frame indicates the co-rotating azimuthal location
corresponding to each radial distance around the turnaround
point. The radial profiles align up to 2 km from the turnaround
point, indicating that the pattern must be coherent and
axisymmetric over 2500 km in the azimuthal direction. Figures
from Hedman et al. (2014).

1.8.2 Viscous instability

In the case of viscous instability, the hydrodynamic stability
criterion

B < —1 instability condition

is fully consistent with direct N-body simulations (Salo and
Schmidt, 2010), although the shortest unstable wavelengths
(~ 200 particle radii) are about a factor of ten larger
than what a simple hydrodynamical linear stability anal-
ysis predicts. Figure 1.33 displays large scale (radial width
1 km) simulations, which illustrate how the non-gravitating
“smooth” ice elasticity model leads to spontaneous ampli-
fication of density fluctuations for 0.75 < 7p < 2, in very
good agreement with the range of 7ps where the steady-
state § < —1 in the small scale simulations of Fig. 1.15.
The system is initially uniform and it takes about 100-500
orbital periods for random fluctuations to amplify to a non-
linear regime. Fig. 1.24b illustrated that viscous instability
may arise also when self-gravity is included provided that
B < —1 (see the snapshots with 7p = 0.9, 7, ~ 0.7). 12

12 The same instability condition applies to 2D systems. Due
to different functional form of impact frequency (see Sect. 1.7.1.1)
hot 2D systems have 3 < —1 at the limit 7p — 0, which makes
direct demonstrations of viscous instability numerically much eas-
ier than in 3D systems where 7 ~ 1 is required (Salo, 2001; Salo
and Schmidt, 2010).
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Figure 1.33 Emergence of viscous instability in large-scale
simulations (2km radial extent) using the “smooth” ice elasticity
model. The value of 3 is for the uniform initial state, 5 < —1
indicates linear instability. Figure from Salo and Schmidt (2010)

Figure 1.34 depicts in more detail the nonlinear steady-
state after the saturation of viscous instability. The state is
characterized by a balance of radial particle flux between
flattened dense ringlets surrounded by rarefied, large ve-
locity dispersion regions, exactly as envisioned in Hameen-
Anttila (1978). The dynamic viscosity (obtained by tabu-
lating pressure tensor separately at different radial zones)
has a nearly constant value through the simulation system.
Note that one of the ringlets has a slightly lower 7 than the
other three. This ringlet corresponds to a small bump in 7
and is accordingly slowly dissolving. With time, the ringlets
slowly merge (see Fig 1.33), their typical separation grow-
ing o< v/t. In contrast to overstability, there is no mechanism
known which would stop this growth. Thus at least in prin-
ciple, large scale structure may emerge as a result of viscous
instability.

Viscous instability is typically not regarded as a candidate
for the ring fine-structure, basically since it requires fairly
elastic particles in order to operate. In such a case the self-
gravity wakes are harder to form. Also, the basic instability
model in its simplest forms always requires a balance be-
tween a rarefied and a dense region, and thus, does clearly
not apply, say, to the structure of the dense B ring.

1.8.2.1 Selective viscous instability

There is a variant of the standard instability model that
would allow both the minimum and maximum optical
depths to be high, namely the possibility of a selective in-
stability of small particles against the more uniform back-
ground of larger ones (Stewart et al., 1984). Direct simu-
lations (Salo and Schmidt, 2010) indicate that under cer-
tain conditions such a behavior occurs if the coefficient of
restitution is smaller in mutual impacts between small par-
ticles, than in impacts involving large particles. Such size-
dependence of €, adds a new degree of freedom to the sys-
tem, and in principle allows a balance of radial flux also
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Figure 1.34 Nonlinear radial balance between dense and
rarefied regions resulting from viscous instability. The upper two
frames show a) the top and b) side views of a simulation with
7p = 0.92, using the “smooth” ice elasticity model. The frame
¢) depicts the dynamic viscosity profile (solid curve), showing
separately the local (dash-dotted) nonlocal (dashed)
contributions. Figure from Salo and Schmidt (2010).

