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The local dynamics of planetary rings is governed by the

orbital motion, the frequent impacts between ring parti-

cles, their mutual self-gravity, and the perturbations exerted

by external satellites and embedded moonlets. In Saturn’s

dense A and B rings the particles collide ∼ 100 times per

orbital revolution. Although the orbital velocities are ∼ 20

km/s, the random velocities related to orbital eccentricities

and inclinations are small, of the order of few mm/s (this

corresponds to a ring vertical thickness of few tens of meters,

excluding strongly perturbed regions). Such gentle impacts

do not lead to fragmentation, but still dissipate a significant

fraction of random kinetic energy in each collision. This loss

is balanced by the viscous gain of energy from the orbital

motion around the planet, resulting on a local steady-state

in a time scale of few tens of impacts/particle. Characteris-

tics of this energy balance (such as velocity dispersion, ge-

ometric thickness, and viscosity) are determined by the fre-

quency and elasticity of impacts, and by the internal density

and size distribution of particles. In much longer timescales

the ring radial evolution is governed by viscous evolution.

Depending on the viscosity-density relation following from

the energy balance, the ring can be either stable or unstable

against the viscous growth of local perturbations. For ex-

ample, dense rings composed of quite inelastic particles can

become viscously overstable, while less dissipative particles

may be prone to viscous instability.

The basic collisional dynamics of planetary rings is the-

oretically fairly well understood, and in the case of non-

gravitating particles the steady-state properties can be

obtained analytically from kinetic theory (Goldreich and

Tremaine, 1978b; Hämeen-Anttila, 1978; Stewart et al.,

1984; Shu and Stewart, 1985; Latter and Ogilvie, 2006),

also in the case of dense flattened rings where finite-size

(nonlocal) effects become important (Hämeen-Anttila, 1982;

Shukhman, 1984; Araki and Tremaine, 1986). The same is

true even if particle size distribution and pairwise gravita-

tional encounters are included (e.g. Hämeen-Anttila, 1984;

Hämeen-Anttila and Salo, 1993), although the resulting an-

alytical expressions become cumbersome. Similarly, the vis-

cous stability properties of rings can be analyzed via hydro-

dynamical (Schmit and Tscharnuter, 1995; Schmidt et al.,

2001) or kinetic theory approach (Latter and Ogilvie, 2008).

Numerical simulations, however, are indispensable for many

reasons as they take automatically into account the non-

isotrophy of velocity dispersion following from orbital mo-

tion, and allow the accurate treatment of dense flattened

rings without simplifying assumptions. In particular, the re-

alistic inclusion of collective self-gravity, implying the forma-

tion of gravitational wakes and particle aggregates, is still

out of scope of analytical treatments.

The fundamental importance of ring particles’ feeble mu-

tual gravity for shaping the fine structure of Saturn’s rings

is strikingly demonstrated by the Cassini stellar (Colwell

et al., 2006, 2007; Hedman et al., 2007) and radio occul-

tation measurements (Thomson et al., 2007), which con-

firm the presence of unresolved trailing structures (self-

gravity wakes (Salo, 1992a)) throughout the A and B rings.

These transient, continuously re-generated trailing density

enhancements arise as a superposition of tiny wakes excited

around each individual ring particle, amplified by the inter-

play of shear and gravity (swing-amplification mechanism,

see: Toomre, 1981; Goldreich and Lynden-Bell, 1965). Such

structures were envisioned already decades ago (Julian and

Toomre, 1966), though in a very different context (and scale

- kpcs rather than tens of meters), as a suggestion of how to

create and maintain spiral structure in galactic stellar disks.

In planetary rings the dissipative impacts between particles

provide a natural mechanism which keeps the rings dynam-

ically cool and reactive to such gravitational disturbances.

For the same reason the excitation of spiral density waves

at satellite resonance locations (Goldreich and Tremaine,

1978a) - another concept originally developed in the con-

text of galaxy dynamics - has its clearest manifestation in

Saturn’s rings (see e.g. Shu, 1984; Burns and Cuzzi, 2006;

Cuzzi et al., 2010). Saturn’s rings also provide the most

extreme examples of disk warping (Hedman et al., 2011),

and the Julian-Toomre type wakes excited around individ-

ual massive boulders orbiting among the ring particles (’pro-

pellers’) (Spahn and Sremčević, 2000; Tiscareno et al., 2006;

Sremčević et al., 2007).

This Chapter reviews numerical N-body simulations of

self-gravitating, mutually colliding particles, concentrating

on a local method, where the evolution of a small ring patch

co-moving with the mean orbital motion is followed. After

reviewing the main ingredients of the simulations (dynam-

ical equations, treatment of boundaries, impacts, and self-

gravity), we illustrate the basic mechanisms affecting the

local energy balance and give simulation examples of self-

gravity wakes, gravitationally bound particle aggregates,

and the nonlinear structures resulting from viscous oversta-

bility and instability. Also photometric modeling of dynam-

ical simulations is addressed, and the results compared with

both Hubble Space Telescope and Cassini observations.
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INITIAL DISTRIBUTION AFTER 150 REVOLUTIONS

Figure 1.1 Simulation example of azimuthally complete ring.

The number of particles N=2000, and the particle radius is
0.005a, where a is the mean distance of particles. The initial
width of the ring is 0.2a, yielding a dynamical optical depth
τD = 0.125. The impacts are described with a constant
coefficient of restitution ǫn = 0.5. During 150 orbital revolutions
each particle has experienced on average about 250 impacts: the
system has flattened to a few particle diameter thick disk, and
has at the same time nearly doubled its radial width.

1.1 Early simulation studies

The pioneering simulation studies of the collisional evolution

of planetary rings were performed in the 1970s, by Trulsen

(1972), Brahic (1977) and Hämeen-Anttila and Lukkari

(1980). All these simulations used the same basic approach:

a complete ring of particles revolving around the central

body in Keplerian orbits. The particles were identical hard

spheres, and impacts were treated as leading to instanta-

neous changes of relative velocity vectors. Since only a few

hundred particles could be followed with the available com-

puter capacity, these simulations were limited to low optical

depth τD . 10−3. The particle sizes were unrealistically

large compared to the width of the ring, which made it dif-

ficult, for example, to separate the time scales for the estab-

lishment of local steady-state velocity dispersion from the

viscous radial spreading (see Fig. 1.1). Nevertheless, many

basic characteristics of collisional systems (see Section 1.7)

were discovered, including the existence of a critical up-

per limit for the coefficient of restitution ǫcr, required for

a stable thermal balance in the case of constant ǫn (Trulsen,

1972), a minimum residual velocity dispersion of the order

of few times nR (Brahic, 1977), where n is the local an-

gular velocity and R the particle radius, and the establish-

ment of equilibrium with a finite velocity dispersion in a case

of a velocity-dependent coefficient of restitution (Hämeen-

Anttila and Lukkari, 1980). These simulations also served as

important checks for various analytic treatments (see Stew-

art et al. (1984)). Brahic (1977) also provided the first con-

straints for the velocity dispersion in Saturn’s rings, in terms

of timescales for viscous spreading. However, a fundamental

breakthrough was provided by the Wisdom and Tremaine

(1988) application of the local method to planetary ring sim-

ulations.

In contrast to the simulations of a complete ring, in lo-

cal simulations all calculations are restricted to a small re-

gion co-moving with the mean orbital motion of the parti-

cles (Fig. 1.2). This allows the extension of the simulations

to high optical depths, with realistic particle sizes. How-

ever, due to systematic velocity shear individual particles

will rapidly leave the calculation region. As described in de-

tail below, this is taken into account by periodic boundary

conditions, returning the leaving particles to the calculation

region with properly modified position and velocity vectors.

An important advantage of the method is that it facilitates

the study of local steady-state properties as a function of

fixed optical depth. The larger-scale viscous evolution can

then be deduced from the viscosity-density relation derived

from a set of small-scale simulations for different optical

depths. This is justified, based on the large separation of

the time scale for the establishment of the local thermal

balance (∝ (τDn)−1), and the much longer time scale for

the radial evolution (∝ W 2/ν ∝ (τDn)−1(W/H)2, where ν

is the kinematic viscosity, W is the radial scale of interest,

and H is the ring vertical thickness).

The local method, developed for Molecular Dynamics sim-

ulations by Lees and Edwards (1972), was first applied to

planetary rings by Wisdom and Tremaine (1988) and to

stellar disks by Toomre and Kalnajs (1991). In the former

study impacts between identical particles were taken into ac-

count, but not their mutual gravity, whereas the latter study

concentrated only on gravitational forces. In Salo (1992a)

both, gravity and impacts, were simultaneously included.

Since then, the local method has been extensively used

(e.g. Richardson, 1993, 1994; Salo, 1995; Mosqueira, 1996;

Daisaka and Ida, 1999; Lewis and Stewart, 2000; Daisaka

et al., 2001; Ohtsuki, 1999; Robbins et al., 2010; Perrine

and Richardson, 2012).

1.2 The Local Simulation Method

The coordinate system in the local method has its origin

at ~r0, a reference point orbiting the planet of mass MP in

a circular orbit at the distance a, with a constant angular

velocity n =
p

GMP /a3. The x-axis points in the radial

direction, the y-axis in the direction of orbital motion, and

the z-axis is perpendicular to the equatorial plane, paral-

lel to the angular velocity vector ~n = nẑ. Since a rotating

reference frame is used, the equations of motion are

~̈r + 2~n × ~̇r + ~n × (~n × ~r) = ~FG/m + ~F/m (1.1)

where ~r = (x, y, z) is a particle’s radius vector with respect

to ~r0, ~FG denotes the central force on the particle relative

to the force at ~r0, ~F the additional forces, and the two last

terms on the left hand side represent the Coriolis and cen-

trifugal terms, respectively. For the Keplerian case (spheri-

cally symmetric central body) the difference in the acceler-
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Figure 1.2 Schematic representation of the local simulation

method (“shearing brick” method) (see text for explanation).
ation due to the central field is

~FG/m = −GMP

„

~r0 + ~r

|~r0 + ~r|3 − ~r0

a3

«

(1.2)

≈ −GMP

a3

„

~r − 3
~r · ~r0

a2
~r0

«

= n2(2x,−y,−z),

if only terms linear in |~r|/a are retained. In the more general

case where the azimuthal, radial, and vertical frequencies (n,

κ, and nz) are different from each other1

~FG/m =
“

(3n2 − κ2)x,−n2y,−nz
2z

”

, (1.3)

with

n2 =
Fr

r

˛

˛

˛

~r=~ro

,

κ2 =
1

r3

d

dr
(r3Fr)

˛

˛

˛

~r=~ro

,

n2
z =

d

dz
(Fz)

˛

˛

˛

~r=~ro

,

where Fr and Fz are the radial and vertical components of

the central force. Inserting this in Eq. (1.1) yields

ẍ − 2nẏ + (κ2 − 4n2) x = Fx/m,

ÿ + 2nẋ = Fy/m, (1.4)

z̈ + nz
2z = Fz/m,

where Fx, Fy, Fz stand for the components of additional

forces besides the central force, e.g. due to impacts and parti-

cles’ mutual gravity. This is the familiar Hill-approximation,

describing the elliptical motion in terms of epicycles super-

posed on the circular motion of the guiding centre. In the

absence of additional forces Eqs. (1.4) have the solution

x = x0 − A cos[κ(t − t0)],

y = y0 +
2nA

κ
sin[κ(t − t0)] +

κ2 − 4n2

2n
x0t,

z = B sin[nz(t − t1)], (1.5)

1 Note that in this Chapter the symbol nz is used for the ver-
tical frequency instead of ν; the latter symbol is reserved for kine-
matic shear viscosity.

where x0, y0, A, t0, B, t1 are six constants of integration: x0

and y0 are given by the guiding centre location at t = 0,

while A = ea, B = Ia correspond to eccentricity and incli-

nation, and t0, t1 to the times of pericenter and ascending

node passage, respectively. The guiding centre drifts tangen-

tially with the speed sx0, where the shear rate

s =
κ2 − 4n2

2n
(1.6)

reduces to s = − 3
2n in the Keplerian case.

The use of linearized equations is physically well justified,

as the typical particle excursion from circular orbit may be

expected to be at least a factor of 10−6 smaller than a.

Furthermore, through the linearization the set of Eqs. (1.4)

is invariant under the transformation

(x′, y′, z′) = (x + ∆x, y + ∆y + ∆x st, z),

(v′x, v′y, v′z) = (vx, vy + ∆x s, vz), (1.7)

where ∆x and ∆y denote arbitrary shifts in radial and tan-

gential directions, respectively. This allows to use simple pe-

riodic boundary conditions in simulations: using ∆x = nxLx

and ∆y = nyLy, where nx and ny are integers, and Lx and

Ly denote the radial and tangential dimensions of the cal-

culation region,

(x′, y′, z′) = (x + nxLx, y + nyLy + nxLxst, z),

(v′x, v′y, v′z) = (vx, vy + nxLxs, vz), (1.8)

with |nx|, |ny| = 1, 2, ..., define a set of image particles (repli-

cas, see Fig. 1.3), so that each particle leaving the actual

calculation region (|x| > Lx/2 or |y| > Ly/2), is replaced

by one of its replicas which enters the region from the oppo-

site face, with appropriately modified position and velocity.

Especially, if the particle crosses the outer or inner radial

boundary, the tangential velocity of the particle is modi-

fied by ∆vy = ±sLx, which corresponds to the difference of

shear velocity across Lx. Since the mean tangential velocity

at the radial coordinate x equals sx, this leaves the shear

corrected tangential velocity vy − sx unaffected. With the

use of these periodic boundary conditions the evolution of
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the system is independent of the size of the calculation re-

gion, provided that the size is large compared to the mean

free path between impacts (Wisdom and Tremaine (1988),

Salo (1991)). Implicitly it is assumed in the local method

that the rings are homogeneous on a scale comparable or

larger than the size of the simulation region.

PLANET

ORBITAL MOTION

Lx

Ly

Figure 1.3 Schematic diagram displaying the simulation cell
(thick lines) and its eight surrounding replicas (thin lines).
Gravitational forces on the given target particle (marked by
cross) are calculated from the particles whose nearest images lie

within a given maximum distance marked by the circle. The
nearest image can either be the actual particle (solid symbols)
or one of its copies (open symbols). Likewise, collisional
calculations take into account impacts with image particles.

For a system of N particles moving according to Eqs. (1.4)

the quantities

U =
1

mtot

N
X

i=1

miẋi,

V =
1

mtot

N
X

i=1

mi(ẏi − sxi), (1.9)

are the analogues to centre-of-mass velocities, where mtot is

the total mass. From Eqs. (1.4),

mtot(U̇ − 2nV ) =
X

i

X

j

Fx
ij ,

mtot(V̇ + (2n + s)U) =
X

i

X

j

Fy
ij , (1.10)

where ~F ij stands for the mutual impact or gravity force,

exerted by particle j on particle i. Since the forces cancel

pairwise, the sums on the right-hand sides vanish. Also, U

and V are unaffected by boundary crossings. Thus, U and V

remain zero at all times if they vanish initially. This provides

a useful check for the accuracy of the orbit and impact cal-

culations. In the more general case, U and V oscillate about

their initial values, but as shown in Wisdom and Tremaine

(1988), the evolution of a system with arbitrary U0 and V0

is easily determined from the evolution with U0 = V0 = 0.

Eqs. (1.4) have the energy integral (multiply with veloci-

ties and integrate once),

E =
X

i

mi

„

1

2
(ẋ2

i + ẏ2
i + ż2

i ) + nsxi
2 +

1

2
nz

2zi
2
«

− 1

2

X

i

X

j 6=i

G
mimj

|~rj − ~ri|
, (1.11)

the last term representing the self-gravitational potential en-

ergy (we have assumed that the additional forces arise from

mutual self-gravity). In contrast to centre-of-mass velocities,

the quantity E does not remain constant in boundary cross-

ings or impacts.

1.3 Impact calculations

The impacts between planetary ring particles damp the rela-

tive velocity difference between the colliding particles, which

leads to dissipation of random kinetic energy. The impacts

also transfer energy between planar and vertical directions,

and between translational and spin motions. The damping

of the relative velocity component in the direction perpen-

dicular to the impact plane is specified by the normal co-

efficient of restitution ǫn, describing the energy loss due to

irreversible deformations during the impact. Similarly, the

tangential coefficient of restitution, ǫt, can be included, de-

scribing the change of the relative velocity component along

the impact plane. In this case the exchange of energy with

the particles’ spin motion needs also be taken into account.

Surface irregularities and the overall non-spherical shape of

the particles may also affect the impact outcome.

Two main methods are generally used in the description

of impacts: i) instantaneous velocity changes (“hard sphere”

collisions), where the collisions are treated as discrete events,

and ii) force model method, where the impacts are treated

in terms of forces affecting during the finite-duration impact

(“soft sphere” collisions).

1.3.1 Instantaneous Impacts

In most local simulations (Wisdom and Tremaine (1988),

Salo (1991, 1992b,a); Richardson (1994)) an impact model

with instantaneous velocity changes has been used. This is

well justified, as the contact time in impacts is probably less

than one second (Bridges et al., 1984), or of the order of

10−5 orbital periods. Below we summarize the equations for

the velocity and spin changes in impacts, following from the

specified elastic model and the conservation laws of linear

and angular momentum. The equations are first derived in
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an inertial frame, and then we discuss the slight modifica-

tions required when a local rotating frame is used.

1.3.1.1 Contact dynamics

The pre-collisional position, velocity, and spin vector of the

impacting particle are denoted by ~r, ~̇r , and ~ω, respectively,

and its radius and mass by R and m. The impact partner

is distinguished by the subscript 1, and the post-collisional

quantities by a prime. We define

~v = ~̇r 1 − ~̇r ,

~k =
~r1 − ~r

R + R1
, (1.12)

standing for the velocity difference of the particle centres,

and for the unit vector in the direction joining the particle

centres. For an impact to take place ~v · ~k < 0. The pre-

collisional velocity difference at the contact point, taking

into account the spins, is

~g = (~̇r 1 − R1~ω1 × ~k) − (~̇r + R~ω × ~k) (1.13)

= ~v − (R~ω + R1~ω1) × ~k. (1.14)

The post-collisional contact velocity ~g ′ is determined by the

impact model, giving its components in three orthogonal

directions ~k, ~k× (~g×~k), and ~g×~k, of which the last two lay

on the impact plane; unit vectors in these directions will be

denoted by ~kT and ~kγ , respectively. Note that these vectors

form a right-handed system. We use the notation

~g ′ = −ǫn ~k~k · ~g + ǫt ~k × (~g × ~k) + ǫγ ~g × ~k, (1.15)

which implies

~k · ~g ′ = −ǫn ~k · ~g,

~k × (~g ′ × ~k) = ǫt ~k × (~g × ~k) + ǫγ ~g × ~k (1.16)

Thus ǫn denotes the coefficient of normal restitution, and

if ǫγ = 0, then ǫt corresponds to friction. For totally elas-

tic impacts ǫn = 1 while with ǫn = 0 the post-collisional

perpendicular velocity difference vanishes. Similarly ǫt = 1

means a frictionless impact while if ǫt = 0 the whole tan-

gential velocity difference at the contact point is lost. Note

that ǫn = ǫt = 0 does not imply sticking of particles as

the orbital motion is free to separate them. In principle,

−1 ≤ ǫt < 0 is also physically meaningful, corresponding to

reversal of tangential velocity difference (Shu and Stewart,

1985). A non-zero ǫγ can be used to describe the effect of

surface irregularities, giving rise to a post-collisional velocity

component perpendicular to both ~k and ~g. If included, ǫγ

needs to be a random variable with a zero mean, and since

surface irregularities affect also in the direction of ~k×(~g×~k),

a similar random component needs to be present in ǫt.

The collisional changes of particles’ velocity and spin vec-

tors,

∆~̇r = ~̇r
′ − ~̇r , ∆~̇r1 = ~̇r

′
1 − ~̇r 1,

∆~ω = ~ω′ − ~ω, ∆~ω1 = ~ω′
1 − ~ω1 (1.17)

are determined by the conservation of linear momentum

m~̇r
′
+ m1~̇r

′
1 = m~̇r + m1~̇r 1, (1.18)

and the conservation of angular momentum

m~r × ~̇r
′
+ m1~r1 × ~̇r

′
1 + J~ω′ + J1~ω′

1

= m~r × ~̇r + m1~r1 × ~̇r 1 + J ~ω + J1~ω1 (1.19)

where J and J1 denote the particles’ moments of inertia.

These equations can be written in a more compact form

m∆~̇r + m1∆~̇r1 = 0 (1.20)

m~r × ∆~̇r + m1~r1 × ∆~̇r1 + J∆~ω + J1∆~ω1 = 0 (1.21)

Together with the model for ~g ′ (Eq. 1.15), the conservation

laws provide nine conditions for the six post collisional ve-

locity components and six spin components. The remaining

three relations are obtained by determining how the change

of spin is distributed between the two particles. Since the

forces acting on both particles are identical except in their

sign, the torques during the impact are proportional to the

particle radii,

J∆~ω

R
=

J1∆~ω1

R1
. (1.22)

To simplify the notations in solving the above set of 12

equations, Eqs. (1.15), (1.20) - (1.22), we define

~q ≡ R~ω, ~q1 ≡ R1~ω1, ~qs ≡ ~q + ~q1 , (1.23)

J = αmR2, J1 = α1m1R2
1. (1.24)

Thus ~q denotes the surface velocity due to spin rotation,

and α describes the internal mass distribution of particles;

for homogeneous spherical particles α = α1 = 2/5. From

Eqs. (1.20) and (1.22) we find

∆~̇r = − m1

m + m1
∆~v, ∆~q =

m1α1

mα + m1α1
∆~qs, (1.25)

∆~̇r1 =
m

m + m1
∆~v, ∆~q1 =

mα

mα + m1α1
∆~qs. (1.26)

Inserting these in Eq. (1.21), using ~r1 = ~r+~k(R+R1) yields

∆~qs = meff

„

1

mα
+

1

m1α1

«

∆~v × ~k ≡ f∆~v × ~k. (1.27)

Here

meff =
m1m

m + m1
(1.28)

is the effective mass of the pair. In the case of particles with

the same internal mass distribution the factor f reduces to

f = 1/α, which equals f = 5/2 for homogeneous spheres.