Figure 1.35 Two examples of selective viscous instability in
simulations (after 700 orbital periods). The systems consist of
two particle sizes with Ra/R1=3, and both population have
7p = 0.5. Small (large) particles are indicated by gray (black)
color, and the solid (dashed) white curve indicates their radial
density profile. In the upper frame the impacts between small
particles are much more inelastic than those between large
particles, leading to strong density contrast among the small
particles. In the lower frame the size-dependence of elasticity is
weaker, leading to less pronounced variations. For exact
parameter values, see Figs. 21 and 22 in Salo and Schmidt
(2010).

between two dense regions, provided that they have a dif-
ferent mixture of small and large particles. Importantly, the
contrast can also have very different values depending on
the details of the elasticity model assumed (Fig. 1.35). Nev-
ertheless, this mechanism has yet been very little studied,
and due to lack of relevant laboratory measurements it re-
mains unclear whether real particles possess suitable size
dependence of e required by this type of instability.
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1.9 Three-body and N-body simulations of
particle and aggregate dynamics

In dilute rings where collision frequency is sufficiently
smaller than the orbital frequency, particles’ orbits evolve
through successive two-body collisions and gravitational en-
counters. Dynamical evolution of such a system can be de-
scribed by the formulation based on the three-body problem
(Petit and Hénon, 1987; Ohtsuki, 1992, 1999, 2012). This ap-
proach is useful to understand the orbital behavior of dilute
rings where both collisional and gravitational encounters are
important. When particles’ velocity dispersion is sufficiently
large to neglect their mutual gravity (¢ > cenc) and the
extent of their radial excursion is much larger than their
physical size (¢ > nR), their orbital change due to inelastic
collision for a given restitution coefficient can be calculated
analytically, and the stirring rates of their velocity disper-
sion can be obtained (Ohtsuki, 1992, 1999). For example,
when particles are smooth spheres and their normal restitu-
tion coefficient is independent of impact velocity, the criti-
cal value of the restitution coefficient for the energy balance
can be obtained as e¢,4¢ = 0.627 (Ohtsuki, 1999), which per-
fectly agrees with the low-optical-depth limit of the results
obtained by solving the Boltzmann equation (Goldreich and
Tremaine, 1978b; Hameen-Anttila, 1978, Figure 1.14). Col-
lision frequency can also be obtained as (Ohtsuki, 1999)

_ 16I(c3/c1)

We = 5 nTp, (1.135)
T

where [ is expressed in an integral form as a function of the
ratio of the vertical velocity dispersion to the radial velocity
dispersion. In dilute rings in the steady state, c¢3/c1 = 0.653
(Goldreich and Tremaine, 1978b; Ohtsuki, 1999) and w, ~
2.87nTp, which agrees with Eq.(1.116).

The effects of particles’ mutual gravity on the velocity stir-
ring rates can be evaluated using orbital integration for the
three-body problem. Each orbit is integrated starting and
ending at positions sufficiently far from the interacting par-
ticle, and the stirring rates are calculated from the change
of orbital eccentricity and inclination. Using these stirring
rates, the evolution of velocity dispersions in dilute rings is
calculated, and an agreement with N-body simulation is con-
firmed (Ohtsuki, 1999; Ohtsuki and Emori, 2000). A similar
approach has been used to show that the equilibrium veloc-
ity dispersion in dilute rings can be approximately given as
Ceq ~ max(Rn, vesc), where R is the particle radius and vesc
is the particles’ mutual escape velocity. Taking account of
surface friction with the tangential restitution coefficient &t
in the hard-sphere model, the above three-body approach
can also be used to examine coupled evolution of veloc-
ity dispersion and particle spin, as well as the equilibrium
spin rates of moonlets embedded in dilute rings. Again, stir-
ring rates for the velocity dispersion and spin rates, as well
as the equilibrium spin rates can be obtained analytically
when mutual gravity is neglected (Ohtsuki, 2004a, 2006a),
and the effects of mutual gravity are examined by three-
body orbital integrations (Morishima and Salo, 2004; Oht-
suki, 2004b, 2005, 2006a,b). For example, the dispersion in
the particle spin rates for dilute rings with a relatively nar-

row size distribution obtained by this method agrees with
N-body simulations (Ohtsuki and Toyama, 2005; Morishima
and Salo, 2006). This approach can also be used to examine
dynamical behavior of dilute rings with a more extended size
distribution, as is done in the study of velocity dispersion
of planetesimals in the early solar system (Ohtsuki et al.,
2002). Viscosity of dilute rings can also be obtained from
the calculation of the change of particles’ semi-major axes
by three-body calculation (Tanaka et al., 2003; Yasui et al.,
2012). However, the three-body approach cannot describe
the collective effects that become essential in dense rings,
for which direct N-body simulations are required.