The change of the relative velocity at the point of contact

can thus be written (from Eq. 1.14)

∆~g = ~g ′ − ~g = ∆~v − ∆~qs × ~k

= ∆~v + f ~k × (∆~v × ~k). (1.29)

Solving for ∆~v gives

∆~v = ∆~g · ~k~k + (1 + f)−1
“

∆~g · ~kT
~kT + ∆~g · ~kγ~kγ

”

, (1.30)

and inserting the components of ∆~g which follow from the

impact model, Eq. (1.15),

∆~g = −(1 + ǫn)~g · ~k~k + (ǫt − 1)~k × (~g × ~k) + ǫγ~g × ~k (1.31)
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finally gives

∆~v = − (1 + ǫn)~g · ~k~k

− 2

7

h

(1 − ǫt)~k × (~g × ~k) − ǫγ(~g × ~k)
i

. (1.32)

We have used (1 + f)−1 = 2/7, the value for homogeneous

spheres. From Eq. (1.27) we obtain

∆~qs =
5

7

h

(1 − ǫt)(~g × ~k) + ǫγ(~k × (~g × ~k)
i

. (1.33)

The changes for the individual particles are now obtained

from Eqs. (1.25). Note that in the case with no friction

(ǫt = 1) nor irregularity (ǫγ = 0), the changes of velocity

are independent from spins and no change of spins occurs.

1.3.1.2 Energy dissipation

The total kinetic energy of a colliding pair of particles con-

sists of translational and rotational parts

E = Ekin +Erot =
1

2
(m~̇r

2
+m1~̇r

2
1)+

1

2
(mα~q 2 +m1α1~q1

2)

(1.34)

With the centre of mass velocity

~vc =
m~̇r + m1~̇r 1

m + m1
, (1.35)

the translational part can be written as

Ekin =
1

2

“

(m + m1)~v
2
c + meff~v 2

”

, (1.36)

and since ~vc is conserved,

∆Ekin =
1

2
meff∆(~v 2) (1.37)

The rotational contribution can be decomposed in a similar

manner by defining

~qc =
mα ~q − m1α1 ~q1

mα + m1α1
, (1.38)

leading to

Erot =
1

2

»

(mα + m1α1)~qc
2 +

meff

f
~qs

2
–

. (1.39)

Since ~qc is conserved, we have

∆Erot =
1

2

meff

f
∆(~qs

2), (1.40)

As ∆~qs = f∆~v × k, the total energy change is

∆E =
1

2
meff

h

2~v · ∆~v + (∆~v)2 + 2∆~v × ~k · ~qs + f(~k × ∆~v)2
i

=
1

2
meff

h

2~g · ∆~v + (∆~v)2 + f(~k × ∆~v)2
i

. (1.41)

Inserting ∆~v from Eq.(1.30) gives

∆E = −1

2
meff

»

∆(gn
2) +

1

1 + f
∆(gt

2)

–

, (1.42)

where gn ≡ |~g · ~k| and gt ≡ |~k × (~g × ~k)|. In terms of the

impact model we find

∆E = − 1

2
meff

»

(1 − ǫ2n)gn
2

+
1

1 + f

“

1 − (ǫt + ǫ′γ)2 − ǫ2γ

”

gt
2
–

, (1.43)

where we have also explicitly included the random compo-

nent ǫ′γ , present in ǫt. Note that the factor (1 + f)−1 enters

by including the exchange of energy between rotational and

translational motions. The use of ǫt to account for friction

without including particle spins, would correspond to setting

f = 0, thus leading to an incorrect amount of dissipation.

1.3.1.3 Surface irregularities

In principle, irregularities can be described in terms of ǫγ ,

but this treatment has some caveats. Namely, a realistic im-

pact model must have ∆E ≤ 0. With ǫγ = ǫ′γ = 0 the energy

change implied by Eq. (1.43) is guaranteed to be negative

for all 0 ≤ ǫn < 1,−1 ≤ ǫt ≤ 1, but if irregularity is in-

cluded, the allowed range of ǫγ and ǫ′γ depends on ǫn, ǫt,

and the ratio gn/gt. This makes it hard to interpret the

physical meaning of the model. An alternative description

for small-scale irregularity was introduced in Salo (1987a,b),

where the actual normal vector of the impact plane, ~k∗, is

allowed to deviate from ~k by a small random amount in each

impact,

~k∗ = ~k
q

1 − γ2
a − γ2

b + γa ~kT + γb
~kγ , (1.44)

where γa and γb are random variables with zero mean, and

using

∆~g = −(1 + ǫn)~g · ~k∗~k∗ + (ǫt − 1)~k∗ × (~g × ~k∗). (1.45)

On the other hand, the overall shape of the particles is as-

sumed to stay close to spherical, so that Eq. (1.14) can still

be used for the relative velocity at the contact point. The

advantage of this description is that the variables γa and γb

have an obvious physical interpretation, and a negative en-

ergy loss is guaranteed for any allowed impact with ~k∗·~v < 0.

1.3.1.4 Rotating frame

The calculations presented above are valid in an inertial

frame. When using a rotating frame, with same instanta-

neous axis directions, the velocities and spins are connected

to their inertial frame values by

~̇r I = ~̇r Ω + ~n × ~rI ,

~ωI = ~ωΩ + ~n, (1.46)

where subscripts I and Ω are used to distinguish between

the two frames. On the other hand, the instantaneous di-

rection vectors are unaffected. Thus the only differences to

Eqs. (1.32) and (1.33) for ∆~̇r and ∆~ω would come through

~g = ~v − (R1~ω1 + R~ω) × ~k. However, as

~vI = ~vΩ + ~n × ~k(R + R1),

(R~ω + R1~ω1)I × ~k = (R~ω + R1~ω1)Ω × ~k

+(R + R1)~n × ~k, (1.47)
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the vector ~g has the same expression in both frames. Thus

no modifications are needed if both, velocities and spins,

are treated consistently. Alternatively, we may use ~ωI in the

collisional equations and add a correction term (R+R1)~n×~k

to ~gΩ, as was done in Hämeen-Anttila and Salo (1993).

1.3.2 Force model for impacts

The treatment of impacts in terms of instantaneous velocity

changes leads to problems if the particles do not separate

after the impact. Even in the absence of mutual gravity or

attractive contact forces, a situation can occur where the

particles have a net central acceleration toward each other

even when their post-collisional relative velocity is zero. This

corresponds to a sliding motion of the particles, before they

are eventually separated by the shear. Following Wisdom

and Tremaine (1988) such a phase is convenient to handle

with a succession of small jumps, achieved by setting ǫn =

1 whenever the perpendicular impact velocity falls below

a threshold value, say, 0.01nR. Since such impacts do not

dissipate much energy to start with, the energy balance of

the system is not affected by this replacement.2

However, the problem becomes more severe if self-gravity

or cohesive forces between particles are included. In these

cases impacts may lead to a semi-permanent physical stick-

ing of particles. In the instantaneous impact method this

leads to particle overlaps, unless some special measure is

applied to force a separation of the particles. Further dif-

ficulties may still arise for example if gravitational aggre-

gates are formed, in which case it is insufficient to consider

only binary impacts independently from each other. A phys-

ically motivated solution, which is also computationally fea-

sible, is to include explicitly the pressure forces affecting

the particles in the impact. In Salo (1995) this was done

in terms of the linear visco-elastic model originally devel-

oped by Dilley (1993) for the theoretical parameterisation of

his measurements of velocity and size-dependent elasticity.

Likewise, frictional forces may be included in the simulations

(Salo, 1995; Morishima and Salo, 2006). Such Discrete ele-

ment method (DEM) algorithms (Cundall and Strack, 1979)

are commonly used in granular dynamics (see e.g. Pöschel

and Schwager (2005)).

The equations of motion for the impacting particles are

m~̈r = ~F imp + ~F ,

m1~̈r 1 = ~F imp
1 + ~F1, (1.48)

J~̇ω = R~k × ~F imp,

J1~̇ω1 = R1(−~k) × ~F imp
1 , (1.49)

where ~F imp
1 = −~F imp represent the impact forces, and

~F and ~F1 include additional forces affecting the particles

(central force and gravity of other particles), not causing

any torque on the impacting pair. Let us express the impact

2 Note that setting ǫn = 1 for gn → 0 is just a useful com-
putational trick: in reality small impact velocity favors particle
sticking, thus formally corresponding to ǫn = 0, ǫt = 0.

force as

~F imp
1 = fN

~k + fT
~kT (1.50)

with the normal force (the tangential force fT will be treated

below)

fN (ξ) = β1ξ + β2ξ̇, ξ > 0

= 0, ξ ≤ 0, (1.51)

where

ξ = R + R1 − |~r − ~r1| (1.52)

is the penetration depth during the impact. Here β1 > 0 is

the spring constant of the restoring harmonic force, while

due to the dissipative term with β2 > 0 the energy stored

during the compression phase is not completely returned in

the rebound phase. From Eqs. (1.48), (1.51) and (1.52),

ξ̇ = −~v · ~k,

ξ̈ = −~̇v · ~k − ~v · ~̇k,

~̇v = (~F/m − ~F1/m1) + ~F imp
1 /meff , (1.53)

which yields

ξ̈ = − (β1ξ + β2ξ̇)

meff
+ C, (1.54)

with

C =

 

~F1

m1
−

~F

m

!

· ~k − ~v · ~̇k, (1.55)

where C contains the difference of additional accelerations

felt by the particles, as well as the change of the normal

direction during the impact.

Ignoring the term C, the solutions of Eq. (1.54) are expo-

nentially damped oscillations (impact starts at t = 0 when

ξ = 0),

ξ =
vn

ω
exp(−ωdt) sin(ωt) (1.56)

where vn ≡ ξ̇(0), and the oscillation frequency ω and the

damping rate ωd are

ω2 = ω0
2 − ωd

2,

ω0
2 =

β1

meff
,

ωd =
1

2

β2

meff
, (1.57)

with ω0 denoting the undamped frequency. The duration

of the impact (the length of the first half-cycle) and the

coefficient of restitution are

Tdur = π/ω ≈ π/ω0

ǫn = − ξ̇(Tdur)

ξ̇(0)
= exp

“

−π
ωd

ω

”

(1.58)

Thus specifying β1/meff gives the approximate impact du-

ration, and then β2 is determined by ǫn,

β2

meff
=

2ω0
q

(π/ ln ǫn)2 + 1

. (1.59)
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Figure 1.4 The steady-state velocity dispersion in
force-method simulations using different impact duration Tdur.
Results with instantaneous impact method are indicated by the
horizontal lines. A constant ǫn = 0.5 is used. In the

non-gravitating simulation (NG) elongation of impact duration
(Tper/Tdur . 100) enhances dissipation, resulting in a lower
velocity dispersion. In self-gravitating simulations (SG) this

extra dissipation is compensated by the enhanced energy gain
due to gravitational viscosity, caused by the longer time the
particles spend in the vicinity of each other. For long enough
Tdur the particles may even stick together (Tper/Tdur . 50),

leading to strongly enhanced gravitational viscosity. The inserts
show snapshot from the self-gravitating simulations with
different Tper/Tdur ratios.

Note that a velocity-dependent elasticity law ǫn(vn) can also

be used in simulations: in this case the value of β2 is chosen

for each impact based on the pre-impact relative velocity vn

of the pair and the desired ǫn.

In the force method the particle motion is integrated

through the impact, so that the time step is basically de-

termined to be a small fraction of Tdur. On the other hand,

the total span of any simulation is determined by the orbital

time-scale Tper = 2π/n. Since the physical Tdur << Tper, it

is advantageous to speed up the calculations by scaling the

simulated impact duration to be larger than the physical

duration. Otherwise most of the computing time would be

spent on calculating the motion of particles which are not

currently colliding with much smaller steps than required to

resolve their motion due tidal and self-gravitational forces.

Indeed, the most attractive feature of the above linear force

model is that the impact duration is independent of impact

velocity, and is easily adjusted via β1.

However, there is an upper limit for the allowed Tdur, as

the solution obtained above ignored the term C: preserv-

ing this term may change the implied elasticity. Likewise,

the maximum penetration in impacts ξmax ≈ (vn/π)Tdur

should not be too large compared to the particle size: we

may write this dependence in the form

Tdur

Ttper
≈ ξmax

R

“ c

nR

”−1
. (1.60)

Also, if the impact duration is extended to Tdur > 1/ωc,

where ωc is the impact frequency, the binary nature of col-

lisions is not retained. It is thus important to address what

is the maximum Tdur one can use. According to simula-

tion tests (see Fig. 1.4), using Tdur/Tper < 10−2 leads to

a practically same steady state as the instantaneous im-

pact method. Most of the simulations of Sect. 1.7.2 use

ω0/n = 400, corresponding to Tdur/Tper = 1/800. In this

case ξmax/R is typically of the order of 10−3 − 10−2.

1.3.2.1 Surface friction

A straightforward way to include friction in the force model

is to use

fT = kffN (1.61)

in Eq. (1.51), where kf < 0 denotes the coefficient of fric-

tion. This description is quite different from using ǫt in the

instantaneous impact model, as there is no single choice of

kf that would corresponds to a given ǫt. To connect kf to

ǫt, we write ~̇g in terms of Eqs. (1.48) and (1.49) as

~̇g = ~̇v − (R1 ~̇ω1 + R ~̇ω) × ~k

=
1

meff

“

~F imp
1 + f ~k × (~F imp

1 × ~k)
”

=
1

meff

“

fN
~k + (1 + f)kf fN

~kT

”

, (1.62)

where f is the factor defined in connection to Eq. (1.29),

reducing to 5/2 for homogeneous spheres; we have ignored

the extra forces due to orbital motion and self-gravity (C =

0). Thus, the total change of normal and tangential velocity

difference are

∆gn = ∆~̇g · ~k =

Z

Tdur

fN

meff
dt ≡ (1 + ǫn)gn,

∆gt = ∆~̇g · ~kT =
7

2
kf

Z

Tdur

fN

meff
dt ≡ (ǫt − 1)gt, (1.63)

where the force model results are identified with those of the

instantaneous impact model. Thus

ǫt = 1 +
7

2
kf (1 + ǫn)gn/gt (1.64)

implying ǫt ≤ 1 since kf < 0. Nevertheless, the regime ǫt < 0

can not be handled with this model, as the frictional force

acts against the relative tangential contact velocity. In prac-

tice, if friction is strong enough to suppress the tangential

velocity difference, gt = 0 appears as a discontinuity in the

force and the solution oscillates around ǫt = 0.

1.3.2.2 Nonlinear impact models and adhesion

In principle, more realistic theoretical models, for both fric-

tion and normal restitution (Spahn et al., 1995) are also

available. For example, in Brilliantov et al. (1996) the non-

linear elastic collision model of Hertz (1882) was generalized

to include visco-elastic dissipation. In this case the perpen-

dicular relative motion during impacts is described by

ξ̈ = −A1 ξ1.5 − A2 ξ0.5ξ̇, (1.65)

with the constants A1, A2 following from material proper-

ties. With reasonable choice of parameters this model can
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reproduce quite successfully the Bridges et al. (1984) labo-

ratory measurements of ǫn(vn) relation of icy particles (see

Sect. 1.7). This treatment has also been extended to tangen-

tial friction, in terms of deforming surface asperities (allows

also the reversal of tangential velocity difference, i.e. ǫt < 0;

Brilliantov et al., 2007), and to include adhesion between

particles (Albers and Spahn, 2006; Brilliantov et al., 2007).

Adhesion is included by a term of the form A3ξ0.75 to Eq.

(1.65), derived from considering the surface energy associ-

ated with the cohesive bonds between particles. With the

inclusion of cohesive forces the particles may stick in colli-

sions where the normal component of impact velocity is be-

low a critical threshold value vadh (see Fig. 1.5). According

to Albers and Spahn (2006) vadh is of the order cm/sec for

cm-sized particles (either in mutual impacts, or in impacts

with larger particles), but drops rapidly for larger particles.

Although more realistic than the simple linear force

model, the disadvantage of nonlinear collision models is that

the scaling of physical impacts to simulations is more com-

plicated, as the impact duration will generally depend on the

impact speed. Therefore in simulations of Sect 1.7 the linear

force model is used, with the desired ǫn(vn) relation achieved

by adjusting the β2 parameter in each impact according to

Eq. (1.59), while keeping the impact duration fixed. Simu-

lations of particle sticking will be briefly addressed, but in

the context of linear force model. Since the functional forms

of Eqs. (1.54) and (1.65) are different, using an adhesion

term proportional to ξ0.75 is not reasonable with the linear

force model (too close to harmonic force). However, adding

a constant extra attractive force Fadh between slightly over-

lapping colliding particles can reproduce the same qualita-

tive behavior as more realistic nonlinear collision models:

impacts with vn < vadh will lead to sticking. In the linear

model the critical vadh is directly proportional to Fadh (Fig.

1.5).

1.3.3 Search for impact pairs

The speed of the collisional simulation depends crucially

on the efficient search for impact pairs. For example, in

their simulations of non-gravitating particles Wisdom and

Tremaine (1988) used the fact that orbits between impacts

are Keplerian epicycles, and solved iteratively for the inter-

section time of each pair of epicycles. The impact of the pair

with the smallest impact time was executed with instanta-

neous velocity changes, and the post-impact orbital elements

of the pair members were re-calculated, leading to updated

intersection times with all the other particles. The system

was thus moved on from one impact to the next (the method

is called “event-driven”). Similar methods were used also in

the early simulations of rarefied azimuthally complete rings:

due to extremely long intervals between impacts elaborate

schemes were developed for detecting orbital intersections

taking place after even several hundreds of synodic periods

(Hämeen-Anttila and Lukkari, 1980).

Event-driven methods are fairly fast for small particle

numbers (N ≈ 50 in Wisdom and Tremaine (1988)), but

as N increases, the checking of next orbital intersections

between all N(N − 1)/2 pairs gets excessively slow. Also,

0 1 2 3
IMPACT VELOCITY gn (cm/sec)

0.0

0.2

0.4

0.6

0.8

ε n

Albers & Spahn (2006)

Fadh/Fo = 0

Fadh/Fo = 1

Fadh/Fo = 2

Fadh/Fo = 4

Fadh/Fo = 8

Fadh/Fo = 16

linear model:

Figure 1.5 Effect of contact forces on ǫn(vn) relation. The
thick dashed lines correspond to nonlinear visco-elastic model
from Albers and Spahn (2006): the upper dashed curve,
omitting contact forces, provides a close match to the Bridges

et al. (1984) laboratory measurements (compare with Fig. 1.11).
In the lower dashed curve, contact force is included, which for
the assumed 2 cm particle size implies sticking for impact
velocities vn < vadh = 0.88 cm/sec. The curves with symbols
follow from the linear force model, with various magnitudes of
constant attractive force Fadh between particles in contact. The
parameters β1 and β2 are chosen to yield ǫn = 0.25 in the

absence of contact forces. For the nominal value Fo, sticking
occurs for vn < 0.17 cm/sec; for larger attractive forces,
vadh ∝ Fadh.

the inclusion of additional forces besides the central gravity

poses problems. Therefore, in the self-gravitating case the

equations of motions are integrated with small time steps,

and the potential intersections during each step are searched

only among the neighboring particles. Similar stepwise time

integration is advantageous also in the case of high parti-

cle density and large N , even if self-gravity is not included.

Provided that the step size is small, the distances between

particles can be expanded as a second-order Taylor poly-

nomial, providing a fast method for constructing a list of

potential impacts during the step (Salo, 1991). From this

list, the impacts during the time step are then executed as

in the event-driven method.

Regardless of the time-advancement method a consider-

able speedup can be achieved if the number of pairs ex-

amined for potential impacts is kept as small as possible.

This can be done quite efficiently by keeping track of the

maximum pre-step separation which has actually led to an

impact during previous steps, and by checking in each step

only those pairs whose distance does not exceed this max-

imum, multiplied by some threshold factor. This threshold

must be chosen in a manner which ensures that no impacts

are lost, and it also must be dynamically adjusted as the

velocity dispersion of the system evolves. A useful trick is

to sort the particles according to their radial coordinate and

choose first only pairs whose radial distances fall below the

threshold. In the optimal case, the number of pairs exam-

ined is proportional to c/(nR)N . Note that the actual or-
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Figure 1.6 Snapshots of self-gravitating simulations with

different sized calculation regions, after 50 orbital periods. In
each simulation τD = 0.5, ǫn = 0.5 ρ = 900 kg/m3, R = 1m, and
a = 100, 000 km (rh = 0.82). The width of the square-shaped

region is L/λT = 32, 16, 8, 4, 2. In physical units the Toomre
critical wavelength λT = 41.6m. The self-gravity is calculated
from all particles within a cylindrical radius ∆max = L/2.
Gravitational forces from within ∆min = 0.25λT are calculated

with the PP-method and beyond that with the PM-method,
using a grid spacing of λT /16. The graph shows the
gravitational viscosity (Eq. 1.89) as a function L/λT (averaged
between 25-50 orbits).

bital integration needs not to be performed by a Taylor se-

ries: for example in Salo (1995) a fourth order Runge-Kutta

integration was utilized, and the impact locations initially

estimated by the second-degree polynomial expansion were

iteratively improved to correspond to the full accuracy of

the integration. See section 1.6 for more detailed consider-

ations of how to speed up various parts of the numerical

calculations.