At radial locations sufficiently far from the central planet,
the gravitational accretion of colliding particles becomes
possible. When two spherical particles with identical inter-
nal density p are in contact and in synchronous rotation,
with their line of centers pointing to the planet, they be-
come gravitationally bound if they are located outside the
critical distance defined as

1/3
e _. <LP)
Rp p '

where a is the distance from planet, and Rp and pp are the
mean radius and density of the central planet, respectively.
The factor a = 2.29 for a pair of identical sizes, a = 1.44
when one of the particles is much larger than the other
(Weidenschilling et al., 1984), and « = 2.456 corresponds to
the expression for the classical Roche limit (Chandrasekhar,
1969). The probability of gravitational accretion of colliding

(1.136)

ring particles depends on their impact velocity and impact
orientation. Three-body orbital integrations (Ohtsuki, 1993;
Morishima and Salo, 2004; Ohtsuki et al., 2013) show that
the efficiency of accretion depends on the ratio of the sum of
the physical radii of the particles to their mutual Hill radius,
ie., rp = (R1 + R2)/Ry, which is the inverse of rj, defined
by Eq. (1.127). Equation (1.136) with a = 2.29 and 1.44 are
equivalent to rp = 1 with Ry = Rg and with Ry > Ra,
respectively.

Although gravitational accretion is possible when rp < 1,
three-body calculations show that accretion efficiency de-
creases abruptly when r, exceeds ~ 0.7, because a part of
the particles’ surfaces is outside of their mutual Hill sphere
(Ohtsuki, 1993; Ohtsuki et al., 2013); while the semi-axis
of the Hill sphere in the radial direction is Ry by defi-
nition, the semi-axis lengths in the azimuthal and verti-
cal directions are (2/3)Ry and 7. Ry, respectively, where
Yz = 32/3 _31/3 ~ 0.638 (Yasui et al., 2014). Karjalainen
and Salo (2004) performed N-body simulation and exam-
ined the dependence of the critical radial distance for grav-
itational accretion of particles in Saturn’s rings on various
parameters, such as the elastic properties of particles and
the rings’ optical depth. For example, in their standard case
of rings of equal-sized particles with p = 900 kg m~? and
7p = 0.25, temporary aggregates and stable aggregates can
form in the inner and the outer A ring, respectively, with
exact radial boundaries depending on elastic properties of
particles (see Figs. 1.24 and 1.38). The above dependence of
the critical distances on the elastic properties implies that
the actual efficiency of gravitational accretion can also be
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limited by velocity dispersion of particles, because more ki-
netic energy needs to be dissipated for gravitational accre-
tion to occur. The shapes of the simulated aggregates in
Karjalainen and Salo (2004) are close to Roche ellipsoids
(Chandrasekhar, 1969) near the critical distance, getting
progressively rounder at larger distances (Fig. 1.37).

When porous, low-density particles coexist with dense
bodies such as collisional shards, particles can gravitation-
ally accrete onto such dense bodies even at radial locations
where the low-density particles alone cannot form gravita-
tional aggregates (Porco et al., 2007). When the surface of
the dense “core” is not yet significantly covered by parti-
cles, accretion of particles proceeds at a nearly constant rate
that is determined by two-body collision rate between the
core and accreting particles (Ohtsuki et al., 2013). With the
growth of the aggregate (the dense core surrounded by the
low-density particles) its Hill radius increases, but the bulk
density of the aggregate as a whole gradually decreases. As
a result, the physical size of the aggregate increases faster
than its Hill radius, and accretion stalls when particles fill
the slowly-growing Hill sphere. Afterwards, the aggregate
repeats accretion and shedding of particles (Lewis and Stew-
art, 2009; Yasui et al., 2014).