It must be stressed that it is important to take correctly

into account impacts taking place over boundaries of the

local calculation region. For small calculation regions this

fraction can be quite significant, and the omission of such

impacts will considerably modify the energy balance, and

thus, all steady-state properties of the system. Also, if the

force method is used, even a single non-detected impact may

lead to large injection of energy to the system if it happens

to lead to a deep overlap on the next step. However, such

a situation is easy to detect by monitoring the ξmax during

the simulation.

1.4 Calculation of self-gravity

1.4.1 Force evaluation

Inclusion of gravitational forces increases the computational

burden significantly, as in principle the forces between each

particle pair need to be included (as well as to account for

the contribution of the replicas of the local calculation re-

gion). Moreover, self-gravity typically enhances the velocity

dispersion and increases the impact frequency (see Section

1.7.2). Both factors make the collisional calculations more

time consuming. These problems are especially pronounced

in the case of a weak tidal field, i.e. far from the planet,

when gravitationally bound particle aggregates form. Proper

simulation of self-gravity also sets additional constraints for

the required minimum size of the calculation region, since

it must exceed the scale of the self-gravity wake structures

formed via gravity (roughly of the order of Toomre critical

wavelength λT , see Fig 1.6). In practice this means using

at least 104 − 105 simulation particles. On the other hand,

for non-gravitating spatially uniform systems a fairly mod-

est particle number (102 − 103) is usually sufficient to give

the steady-state properties with a good accuracy.

The most straight-forward way of force evaluation is the

particle-particle (PP) method, using a direct summation

over particle pairs. The obvious advantage is that no approx-

imations are involved, the gravitational field correspond-

ing exactly to that implied by the particle ensemble. The

method can also be fairly efficient (Daisaka et al., 2001)

when using a special-purpose processor, like GRAPE, with a

hardware calculation of gravity forces (Makino and Funato,

1993). With standard-type processors the implied N2 time

consumption becomes prohibitively large for a few thousand
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Figure 1.7 The near (PP) and far (PM) contributions to
self-gravity, measured in terms of gravitational viscosity (Eq.

1.89), are compared for different dividing distances ∆min.
Simulation parameters are the same as in the previous figure,
and the total extent of the simulation region is 4λT × 4λT . The

rightmost point corresponds to using solely PP method. Two set
of simulations are shown, with λT /16 (thin lines, open squares)
and λT /32 (thick line, filled circles) PM grid spacing. Within
error bars, the total νgrav is the same in all simulations.

particles, so that other methods are needed. Also, due to

partial cancellation of distant forces it is in fact unnecessary

to calculate the contribution from distant particles with the

same accuracy as that of the nearby particles.

This fact is utilized in hierarchical tree-codes, where the

distant particles are grouped together in force calculation,

so that only few low order moments of their distribution are

included (see e.g. the galaxy simulation codes described in

Barnes and Hut, 1986; Hernquist and Katz, 1989). The es-

sential part of the method is the efficient construction of the

connected particle lists (“tree”), leading to a N ln N depen-

dence of the CPU-time consumption. Richardson (1994) first

applied this method to self-gravitating rings. On the other

hand, N-body simulations of galactic dynamics often employ

particle-mesh (PM) method (see Sellwood, 2014): the den-

sity of the system is tabulated in a regular mesh, and the

forces (or gravity potential) at each mesh location are eval-

uated by convolving the density with the interaction law,

and then interpolating to the particle locations. The speed

of the method relies on the use of a Fast Fourier Transform

for performing the force convolution, and in the optimal case

the CPU-time consumption of gravity calculations is deter-

mined mainly by the interpolation of forces, being linear in

N . In current large-scale cosmological simulations the tree

and PM methods are often combined (Springel, 2005).

The important difference between planetary rings and

galaxy disks is that binary gravitational encounters between

ring particles are not insignificant compared to the mean

gravitational field (rings are not ’collisionless’). Therefore

the smoothing of forces implied by the gravity mesh (or by

explicit gravity softening) is incorrect. On the contrary, the

most important contributions from self-gravity come from

the fluctuating gravitational forces exerted by the nearest

neighboring ring particles (within ∼ λT , see Fig. 1.8).

An obvious way to speed up the calculations, while retain-

ing the accurate treatment of nearby gravity encounters, is

to combine PP and PM methods, for example in a manner

that was employed in Salo et al. (2001). In this treatment

the gravitational force exerted on each particle is divided in

a nearby and distant contribution,

~Fi = ~Fi
near

+ ~Fi
far

,

~Fi
near

= G
X

∆ij<∆min

mj
~rj − ~ri

|~rj − ~ri|3
, (1.66)

~Fi
far

= G

Z

∆>∆min

ρ(~r)
~r − ~ri

|~r − ~ri|3
d3r, (1.67)

where ∆ denotes the projected 2D distance in the xy-

plane. The near contribution is calculated by direct particle-

particle summation, in order to include accurately the effects

of close gravitational encounters, as well as the gravitational

sticking of particles. Typically ∆min << Lx, Ly, so that just

a few percents of all N(N − 1)/2 particle pairs are involved.

The latter, usually smaller distant contribution is calculated

with a particle-mesh method.

An efficient way to calculate the PM contribution is to

use FFT in a sheared coordinate system, defined by the

transformation

u = x,

v = y − tsx mod Ly, (1.68)

where t is the time since the beginning of the simulation

and s = − 3
2n in the Keplerian case. In these coordinates

the Eqs. (1.8) for the image particles transform into

u′ = u + nxLx,

v′ = v + nyLy. (1.69)

indicating that the system is double periodic in the pla-

nar directions. We define a 3D Cartesian mesh with mu ×
mv × mz cells, and tabulate the mass δm(u, v, z) in each

cell by a cloud-in-cell (CIC) assignment. The size of the

cells is denoted with ∆u, ∆v, and ∆z. In planar direc-

tions the mesh has the same size as the calculation region,

|u| < Lx/2, |v| < Ly/2. The vertical coverage of the mesh,

|z| < Lz/2, can be either a constant, or varied according to

the vertical thickness of the system, using Lz/2 = kz

p

z2,

for example with kz = 3: the small fraction of particles with

|z| > Lz/2 contribute insignificantly to the total density

and can be ignored. The force on each cell center (labeled

with i, j, k) is obtained with a convolution over other cells

(labeled with l, m, n)

~Fi,j,k =
X

l,m,n

δml,m,n
~Γl−i,m−j,n−k (1.70)

where ~Γ (with same number of elements as δm) denotes the

Green function for the gravitational interaction between the

cells. Written in terms of the newly defined coordinates,

~Γabc = G [a∆u, b(∆v + st∆u), c∆z] /dabc
3 (1.71)

with

dabc =
h

(a∆u)2 + (b(∆v + st∆u))2 + (c∆z)2
i1/2

. (1.72)
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To exclude the near contribution Γabc is set to zero for

(a∆u)2 + (b(∆v + st∆u))2 < ∆min
2.

If carried out by direct summation, the convolution in

Eq. (1.70) would require ∝ (mumvmz)2 operations. Even

for moderate spatial resolution this would mean an exces-

sive number of calculations (even larger than that for the

direct summation over all N(N − 1)/2 pairs). It is therefore

essential to utilize the Fourier convolution theorem, accord-

ing to which the inverse transform of mesh forces equals

the product of the inverse transforms of density and Green

function,

e~F i,j,k = fδml,m,n
e~Γl−i,m−j,n−k. (1.73)

In order to be able to apply the convolution theorem, we

double the mesh size in the vertical direction, padding

the extra cells with zeros. Using a Fast Fourier Trans-

form, the number of calculations becomes proportional to

(mu ln mu)(mv ln mv)(2mz ln 2mz), making the method fea-

sible. The forces at the particle locations are interpolated

from the grid, with the same CIC-assignment as in the

tabulation of density. The forces on the few particles with

|z| > Lz/2 are calculated with an extrapolation from the

grid. In this manner the force on each particle is due to the

density in the region which corresponds in size to the whole

original rectangular calculation region (see Fig. 1.3). If a cir-

cular region is desired (to avoid any artificial ’polarization’

of forces due to corners of the region) we can set the Γabc

to zero beyond some distance ∆max(< max{Lx/2, Ly/2}).
Figure 1.7 shows the gravitational viscosity (Eq. (1.89))

from 4λT × 4λT simulations where different dividing dis-

tances ∆min between PP and PM methods are used, con-

firming that similar results are obtained in all cases. How-

ever, the gravity calculation is about 10 times faster when

using PP+PM with ∆min/λT = 1/8 in comparison with

using just the PP method to calculate gravity from within

2λT . For larger calculation regions and particle numbers,

the gain in speed becomes even more important.

1.4.2 Approximate treatments of self-gravity

Fully self-consistent calculation of particles’ mutual gravity,

as described above, is quite CPU time intensive. Wisdom

and Tremaine (1988) devised a simple method for mimicking

self-gravity in terms of an enhanced vertical frequency nz >

n in the dynamical equations. They estimated the vertical

self-gravity inside the ring layer from Poisson’s equation,

Fsg(z) = −2πG

Z z

−z
ρ(z′)dz′ = −4πGΣ0

h
z, (1.74)

where the ring is approximated with a homogeneous infinite

layer with a vertical half-thickness h and constant surface

mass density Σ0. Combining with the vertical component of

the central field, Fc = −n2z, gives

Fz(z) = −
„

n2 +
4πGΣ0

h

«

z ≡ −nz
2z (1.75)

Most of their simulations used a constant nz/n = 3.6, which

corresponds to Fsg/Fc ≈ 12, assumed to approximate the

enhancement in vertical gravity due self-gravity in the dense

B-ring of Saturn. Such a treatment mimics qualitatively

quite well the effects of vertical gravity, like the enhanced

impact frequency (see Sect. 1.7), which leads to strongly

increased non-local viscosity, thus promoting viscous over-

stability. Indeed, the use of nz/n > 1, even if not realis-

tic for exploring the full effects of self-gravity, is a useful

method when analyzing overstability in terms of hydrody-

namic transport coefficients evaluated from N-body simu-

lations (Salo et al., 2001; Schmidt et al., 2001). Neverthe-

less, since the approximation ignores the planar components

of gravity, which are responsible for the emergence of self-

gravity wakes, it is questionable how useful it is for describ-

ing real systems in any quantitative way. Also, the originally

used enhancement factor 3.6 is likely to overestimate the

vertical field considerably, since it is based on space density

ρs = Σ0/(2h) = 400 kg/m3 inside the ring layer (Wisdom

and Tremaine, 1988). For example, with the current esti-

mate Σ0 ≈ 700kg/m2 (Hedman and Nicholson, 2016) this

would correspond to unlikely small vertical thickness h ≈ 1

meters.

Another useful approximation can be applied to the cal-

culation of axisymmetric component of self-gravity, in terms

of a superposition of infinite plane waves. We first make a

radial Fourier decomposition of the tangentially averaged

surface density

Σ(x) = Σ0

"

1 +
∞

X

m=1

Am cos

„

m
2π

Lx
(x − xm)

«

#

, (1.76)

where Am and xm are the fractional amplitude and phase

of different m-components with wavelengths λ = Lx/m. We

then treat each component as an infinite plane wave, and

use the Poisson equation for an infinite 2D sheet to calculate

the corresponding radial force. Superposition of modes with

different m gives

Fx(x) = −2πGΣ0

mmax
X

m=1

Am sin

»

m
2π

Lx
(x − xm)

–

. (1.77)

A finite mmax is used in order to suppress small scale noise.

Such a treatment was applied in Salo and Schmidt (2010) to

compare viscous instability in N body simulations to Schmit

and Tscharnuter (1995) hydrodynamic predictions in the

case axisymmetric self-gravity is included.

1.4.3 Time integration

In the force method the basic timestep of integration is de-

termined by the need to resolve the rebound of individual

particle pairs. Depending on the chosen spring constant of

the restoring harmonic force, this requires time step of the

order of ∆Timp = (0.01 − 0.1)Tdur ∼ (10−4 − 10−5)Torb,

where Tdur is the impact duration. On the other hand, self-

gravitational forces are practically constant over such sort

time scales. To speed up calculations, one can therefore use a

larger time step, say ∆Tgrav ∼ 10−3Torb, for updating the

gravity forces. This simple method works well in the case

of gravity wake structures: the errors made in keeping the

self-gravity constant tend to cancel each other on the aver-

age. However, when particles stick physically, this method
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may lead to artificial destabilization of gravity aggregates

via rotational instability (Karjalainen and Salo, 2004). This

is solely a numerical artifact, rising from the fact that then

the force integration errors do not cancel each other, but

lead to a net torque on particles attached to the aggregate.

As illustrated in Karjalainen and Salo (2004) a totally suf-

ficient remedy is to calculate both the forces and their time

derivatives at the beginning of each gravity step, and then

apply linear extrapolation of self-gravity during the step.

1.5 Extracting quantities from simulations

The fundamental3 quantity describing both the dynamics

and observed structures of Saturn’s rings is the dynamical

(geometric) optical depth, defined as the total surface area

of particles divided by the total area. For identical particles

with radius R

τD =
NπR2

LxLy
. (1.78)

One of the main advantages of the local method is that the

optical depth (and surface density in case of self-gravitating

particles) of the system is fixed. Thus, after the establish-

ment of local energy balance, all dynamical properties char-

acterizing the steady-state corresponding to this τD can be

obtained with an arbitrary accuracy, by time averaging over

sufficiently long time intervals over all particle orbits and im-

pacts. The efficiency of time averaging was strikingly demon-

strated in Wisdom and Tremaine (1988), who made a prac-

tically complete study of identical, non-gravitating particles,

up to τD ∼ 3, using experiments with only N = 50 particles.

1.5.1 Steady-state quantities

The interesting dynamical quantities include the impact fre-

quency ωc, the velocity dispersion tensor bCαβ , the pressure

tensor bPαβ and shear viscosity η = −(1/s) bPxy. Other im-

portant properties are the geometric thickness H, and the

volume filling factor D3(z), useful for connecting the dynam-

ical estimates to photometric observations of rings. In non-

gravitating case the steady-state values of all these quanti-

ties are determined by the optical thickness of the system

τD, the size distribution of particles N(R), and their elastic

properties ǫn, ǫt. The effects of self-gravity depend on the

internal density ρ of the particles, and the planetocentric

distance.

The extraction of the impact frequency ωc is straight-

forward both in the instantaneous impact and force

method simulations (total number of impact detec-

tions/particle/time interval, divided by factor 2 to avoid

counting twice the same impact), as long as the tendency

3 Observationally the importance comes from the close corre-
spondence of τD to the normal photometric optical depth τ⊥,
which is the quantity inferred from occultation experiments: in
the limit of homogeneous low filling factor systems τD and τ⊥ are
identical. However, in a typical case of non-homogeneous and/or
high filling factor rings they generally differ, see Sect. 1.11.2.1

for particle sticking is weak (weak to moderate self-gravity

not leading to bound aggregates). In the calculation of

impact related mean values, like the average of ǫn in the

case of velocity dependent elasticity, one can weight with

vn to exclude the contribution of possible sliding motion, if

described by small, totally elastic rebounds in the instanta-

neous impact method.

The flow of momentum across the ring consists of a lo-

cal contribution, related to the momentum carried with the

particles during their random motions between successive

impacts, and of a nonlocal contribution, arising due to mo-

mentum transferred via impacts or via gravitational forces,

between particles at different radial distances (Wisdom and

Tremaine, 1988). We denote the particle positions by ~r and

their random velocities by ~c = ~̇r −~u, with ~u standing for the

mean flow velocity at ~r. For simplicity, we restrict our at-

tention to the case of a linear shear profile ~u = sx~̂ey, where

~̂ey denotes the unit vector in the tangential direction.

By definition, the components of the pressure tensor Pαβ

give the amount of the β-component of momentum trans-

ferred in the α-direction, per unit area and unit time. When

evaluating the momentum flow in simulations, it is conve-

nient to include all particles and impacts, regardless of their

vertical coordinate. This corresponds to a vertical averaging

bPαβ =

Z ∞

−∞

bPαβ dz (1.79)

From hereon we denote bPαβ simply by bPαβ , thus having the

units of momentum/unit time/unit length.

The local contribution to the pressure tensor is obtained

by adding the momenta pβ = mcβ of the N particles, mov-

ing with velocity cα with respect to the mean flow,

Pαβ
local =

1

Ao

N
X

i

(cα)i(mcβ)i = N2 mcαcβ , (1.80)

where Ao is the area of the simulation region and N2 =

N/Ao denotes the surface number density. The bar indi-

cates average over particles. Once the steady-state has been

achieved, one can improve the accuracy by averaging over

arbitrarily long time intervals.

The standard formula for nonlocal momentum transfer is

(Wisdom and Tremaine 1988)

Pαβ
nl =

1

Ao∆t

X

impacts

∆rα m>δcβ>
, (1.81)

where the summation is over all impacts occurring during

the time interval ∆t, and m> δcβ>
denotes the change of the

momentum of the particle with the larger rα in each impact,

and ∆rα the absolute difference in the rα-coordinates of the

impacting particles. However, application of this formula is

problematic in the case of strong particle grouping, as it may

be difficult to identify the separate impacts. For the case of

force-method impact calculation, the collisional change of

momentum is

m>δcβ>
=

Z

Tdur

Fβ>
dt, (1.82)

where Fβ denotes the impact force felt by the particle with

the larger rα coordinate, and Tdur is the duration of the
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impact. By defining

Fβ>
=

X

i

X

j
(rα)j>(rα)i

F ij
β , (1.83)

where ~F ij stands for the impact force exerted by particle

i on the particle j, with ~F ij 6= 0 for colliding, overlapping

pairs, and zero otherwise, the integral (1.82) can be extended

to the whole interval ∆t, also covering the possibility of par-

ticles experiencing multiple simultaneous impacts, or even a

permanent sticking of particles. Summing over all particles

then gives an equation corresponding to Eq. (1.81),

Pαβ
nl =

1

Ao

fi

X

i

X

j
(rα)j>(rα)i

((rα)j − (rα)i)F
ij
β

fl

, (1.84)

where the average is taken over an arbitrary time interval.

Furthermore, Eq. (1.84) can obviously be generalized to the

momentum flow due to long-range forces, e.g in the case of

self-gravity,

Pαβ
grav =

1

Ao

fi

X

i

X

j
(rα)j>(rα)i

−Gmimj
((rα)j − (rα)i)((rβ)j − (rβ)i)

|~rj − ~ri|3
fl

. (1.85)

Likewise, ~F ij can be identified with adhesive forces, Eq.

(1.84) then giving their contribution to the nonlocal pres-

sure. In the case of well defined separate impacts, Eqs. (1.81)

and (1.84) give identical results for the nonlocal pressure

tensor.

The corresponding contributions to the (vertically inte-

grated) dynamic shear viscosity are readily evaluated from

η = −(1/s)P12. In the case of Keplerian shear, s = (−3/2)n,

and we have

ηlocal =
2

3n
N2

˙

mcxcy
¸

, (1.86)

ηnl =
2

3n

1

Ao∆t

X

impacts

m>∆x>(δcy)> (1.87)

=
2

3n

1

Ao

fi

X

i

X

j
xj>xi

∆x>(F ij
y)>

fl

, (1.88)

ηgrav =
2

3n

1

Ao

fi

X

i

X

j
xj>xi

−Gmimj
(xj − xi)(yj − yi)

|~rj − ~ri|3
fl

.

(1.89)

The kinematic shear viscosities are obtained from these,

dividing by the surface mass density of the system Σ = N2m.

In particular, in the case of identical particles (Wisdom and

Tremaine, 1988)

νlocal =
2

3n
cxcy, (1.90)

νnl =
2

3n

1

N∆t

X

impacts

∆x>(δcy). (1.91)

The above formula for gravitational viscosity is identical

to that in Daisaka et al. (2001). Fig. 1.8 shows the contri-

 

-1 0 1
∆x/λT

-1

0

1

2

∆y
/λ

T

τD=0.5   8 λT × 8 λT

 

0.1 1.0
∆/λT

0.04

0.20

1.00

5.00

ν g
ra

v 
(<

∆)
 [n

 R
2 ]

τD=0.5

τD=0.25

a)

b)

Figure 1.8 a) The contributions to gravitational viscosity (Eq.

1.89). The contours indicate the mean torque density exerted
from relative location (∆x, ∆y): positive (white contours) by the
particles on the trailing quadrants and negative (gray contours)
from the leading quadrants. The gray scale background image is

the 2D auto-correlation function (Eq.1.95) for the same
simulation. Note the slightly larger positive net torques arising
due to overdensities in the trailing quadrants. In b) the
cumulative gravitational viscosity due to material within a
cylindrical radius ∆ is shown as a function of ∆/λT .

butions to the integrand of Eq. 1.89, arising from different

relative locations ∆x = x′ − x, ∆y = y′ − y. Largest grav-

itational torques are exerted by material within ∼ 0.25λT ,

and almost all of νgrav is due to particles within one λT .

The velocity dispersion tensor is collected by sampling

the random velocity components of each particle with short

intervals and tabulating the averages values as a function of

simulation time. In particular, in Sect. 1.7 we will use the

time-averaged 1-d velocity dispersion c to characterize the

dynamical “temperature” of the system

c2 =
1

3

fi

c12 + c22 + c32

fl

=
1

3

trP̂ local

Σ
(1.92)

where c1, c2, and c3 are the principal axis components of

the velocity dispersion tensor. At the low optical depth the

largest principal axis points to the radial direction: at this

limit c2/c1 = cy/cx = 0.5 and c3/c1 = cz/cx ≈ 0.65. The

vertical thickness is defined as

H =
p

12z2, (1.93)

which corresponds to the full thickness of a uniform layer

with the same vertical dispersion as the simulated particle

field. At τD ∼ 0, we have H ≈ 3c/n. The vertical distri-

bution can be further characterized by tabulating the ver-

tical density profile of the simulation particles. This can

be based on the locations of particle centers (Wisdom and

Tremaine, 1988), or by D3(z) indicating the fraction of vol-

ume filled by particles as a function of z (Salo and Kar-

jalainen, 2003). In particular, the filling factor at the equa-

torial plane D3(z = 0) (often denoted as FF (0)) is useful in

comparison to theoretical treatments of dense rings (Araki

and Tremaine, 1986; Araki, 1991).
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Figure 1.9 a) Fourier amplitudes |eΣl,m| (see Eq. 1.94) in the
simulations of Fig. 1.6, as a function of wavenumbers
kx = 2π/λx and ky = 2π/λy , where λx and λy are the radial

and tangential wavelengths. The contours indicate amplitude
levels 0.1,...0.9 times the maximum amplitude. The dashed line
indicates ky = 0.25kx, corresponding to a pitch angle ≈ 14◦. In
b) time averaged 2D auto-correlation functions of the same
simulations (Eq. 1.95). Solid black and dashed white contours
correspond to 16λT × 16λT and 8λT × 8λT simulations. Dashed
black line indicates a 14◦ asymptotic pitch angle.