The bulk density of a body (satellite) that entirely fills
its Hill sphere defines a critical density proche at its radial
distance a from the planet as (Porco et al., 2007; Tiscareno
et al., 2013a)

PRoche = (1.137)

ad’
where 7 is a dimensionless shape parameter so that fng’at
is the volume of the satellite with Rgat being its long semi-
axis (y = 4m/3 for a spherical satellite, and v ~ 1.509 for
a body with a shape of the Hill sphere; Leinhardt et al.
(2012)). Observations by Cassini show that the Hill radii of
the small moons in the outer A ring and those near the ring
outer edge are very close to the observed long axes of these
satellites, and their densities (400 — 600 kg m™?) are also
very close to the above critical density at the radial location
of each satellite (Porco et al., 2007).

These observations suggest that those small moons near
the outer edge of Saturn’s main rings formed by gravita-
tional accretion of small particles, and support the recent
models for the formation of ring-satellite systems of giant

Figure 1.36 Examples of orbits of particles in the case of

rp = 1073 (left panel) and 1 (middle panel); note that 7, is the
inverse of the parameter rj, used in the previous Section. In
both cases, Hill’'s equation for the relative motion is numerically
solved for initially circular, coplanar orbits, and the interacting
particle is at the origin of the coordinate system. The dashed
line represents the two interacting particles’ mutual Hill sphere.
In the case of the left panel, which corresponds to orbits of
planetesimals at a radial location 1AU from the sun, no direct
collisions are detected and the orbital changes are caused by the
mutual gravitational interaction alone. The solid circle in the
middle panel shows the physical size of the colliding particles. In
the case shown here, four orbits lead to direct collision, and the
orbital changes are calculated assuming that particles are
perfectly, elastic smooth spheres. The right panel shows
examples of orbits leading to collision with another particle
(smooth spheres with e, = 0.5), for two different values of 7p;
the difference in rp corresponds to, for example, changing the
distance from the central body for a given internal density of
the particles. In the case of 7, = 0.75, the orbit results in escape
after the first collision, while the orbit in the case of 7, = 0.6
leads to accretion after the second impact (Ohtsuki, 1992, 1993,
2012).

planets from an ancient ring that was much more massive
than the current ring system (Charnoz et al., 2010; Canup,
2010; Salmon et al., 2010; Charnoz et al., 2011; Crida and
Charnoz, 2012; Hyodo et al., 2015a). The originally mas-
sive disk radially spreads through collision and gravitational
interactions among particles. Those particles spreading be-
yond the Roche limit gravitationally accrete to form small
satellites, and the formed satellites migrate outward due to
torques induced by the disk and the planet (Charnoz et al.,
2010; Crida and Charnoz, 2012). Satellites produced from
a disk with a larger surface density tend to be more mas-
sive, while the disk surface density gradually decreases as
the radial spreading proceeds. Also, more massive satellites
migrate more rapidly because the torques are an increasing
function of mass, and the different migration rates lead to
orbital crossings and merging (Charnoz et al., 2010). As a
result, the outer satellites tend to be more massive, which
explains the observed trend of the satellite systems of Sat-
urn, Uranus, and Neptune (Charnoz et al., 2010; Canup,
2010; Crida and Charnoz, 2012). As for the origin of such
a massive circumplanetary particle disk, in addition to the
classical model for the ring origin by impact disruption of a
satellite (Harris, 1984; Charnoz et al., 2009), tidal stripping
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Figure 1.37 Examples of gravitationally bound aggregates
forming in numerical simulations of identical particles

(tp = 0.25, “frosty” ice en(vn)). The projections of aggregates
to the equatorial plane are shown, together with a fitted 3-axial
ellipsoid: the labels indicate the r;, parameter, and the
corresponding distance for p = 900 kgm 3. The lower frame
indicates the vertical-to-radial (v.) and tangential-to-radial ()
axial ratios of the aggregate, and the spin of the aggregate
wz/n. The jump of w./n to unity (synchronous rotation)
corresponds to the transition from self-gravity wakes to bound
aggregates. The arrows indicate the axial ratios of the most
elongated stable Roche-ellipsoid for a gravitating fluid body
(Chandrasekhar, 1969) . These simulations correspond to Fig.
1.24a, except that fiction with ky = —0.1 (see Eq. 1.61) was
included: this shifts the boundary of accretion inward by about
5000 km. Redrawn from Karjalainen and Salo (2004).