Other hydrodynamic quantities besides ν can also be ex-

tracted from simulations, like the radial heat conductivity

and bulk viscosity, and the temperature derivatives of pres-

sure, shear viscosity and energy dissipation. Such tabula-

tions were made in Salo et al. (2001) for non-gravitating sim-

ulations assuming three different values of nz/n. However,

compared to the shear viscosity that can be extracted at the

steady-state, these other quantities require that the system

is perturbed and the measurement is carried out while the

system relaxes back toward the uniform steady-state. Be-

sides the technical difficulties involved, the exact relation of

the derived quantities to their hydrodynamic interpretation

is not clear. Mainly this is due to the non-isotropic velocity

distribution (see Fig. 1.15e) following from particle’s orbital

motion around the planet. Such a distribution has more de-

grees of freedom than taken into account in hydrodynamical

treatment. Nevertheless, such ’fitted’ quantities applied to

hydrodynamic stability analysis are quite successful in de-

scribing the viscous stability properties of larger-scale sim-

ulations (Schmidt et al., 2001; Schmidt and Salo, 2003). 4

1.5.2 Characterization of self-gravity wakes

Examples of self-gravitating simulations were shown in Fig.

1.6 comparing snapshots from simulations with different

sized calculation regions, while keeping other parameters the

same. The snapshots indicated that the typical appearance

of wake structure is evident even for calculation regions as

small as 2λT × 2λT . However, comparison of gravitational

viscosity (see Sect. 1.5) indicates that the strength of wakes

is not fully developed unless a few times larger region, say

8λT ×8λT is simulated. Similarly, the spacing and pitch an-

gle of wakes is affected by the periodic boundaries: this is

4 Isothermal hydrodynamical models which ignore bulk viscos-
ity and temperature derivatives (Schmit and Tscharnuter, 1995)
give a qualitatively correct picture of viscous behavior but fail to
predict quantitatively the correct regime of viscous overstability.

illustrated in Fig. 1.9a in terms of 2D Fourier decomposition

of surface density5

Σ(x, y) = Σ0

X

l,m

eΣl,m exp

„

i
2πl

Lx
x + i

2πm

Ly
y

«

(1.94)

where |eΣl,m| gives the normalized amplitude corresponding

to the radial and tangential wavelengths λx = Lx/l and

λy = Ly/m. In the 2λT × 2λT simulation the peak am-

plitude occurs at (λx, λy) = (1, 2)λT , but when the region

is increased, (λx, λy) approaches (2, 8)λT . This corresponds

to a pitch angle tan−1(λx/λy) ≈ 14◦ between tangential

direction and the the average direction of wakes.

The shape and orientation of the wakes is best illustrated

in terms of 2D auto-correlation function of surface density,

ζ2d(∆x, ∆y) =
1

Σ0
2A0

Z Z

Σ(x + ∆x, y + ∆y)Σ(x, y) dxdy. (1.95)

Taking the time average of this describes the typical density

structure the particle sees around its location. It can be

calculated directly from stored particle snapshots (e.g. Salo

5 A convenient way to calculate the amplitudes is to perform
2D FFT on the system whenever the image regions happen to
be aligned along the x-axis, which takes place 3πLx/Ly times
per orbit; at these instants FFT can be readily applied as Σ is
periodic in both x and y.



16 Salo & Ohtsuki & Lewis

1995), or more conveniently (e.g. Toomre and Kalnajs 1991)

with the FFT, by taking the inverse Fourier transform of

the squared density amplitudes, eζ2d = |eΣl,m|2. Figure 1.9b

displays the auto-correlation functions, together with a line

corresponding to 14◦ pitch angle.

1.5.3 Energy budget in local simulations

In the steady-state, the energy dissipation rate is connected

to momentum flow by

Ėdiss − sP12 = 0 (1.96)

where Ėdiss is the energy loss in impacts, per unit time and

unit area. Although this formula is valid for any shear flow,

it is instructive to check how the formula actually arises in

a local calculation region with periodic boundaries.

As mentioned in section 1.2, the quantity (Eq. 1.11)

E = Ekin + Epot + Egrav (1.97)

with

Ekin =
X

i

1

2
mi(ẋ

2
i + ẏ2

i + ż2
i ) (1.98)

Epot =
X

i

mi(nsxi
2 +

1

2
nz

2zi
2) (1.99)

Egrav = −1

2
G

X

i

X

j 6=i

mimj

|~rj − ~ri|
(1.100)

is conserved along the orbital motion of particles. On the

other hand, E changes both due to crossing of radial bound-

aries and due to impacts, via changes in Ekin, while both

Epot and Egrav remain unchanged6.

The above expression for Ekin, using the actual velocities

of the simulation particles, includes both, the kinetic energy

associated to their random motions, Ernd, and the kinetic

energy associated to the systematic shear flow Eshear,

Ekin = Ernd + Eshear (1.101)

where

Ernd =
1

2

X

i

mi~c
2
i =

X

i

1

2
mi[ẋ

2
i + (ẏi − sxi)

2 + ż2
i ],

(1.102)

Eshear =
1

2

X

i

mi[2sxi(cy)i + s2xi
2] (1.103)

Since Ernd, rather than Ekin is of interest in many appli-

cations, we next look how it evolves in local simulations,

subject to periodic boundaries, collisions, and gravitational

forces.

In crossing of boundaries, the random velocity relative to

mean flow is unaffected, so that ∆Ernd remains constant,

the change of Ekin being associated solely with Eshear. In

6 Assuming that gravitational forces are constructed using the
nearest image pairs, in which case the distances |~ri − ~rj | are not
affected.
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Figure 1.10 Energy balance in the 4λT × 4λT simulation of
Fig 1.6. Different contributions to viscous gain are shown
separately: in the steady-state they balance the collisional
dissipation. The small negative net value of the cumulative sum

of gain and dissipation (G+D, dashed curve) equals the change
in the total energy (∆E = ∆Ernd + ∆Egrav + ∆Ez) when the
system settled toward steady-state values from an initially “hot”

state: the upper insert shows the random velocity components,
and the lower insert the various components of energy change.
The energies are shown in units of m(nR)2, where m is the total
mass of simulation particles.

an impact of a particle pair

1

2
δ(m1~v

2
1 + m2~v

2
2 ) =

1

2
δ(m1~c

2
1 + m2~c

2
2 )

+ s [m1x1(δcy)1 + m2x2(δcy)2] , (1.104)

where the last term can be combined to s m2(δcy)2(x2−x1),

using the conservation of momentum (the subscript 2 la-

bels the particle with the larger radial coordinate). Summing

over all impacts during the time interval ∆t we have

(∆Ernd)coll = ∆Ediss − s
X

impacts

m>(δcy)>∆x>. (1.105)

To obtain the change of Ernd due to self-gravity and orbital

motion, we use Eqs. (1.97) and (1.101) to write

Ernd = E − Egrav − Epot − Eshear

= E − Egrav − Ez (1.106)

−
X

i

mi[(ns +
1

2
s2)xi

2 + sxi(ẏi − sxi)]

where

Ez =
1

2

X

i

minz
2zi

2 (1.107)

denotes the potential energy associated with vertical mo-

tions. Since E is conserved during orbital motion, the change

of Ernd during time interval ∆t equals

(∆Ernd)orb=−(∆Egrav + ∆Ez)

−
Z t+∆t

t

X

i

mi

»

(2ns + s2)xiẋi

+sẋi(ẏi − sxi) + sxi(ÿi − sẋi)

–

dt. (1.108)
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Substituting ÿ = −2nẋi + (Fy)i/mi from the equation of

motion, where (Fy)i/mi is the y-component of the gravita-

tional force felt by particle i, and taking into account that

cx = ẋ,

(∆Ernd)orb = −(∆Egrav + ∆Ez)

− s∆t

fi

X

i

mi(cx)i(cy)i +
X

i

xi(Fy)i

fl

(1.109)

Adding (∆Ernd)coll and (∆Ernd)orb,

∆Ernd=∆Ediss − ∆(Egrav + Ez) − s
X

impacts

m>(δcy)>∆x>

−s∆t

fi

X

i

mi(cx)i(cy)i

fl

− s∆t

fi

X

i

xi(Fy)i

fl

(1.110)

Clearly, the summation in the last term in the right-hand

side can be arranged to a form involved in the formula for

gravitational viscosity Eq. (1.89), while the two other sums

correspond to non-local and local viscosities. Dividing by ∆t

and Ao thus gives

Ėrnd + Ėgrav + Ėz = Ėdiss − sPxy = Ėdiss + s2η (1.111)

where the total viscous gain −sPxy consists of local, nonlocal

and gravitational viscosity contributions

Pxy = Pxy
local + Pxy

nl + Pxy
grav (1.112)

In the steady-state the left hand side of Eq. (1.111) is zero,

leading to the anticipated result in Eq. (1.96).

An example of energy balance in simulations is shown in

Fig. 1.10 for a system that starts with a velocity dispersion

exceeding the steady-state value. Initially both Ėrnd and Ėz

are negative as the system cools and flattens down toward

steady-state. Also the negative contribution of gravitational

energy increases when the particles collect to dense wakes. In

steady-state, the left-hand side of Eq. (1.111) vanishes and

the rates of viscous gain and dissipation balance each other

exactly. Thus, we can obtain the viscosity of the system by

calculating Ėdiss in steady-state by N-body simulation (Salo

et al. 2001, Tanaka et al. 2003, Yasui et al. 2012).

1.6 Advanced computational techniques

1.6.1 Finding Collisions

For hard sphere collisions, where collisions are treated as

discrete events, there are two main ways of dealing with

them. One is to model each collision in order based on the

time when it should happen (e.g. Trulsen, 1972; Wisdom

and Tremaine, 1988; Salo, 1991; Richardson, 1994; Lewis

and Stewart, 2000, 2003). A second is to advance parti-

cles, check if they are overlapping, and adjust their positions

based on when the collision should have occurred (Rein and

Liu, 2012). This latter option can be faster as it is trivial to

determine if particles are currently overlapping, but it isn’t

currently clear what impact there is on results from not re-

solving and handling collisions in the order they occur.

The simplest case for finding the collision time for two

particles is to approximate their relative motion with a sec-

ond degree Taylor polynomial, using the particle positions,

velocities, and accelerations at the current time t0. Denoting

δ~r(t) = ~rj(t) − ~ri(t), we may write

δ~r(t) = δ~r(t0) + δ~̇r (t0)(t − t0) +
1

2
δ~̈r (t0)(t − t0)

2 (1.113)

The impact time t is found by setting |δ~r(t)| = Ri + Rj .

Squaring both sides, keeping terms quadratic in time, and

rearranging gives
“

δ~̇r (t0)
2 + δ~r (t0) · δ~̈r (t0)

”

(t − t0)
2 +

2δ~r (t0) · δ~̇r (t0)(t − t0) + δ~r (t0)
2 − (Ri + Rj)

2 = 0 (1.114)

If the roots of this quadratic equations are complex, there

is no collision. Otherwise, the smaller non-negative root for

t−t0 gives the approximative time of the next collision. The

collision time can then be iteratively improved to correspond

to the full accuracy of the orbital calculations.

1.6.2 Collision Pair Searching

The process of finding the collision time for particles can be

expensive, and for that reason, should only be done for pairs

of particles that actually have a chance of colliding during

the current time step. The computational problem of finding

pairs of particles that collide in hard-sphere simulations has

a number of similarities to calculating gravitational forces.

The brute force approach of checking every particle against

every other particle is an O(N2) operation that is easy to

code, but which is unacceptably slow for larger simulations.

Gravity calculations can be done faster by approximating

the force from particles at a distance. For collisions, one can

simply ignore pairs of particles that are too far away and

could not collide during a certain interval of time.

Salo (1991) used an approach where they kept lists of

neighbors for each particle. Collision searches only had to

run through the neighbor lists, and those lists only had to

be updated occasionally. This speeds things up significantly

for the actual searching process, but building the neighbor

lists is still an O(N2) operation. For simulations with 107

or more particles, any O(N2) operation will be prohibitively

expensive, even if it only has to be done very rarely. To get

around this, one can use data structures that allow the entire

process to be done in O(N) or O(N log N) time.

1.6.2.1 2-D Grid

The simplest approach is to make a 2-D grid of lists. Rings

are remarkably flat, so for any simulation of reasonable size,

the radial and azimuthal extent of the particle distribution

will be much larger than the vertical extent, and the use of

a grid that does resolve vertical separation is unnecessary.

The grid can be built in O(N) time if one has a size for each

grid cell. The size of the grid cells can be selected so that

searches only need to extend out a fixed number of grid cells

from the one a particle is located in. Only having to search

immediate neighbor cells is ideal in a number of ways. To
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make this safe, the grid cell size must not be smaller than

the search radius of

Rsearch = 2Rmax + A c ∆t, (1.115)

where Rmax is the maximum particle radius, A is a small

constant on the order of 5, c is the 1-D velocity dispersion,

and ∆t is the time step used in the simulation. The ideal

grid size depends on many elements in the simulation code,

and must be determined empirically, but it is possible for

sparse grids with several times as many grid cells as there

are particles to be optimally efficient.

The fact that the search radius depends on ∆t (Eq.1.115)

has an interesting effect. For gravity, one uses the longest

time step that is numerically accurate because the total run

time scales as T/∆t, where T is the total time being sim-

ulated. The run time of a collision simulation includes a

T/∆t factor for the number of time steps, but the amount

of work done in a time step scales as R2
search. Since Rsearch

is proportional to ∆t, this means that there is a compet-

ing component in the run time that scales as ∆t, which will

tend to make shorter time steps more optimal. Based on the

details of the code and the simulated system, there will be

an optimal value for ∆t that minimizes the total run time.

Note that the optimal value can change during a simulation

as the system changes due to formation of structures like

gravity wakes or perturbations from moons.

The building and use of the grid are both O(N) opera-

tions, so the time required to process collisions using a grid

scales at O(N), assuming that the scaling is increasing the

size of the simulation cell when running a larger simulation.

Scaling the problem up in ways that increase the particle

density, such as using smaller particles for higher resolu-

tion, can lead to increases in the number of particles in the

search radius. This tends to alter the ideal value of ∆t, and

the overall scaling of run time with number of particles gets

more complex.

1.6.2.2 Collision Trees

If the simulation is using a tree to calculate gravitational

forces, one can use the same data structure to find potential

collision pairs. The nodes in the tree have to be augmented

with some additional information beyond what is needed

for gravity calculations to help with finding collisions. This

includes bounds for the particles below that node, velocity

dispersion below that cell, and the maximum particle size

below that cell. While the grid has the advantage of O(1)

access time, the search area is basically fixed by the grid

cell sizes, which are constant over the full grid. The tree

has O(logN) access time, but in many situation it can get a

significant boost from the fact that the search radius from

Eq. (1.115) can use local values in the tree. This can be a

tremendous benefit when the simulation has a small number

of much larger particles, such as in moonlet simulations. It

also helps when gravity wakes and aggregates form, as the

particles in the wakes have small local velocity dispersion.

1.6.3 Handling Collisions

The collisions need to be handled locally in proper time or-

der as one collision can prevent or alter a later collision.

The initial search for potential collisions will produce all

the collisions that would occur during the time step assum-

ing that all particles remained on their initial trajectories.

These potential collisions can be placed on one or more pri-

ority queues so that they can be handled in the order of

when they should occur. The term “potential collision” is

used here intentionally, as these might not wind up being

actual collisions. During the search, there is no a priori way

of knowing if a given potential collision will be an actual

collision or not, so they are simply all added to the appropri-

ate priority queue. The determination of whether a collision

actually occurs only happens when it is taken off of the pri-

ority queue and handled in the manner described in section

1.3. When that happens, the velocities of the two particles

involved change, so all future potential collisions involving

those two particles should no longer be considered.

That last requirement places some constraints on what

data structures are optimal. For most applications, the op-

timal priority queue is based on a binary heap. However,

because elements move around fairly randomly in memory

as part of the binary heap operations, the act of finding

an element to remove it later is O(N), which is unaccept-

able when you have to check for subsequent potential colli-

sions after every collision is processed. Other standard pri-

ority queue data structures like Fibonacci heaps have actual

nodes, which can be threaded through with links that allow

one to find the potential collisions involving any particu-

lar particle in O(1) time. Due to the nature of collisions,

this O(1) performance can also be achieved using a bucket

priority queue where again each node is threaded through

with links to other potential collisions that involve the same

particle. Assuming that collisions are roughly uniformly dis-

tributed in time, and that the number of collisions from one

time step to the next is fairly consistent, the bucket prior-

ity queue can provide a fairly simple structure with optimal

performance.

After a collision is processed and the subsequent potential

collisions involving those particles have been removed, new

potential collisions must be identified for each of the two

particles using whatever data structure is being used for

efficient searches. Any that are found between the time of the

current collision and the end of the time step are added to

the appropriate priority queue. This process continues until

the priority queues are empty, at which point all particles

can be advanced to the end of the time step.

1.6.4 Parallelizing Collisions

Modern computers require simulations to be run in paral-

lel to take full advantage of the hardware. The parallelism

comes in several different forms: multiple threads on a single

machine, multiple processes across machines or in a single

machine, as well as utilizing GPUs and other co-processors.

Clusters of reasonably inexpensive servers became popu-

lar as a high performance computing platform in the 1990s.
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To take advantage of this, programs need to support mul-

tiprocessing with message passing between machines. The

way ring simulations work on these systems differs a bit

based on the details of the network connections. The PKD-

Grav code (Stadel et al., 2002), which has been modified to

do rings simulations, breaks the simulation region up across

machines using the tree structure. It requires low-latency

network interconnects to work efficiently as the machines

communicate frequently. This is because machines commu-

nicate during the time step when they get to a point in the

calculation that requires information from other machines.

Caching schemes help to reduce the frequency of commu-

nication, but because of the frequency of communication,

standard Ethernet connections, which typically have high

latency, do not work well with this code.

A less flexible approach was developed by Lewis and Wing

(2002) that can only divide the simulation region along the

azimuthal direction. This method sends additional informa-

tion, including adjacent particles and parts of the tree used

for gravity calculations, at the beginning of each time step

so that no communication has to occur during a time step.

Using that additional information, each machine can run in-

dependently of the others for the duration of a time step.

This makes it possible to use higher latency interconnects

without suffering a significant speed reduction.

Beginning around 2005, nearly all workstation and server

class processors began to include multiple cores. As of the

time of this writing, it is not uncommon for these machines

to have 20+ cores. This has made it important to use mul-

tithreading, in addition to multiprocessing. In multithread-

ing, multiple threads share the same memory space and can

work simultaneously. The fact that collisions have a natural

ordering causes a challenge for multithreading. Solving this

challenge using a single shared collision queue per process

was explored in Lewis and Massingill (2006) and Lewis et al.

(2009). Not all collisions have to be handled in time order,

only those that are spatially close to one another, because

the “sound speed” of the medium limits how far information

can propagate through the medium during a time step. Col-

lisions that are spatially separated can be processed out of

order as long as they are far enough apart that the outcome

of one couldn’t alter the inputs of another.

Even more recently, graphics processors (GPUs) have be-

come highly programmable, and are now being used broadly

to accelerate calculation intensive computations such as

gravitational calculations (Belleman et al., 2008). The ap-

plicability to ring simulations is less clear, and work in this

area is still in an early stage. The primary challenge is the

dependence on ordering. Even soft-sphere methods often use

variable time step integrators where the order in which par-

ticles are processed is significant, and hard sphere methods

generally require nearby collisions to be handled in proper

time order. Some work has been done in the area of hard

sphere collisions on GPUs. The primary adjustment is the

use of many small priority queues, which are better suited

to the GPU hardware instead of a single, more complex,

priority queue (Langbert and Lewis, 2014).

1.7 Survey of simulation results

This Section collects simulation examples illustrating the in-

trinsic local dynamics of planetary ring systems. We start by

discussing the simplest case of identical, non-selfgravitating

particles, and demonstrate how the characteristics of the sys-

tem’s steady-state, e.g. the frequency of impacts and the ve-

locity dispersion, depend on the coefficient of restitution and

particle size. We show that the simulation results are con-

sistent with heuristic hydrodynamical estimates. Particles’

spin rotation, induced by surface friction and irregularities,

is also briefly examined. We then proceed to systems with

a distribution of particle sizes, and finally also include the

particles’ mutual self-gravity. Most of the non-gravitating

simulations are made with the event-driven method (Salo,

1995) described on Sect. 1.3.1, since it is typically somewhat

faster than the force method. The force code (Salo et al.,

2001) described in Sect. 1.3.2 is used in the self-gravitating

simulations of this section.
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Figure 1.11 Two velocity-dependent elasticity models
describing laboratory measurements of icy particles. The curve
labeled “frosty” is for frost-covered ice (Bridges et al., 1984) ,
ǫn(vn) = 0.32(vn)−0.234 < 1, while the curve “smooth” refers to

particles with compacted-frost surfaces (Hatzes et al., 1988) ,
ǫn(vn) = 0.90e−0.22vn + 0.01vn

−0.6. The normal component of
impact velocity vn is expressed in cm/sec. The Bridges et al.
(1984) model can also be written as ǫn = (vn/vc)−0.234, with

vc = vB = 0.0077 cm/s.