of icy mantle layers of a differentiated satellite migrating in
a circumplanetary gas disk (Canup, 2010) and tidal disrup-
tion of a passing Kuiper-belt object (Dones, 1991; Charnoz
et al., 2009) have been proposed, and simulations of tidal dis-
ruption of a passing differentiated Kuiper-belt object using
the smoothed particle hydrodynamics method shows that
the latter model seems to naturally explain the small size of
ring particles and even the compositional difference between
rings of Saturn and Uranus (Hyodo et al., 2015b). More de-
tailed discussion on the origin of ring-satellite systems of
giant planets are described in Chapter by Charnoz et al.
We plot proche defined by Equation (1.137) as a func-
tion of the distance from Saturn in Figure 1.38. Note that
the filling factor in gravitational aggregates obtained by N-
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Figure 1.38 Critical densities as a function of the distance
from Saturn. The solid line represents proche (Eq. (1.137)). The
dashed line represents the critical bulk density of gravitational
aggregates consisting of equal-sized particles against tidal
disruption (ptiqar; Eq. (1.138)) obtained by Leinhardt et al.
(2012). The thin dotted curve represents pcore,crit (Eq. (1.140))
derived from the condition ry, core = ~: "1 (Yasui et al., 2014).
The radial locations of the inner boundary for the formation of
temporary aggregates and those of stable aggregates obtained
by N-body simulations (Karjalainen and Salo, 2004) are shown
by the vertical dotted lines and the vertical dot-dashed lines,
respectively. The horizontal shaded band shows the range of the
bulk density of gravitational aggregates obtained by N-body
simulations (540 — 630 kg m~3), corresponding to the filling
factor of 0.6 — 0.7. Redrawn from Yasui et al. (2014)

body simulation with identical particles typically takes on
0.6 — 0.7, yielding a bulk density ppyu = 540 — 630 kg m ™3
when the density of constituent particles is 900 kg m 2 as
was assumed in Karjalainen and Salo (2004). We find that
the inner boundary for the formation of temporary aggre-
gates obtained by N-body simulation approximately corre-
sponds to the location of ppy1k = PRoche- T hat is, temporary
aggregates would form at the radial locations corresponding
tO Ppulk = PRoche When collisions are sufficiently dissipa-
tive, but due to finite impact velocities, the critical radial
distance shifts outward if energy dissipation at collision is
insufficient. The above correspondence also shows difficulty
in forming stable aggregates without dense cores even at the
radial location corresponding to pLulk = PRoche-

On the other hand, Leinhardt et al. (2012) examined tidal
disruption of gravitational aggregates placed at different ra-
dial distances from a planet, and obtained the critical bulk
density of aggregates as a function of the distance. For ex-
ample, in the case of aggregates consisting of identical parti-
cles, the critical density for stability against tidal disruption
(pridal) can be written as

7.7TMp

5 (1.138)

Ptidal =
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which is shown in Figure 1.38 with the dashed line. The
formation of stable aggregates obtained by Karjalainen and
Salo (2004) approximately corresponds to the above critical
distance for the stability against tidal disruption.

When particles accrete onto large cores, an important
quantity is the ratio of the Hill radius of the core (Ry core)
to its physical size (Rcore)

Th,core = RH,coro/RCorc~ (1.139)

The core’s Hill sphere covers the entire surface of the core
when 7y core > 72 I~ 1.57 while particles accrete only part
of the core surface when 1 < 7y, core < 7;1 (Yasui et al.,
2014, Figure 1.9), and gravitational accretion does not tale
place when 1}, core < 1 as mentioned above. Thus, the condi-
tion 1y core = V2 ! gives another critical density as a function
of radial distance as

IMp

—a, 1.140
Anyad’ ( )