Our main goal is to understand how the dynamic viscosity

varies with surface density, and how this relation depends on

particles’ physical properties. As mentioned above, this η(Σ)

relation is crucial for the large-scale viscous stability prop-

erties of the particle ensemble. For non-gravitating systems

the surface density is replaced with optical depth and dy-

namic viscosity then corresponds to η = ντD. Two models

(Fig 1.11) for velocity-dependent coefficient of restitution

are systematically compared, corresponding to laboratory

measurements made by Bridges et al. (1984; “frosty” ice)

and Hatzes et al. (1988; “smooth” ice). The former model,

with a steeper drop of ǫn with impact velocity leads to an

energy balance where the velocity dispersion corresponds
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to ring vertical thickness H ∼ 10 meters, (when assum-

ing 1 meter ring particles), while the latter model implies

a much hotter multilayer ring with H ∼ 100 meters: these

two models serve to illustrate the uncertainty in ring parti-

cles’ elastic properties.7 The viscosity versus density relation

is constructed from small-scale simulations whose radial size

is smaller than the shortest unstable wavelength so that no

viscous perturbations can grow. It turns out that the two

models predict drastically different viscous behavior: viscous

instability in the case of thick rings and overstability in the

case of flattened rings. Indeed, when the size of the simula-

tion system is made sufficiently large both viscous instabili-

ties and overstabilities can be directly verified in simulations

(see Sect. 1.8).
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Figure 1.12 Impact frequency ωc in 3D and 2D
non-gravitating simulations, normalized to nτD. In a)

simulations with fixed τD = 0.1 are compared as a function of
velocity dispersion c, normalized to nR; the points correspond
to steady-state values in simulations with different constant
coefficients of restitution. In b) ωc as a function of optical depth

for simulations with constant ǫn = 0.4 (circles) and using the
Hatzes et al. (1988) velocity-dependent ǫn (see Fig 1.11). The
vertical line indicates the τDmax for 2D systems.

7 Unless otherwise indicated, the nongravitating simulations
are performed for the Saturnocentric distance a = 100 000 km. In
the case of constant ǫn the distance is irrelevant as all results are
expressed scaled to particle size R and angular frequency n.

1.7.1 Simulations of non-selfgravitating systems

1.7.1.1 Impact frequency

The ring system rapidly establishes an energy balance where

the collisional dissipation is compensated by the viscous

transfer of energy from the systematic orbital motion to

random motions (Sect. 1.5.3). The time scale to reach this

steady-state is determined by the frequency of particles’

mutual impacts, ωc. As expected, the impact frequency in-

creases proportional to optical depth τD. An important pe-

culiarity of the dynamics of dilute non-gravitating rings is

that the steady-state ωc is practically independent from the

velocity dispersion. This results from the partitioning of ver-

tical and horizontal random motions via impacts. Thus for

example an increase in velocity dispersion, which in itself

would enhance ωc, is compensated by a corresponding ver-

tical thickening and thereby reduced space density.8 Ana-

lytic treatments taking into account the anisotropic distri-

bution of impact directions and a Gaussian vertical profile

(e.g Hämeen-Anttila, 1978), indicate

ωc ∼ 3nτD ∼ 20τD impacts/orbit, (1.116)

The independence of ωc on velocity dispersion is illustrated

in Fig. 1.12a, together with the approximation of Eq. 1.116

(dashed line). For comparison, the figure also shows ωc in a

2D simulation where the motion of particles is limited to the

central plane. In this case no adjustment between velocity

dispersion and space density is possible and the explicit ve-

locity dispersion dependence in ωc is retained. As discussed

in Salo and Schmidt (2010) this leads to fundamental differ-

ences in the viscosity versus density relations and thus the

stability properties of 2D and 3D simulation systems.

The linear dependence of ωc on τD breaks down for flat-

tened systems (ǫn = 0.4, yielding H/R ∼ 1) when τD & 1,

in which case the particles’ own volume limits the free

space available for motion (Hämeen-Anttila 1978). Simi-

larly in a 2D system the impact frequency increases dra-

matically when the maximum 2D packing limit (maximum

τD = π/
√

12 ≈ 0.907 for identical particles) is approached.

On the other hand, for a hot 3D multilayer ring (“smooth”

ice, H/R ≫ 1) the simple approximation holds quite well

even for τD > 1.

1.7.1.2 Establishment of Local Energy balance

Figure 1.13 displays the time evolution of the velocity dis-

persion c in simulations with different elasticity models. For

a constant ǫn sufficiently close to unity c increases exponen-

tially with time, and clearly no steady-state is achieved9. A

8 The basic formula is ωc ∝ N3c1σc, where N3 is the volume
number density, c1 is the 1-dimensional velocity dispersion and
σc the collisional cross-section: σc = 4πR2 assuming identical
particles with radius R. The volume number density N3 ≈ N2/H,
where N2 = τD/(πR2) is the surface number density and H the
vertical thickness. Due to collisional coupling of horizontal and
vertical motions, cz ∼ c1, while due to orbital motion H ∝ cz/n.
The explicit N3 and c1 dependencies thus cancel out, leading to
the formula 1.116,

9 These simulations must be carried out with the instantaneous
impact method, since the force method would require impracti-
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Figure 1.13 a) Evolution of velocity dispersion in simulations
with different constant coefficients of restitution ǫn, for
τD = 0.1. The critical value ǫn ≈ 0.65 separates the thermally
stable (solid) and unstable (dashed) systems. (b) Simulations

with two velocity dependent elasticity models of Fig. 1.11,
starting from different initial states. Now the system attains a
steady-state with the final velocity dispersion depending on the

ǫn(vn) relation: the “smooth” ice model with a shallower drop of
elasticity with vn leads to a much hotter steady-state than the
“frosty” ice model where ǫn drops very fast with vn.

constant ǫn closer to zero leads to an exponential drop until

c levels at a few times nR, corresponding to a few particle

diameter thick ring. On the other hand, in the case of ǫn(vn)

the steady-state depends on the functional form of the re-

lation. The Bridges et al. (1984) model (“frosty” ice) leads

to a flattened system very similar to ǫn ≈ 0.5, whereas the

Hatzes et al. (1988) model (“smooth” ice) leads to a mul-

tilayer ring. Fig 1.13b also illustrates the rapid time scale

of evolution: here the system forgets the initial conditions

in roughly 50 orbital periods, which for the used τD = 0.1

corresponds to about 100 impacts/particle.

The above velocity evolution can be qualitatively ex-

plained with a simple heuristic description of the energy

balance between dissipation and viscous gain (see Stewart

et al., 1984; Schmidt et al., 2009). According to Eq. (1.111),

the rate of kinetic energy change/unit mass is

Ėrnd/Σ + Ėz/Σ = Ėdiss/Σ + s2ν (1.117)

Inserting the Keplerian shear rate s = − 3
2n and averag-

ing the energy dissipation in individual impacts (Eq. 1.43;

keeping just the ǫn contribution, and absorbing the term Ėz

which relates to vertical flattening into Ėrnd), we can write

1

2
dc2/dt = −k1 ωc c2(1 − ǫn

2)

+
9

4
n2

»

k2c2
ωc

ωc
2 + n2

| {z }

νlocal

+ k3 ωcR
2

| {z }

νnl

–

, (1.118)

cally small Tdur for such dynamically very hot simulations, in
order to keep ξmax << R; see Eq. (1.60).

where the viscosity has been written as a sum of local and

nonlocal contributions, and k1, k2, k3 are all constants of

the order of unity. The basic expression for local viscosity

is νlocal = ωcλ
2, where λ is the radial mean free path be-

tween impacts. In the high impact frequency regime the im-

pacts limit the mean free path to λ ∼ c/ωc while for low ωc

an upper bound is set by the amplitude of epicyclic excur-

sions, λ ∼ c/n. Combining these estimates (Goldreich and

Tremaine, 1978b) leads to the form in Eq. (1.118). For the

non-local term the λ is set equal to the particle radius R.

The Eq. (1.118) describes qualitatively quite well the sim-

ulated behavior for a given elasticity of particles. In particu-

lar, if the system is very hot, c/(nR) ≫ 1, the nonlocal gain

term can be ignored. In this case both the gain and dissi-

pation terms in the right hand side are proportional to c2.

Thus, no balance is possible unless ǫn equals a critical value

ǫcr, which (approximating ωc ∼ nτD) depends on the optical

depth via the well-known Goldreich-Tremaine formula

(1 − ǫcr
2)(1 + τD

2) =
9k2

4k1
≈ 0.61. (1.119)

If the constant ǫn > ǫcr, velocity dispersion increases con-

tinuously, as the dissipation is too weak to balance the local

viscous gain. Similarly, if the constant ǫn < ǫcr, then dis-

sipation exceeds the local viscous gain, leading to reduced

c. The eventual steady-state is determined by the nonlocal

gain implying a final c ∝ nR. According to Eq. (1.119),

ǫcr ≈ 0.65 for τD → 0, in good agreement with the low τD

simulations of Fig. 1.13. In the case of velocity dependent

ǫn, the behavior is different, since the effective value of ǫn
depends on the average impact velocity ∼ c. In the limit

νlocal ≫ νnl (equivalent to c ≫ nR), the steady state c

would be adjusted to a value that yields ǫeff = ǫcr, where

ǫeff is the weighted mean of ǫn(vn) in impacts.

Figure 1.14 shows the Goldreich-Tremaine ǫcr as a func-

tion of τD, delineating the thermally stable (ǫn < ǫcr) and

unstable (ǫn > ǫcr) regimes. When τD is increased, less and

less dissipation is needed for a thermally stable state to exist,

so that ǫcr approaches unity. This follows from the weaken-

ing of the local contribution to viscous gain, due to reduced

mean free path λ as τD increases. Similarly, in the case of a

reduced central shear rate, the ǫcr would rise toward unity

in order to compensate for the less effective viscous gain (for

example ǫcr ≈ 0.85 at τD → 0 for a flat rotation curve with

s = −n; dashed line in Fig. 1.14).

Also shown in the Fig. 1.14 are mean values of ǫn mea-

sured from simulations. Open symbols show simulations

which lead to a dynamically hot steady-state with c ≫ nR,

thus mimicking the conditions leading to Eq. (1.119). In this

case the agreement with theoretical approximation is quite

obvious. For comparison, filled circles show mean ǫn in simu-

lations which lead to a steady-state with c/(nR) not far from

unity: in this case both local and nonlocal viscous gains are

important, and the steady-state dissipation rate is larger

(mean ǫn closer to zero) than implied by the Goldreich-

Tremaine formula which takes into account only the local

viscous gain.
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Figure 1.14 Thick solid line is the Goldreich-Tremaine ǫcr(τD)
relation; thin solid line is the ǫcr from (Hämeen-Anttila, 1978).
Systems with constant ǫn < ǫcr(τD) (shaded region) flatten
toward a stable near-monolayer state, while those with

ǫn > ǫcr(τD) disperse via growing random velocities. Dashed
line shows an approximate critical curve for a flat velocity field
with s/n = −1 (obtained by replacing 9/4 with 1 in 1.119).
Open symbols indicate effective mean values of ǫn in

dynamically hot simulations with c/(nR) ≫ 1 (Bridges-type
elasticity formula with vc = 100vB = 0.77 cm/sec). For
comparison, solid symbols indicate effective ǫn in simulations

with the original Bridges elasticity law. Note that the effective
mean of ǫn depends on how impacts are weighted (Salo, 1987b);
here we use ǫeff =< ǫn(vn)vn

2 > / < vn
2 >.

1.7.1.3 Steady-state as a function of optical depth

Figure 1.15 collects the various steady state properties as a

function of τD, for the above two ǫn(vn) models. As men-

tioned earlier, the main difference between the models is the

about 10-fold larger velocity dispersion for the “smooth” ice

model at the low τD regime. This follows from the shallower

slope in the ǫn(vn) relation, indicating that on the average

much faster impacts are needed to yield the required dissi-

pation rate. When optical depth increases, there is a strong

drop in the c: this results from the above mentioned reduced

local viscous gain: energy dissipation rate adjust by reduc-

ing the average impact velocities. This was illustrated in Fig.

1.11 by indicating the effective ǫn values a hot system ad-

justs to when τD = 0 and τD = 1, implying a factor ∼ 3

difference in average impacts velocities - this corresponds to

the drop of c in Fig. 1.15a. For the “frosty” ice model there is

hardly any change of c with τD: this is because the nonlocal

gain term dominates for all τ ′Ds. For the “smooth” ice model

the large drop in c reflects also in the strong flattening of

the system and the drop of local kinematic viscosity.

The resulting viscosity versus density relations is quan-

tified in Fig. 1.15d where the slope β = d log ν/d log τD is

displayed. Values of β < −1 correspond to negative dη/dτD,

the condition for viscous instability (collision-induced mo-

mentum flux tends to enhance density fluctuations; see Fig.

1.28 for a schematic illustration). In principle β > −1 in-

dicates viscous stability (collisions smooth density fluctua-

tions). However, particle simulations (Salo et al. 2001) and

hydrodynamical models (Schmidt et al 2001) indicate that

for β & 1 the system may be prone to viscous overstabil-

ity. The “smooth” ice elasticity model implies instability for

0.7 . τD . 2, while the “frosty” ice fulfills condition for

overstability if τD & 4. We check these predictions in Sec-

tion 1.8 with radially more extended simulations.
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Figure 1.15 Steady-state quantities as a function of τD in
simulations with velocity-dependent coefficient of restitution: a)
the velocity dispersion c (dashed lines include also the

contribution from nonlocal pressure, obtained by using P̂ nl in
Eq. (1.92)), b) the vertical thickness H, c) the kinematic
viscosity (dashed lines indicate the local contribution), and d)
the slope of ν ∝ τD

β relation; the values of β < −1 predict

viscous instability and β & 1 viscous overstability (large filled
symbols), e) shows the axial ratios of the velocity ellipsoid c2/c1
and c3/c1, and the angle δ (in radians) between the radial
direction and the largest principal axis component, and f) the

central plane volume filling factor FF (0).

The lowermost row in Fig. 1.15 shows the shape and ori-

entation of the velocity ellipsoid. Regardless of the large

difference in the steady-state velocity dispersion, the prin-

cipal axial ratios are not very different for the two mod-

els. At the limit τD → 0 the ratio c2/c1 → 0.5 for both

models, being determined solely by the systematic gradient

in the Keplerian velocity field. On the other hand, the ra-

tio c3/c1 depends somewhat on the effectivity of collisions

in transferring energy from horizontal to vertical motions:

this ratio is smaller in the case of more inelastic models

yielding flatter systems. With increased τD, both c2/c1 and

c3/c1 increase toward unity, though even at the largest stud-

ied value, τD = 10, the velocity ellipsoid is still far from

isotropic, even if the impact frequency already corresponds

to over 100 impacts/orbital period. Likewise, the deviation

δ of the longest principal axis from the radial direction, in-

creases with τD, but is still below the hydrodynamical limit

π/4 even at τD = 10. Also shown in Fig. 1.15f is the cen-

tral plane volume filling factor of the two models: for the
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Figure 1.16 Dependence of a) geometric thickness H, b)

kinematic viscosity ν , and c) dynamic viscosity η = ντD on
optical depth τD, for the “frosty” ice model of the previous
figure, but with different sized simulation particles. Large solid

circles in c) indicate viscously unstable regime. In b) dotted and
dashed lines indicate separately the local and nonlocal
contributions.

“frosty” ice model, FF (0) exceeds 0.2 for τD > 1, while for

the “smooth” ice model the same requires τD > 3. Compar-

ison to Fig. 1.12 indicates that this is roughly the regime

where the nonlinearity of ωc versus τD becomes apparent.

The above simulation survey for “frosty” and “smooth”

elasticity models was done using 1 meter particles. In this

case the “smooth” ice model was dominated by local vis-

cosity at low τD, while with the “frosty” ice model nonlocal

viscosity dominated at all τD’s. Consequently, the former

model is susceptible for viscous instability while the latter

model is not. The basic reason for the instability is the rapid

drop of steady-state c with τD, so that the dynamic viscos-

ity of dense regions falls below that of low density regions.

To remind that this behavior depends on the assumed parti-

cle size/elasticity model combination, Fig 1.16 compares the

expected behavior of the “frosty” ice model when using par-

ticles sizes of 0.01, 0.10 and 1 meters. For a rough estimate of

the relative importance of local and nonlocal contributions,

note that at τD → 0 the local contribution tries to establish

a state with a mean ǫn ≈ 0.65. For the Bridges et al. (1984)

“frosty” ice model this corresponds to clocal ≈ 0.05 cm/s.

On the other hand, the nonlocal contribution maintains a

minimum cnonlocal ≈ nR = 0.2 cm/sec with the nominal

values of the previous figures. Thus with 1 meter particles

cnonlocal exceeds clocal by a factor of 4. However, with 1 cm

simulation particles, cnonlocal << clocal, and a strong drop

in the steady-state c around τD ∼ 1 is again present. This

would again lead to viscously unstable behavior for interme-

diate τD’s.

1.7.1.4 Surface friction and Particle spins

In contrast to the normal coefficient of restitution, relatively

few laboratory measurements exist for the friction of icy par-

ticles. According to Supulver et al. (1995) experiments, fric-

tion is weak, corresponding to tangential coefficient of resti-

tution ǫt ∼ 0.9 in the case of relatively smooth ice surfaces

at temperatures near 100 K. Nevertheless, to illustrate the

possible effects of tangential friction we will briefly examine

the whole allowable range of 1 ≥ ǫt ≥ −1, the latter extreme

corresponding to the case where friction is able to reverse

the tangential relative velocity in impact. Also, as discussed

in Section 1.3, a consistent treatment of tangential friction

between freely moving particles requires the inclusion of par-

ticle spins, which allows for energy transfer between random

and rotational motions.

With the addition of frictional dissipation the steady-state

velocity dispersion is reduced, the importance of this reduc-

tion depending on both the value of ǫt and the model for ǫn.

This is illustrated in Fig. 1.17, comparing different ǫt val-

ues for “frosty” and “smooth” ice elasticity models. A fixed

τD = 0.5 is studied, but the relative effect is only weakly

dependent on τD. The influence of ǫt is much more pro-

nounced for the dynamically hot “smooth” ice model. This

follows since the energy gain is then determined by the local

viscosity. Inclusion of friction adds a dissipation term pro-

portional to ωc c2(1 − ǫ2t ) to Eq. (1.118), which means that

the effective ǫn required for thermal balance moves closer

to unity (Salo, 1987a,b; Araki, 1988, 1991; Ohtsuki, 2006a),

thus indicating smaller c. The extra dissipation is most pro-

nounced when ǫt is close to zero, leading to minimum of

c near this value. On the other hand, a much smaller ad-

justment in c takes place when the balance is dominated by

nonlocal viscosity (“frosty” ice model in the figure).
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Figure 1.17 Effect of tangential coefficient of restitution ǫt on
a) the steady-state velocity dispersion, and b) the energy ratio
between the rotation and random velocities. The “frosty” and
“smooth” ice elasticity models are compared for τD = 0.5. The

solid line is the theoretical approximation (Eq. 1.122) for the
energy ratio in the limit c ≫ nR.

Friction also induces spin motion of particles, which pro-

vides a feedback of energy from rotation to random motions

(explains why the minimum of c is not exactly at ǫt = 0). An

equilibrium ratio between random and rotational energies is

established when the net transfer equals zero. In practice the

equilibrium implies that the dispersion of the surface veloc-

ities due to spins follows the dispersion of random velocities

(Rω)2 = k c2, (1.120)
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the proportionality factor k depending mainly on ǫt, and to

lesser degree on ǫn and τD. For a thick multilayer system the

resulting equilibrium ratio of spin and random energies can

be estimated by averaging the formula for the change of spin

energy in individual impacts (Eq. 1.43), and by assuming an

isotropic distribution of impact directions (should be valid

in the case c ≫ nR). For homogeneous spheres with

Erot =
1

5
m(q1

2 + q2
2 + q3

2), (1.121)

Ernd =
1

2
m(c1

2 + c2
2 + c3

2),

this yields (Salo, 1987a,b; Morishima and Salo, 2006)

Erot

Ernd
≈ 2(1 − ǫt)

14 − 5(1 − ǫt)
, (1.122)

indicating that the energy ratio grows roughly proportional

to 1 − ǫt for ǫt close to unity. At the limit ǫt → −1 a total

equipartition between rotation and random energies is pre-

dicted, in agreement with Shu and Stewart (1985). A simi-

lar result is obtained based on the three-body formalism for

dilute rings (Ohtsuki, 2006a). Based on Fig. 1.17, the Eq.

(1.122 holds quite well for the “smooth” ice model, espe-

cially in the limit |ǫt| → 1 where the system has the largest

velocity dispersion. For a more flattened system (“frosty”)

the simulated Erot/Ernd ratio is somewhat larger, reflecting

the non-isotropic orientations of impact directions.

In addition to dispersion of spins, the particles also acquire

a small residual mean vertical spin

ωz ∼ (0.2 − 0.3)n (1.123)

(Salo, 1987a,b; Richardson, 1994; Ohtsuki and Toyama,

2005; Morishima and Salo, 2006). This mean value is only

weakly dependent on ǫt, ǫn or τD. Since

q

ωz
2 is pro-

portional to c/R while ωz is independent of c, the ratio

ωz/

q

ωz
2 can be significantly non-zero only for very flat-

tened systems with small c/(nR).

1.7.1.5 Surface irregularity/deviations from spherical
shape

Almost all planetary ring simulations have assumed spheri-

cal particles. Mainly this is due to the technical simplifica-

tions it affords for detection and modeling of impacts. Also,

the need for more complicated models is not obvious, since

in many respects the effect of small deviations from spherical

shape can be expected to average out, or to be accommo-

dated by the uncertainties in the other model parameters

like the elasticity of particles. However, irregular shape may

have a significant contribution to particle spins, even if the

tangential friction is small.

The effect of slightly non-spherical shape in promoting

spin dispersion is illustrated in Figure 1.18, in terms of the

energy ratio between rotation and random motions. The

simulations use the irregularity model of Salo (1987a,b),

where the normal vector of the local tangent plane of impact

(~k∗) deviates slightly from the direction vector joining the

particle centers (~k). In the figure the tilts γa and γb in Eq.
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Figure 1.18 The effect of small irregularities/deviation from
spherical shape on the energy ratio between rotation and
random motions. Simulations with different f (the maximum
local tilt of the impact plane, see the text) are compared as a
function of ǫt for two ǫn(vn) models. The optical depth
τD = 0.5. The theoretical energy ratio for mass point systems,
Eq (1.124) applies to a constant ǫn: the gray filled areas

correspond to this approximation with ǫn = 0.5− 0.8. The insert
shows the relative change in velocity dispersion c compared to
the case f = 0. Two values of f are compared (larger symbols
f = 0.4, smaller symbols f = 0.2).

(1.44) are assumed to get independent random values uni-

formly from the interval [−f, f ]: the maximum studied value

f = 0.4 corresponds to rms tilt angle ∼ 10◦. Such a model is

very efficient in inducing spin rotation even if the particles

are almost frictionless: for example ǫt = 0.99, f = 0.05 (cor-

responds to ∼ 1◦ rms tilt) gives about the same amount of

spin rotation than ǫt = 0.5 for spherical particles with f = 0.

Curiously enough, the energy ratio at the limit ǫt → 1 is in-

dependent of f . The figure also shows an estimate of the

equilibrium energy ratio (again setting the net transfer to

zero; Salo 1987a), which is in good agreement with the sim-

ulation results,

Erot

Ernd
=

2

7

2
3f2(ǫt + ǫn)(1 + ǫn) + 1

2 (1 − ǫt)
2

(1 − ǫt) + 2
3f2(ǫt + ǫn) − 5

14 (1 − ǫt)2
. (1.124)

The theoretical estimate is for a constant ǫn, but the depen-

dence on ǫn is weak (see Fig. 1.18) This agrees with the fact

that the simulated Erot/Ernd are very similar for both stud-

ied ǫn(vn) models. At the limit ǫt = 1 this approximation

predicts Erot/Ernd = 2
7 (1 + ǫn) ∼ 0.5.

Irregularity also affects the equilibrium velocity disper-

sion, the effect depending on ǫt and ǫn (see the insert in

Fig.1.18). In the case of a hot system (“smooth” ice ǫn(vn)

model), the reduction in c for f = 0.4 is close to 50% for

ǫt < 0.8. However, for ǫt very close to unity, irregularity

may also slightly increase c due to feedback of energy from

rotation (Salo 1987b). For a cool system (“frosty” ice ǫn(vn)

model) the effect of irregularity, like that of friction, is much

smaller.
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Figure 1.19 In a) the geometric thickness as a function of

particle size in simulations with a power law size distribution,
dN/dr ∝ r−q, for Rmin < R < Rmax. Different widths of the
distribution, W = Rmax/Rmin, in the range W = 4.64 − 100

are compared, both for q = 2 and q = 3. In each case τD = 1.0
and a constant ǫn = 0.5 is used. In b) two different ǫn(vn)
models are compared for the same size distribution. Dashed
lines show the effect of friction with ǫt = 0.5.

1.7.1.6 Size distribution

So far all our simulation examples have assumed identical

particles. In the more realistic case of size distribution, the

energy balance is modified by the energy transfer in impacts

(and via gravitational encounters) from larger to smaller

particles (see Stewart et al., 1984; Hämeen-Anttila, 1984).

However, in contrast to gas dynamical systems this tendency

toward energy equipartitioning is opposed by the inelastic-

ity of impacts: simulations indicate that near equipartition

is possible only for particle mass ratios below about 10 (Oht-

suki, 1992; Salo, 1992a). In practice the ratio between veloc-

ity dispersion of smallest and largest is less than about five,

the maximum ratio depending on the functional form of the

size distribution and the elasticity model.

Figure 1.19a shows how the vertical thickness H of differ-

ent sized particles depends on the width W = Rmax/Rmin

and index q of the power-law size distribution with dN/dR ∝
R−q. A constant ǫn = 0.5 is used, in which case all simu-

lation quantities scale with the assumed maximum particle

size. Therefore, quantities normalized to Rmax are shown.

For q = 3 the maximum ratio in the vertical thickness of the

bin of smallest and largest particles (Hsmall/Hlarge) depends

only weakly on W , while for q = 2 it slightly increases with

W . For q = 2 most of the mass is on the largest particles:

consequently the influence of small particles on the largest

particles is small and Hlarge is independent of W . For q = 3

each logarithmic size increment corresponds to same frac-

tion of total mass, and increasing the width W pushes Hlarge

down. The lower panel of Fig. 1.19 compares the two differ-

ent ǫn(vn) models for q = 3, W = 50, Rmax = 5m, empha-

sizing how the difference between small and large particles

becomes stronger for hot systems. In terms of steady-state

velocity dispersion, the csmall/clarge ≈ Hsmall/Hlarge ≈ 10

for the “smooth” model, and about 3 for the “frosty” ice. For

comparison, for a constant ǫn → 0, the csmall/clarge ≈ 1.5.

All simulations of Fig.1.19 have τD = 1.0, but the results

are only weakly dependent on τD (Salo 1992a).

The effect of friction on c is roughly the same on all parti-

cle size bins (dashed lines in Fig. 1.19b). Also the equilibrium

dispersion of surface spin velocities, (Rω)2 scales with c2 of

the size bin. The relatively weak dependence of c on R thus

indicates that the spin dispersion
p

ω2 is roughly inversely

proportional to the particle radius. Therefore, small particles

spin much faster than the large ones. This was also confirmed

by N-body simulations of self-gravitating rings (Richardson,

1994; Ohtsuki, 2005; Ohtsuki and Toyama, 2005; Morishima

and Salo, 2006). On the other hand, the residual mean spin

is always a fraction of n independent of particle size. There-

fore, while the mean spin of the largest particles can be

significant compared to its dispersion, the spin axis of the

smallest ones are always practically randomly distributed.

For an illustration of progradely rotating large particles em-

bedded in a population of randomly oriented small particles,

see Salo(1987b).

1.7.1.7 Adhesive forces

Figure 1.20 displays an example of simulations with surface

adhesion. The linear force model is combined with an ex-

tra constant attraction between impacting, slightly overlap-

ping particles. With the nominal value Fadh = Fo (second

row), the critical impact speed vadh which implies stick-

ing in a pairwise impact is about 4-fold compared to the

steady-state mean impact speed in the absence of adhesive

force (uppermost row). Consequently, the particles experi-

ence quite rapid pairwise sticing, leading to small particle

aggregates, roughly 4 times larger than individual particles

(see the 2D autocorrelation plot in the right). In the succes-

sive frames, the increased Fadh leads to progressively larger

aggregates. Note that the snapshots, corresponding to 30 or-

bital periods, already represent a new steady-state situation:

due to shear the typical impact speeds between the aggre-

gates (or between a free particle and an aggregate) increase

when the aggregates grow, and consequently the sticking is

eventually hindered when typical speeds approach the stick-

ing threshold value. Note that the example uses parameter

values which exaggerate the role of adhesion: the vadh corre-

sponds to sticking of cm-sized particles, while the simulation

particles have 1 meter radius. Nevertheless, in real systems

significant accretion of cm-size particles can be expected (Al-

bers and Spahn, 2006).

Tremaine (2003) suggested that the B ring irregular struc-

ture could manifest a shear-rate instability, where the system
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Figure 1.20 Influence of adhesive force in simulations. The
linear force model is combined with a constant attractive force

Fadh affecting between each impacting, slightly overlapping
particle pair. The values of F correspond to those of Fig. 1.5.
The optical depth τD = 1 and ǫn = 0.25: with F = 0 the mean

steady-state impact velocity for 1 m particles is < gn >≈ 0.04
cm/sec. The critical velocity for sticking in the case Fadh = Fo

is 0.17 cm/sec. The left frames show snapshots of the simulation
after 30 orbital periods, for Fadh/Fo = 0, 1, 2, 4, 8, 16: the size of

the simulation region is Lx × Ly =400R × 80R. The frames in
the right display the 2D autocorrelation function of the same
snapshot; the black contours corresponds to 10% and 100%

overdensities. The labels indicate the full radial width (in
particle radii) of the 10% overdensity region.

is divided into rigidly rotating zones, separated by zones

where the shear-rate locally exceeds the Keplerian value.

Such an instability could arise if the dynamic viscosity is

a decreasing function of local shear rate. It was envisioned

that this might be the case with sufficiently strong cohe-

sive bonds between particles. In the simulations of Fig. 1.20

there is no signs of such instability: instead of forming ra-

dial zones with locally reduced shear rate, the system divides

into irregular aggregates with roughly equal dimensions in

radial and tangential directions (and slightly flattened in the

vertical direction).

1.7.2 Self-Gravitating simulations

At low optical depth the main effect of self-gravity is through

2-body scattering in close binary encounters. Although they

correspond to completely elastic impacts in the sense that

the kinetic energy of the encountering pair is conserved,

the deflection of the orbits during encounter leads to en-

ergy transfer from systematic to random motions. This extra

heating increases c until it becomes roughly comparable to

the 2-body escape velocity of the particles (Safranov, 1969;

Hämeen-Anttila, 1978; Cuzzi et al., 1979). For larger sur-

Figure 1.21 Snapshots from 2λT × 2λT simulations with
τD = 0.75, using the “frosty” ice elasticity model. In the upper

row non-gravitating simulations with a) nz/n = 1 and b)
nz/n = 3.6. In the lower left, in d) the vertical component of
self-gravity is self-consistently included, while e) the full

self-gravity is taken into account. The internal density
ρ = 900kgm−3 which corresponds to rh = 0.82 at the simulated
Saturnocentric distance 100 000 km (see Eq. 1.129). Also shown
in c) is the impact frequency (normalized by τDn and in f) the

vertical thickness (averaged over the whole system) as a
function of optical depth.

face densities, the collective effects become increasingly im-

portant. For example, in Saturn’s dense B the vertical self-

gravity may exceed the vertical component of the central

force by a large factor (Wisdom and Tremaine, 1988). Nev-

ertheless, then also the planar components of gravity need

to be taken into account, leading to a strongly non-uniform

density distribution.

1.7.2.1 Formation of self-gravity wakes

Figure 1.21 compares different ways to approximate ring

self-gravity: using in b) the factor nz/n > 1 to mimic the

increased vertical field and in d) the self-consistently calcu-

lated Fz . Clearly, a right choice of nz/n > 1 (depending on

the surface density) would capture quite well the effects of

vertical gravity: the flattening of the ring and the strongly

enhanced impact frequency. However, with the inclusion of

full self-gravity (Fig. 1.21e) the picture is completely dif-

ferent from that when only the vertical component of self-

gravity is taken into account. The system now forms gravi-

tational condensations which shear into elongated trailing

density enhancements. Such structures, in the context of

Saturn’s rings, were first simulated in Salo (1992a). How-

ever, the phenomenon itself was envisioned already a few

decades earlier, in the context of galaxy disks.

Toomre (1964) showed that a self-gravitating differentially

rotating disk is locally unstable against the growth of ax-
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Figure 1.22 Establishment of statistical steady-state in
8λT × 8λT simulations starting from a hot (QT = 5) and cold

(QT = 0) uniform initial state. The parameters are τD = 0.5,
rh = 0.82, ǫn = 0.5.

isymmetric disturbances if its radial velocity dispersion cx

falls below a critical value ccr. The closeness to the stability

boundary is measured by the Toomre QT parameter

QT =
cx

ccr
=

cxκ

3.36GΣ
. (1.125)

While QT ≥ 1 guarantees stability against the growth of ax-

isymmetric perturbations, already for QT . 2−3 the system

is susceptible to the growth of local non-axisymmetric dis-

turbances (Julian and Toomre, 1966; Goldreich and Lynden-

Bell, 1965). Such a near-instability manifests as an emer-

gence of trailing filamentary density enhancements just as

those seen in the self-gravitating simulations. As was illus-

trated in Sect. 1.4, in a Keplerian velocity field such wakes

form ∼ 150 − 20o angle with respect to the tangential direc-

tion, and their radial separation is of the order of Toomre’s

critical wavelength

λT = 4π2GΣ/κ2. (1.126)

Individual filaments are rapidly destroyed by shear, but new

condensations are continuously generated. Due to enhanced

densities and systematic motions associated with the wakes,

the ωc is even more strongly enhanced than in the case of

vertical gravity (Fig. 1.21c). Also, the vertical thickness in-

creases as the scattering by wakes more than compensates

the flattening caused by the enhanced vertical field (Fig.

1.21f).

Figure 1.22 illustrates the role of wakes/impacts in es-

tablishing a “thermostat” which keeps the system near a

constant QT regardless of the initial state of the system. In

the case of stellar disks, the gravitational scattering accom-

panying the growing disturbances would heat the system so

that the wakes are eventually suppressed. In the case of par-

ticulate rings, the collisional dissipation provides a physical

regulating mechanism which makes it possible to reach and

maintain a statistical steady-state with sufficiently low QT ,

so that new structures continuously emerge and dissolve in a

timescale comparable to the orbital period. As emphasized

by Toomre and Kalnajs (1991), the gravity wakes do not

represent an instability in the sense that there would be a

strict threshold for the emergence of the wakes - rather they

manifest the enhanced reactivity of the selfgravitating disk

whenever QT is sufficiently small. In particular, any small

Figure 1.23 The upper row shows snapshots from simulation
with different shear rates s: the physical width of the calculation

region is fixed (∼ 170 particle radii) and corresponds to 12, 8,
and 4λT for s/n = −0.5,−1.0 and −1.5. The middle row shows
2D auto-correlation plots from the same simulations, covering

2λT × 2λT . The lowermost row shows Julian-Toomre (1966)
analytic calculations for the same shear rates of the wake
response around an orbiting point mass-point: their graphs have
been rotated to same orientation as our simulation plots. In the

simulations τD = 0.5, constant ǫn = 0.5, rh = 0.82.

leading perturbation, while evolving into a trailing one due

to shear, is significantly amplified by the interplay of gravity

and differential rotation (the “swing amplification” mecha-

nism (Toomre, 1981; Goldreich and Lynden-Bell, 1965).

The self-gravity structures seen in simulations can be in-

terpreted as a superposition of numerous individual Julian

and Toomre (1966) wakes, excited by each particle when

other particles flow past it - this justifies the name (’wake’)

commonly adopted to the phenomenon. This identification

is supported by the 2D auto-correlation analysis of the simu-

lated structures (Toomre and Kalnajs, 1991; Salo, 1995; Salo

et al., 2004). To further strengthen the argument, Fig. 1.23

compares auto-correlation functions from ring simulations

with the Julian and Toomre (1966) theoretical calculations

of the density response around an orbiting mass enhance-

ment, performed for different central shear rates. The trend

in the pitch angle of the density crest as a function of s/n is

strikingly similar. Also as expected, the scale of structures is

in all cases proportional to λT , which is different by a factor

of 3 for the studied shear rates (λT ∝ (2s/n + 4)−1 accord-

ing to Eqs. (1.6) and (1.126). A more quantitative compar-
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Figure 1.24 Survey of self-gravity wakes as a function of rh

and τD. The labels a indicate the Saturnocentric distance (in
units of 1000 km) for particles with solid ice internal density: for
other densities the distances scale ∝ (ρ/900kgm−3)−1/3. The
size of the simulation system is 4λT × 4λT , with λT /R ≈
150τDrh

3; the side view covers 4λT × 1λT . The number of
simulation particles N ≈ 116 · 103τD

3rh
6. In a) the “frosty” ice

and in b) the “smooth” ice elasticity model is used. The inserts

sketch the regimes where various physical factors dominate,
based on the estimates given in the text. The dashed curves
indicate what is the radial velocity dispersion which corresponds
to QT = 2. In a) the boundary between wakes and impacts is

drawn at cr/(nR) = 3, while in b) cr/(nR) = 10 is assumed.
Note the region τD & 1 and rh . 0.6 in a) leading to viscous
overstability (see Sect. 1.8.1). Similarly in b) simulations with

τD = 0.9, rh ∼ 0.8 show viscous instability (see Sect. 1.8.2). The
numbers in the frames indicate the amplitude of azimuthal
brightness asymmetry for the simulation (see Sect. 1.11.4).

ison is not attempted, since the Julian and Toomre (1966)

response-calculations assumed a fixed QT for the disk and

did not account for the finite particle size - in simulations

of Fig. 1.23 the velocity dispersions adjusts self-consistently

to balance the dissipation and viscous gain.

1.7.2.2 Survey of self-gravity wakes

In the non-gravitating case the optical depth τD and the

elasticity model determine the ring steady-state for a given

particle size distribution (see Sect. 1.7). When self-gravity is

included, just one new parameter is required to characterize

both the pairwise and collective gravitational effects. This

is the rh parameter, the ratio of the mutual Hill-radius for
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a pair of particles to the sum of their physical radii,

rh(µ) =
RH

R1 + R2
=

„

ρ

3ρP

«

1

3

„

a

RP

«

(1 + µ)
1

3

1 + µ
1

3

, (1.127)

where ρ is the internal density of the particles, and µ =

M1/M2 = (R1/R2)
3 is their mass ratio. Here

RH = ((M1 + M2)/3MP )1/3a (1.128)

is the radius of the Hill-sphere, inside which the pair’s mu-

tual gravity dominates over the tidal pull from the planet at

the distance a. The Mp,Rp, and ρP are the mass, radius, and

mean density of the planet. When rh decreases, the particle

pair extends more and more out from its Hill-sphere: rh = 0

corresponds to the non-gravitating case, while if rh = 1

the attraction between two synchronously rotating, radially

aligned ring particles in contact equals the disruptive tidal

force. For a pair of identical particles µ = 1, and inserting

the typical numerical values for Saturn’s rings gives

rh(µ = 1) = 0.82
“ MP

5.69 · 1026 kg

”− 1

3

“ ρ

900 kgm−3

”

1

3

“ a

100 000 km

”

. (1.129)

We will denote rh(µ = 1) simply by rh. For µ = 0 or µ → ∞
(a test particle attached to surface of a large particle), the

rh would be a factor 22/3 ≈ 1.59 larger. With the formula

(1.129), the simulation results for a given rh can be scaled

to any other ρ1/3a combination.

To demonstrate that rh is the only additional parameter

needed to characterize self-gravity wakes.10, we may write

the Toomre critical wavelength and velocity dispersion as

λT

R
= 48π τDrh

3, (1.130)

ccr

nR
= 12.8 τDrh

3. (1.131)

Here we have assumed identical particles; in the case of a

size distribution the numerical pre-factors would depend on

dN/dR. Similarly, the minimum velocity dispersion main-

tained by gravitational encounters, cenc ∼ vesc, where

vesc =
p

2GM/R is the 2-body escape speed, can be ex-

pressed as

cenc

nR
= 4.9 rh

3/2 (1.132)

Figure 1.24a depicts a simulation survey of wake struc-

tures for the “frosty” ice elasticity model. The strength of

wakes increases when the optical depth τD, or the distance

(measured with rh) increases. The wakes get clumpier and

eventually degrade into semi-permanent gravitational aggre-

gates for rh & 1.2. Same takes place at low τD via pairwise

accumulation. The exact boundary for aggregate formation

depends on the elasticity of particles and also the particle

10 This is strictly valid only in the case of constant ǫn. If ǫn =
ǫn(vn/vc), with a scale parameter vc, then the ratio nR/vc which
determines the relative magnitudes of local and nonlocal viscous
gains (see Fig. 1.16) will depend on distance via n. However, for
example for the “frosty” ice model this dependence is weak and
the rh scaling works well (see Karjalainen and Salo (2004)).

size distribution (Salo, 1995; Karjalainen and Salo, 2004).

The fact that rh > 1 is required for stable aggregates to

form is because not only shear, but also particle impacts

and velocity dispersion act to destroy any forming conden-

sations.

The insert in Fig. 1.24a sketches the parameter regimes

where different factors (impacts, encounters, wakes) dom-

inate the dynamics, based on the velocity dispersion this

factor alone would be able to maintain (Salo, 1995; Ohtsuki

and Emori, 2000). For the “frosty” ice model (or constant

ǫn . 0.5) the minimum velocity dispersion due to impacts

is
cimp

nR
∼ 2 − 3 (1.133)

Comparing to Eq. (1.132), we may expect that velocity dis-

persion is governed by gravitational encounters rather than

by physical impacts for rh & 0.7. A rough criterion for the

emergence of collective wake-structure is obtained by assum-

ing that wakes become apparent whenever the minimum ve-

locity dispersion drops below cwake = QT ccr with QT ∼ 2.

According to Eqs. (1.131) and (1.133) this corresponds to

τDrh
3 & 0.1. In the insert figure the condition cwake > cimp

(and cwake > cenc) defines the sketched boundary between

wakes and impacts (or wakes and encounters). The other

dashed curves in the insert indicate where QT = 2 corre-

sponds to c/(nR) = 5, 10, 20.

Figure 1.24b shows a similar survey, except with the

“smooth” ice elasticity model. No wake structures are visible

for optical depths τD = 0.25 or τD = 0.50 for any rh, but

for higher τD the picture is very similar to that in a). The

reason for the suppression of wakes at low τD is the high

velocity dispersion maintained by impacts alone: according

to Fig. 1.15, we have c/(nR) > 10 for τD . 1. In the inset

figure the QT = 2 line corresponding to this c value is used

to delineate the boundary between impacts and wakes. Now

the velocity dispersion of the system is too high to allow for

bound aggregates to form at any of the studied rh values.