Pcore,crit =
which is shown by the thin dotted curve in Figure 1.38. The
critical density pcore,crit at a given radial distance is larger
than proche, because the Hill radius of a Hill-sphere-filling
body (with its bulk density given by proche) is equal to the
body’s semi-axis in the radial direction, while the core’s Hill
radius needs to be larger than the core radius by a factor
(or v2RH core = Reore)-
If the density of a core placed at a certain radial distance

of 72_1 ~ 1.57 when 7y, core = 'yz_l

is larger than pcore,crit, the entire surface of the core can be
covered by accreting particles. As accretion of particles onto
the core proceeds, the bulk density of the formed aggregate
would continue decreasing until it reaches proche for the
radial location. However, actual accretion would not proceed
to this point because of limited energy dissipation and/or
finite impact velocities, as mentioned above.

Snapshots of the spatial distribution of particles in the vicin-
ity of the moonlet core. The rings are seen from the vertical
direction against the plane of orbital motion. Saturn is to
the left, and orbital motion is upward. The optical depth
of unperturbed rings is 0.5, and particles have a size distri-
bution with ¢ = 3, Rmax = 500 cm, and R, = 30 cm,
respectively. (Rcore = 1250 cm, the densities of the core and
the particles are 900 and 400 kg nf?’., respectively, and the
normal restitution coefficient is 0.5.) The left panel shows
the case with 7y, core = 1.5 (corresponding to a = 1.15 x 10°
km from Saturn when the density of the core is 900 kg mfs),
where particles can accrete only part of the surface of the
core. The right panel shows the case with 7 core = 1.69
(corresponding to a = 1.3 x 10° km from Saturn when the
density of the core is 900 kg mf‘g)7 where accreting particles
can completely cover the surface of the core. Blue particles
are those regarded as members of the aggregate, while red
ones are not. A particle is regarded as a member of the aggre-
gate if it is practically in contact (within 1% particle radii)
with at least one of the members of the aggregate including
the core. Redrawn from Yasui et al. (2014).

Aggregates formed by gravitational accretion of particles
in the Roche zone have a Hill sphere comparable to their

&
T=0.920

Figure 1.39 Time series of simulations of collisions between
aggregates in the tidal environment corresponding to the radial
location of Saturn’s F ring (a = 140,000 km). Saturn is to the
left, and orbital motion is upward. Two aggregates collide with
each other from the radial direction. Three cases of different
impact velocities (vimp) are shown. Left: Case with

Vimp /Vesc = 0.69, which results in total disruption of the
colliding aggregates. Middle: Case with vimp /vVesc = 1.14, which
results in total accretion. Right: Case with vimp /vVesc = 1.52,
which results in total disruption. Impacts with still higher
impact velocity result in total disruption. Numbers in each panel
represent the time elapsed since the start of the simulation, in
units of the orbital period at the radial location of the origin of
the system. Redrawn from Hyodo and Ohtsuki (2014).