The wake structure is also affected by the particle size

distribution (Fig. 1.25). For example, the average pitch an-

gle increases when size distribution is included (Salo et al.,

2004; French et al., 2007b; Michikoshi et al., 2015). Also, al-

though the large particles still form distinct wakes, the over-

all contrast is reduced due to the more uniform distribution

of small particles. This implies that at least in principle a

system can exhibit dynamically significant wake structure,

though it might be almost hidden in photometric observa-

tions (Salo et al., 2004).

1.7.2.3 Gravitational viscosity

The effect of gravity wakes on viscosity is depicted in Fig.

1.26. The upper row compares self-gravitating simulations

with constant ǫn = 0.5 as a function of rh and τD. For

τD & 0.5 and rh & 0.75, the νgrav contribution associated

with the gravitational torques from inclined wakes becomes

dominant (Daisaka et al., 2001; Tanaka et al., 2003). Also

νlocal is strongly enhanced due to systematic motions asso-

ciated with the wakes, whereas the νnl has less significance.

The results of Fig. 1.26 agree with the trend originally found



30 Salo & Ohtsuki & Lewis

Figure 1.25 a) Identical particle simulation with τD = 0.5,

rh = 0.85, using “frosty” particle elasticity model and
4λT × 4λT calculation region. b) Simulation with same
parameters, except having a q = −3 power-law size distribution
with Rmax/Rmin = 10. c) Particles with R > Rmax/2 = 2.1 m

are shown separately: they comprise 30% of the optical depth
and 55% of surface mass density. The inserts in a) and b)
display 2D auto-correlations, indicating about 5◦ larger average

pitch angle of wakes in the size distribution simulation.
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Figure 1.26 Comparison of various contributions to total
viscosity, in a) as a function of rh and b) as a function of τD.

They are from a constant ǫn = 0.5 simulations similar to Fig.
1.24. The light dashed gray lines in a) and b) indicate Eq.
(1.134). In c) the viscosity as a function of scale parameter vc in

velocity- dependent elasticity model ǫn(vn) = (vn/vc)−0.234:
with vc = vB = 0.0077cm/s this corresponds to the Bridges et
al. (1984) “frosty” ice model. Frame d) displays the slope of
ν ∝ τD

β in simulations of frame b), reaching values β ≈ 2 − 3 in

selfgravitating simulations; also non-gravitating simulations and
simulations including only the vertical self-gravity are shown.

in Daisaka et al. (2001),

νtot ≈ (νgrav + νlocal) ≈ 2νgrav ∝ rh
5G2Σ2

n3
. (1.134)

The Σ2 (∝ τD
2 in the figure) dependence is similar to

the standard continuum fluid formula for spiral torques in

galaxy disks (Lynden-Bell and Kalnajs, 1972), while the rh

dependence can be interpreted as an extra effect related to

the finite size of particles: the smaller the rh, the closer is the

scale of wakes compared to physical size of particles (see Eq.
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Figure 1.27 Various measurements of the A ring kinematic
viscosity, based on damping of density waves (symbols). The

thick solid line indicates the viscosity calculated from Eq.
(1.134), using the surface densities measured for this distance,
and assuming solid ice internal density for the particles. The

dashed lines indicate viscosities from the same formula, using
ρ = 900, 600, and 450 kgm−3, and a fitted surface density
(linear rise from 300 kgm−2 to 500 kgm−2 between 122, 000 km
and 132, 000 km). Figure modified from Tiscareno et al. (2007).

1.130). This limits the maximum contrast the wakes can at-

tain as the density of wakes is limited by the internal density

of particles. The estimates of Saturn’s ring viscosity in Tis-

careno et al. (2007), based on the damping of A ring satellite

density waves are in good agreement with Eq. (1.134), pro-

vided that the internal density of particles is close to that

of solid ice (see Fig. 1.27).

The slope of ν(τD) relation is shown in more detail in Fig.

1.26d and also compared with non-gravitating simulations

and to simulations including only the vertical component

of self-gravity (compare to Fig. 1.21). With the inclusion of

self-consistent vertical gravity the slope β & 1 for τD & 1,

which is higher than in the non-gravitating case (β ≈ 0.5),

but clearly smaller than with full-self-gravity (β ≈ 2). Note

that when using nz/n to mimic vertical gravity, the value of

β can be increased by choosing a larger enhancement factor.

Based on Fig, 1.24 it is clear that the gravitational vis-

cosity depends strongly on the adopted elasticity model.

In Fig.1.26c this is illustrated by comparing simulations

with different ǫn(vn) models, parameterized by the veloc-

ity scale factor in the Bridges et al, (1984) type elasticity

law (“frosty” ice model has vc/vB = 1; the “smooth” ice

model would correspond to vc/vB ∼ 30). The more inelastic

the impacts are, the larger is the contribution from gravi-

tational viscosity. For the simulated τD = 0.5, the gravita-

tional viscosity is completely negligible for vc/vB = 30, in

agreement with the total absence of wake structure in the

simulations depicted in 1.24b. At the same time for very

elastic impacts the local viscosity increases proportional to

(vc/vB)2. This follows as the system tries to establish a ther-

mal balance with a mean elasticity whose value depends

on the optical depth via the Goldreich-Tremaine formula.

The resulting steady-state c is proportional to vc and thus

νtot ≈ νlocal ∝ vc
2. Because of the opposite trends of νlocal

and νgrav, and the relatively insignificant role of νnl, the

total viscosity has a minimum at intermediate vc/vB ≈ 5.
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1.8 Viscous instability and overstability

The Voyager and Cassini data have revealed an overwhelm-

ing amount of structure in Saturn’s rings. Some of the struc-

ture is unambiguously connected to resonance perturbations

by external satellites (in particular in the outer A ring), but

the majority of the finest optical depth variations, extend-

ing down to shortest resolved length scales, are likely to have

some internal origin.

Right after Voyager discoveries viscous instability was

evoked to explain the intrinsic variations (Lukkari, 1981;

Lin and Bodenheimer, 1981; Ward, 1981; Hämeen-Anttila,

1982). In this type of instability (see Fig. 1.28), the col-

lisional flux of particles, proportional to dynamic viscos-

ity η = ντD ∝ τD
β+1, is directed toward density maxima

(equivalent to β < −1). Thus any small density fluctuation

is amplified by collisional diffusion, in contrast to a stable

ring where diffusion smooths density variations. In the non-

linear limit the growth of fluctuations is saturated to a state

where the flux from dense but dynamically cool ringlets is

balanced by the flux from rarefied, dynamically hot regions.

This model was soon discarded, mainly as the first labo-

ratory measurements (Bridges et al., 1984) indicated too

dissipative particles for the instability mechanism to work

(Wisdom and Tremaine, 1988; Araki and Tremaine, 1986).

Also, the observed structures do not quite agree with the

predictions of simple instability models, according to which

the ring should separate into high τD ringlets surrounded

by almost empty gaps (Hämeen-Anttila, 1978).

Other alternatives for explaining the ring fine structure

gained more attention, among them the possibility that

dense rings might be viscously overstable (Borderies et al.,

1985; Longaretti and Rappaport, 1995). In the axisymmet-

ric overstability the radial particle flux is directed away from

density maxima, like in a stable ring (see Fig. 1.28). How-

ever, the flux now increases so strongly with density (large

β), that the system overshoots in trying to smooth the den-

sity variations: this leads to density oscillating with time.

Although it appears unlikely that overstability could ac-

count for large scale structures in the densest rings (Latter

and Ogilvie, 2010), there are clear indications of small-scale

∼ 100 meter axisymmetric oscillations in moderate τ loca-

tions in the rings (Colwell et al., 2007; Thomson et al., 2007;

Hedman et al., 2014) likely to be related to such overstable

oscillations.

1.8.1 Viscous overstability (Oscillatory instability)

Early hydrodynamical models for Saturn’s rings predicted

that practically any flattened ring system with β & 0 should

be overstable (Schmit and Tscharnuter, 1995, 1999), man-

ifesting as axisymmetric oscillations in density and veloc-

ity components. The mechanism itself can be confirmed in

direct N-body simulations (Fig. 1.29, Salo et al., 2001;

Daisaka et al., 2001), which however indicate considerably

more stringent conditions for the onset of overstability.

In non-gravitating simulations, and in simulations includ-

ing vertical self-gravity, the condition (Salo et al., 2001;

Figure 1.28 Schematic illustration of viscous stability

properties. The radial mass flux is proportional to - ∂η/∂Σ,
where η is the dynamic viscosity and Σ is the surface mass
density. This indicates that the ring tries to establish a locally
constant η profile. In stable ring dη/dΣ > 0 so that local density

fluctuation are smoothed, in contrast to dη/dΣ < 0 which leads
to viscous instability. However, if dη/dΣ ≫ 0 the suppression
overshoots leading to periodic oscillations with amplitude

growing with time until saturated at some finite value (viscous
overstability). In case of non-selfgravitating system optical
depth τD replaces Σ and η is obtained from kinematic viscosity
as η = τDν.

Figure 1.29 Snapshots from self-gravitating simulations for
τD = 1.4, “frosty” ice elasticity model, using a 10λT × 4λT

calculation region. The top and side snapshot of the system and
the radial velocity profile after 50 orbital periods are shown, for
four simulations with ρ = 450, 360, 300, 225 kgm−3. For the
Saturnocentric distance a = 100 000 km these correspond to

rh = 0.651, 0.605, 0.569, 0.517, respectively. Figure from Salo
et al. (2001).

Schmidt et al., 2001)

β & 1 overstability condition (non − gravitating)

seems to provide a sufficient condition for the onset of over-

stability, provided that the size of the system exceeds the

shortest scale of overstable oscillations, about 100 particle

radii. For example, in the non-gravitating simulations with
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the “frosty” ice elasticity model have β > 1 if τD & 4 (Fig.

1.15d). Similarly, simulations where vertical self-gravity is

approximated with nz/n = 3.6, fulfill this condition for

τD & 1 (Fig. 1.26d). Indeed, in both cases simulations

with sufficiently large calculation regions lead to sponta-

neous growth of overstable oscillations (Salo et al., 2001).11

Transport coefficients derived from simulations with dif-

ferent values of nz/n, in combination with improved hydro-

dynamical models (Salo et al., 2001; Schmidt et al., 2001),

have been useful in analyzing the linear growth rates of os-

cillations, and also in allowing analytic treatment of satu-

ration in weakly nonlinear case (Schmidt and Salo, 2003).

Significant progress has also been made using the kinetic

theory approach (Latter and Ogilvie, 2008). Recently, non-

linear hydrodynamical analysis (Latter and Ogilvie, 2009,

2010) has shown that the wavelength growth of overstable

oscillations is limited via interactions of traveling wavetrains

at a few hundred meter to kilometer range, the maximum

scale increasing with β. The non-gravitating, very large-scale

simulations in Rein and Latter (2013) confirm this, and also

demonstrate the richness of structures that result from the

non-linear interaction of such wavetrains.

However, it is still unclear what the overstability con-

dition for a fully self-gravitating ring is. The simulations

in Salo et al. (2001) indicate that self-gravitating systems

may exhibit overstability for τD & 1, but only if the wake-

structure is not too strong. For example, in the survey of

Fig. 1.24a, overstability is seen only in the upper left cor-

ner with rh . 0.6. For stronger wakes the overstability is

clearly suppressed (see also Fig. 1.29), although the over-

stability condition for non-gravitating rings, β & 1, should

be satisfied with ample margin (see Fig. 1.26d). This sup-

pression might be related to different phase and pitch angle

of the velocity and density oscillations for overstability and

wakes, combined with the fact that they occur at practically

similar wavelength range. In any case, even an approximate

analytic theory is missing, making fully self-gravitating nu-

merical simulations indispensable for looking at the inter-

play of wakes/overstability.

As mentioned above Rein and Latter (2013) recently car-

ried out simulations with radially very extended calculations

regions (radial width even 50 km), facilitating the detailed

study of interactions between non-linear wavetrains. How-

ever, these simulations use the nz/n > 1 approximation, and

it is not clear how realistically they describe self-gravitating

rings. Fig. 1.30 compares this approximation with the fully

self-consistently calculated gravity, in moderately large-scale

simulations (radial width 2 km). In the former case the

evolution is similar to Rein and Latter (2013) simulations,

leading to formation of traveling wavetrains with increas-

ing wavelengths, until a maximum scale of ∼ 400 meters

is reached after about 1000 orbital periods. In the begin-

11 The same condition, β & 1 holds also in non-gravitating
2D simulations where the steep rise of νnl when the close-packing
limit is approached, makes the system strongly overstable already
for τD & 0.4. This fact was utilized in Salo (2001) to directly
demonstrate the overstability mechanism, before it was techni-
cally feasible in 3D simulations. In all these cases the large value
of β is related to high impact frequency.

Figure 1.30 Comparison of overstable oscillations in Lx = 2

km wide non-gravitating (upper frames) and self-gravitating
(lower frames) simulations (τD = 1.2, “frosty” ice elasticity).
The frames in left show the evolution of the density profile with
time, while in the right the corresponding amplitude spectrum is

shown (Am(λ); see Eq. (1.76)). In a) vertical self-gravity is
mimicked with an enhanced nz/n = 3.6. This leads to overstable
oscillations whose radial wavelength grows until ∼ 400 meters;

before saturation the λmax grows proportional to
√

t. In b)
gravity is treated self-consistently (rh = 0.57), and now the
growth of overstable oscillations is limited to less than 100
meters. In the amplitude spectra the 10% contour is indicated

with a thick line. The dashed line in a) indicates the radial
wavelength with the largest amplitude during the initial growth
period. For comparison, the same line is also shown in b).

ning several left and right traveling waves compete, but after

about 500 orbits a single traveling mode starts to dominate.

The amplitude spectrum indicates that no further wave-

length evolution takes place during the span of the simu-

lation (10000 orbits): the shorter modes represent the har-

monics of the prevailing mode, related to its non-sinusoidal

waveform.

In the self-gravitating simulation with same parameter

values (Fig. 1.30b), the initial evolution is quite similar, in

addition to weak wakes being superposed with the rapidly

evolving axisymmetric overstable oscillations. However, the

wavelengths of oscillations do not grow beyond about 100

meter level, although there should be enough time and spa-

tial room for further growth (see the amplitude spectrum).

Unfortunately, such self-gravitating simulations are much

more time-consuming than non-gravitating runs, since they

must have also a tangential width sufficiently large to allow

the gravity wakes properly evolve (at least 2 λT ): the non-

gravitating simulations with nz/n > 1 stay axisymmetric

so their tangential width can be very narrow (even just few

particle diameters).
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Figure 1.31 Overstable oscillations followed over one full

oscillation cycle (∼ 1.2 orbital periods; the prolongation over
one orbital period is due to self-gravity). The 10λT × 2λT

calculation region is shown from the top (left; the curve
indicates the optical depth profile in the range from 0 to 10) and

from the side (right; vertical scale exaggerated by a factor of 5).
Note the strong vertical “splashing” (Borderies et al., 1985)
associated with the density crests: the ring behaves in a nearly

incompressible manner. Constant ǫn = 0.5 with mean
τD = 5, rh = 0.57.

Figure 1.31 illustrates overstable oscillations over one os-

cillation period in a very dense system (τD = 5) with mod-

erate strength of self-gravity (rh = 0.57). Unlike strong self-

gravity wakes at larger rh, both the maximum and mini-

mum optical depths stay very high (minimum τD & 2 − 3

and maximum τD & 10 ). If this type of oscillatory behavior

is typical to the densest part of the B ring (∼ 110, 000 km),

then according to the survey of Fig. 1.24 the internal den-

sity ρ ∼ 300 kgm−3, in order to yield rh ≈ 0.6. This would

require the ring particles to be quite porous. Moreover, the

presence of overstabilities would seem to rule out very elastic

particles. Even smaller internal densities (ρ ∼ 225 kgm−3)

are suggested by the presence of axisymmetric overstable os-

cillations in the innermost A ring at 124, 000 -125, 000 km

(Thomson et al., 2007; Hedman et al., 2014). A remarkable

observation is the very long azimuthal coherence length of

the oscillations, over thousands of kilometers, verified by the

Hedman et al. (2014) high radial resolution stellar occulta-

tion observations with the Cassini VIMS (see Fig 1.32).

Figure 1.32 Cassini VIMS stellar occultation measurements of

viscous overstability in the inner A ring. The upper frame
illustrates the γ Crucis occultation track behind the ring, with a
radial turnaround at 124, 413 km. The lowermost frame displays
the radial profiles of the transmitted signal, both before
(“ingress”) and after (“egress”) the turnaround point. The
middle frame indicates the co-rotating azimuthal location
corresponding to each radial distance around the turnaround

point. The radial profiles align up to 2 km from the turnaround
point, indicating that the pattern must be coherent and
axisymmetric over 2500 km in the azimuthal direction. Figures
from Hedman et al. (2014).

1.8.2 Viscous instability

In the case of viscous instability, the hydrodynamic stability

criterion

β < −1 instability condition

is fully consistent with direct N-body simulations (Salo and

Schmidt, 2010), although the shortest unstable wavelengths

(∼ 200 particle radii) are about a factor of ten larger

than what a simple hydrodynamical linear stability anal-

ysis predicts. Figure 1.33 displays large scale (radial width

1 km) simulations, which illustrate how the non-gravitating

“smooth” ice elasticity model leads to spontaneous ampli-

fication of density fluctuations for 0.75 . τD . 2, in very

good agreement with the range of τDs where the steady-

state β < −1 in the small scale simulations of Fig. 1.15.

The system is initially uniform and it takes about 100-500

orbital periods for random fluctuations to amplify to a non-

linear regime. Fig. 1.24b illustrated that viscous instability

may arise also when self-gravity is included provided that

β < −1 (see the snapshots with τD = 0.9, rh ∼ 0.7). 12

12 The same instability condition applies to 2D systems. Due
to different functional form of impact frequency (see Sect. 1.7.1.1)
hot 2D systems have β < −1 at the limit τD → 0, which makes
direct demonstrations of viscous instability numerically much eas-
ier than in 3D systems where τD ∼ 1 is required (Salo, 2001; Salo
and Schmidt, 2010).
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Figure 1.33 Emergence of viscous instability in large-scale
simulations (2km radial extent) using the “smooth” ice elasticity

model. The value of β is for the uniform initial state, β ≤ −1
indicates linear instability. Figure from Salo and Schmidt (2010)

Figure 1.34 depicts in more detail the nonlinear steady-

state after the saturation of viscous instability. The state is

characterized by a balance of radial particle flux between

flattened dense ringlets surrounded by rarefied, large ve-

locity dispersion regions, exactly as envisioned in Hämeen-

Anttila (1978). The dynamic viscosity (obtained by tabu-

lating pressure tensor separately at different radial zones)

has a nearly constant value through the simulation system.

Note that one of the ringlets has a slightly lower τD than the

other three. This ringlet corresponds to a small bump in η

and is accordingly slowly dissolving. With time, the ringlets

slowly merge (see Fig 1.33), their typical separation grow-

ing ∝
√

t. In contrast to overstability, there is no mechanism

known which would stop this growth. Thus at least in prin-

ciple, large scale structure may emerge as a result of viscous

instability.

Viscous instability is typically not regarded as a candidate

for the ring fine-structure, basically since it requires fairly

elastic particles in order to operate. In such a case the self-

gravity wakes are harder to form. Also, the basic instability

model in its simplest forms always requires a balance be-

tween a rarefied and a dense region, and thus, does clearly

not apply, say, to the structure of the dense B ring.

1.8.2.1 Selective viscous instability

There is a variant of the standard instability model that

would allow both the minimum and maximum optical

depths to be high, namely the possibility of a selective in-

stability of small particles against the more uniform back-

ground of larger ones (Stewart et al., 1984). Direct simu-

lations (Salo and Schmidt, 2010) indicate that under cer-

tain conditions such a behavior occurs if the coefficient of

restitution is smaller in mutual impacts between small par-

ticles, than in impacts involving large particles. Such size-

dependence of ǫn adds a new degree of freedom to the sys-

tem, and in principle allows a balance of radial flux also

Figure 1.34 Nonlinear radial balance between dense and

rarefied regions resulting from viscous instability. The upper two
frames show a) the top and b) side views of a simulation with
τD = 0.92, using the “smooth” ice elasticity model. The frame
c) depicts the dynamic viscosity profile (solid curve), showing

separately the local (dash-dotted) nonlocal (dashed)
contributions. Figure from Salo and Schmidt (2010).

Figure 1.35 Two examples of selective viscous instability in

simulations (after 700 orbital periods). The systems consist of
two particle sizes with R2/R1=3, and both population have
τD = 0.5. Small (large) particles are indicated by gray (black)
color, and the solid (dashed) white curve indicates their radial

density profile. In the upper frame the impacts between small
particles are much more inelastic than those between large
particles, leading to strong density contrast among the small
particles. In the lower frame the size-dependence of elasticity is

weaker, leading to less pronounced variations. For exact
parameter values, see Figs. 21 and 22 in Salo and Schmidt
(2010).

between two dense regions, provided that they have a dif-

ferent mixture of small and large particles. Importantly, the

contrast can also have very different values depending on

the details of the elasticity model assumed (Fig. 1.35). Nev-

ertheless, this mechanism has yet been very little studied,

and due to lack of relevant laboratory measurements it re-

mains unclear whether real particles possess suitable size

dependence of ǫn required by this type of instability.
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1.9 Three-body and N-body simulations of

particle and aggregate dynamics

In dilute rings where collision frequency is sufficiently

smaller than the orbital frequency, particles’ orbits evolve

through successive two-body collisions and gravitational en-

counters. Dynamical evolution of such a system can be de-

scribed by the formulation based on the three-body problem

(Petit and Hénon, 1987; Ohtsuki, 1992, 1999, 2012). This ap-

proach is useful to understand the orbital behavior of dilute

rings where both collisional and gravitational encounters are

important. When particles’ velocity dispersion is sufficiently

large to neglect their mutual gravity (c ≫ cenc) and the

extent of their radial excursion is much larger than their

physical size (c ≫ nR), their orbital change due to inelastic

collision for a given restitution coefficient can be calculated

analytically, and the stirring rates of their velocity disper-

sion can be obtained (Ohtsuki, 1992, 1999). For example,

when particles are smooth spheres and their normal restitu-

tion coefficient is independent of impact velocity, the criti-

cal value of the restitution coefficient for the energy balance

can be obtained as εcrit = 0.627 (Ohtsuki, 1999), which per-

fectly agrees with the low-optical-depth limit of the results

obtained by solving the Boltzmann equation (Goldreich and

Tremaine, 1978b; Hämeen-Anttila, 1978, Figure 1.14). Col-

lision frequency can also be obtained as (Ohtsuki, 1999)

ωc =
16I(c3/c1)

π2
nτD, (1.135)

where I is expressed in an integral form as a function of the

ratio of the vertical velocity dispersion to the radial velocity

dispersion. In dilute rings in the steady state, c3/c1 = 0.653

(Goldreich and Tremaine, 1978b; Ohtsuki, 1999) and ωc ≃
2.87nτD, which agrees with Eq.(1.116).