physical size. In this case, even a slight deformation from its
stable shape due to collision with other particles or aggre-
gates would lead some particles to become gravitationally
unbound, which would then result in total disruption of the
aggregate. Thus, even stable aggregates are likely vulnerable
to collisional disruption. In fact, transient brightening was
observed in Saturn’s F ring by Voyager (Showalter, 1998),
and shedding of small particles by disruption of embedded
bodies has been proposed as the cause of such events (Bar-
bara and Esposito, 2002). More recently, small protrusions
from the core of the F ring, called “mini-jets,” have been
observed by Cassini, and they are regarded as showing low-
velocity collisions within the ring (Attree et al., 2012).
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Impacts between gravitational aggregates in the tidal en-
vironment have been examined by local N-body simulations.
In the case of collisions of aggregates initially on circular
orbits at the radial location of the F ring, N-body simula-
tions confirmed that colliding aggregates that greatly differ
in mass can more easily accrete as expected (Karjalainen,
2007), while the accretion efficiency was found to be higher
than the results obtained by three-body calculations that
treat the ring particles as hard spheres (Ohtsuki, 1993).
The degree of disruption in collisions in free space is de-
termined by specific impact energy, and the mass fraction
of the largest remnant body is a monotonically decreasing
function of impact energy. In fact, the mass fraction can be
approximated by a linear function of impact energy, which
is known as “the universal law” (see, e.g. Stewart and Lein-
hardt, 2009). However, N-body simulations show that this
law is not applicable to impacts between aggregates in the
Roche zone (Hyodo and Ohtsuki, 2014). Outcomes of col-
lisions in the tidal environment sensitively depend on the
impact velocity and the direction of impact, and a complete
disruption of aggregates can occur even in impacts with ve-
locity much lower than their escape velocity (Figure 1.39).
In such low-velocity collisions, the deformation of colliding
aggregates plays an essential role in determining collision
outcomes, while the dependence of collision outcomes on im-
pact velocity becomes similar to the case in free space when
the distance from the planet is sufficiently large. Further-
more, in the case where each of the colliding aggregates has a
dense core as suggested by the Cassini observations of small
moons, for a wide range of parameters an impact results in
only partial disruption of the aggregates and the formation
of a narrow ring of particles sandwiched between two rem-
nant aggregates (Hyodo and Ohtsuki, 2015). According to
the recent model of satellite system formation from ancient
massive rings, multiple small satellites are expected to coex-
ist near the disk’s outer edge for a significant period of time
during the final stage of satellite system formation (Charnoz
et al., 2010; Hyodo et al., 2015a). Thus, the above results
of impact simulations suggest that the system of a narrow
ring accompanied with small satellites near the outer edge
of the main ring system is a natural outcome at the final
stage of the formation process of the ring-satellite system of
giant planets (Hyodo and Ohtsuki, 2015).

1.10 Rings with Nearby Moons

Many narrow rings and ring gaps have moons that orbit
near the ring material. For broad rings, this leads to the
1986). In the F
ring, these perturbations appear as more complex features
(Kolvoord et al., 1990). The perturbations from a nearby
moon destroy the symmetries that allow for the local cell

formation of moon wakes (Showalter et al.,

simulation techniques described in section 1.2. To get around
this, one can do more global simulations, or use modified
boundary conditions that preserve the orbital properties of
the ring particles that are induced by passing by the moon.

"))x

1

Figure 1.40 Particle paths are perturbed by the passage of a
nearby moon. Keplerian shear causes the particles further from
the moon to have a faster relative drift rate. The difference in
wavelength of the oscillations leads to regions of compression
and rarefaction referred to as moon wakes. Orbital motion is up.
Particles interior to the moon, left, are drifting upward, while
those exterior, right, are drifting downward relative to the moon.

1.10.1 Small Local Cell Simulations

When particles pass near a moon, they receive a forced ec-
centricity. Showalter et al. (1986) explored the impact of this
perturbation using a simple kinematic streamline model.
Their predictions led to the later discovery of Pan in the
Encke gap (Showalter, 1991). The approach they took was
to view particle motion as streamlines that have a zero ec-
centricity upstream of the moon, and which then are given
a forced eccentricity by the moon. Due to Keplerian shear,
the wavelength of the oscillations grows with distance from
the moon. This leads to the regions of compression and rar-
efaction shown in Fig. 1.40.

A more complete kinematic model of the particle motion
was developed by Stewart (1991) using what he refers to as
guiding center coordinates, which are effectively a simplified
version of the solution of the Hill’'s equation given in Eq.
(1.5), with the perturbing moon at the origin. To simplify
the discussion of the following sections, we present those
equations here in the form

— = X —ecos(¢),
am
A Y + 2esin(¢),
am
z

I cos(¢), (1.141)



40 Salo & Ohtsuki € Lewis

where

Y = Yo—ant,

o) = ¢o+nt,

() = C+nt (1.142)

The use of guiding center coordinates (X,Y,e, I, ¢,() led
to the development of a set of local cell boundary condi-
tions that can be applied to these perturbed systems (Lewis
and Stewart, 2002). The key observation for these boundary
conditions is that the value of ¢, the angle of the particle
motion around the drifting guiding center, is set by the pass
by the moon and that it is not significantly altered by colli-
sions during the time it takes the particle to drift across the
simulation cell. The reason this is true is that the relative
velocity differences of the particles are very small compared
to their systematic velocities associated with the satellite-
forced eccentricities and inclinations. Given that, when a
particle drifts out of the edge of the local cell, it can be
brought back on the other side by altering the y value by
the width of the cell, and pulling back the ¢ angle by the
amount that it would normally advance crossing the cell.

One can view this as replacing a particle that moves out
of the downstream edge of the cell by an earlier image of
itself entering on the upstream edge. If the azimuthal length
of the cell is Ly, then the time it would take the guiding
center of the particle to move across the cell is

2L
At =4
3Xn

(1.143)

and the angle should be decremented by nAt. The systems
being simulated typically have at least one real radial edge,
either at the inside or outside of the cell. For that reason,
the radial boundaries are left open. In addition, while the
“sliding brick” boundary conditions discussed in section 1.2
remain stationary over the course of the simulation and
particles move through them, in the local cell method for
perturbed rings, the calculation region moves azimuthally
downstream, typically at the drift rate of the inner edge.
Note that these boundary conditions can be applied inde-
pendent of whether or not gravity or collisions are consid-
ered, and do not depend on how gravity or collisions are
calculated in the simulation.

This local cell approach has been applied to both the
Encke gap region and narrow rings with a single nearby
satellite (Lewis and Stewart, 2000, 2005; Lewis et al., 2011).
Figure 1.41 shows a simulation that reproduces a number of
the results of those papers.

The strip down the right side shows geometric optical
depth. Each row in the figure represents one time step. The
values were calculated every 20 time steps by breaking the
simulation into radial bins and adding the cross sectional
surface area of the particles whose centers are in each bin.
The cell began the simulation at the top of this strip, a few
thousand kilometers before encountering Pan. It then moved
down the plot during the simulation as the material is ra-
dially exterior to the moon. Note the wavy edges produced
by the eccentric motion of the particles after passing by the
moon, and the moon wakes that form from the streamline

compression. Also present at this scale is the radial migra-
tion of particles that begins around 10 degrees downstream
from the moon. This is the location where the streamlines
begin to intersect on the inner edge of the particle distribu-
tion in this simulation. This critical angle where streamlines
shear through was called 6..;; by Showalter et al. (1986).
Using Eq. 1.141, Lewis et al. (2011) express it as

3Xx2
2¢

Yerit = — (1'144)
Note that this derivation assumes a constant e, and ec-
centricity gradients can alter the exact location at which
streamlines cross. For this simulation, the forced eccentric-
ity after passage by the moon is 1.3 x 10~° on the inner
edge, X = (a — am)/am = 1.21 x 1073, and 1.2 x 107° on
the outer edge, X = (a — am)/am = 1.29 x 1073 Plugging
these values into Eq. (1.144) gives -0.169 radians or —9.7°
at the inner edge and -0.208 radians or —11.9° at the outer
edge.

Beginning at Y,,;;, the material at the inner edge un-
dergoes orbital alterations that moves it outward, into the
main body of the ring. Angular momentum has to be con-
served, so an equal mass of particles shifts inward radially.
Most of the mass movement that balances the motion of the
inner edge comes from the middle of the distribution, not
the outer edge. This is due to the fact that this migration
is powered by the forced eccentricity, and can only “reach
out” a distance roughly equal to the forced eccentricity. The
magnitude of the forced eccentricity corresponds to 1.7 km;
see the amplitude of the edge waves in Fig. 1.41. This mi-
gration leads to a peak in the density of particle semimajor
axes, X around 165 km from Pan and then a trough around
167 km. This trough is most pronounced around 35° down-
stream from the moon. At that point, the particles at the
inner edge have lost roughly 60% of their initial forced ec-
centricity and those at the outer edge have lost over 80% of
their initial forced eccentricity.

Figure 1.41, left side, shows individual particles at a few
selected locations downstream from the moon. The locations
of these regions are marked by horizontal lines across the
surface density plot in the right. Interesting interactions be-
tween the gravity wakes and the Pan wakes are seen. As was
discussed in section 1.7.2 and shown in Eq. 1.126, the wave-
length of gravity wakes o< Ap o< X, so the natural wavelength
of gravity wakes would be larger in high density regions a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>