The effects of particles’ mutual gravity on the velocity stir-

ring rates can be evaluated using orbital integration for the

three-body problem (1.36). Each orbit is integrated start-

ing and ending at positions sufficiently far from the interact-

ing particle, and the stirring rates are calculated from the

change of orbital eccentricity and inclination. Using these

stirring rates, the evolution of velocity dispersions in dilute

rings is calculated, and an agreement with N-body simula-

tion is confirmed (Ohtsuki, 1999; Ohtsuki and Emori, 2000).

A similar approach has been used to show that the equilib-

rium velocity dispersion in dilute rings can be approximately

given as ceq ∼ max(Rn, vesc), where R is the particle radius

and vesc is the particles’ mutual escape velocity. Taking ac-

count of surface friction with the tangential restitution coef-

ficient εt in the hard-sphere model, the above three-body ap-

proach can also be used to examine coupled evolution of ve-

locity dispersion and particle spin, as well as the equilibrium

spin rates of moonlets embedded in dilute rings. Again, stir-

ring rates for the velocity dispersion and spin rates, as well

as the equilibrium spin rates can be obtained analytically

when mutual gravity is neglected (Ohtsuki, 2004a, 2006a),

and the effects of mutual gravity are examined by three-

body orbital integrations (Morishima and Salo, 2004; Oht-

suki, 2004b, 2005, 2006a,b). For example, the dispersion in

the particle spin rates for dilute rings with a relatively nar-

row size distribution obtained by this method agrees with

N-body simulations (Ohtsuki and Toyama, 2005; Morishima

and Salo, 2006). This approach can also be used to examine

dynamical behavior of dilute rings with a more extended size

distribution, as is done in the study of velocity dispersion

of planetesimals in the early solar system (Ohtsuki et al.,

2002). Viscosity of dilute rings can also be obtained from

the calculation of the change of particles’ semi-major axes

by three-body calculation (Tanaka et al., 2003; Yasui et al.,

2012). However, the three-body approach cannot describe

the collective effects that become essential in dense rings,

for which direct N-body simulations are required.

At radial locations sufficiently far from the central planet,

the gravitational accretion of colliding particles becomes

possible. When two spherical particles with identical inter-

nal density ρ are in contact and in synchronous rotation,

with their line of centers pointing to the planet, they be-

come gravitationally bound if they are located outside the

critical distance defined as

a

RP
= α

„

ρP

ρ

«1/3

, (1.136)

where a is the distance from planet, and Rp and ρP are the

mean radius and density of the central planet, respectively.

The factor α = 2.29 for a pair of identical sizes, α = 1.44

when one of the particles is much larger than the other

(Weidenschilling et al., 1984), and α = 2.456 corresponds to

the expression for the classical Roche limit (Chandrasekhar,

1969). The probability of gravitational accretion of colliding

ring particles depends on their impact velocity and impact

orientation. Three-body orbital integrations (Ohtsuki, 1993;

Morishima and Salo, 2004; Ohtsuki et al., 2013) show that

the efficiency of accretion depends on the ratio of the sum of

the physical radii of the particles to their mutual Hill radius,

i.e., rp ≡ (R1 + R2)/RH, which is the inverse of rh defined

by Eq. (1.127). Equation (1.136) with α = 2.29 and 1.44 are

equivalent to rp = 1 with R1 = R2 and with R1 ≫ R2,

respectively.

Although gravitational accretion is possible when rp < 1,

three-body calculations show that accretion efficiency de-

creases abruptly when rp exceeds ∼ 0.7, because a part of

the particles’ surfaces is outside of their mutual Hill sphere

(Ohtsuki, 1993; Ohtsuki et al., 2013); while the semi-axis

of the Hill sphere in the radial direction is RH by defi-

nition, the semi-axis lengths in the azimuthal and verti-

cal directions are (2/3)RH and γzRH, respectively, where

γz = 32/3 − 31/3 ≃ 0.638 (Yasui et al., 2014). Karjalainen

and Salo (2004) performed N-body simulation and exam-

ined the dependence of the critical radial distance for grav-

itational accretion of particles in Saturn’s rings on various

parameters, such as the elastic properties of particles and

the rings’ optical depth. For example, in their standard case

of rings of equal-sized particles with ρ = 900 kg m−3 and

τD = 0.25, temporary aggregates and stable aggregates can

form in the inner and the outer A ring, respectively, with

exact radial boundaries depending on elastic properties of

particles (see Figs. 1.24 and 1.38). The above dependence of

the critical distances on the elastic properties implies that

the actual efficiency of gravitational accretion can also be



36 Salo & Ohtsuki & Lewis

Figure 1.36 Examples of orbits of particles in the case of

rp = 10−3 (left panel) and 1 (middle panel); note that rp is the
inverse of the parameter rh used in the previous Section. In
both cases, Hill’s equation for the relative motion is numerically
solved for initially circular, coplanar orbits, and the interacting

particle is at the origin of the coordinate system. The dashed
line represents the two interacting particles’ mutual Hill sphere.
In the case of the left panel, which corresponds to orbits of

planetesimals at a radial location 1AU from the sun, no direct
collisions are detected and the orbital changes are caused by the
mutual gravitational interaction alone. The solid circle in the
middle panel shows the physical size of the colliding particles. In
the case shown here, four orbits lead to direct collision, and the
orbital changes are calculated assuming that particles are

perfectly, elastic smooth spheres. The right panel shows

examples of orbits leading to collision with another particle
(smooth spheres with εn = 0.5), for two different values of rp;
the difference in rp corresponds to, for example, changing the
distance from the central body for a given internal density of

the particles. In the case of rp = 0.75, the orbit results in escape
after the first collision, while the orbit in the case of rp = 0.6
leads to accretion after the second impact (Ohtsuki, 1992, 1993,
2012).

limited by velocity dispersion of particles, because more ki-

netic energy needs to be dissipated for gravitational accre-

tion to occur. The shapes of the simulated aggregates in

Karjalainen and Salo (2004) are close to Roche ellipsoids

(Chandrasekhar, 1969) near the critical distance, getting

progressively rounder at larger distances (Fig. 1.37).

When porous, low-density particles coexist with dense

bodies such as collisional shards, particles can gravitation-

ally accrete onto such dense bodies even at radial locations

where the low-density particles alone cannot form gravita-

tional aggregates (Porco et al., 2007). When the surface of

the dense “core” is not yet significantly covered by parti-

cles, accretion of particles proceeds at a nearly constant rate

that is determined by two-body collision rate between the

core and accreting particles (Ohtsuki et al., 2013). With the

growth of the aggregate (the dense core surrounded by the

low-density particles) its Hill radius increases, but the bulk

density of the aggregate as a whole gradually decreases. As

a result, the physical size of the aggregate increases faster

than its Hill radius, and accretion stalls when particles fill

the slowly-growing Hill sphere. Afterwards, the aggregate

repeats accretion and shedding of particles (Lewis and Stew-

art, 2009; Yasui et al., 2014).

The bulk density of a body (satellite) that entirely fills

its Hill sphere defines a critical density ρRoche at its radial

distance a from the planet as (Porco et al., 2007; Tiscareno

et al., 2013a)

ρRoche =
3MP

γa3
, (1.137)

where γ is a dimensionless shape parameter so that γR3
sat

is the volume of the satellite with Rsat being its long semi-

axis (γ = 4π/3 for a spherical satellite, and γ ≃ 1.509 for

a body with a shape of the Hill sphere; Leinhardt et al.

(2012)). Observations by Cassini show that the Hill radii of

the small moons in the outer A ring and those near the ring

outer edge are very close to the observed long axes of these

satellites, and their densities (400 − 600 kg m−3) are also

very close to the above critical density at the radial location

of each satellite (Porco et al., 2007).

These observations suggest that those small moons near

the outer edge of Saturn’s main rings formed by gravita-

tional accretion of small particles, and support the recent

models for the formation of ring-satellite systems of giant

planets from an ancient ring that was much more massive

than the current ring system (Charnoz et al., 2010; Canup,

2010; Salmon et al., 2010; Charnoz et al., 2011; Crida and

Charnoz, 2012; Hyodo et al., 2015). The originally massive

disk radially spreads through collision and gravitational in-

teractions among particles. Those particles spreading be-

yond the Roche limit gravitationally accrete to form small

satellites, and the formed satellites migrate outward due to

torques induced by the disk and the planet (Charnoz et al.,

2010; Crida and Charnoz, 2012). Satellites produced from

a disk with a larger surface density tend to be more mas-

sive, while the disk surface density gradually decreases as

the radial spreading proceeds. Also, more massive satellites

migrate more rapidly because the torques are an increasing

function of mass, and the different migration rates lead to

orbital crossings and merging (Charnoz et al., 2010). As a

result, the outer satellites tend to be more massive, which

explains the observed trend of the satellite systems of Sat-

urn, Uranus, and Neptune (Charnoz et al., 2010; Canup,

2010; Crida and Charnoz, 2012). As for the origin of such

a massive circumplanetary particle disk, in addition to the

classical model for the ring origin by impact disruption of a

satellite (Harris, 1984; Charnoz et al., 2009), tidal stripping
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Figure 1.37 Examples of gravitationally bound aggregates
forming in numerical simulations of identical particles
(τD = 0.25, “frosty” ice ǫn(vn)). The projections of aggregates
to the equatorial plane are shown, together with a fitted 3-axial

ellipsoid: the labels indicate the rh parameter, and the
corresponding distance for ρ = 900 kgm−3. The lower frame
indicates the vertical-to-radial (γz) and tangential-to-radial (γy)
axial ratios of the aggregate, and the spin of the aggregate
ωz/n. The jump of ωz/n to unity (synchronous rotation)
corresponds to the transition from self-gravity wakes to bound
aggregates. The arrows indicate the axial ratios of the most
elongated stable Roche-ellipsoid for a gravitating fluid body
(Chandrasekhar, 1969) . These simulations correspond to Fig.
1.24a, except that fiction with kf = −0.1 (see Eq. 1.61) was
included: this shifts the boundary of accretion inward by about

5000 km. Redrawn from Karjalainen and Salo (2004).

of icy mantle layers of a differentiated satellite migrating in

a circumplanetary gas disk (Canup, 2010) and tidal disrup-

tion of a passing Kuiper-belt object (Dones, 1991; Charnoz

et al., 2009) have been proposed, and simulations of tidal dis-

ruption of a passing differentiated Kuiper-belt object using

the smoothed particle hydrodynamics method shows that

the latter model seems to naturally explain the small size of

ring particles and even the compositional difference between

rings of Saturn and Uranus (Hyodo et al., 2017). More de-

tailed discussion on the origin of ring-satellite systems of

giant planets are described in Chapter by Charnoz et al.

We plot ρRoche defined by Equation (1.137) as a func-

tion of the distance from Saturn in Figure 1.38. Note that

the filling factor in gravitational aggregates obtained by N-

Figure 1.38 Critical densities as a function of the distance

from Saturn. The solid line represents ρRoche (Eq. (1.137)). The
dashed line represents the critical bulk density of gravitational
aggregates consisting of equal-sized particles against tidal

disruption (ρtidal; Eq. (1.138)) obtained by Leinhardt et al.
(2012). The thin dotted curve represents ρcore,crit (Eq. (1.140))
derived from the condition rh,core = γz

−1 (Yasui et al., 2014).
The radial locations of the inner boundary for the formation of

temporary aggregates and those of stable aggregates obtained
by N-body simulations (Karjalainen and Salo, 2004) are shown
by the vertical dotted lines and the vertical dot-dashed lines,

respectively. The horizontal shaded band shows the range of the
bulk density of gravitational aggregates obtained by N-body
simulations (540 − 630 kg m−3), corresponding to the filling
factor of 0.6 − 0.7. Redrawn from Yasui et al. (2014)

.

body simulation with identical particles typically takes on

0.6− 0.7, yielding a bulk density ρbulk = 540− 630 kg m−3

when the density of constituent particles is 900 kg m−3 as

was assumed in Karjalainen and Salo (2004). We find that

the inner boundary for the formation of temporary aggre-

gates obtained by N-body simulation approximately corre-

sponds to the location of ρbulk = ρRoche. That is, temporary

aggregates would form at the radial locations corresponding

to ρbulk ≥ ρRoche when collisions are sufficiently dissipa-

tive, but due to finite impact velocities, the critical radial

distance shifts outward if energy dissipation at collision is

insufficient. The above correspondence also shows difficulty

in forming stable aggregates without dense cores even at the

radial location corresponding to ρbulk = ρRoche.

On the other hand, Leinhardt et al. (2012) examined tidal

disruption of gravitational aggregates placed at different ra-

dial distances from a planet, and obtained the critical bulk

density of aggregates as a function of the distance. For ex-

ample, in the case of aggregates consisting of identical parti-

cles, the critical density for stability against tidal disruption

(ρtidal) can be written as

ρtidal =
7.7MP

πa3
, (1.138)
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which is shown in Figure 1.38 with the dashed line. The

formation of stable aggregates obtained by Karjalainen and

Salo (2004) approximately corresponds to the above critical

distance for the stability against tidal disruption.

When particles accrete onto large cores, an important

quantity is the ratio of the Hill radius of the core (RH,core)

to its physical size (Rcore),

rh,core ≡ RH,core/Rcore. (1.139)

The core’s Hill sphere covers the entire surface of the core

when rh,core ≥ γ−1
z ≃ 1.57 while particles accrete only part

of the core surface when 1 < rh,core < γ−1
z (Yasui et al.,

2014, Figure 1.39), and gravitational accretion does not tale

place when rh,core < 1 as mentioned above. Thus, the condi-

tion rh,core = γ−1
z gives another critical density as a function

of radial distance as

ρcore,crit =
9MP

4πγ3
z a3

, (1.140)

which is shown by the thin dotted curve in Figure 1.38. The

critical density ρcore,crit at a given radial distance is larger

than ρRoche, because the Hill radius of a Hill-sphere-filling

body (with its bulk density given by ρRoche) is equal to the

body’s semi-axis in the radial direction, while the core’s Hill

radius needs to be larger than the core radius by a factor

of γ−1
z ≃ 1.57 when rh,core = γ−1

z (or γzRH,core = Rcore).

If the density of a core placed at a certain radial distance

is larger than ρcore,crit, the entire surface of the core can be

covered by accreting particles. As accretion of particles onto

the core proceeds, the bulk density of the formed aggregate

would continue decreasing until it reaches ρRoche for the

radial location. However, actual accretion would not proceed

to this point because of limited energy dissipation and/or

finite impact velocities, as mentioned above.

Aggregates formed by gravitational accretion of particles

in the Roche zone have a Hill sphere comparable to their

physical size. In this case, even a slight deformation from its

stable shape due to collision with other particles or aggre-

gates would lead some particles to become gravitationally

unbound, which would then result in total disruption of the

aggregate. Thus, even stable aggregates are likely vulnerable

to collisional disruption. In fact, transient brightening was

observed in Saturn’s F ring by Voyager (Showalter, 1998),

and shedding of small particles by disruption of embedded

bodies has been proposed as the cause of such events (Bar-

bara and Esposito, 2002). More recently, small protrusions

from the core of the F ring, called “mini-jets,” have been

observed by Cassini, and they are regarded as showing low-

velocity collisions within the ring (Attree et al., 2012).

Impacts between gravitational aggregates in the tidal en-

vironment have been examined by local N-body simulations.

In the case of collisions of aggregates initially on circular

orbits at the radial location of the F ring, N-body simula-

tions confirmed that colliding aggregates that greatly differ

in mass can more easily accrete as expected (Karjalainen,

2007), while the accretion efficiency was found to be higher

than the results obtained by three-body calculations that

treat the ring particles as hard spheres (Ohtsuki, 1993).

The degree of disruption in collisions in free space is de-

Figure 1.39 Snapshots of the spatial distribution of particles
in the vicinity of the moonlet core. The rings are seen from the
vertical direction against the plane of orbital motion. Saturn is

to the left, and orbital motion is upward. The optical depth of
unperturbed rings is 0.5, and particles have a size distribution
with q = 3, Rmax = 500 cm, and Rmin = 30 cm, respectively.
(Rcore = 1250 cm, the densities of the core and the particles are

900 and 400 kg m−3, respectively, and the normal restitution
coefficient is 0.5.) The left panel shows the case with
rh,core = 1.5 (corresponding to a = 1.15 × 105 km from Saturn

when the density of the core is 900 kg m−3), where particles can
accrete only part of the surface of the core. The right panel
shows the case with rh,core = 1.69 (corresponding to
a = 1.3 × 105 km from Saturn when the density of the core is

900 kg m−3), where accreting particles can completely cover the
surface of the core. Blue particles are those regarded as members
of the aggregate, while red ones are not A particle is regarded as
a member of the aggregate if it is practically in contact (within

1% particle radii) with at least one of the members of the
aggregate including the core. Redrawn from Yasui et al. (2014).

termined by specific impact energy, and the mass fraction

of the largest remnant body is a monotonically decreasing

function of impact energy. In fact, the mass fraction can be

approximated by a linear function of impact energy, which

is known as “the universal law” (see, e.g. Stewart and Lein-

hardt, 2009). However, N-body simulations show that this

law is not applicable to impacts between aggregates in the

Roche zone (Hyodo and Ohtsuki, 2014). Outcomes of col-

lisions in the tidal environment sensitively depend on the

impact velocity and the direction of impact, and a complete

disruption of aggregates can occur even in impacts with ve-

locity much lower than their escape velocity (Figure 1.40).

In such low-velocity collisions, the deformation of colliding

aggregates plays an essential role in determining collision

outcomes, while the dependence of collision outcomes on

impact velocity becomes similar to the case in free space

when the distance from the planet is sufficiently large. Fur-

thermore, in the case where each of the colliding aggregates

has a dense core as suggested by the Cassini observations

of small moons, for a wide range of parameters an impact

results in only partial disruption of the aggregates and the

formation of a narrow ring of particles sandwiched between

two remnant aggregates (Hyodo and Ohtsuki, 2015). Ac-

cording to the recent model of satellite system formation

from ancient massive rings, multiple small satellites are ex-

pected to coexist near the disk’s outer edge for a significant

period of time during the final stage of satellite system for-

mation (Charnoz et al., 2010; Hyodo et al., 2015). Thus, the

above results of impact simulations suggest that the system

of a narrow ring accompanied with small satellites near the

outer edge of the main ring system is a natural outcome at
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Figure 1.40 Time series of simulations of collisions between
aggregates in the tidal environment corresponding to the radial
location of Saturn’s F ring (a = 140, 000 km). Saturn is to the
left, and orbital motion is upward. Two aggregates collide with

each other from the radial direction. Three cases of different
impact velocities (vimp) are shown. Left: Case with
vimp/vesc = 0.69, which results in total disruption of the
colliding aggregates. Middle: Case with vimp/vesc = 1.14, which

results in total accretion. Right: Case with vimp/vesc = 1.52,
which results in total disruption. Impacts with still higher
impact velocity result in total disruption. Numbers in each panel

represent the time elapsed since the start of the simulation, in
units of the orbital period at the radial location of the origin of
the system. Redrawn from Hyodo and Ohtsuki (2014).

the final stage of the formation process of the ring-satellite

system of giant planets (Hyodo and Ohtsuki, 2015).

1.10 Rings with Nearby Moons

Many narrow rings and ring gaps have moons that orbit

near the ring material. For broad rings, this leads to the

formation of moon wakes (Showalter et al., 1986). In the F

ring, these perturbations appear as more complex features

(Kolvoord et al., 1990). The perturbations from a nearby

moon destroy the symmetries that allow for the local cell

Figure 1.41 Particle paths are perturbed by the passage of a

nearby moon. Keplerian shear causes the particles further from
the moon to have a faster relative drift rate. The difference in
wavelength of the oscillations leads to regions of compression

and rarefaction referred to as moon wakes. Orbital motion is up.
Particles interior to the moon, left, are drifting upward, while
those exterior, right, are drifting downward relative to the moon.

simulation techniques described in section 1.2. To get around

this, one can do more global simulations, or use modified

boundary conditions that preserve the orbital properties of

the ring particles that are induced by passing by the moon.

1.10.1 Small Local Cell Simulations

When particles pass near a moon, they receive a forced ec-

centricity. Showalter et al. (1986) explored the impact of this

perturbation using a simple kinematic streamline model.

Their predictions led to the later discovery of Pan in the

Encke gap (Showalter, 1991). The approach they took was

to view particle motion as streamlines that have a zero ec-

centricity upstream of the moon, and which then are given

a forced eccentricity by the moon. Due to Keplerian shear,

the wavelength of the oscillations grows with distance from

the moon. This leads to the regions of compression and rar-

efaction shown in Fig. 1.41.

A more complete kinematic model of the particle motion

was developed by Stewart (1991) using what he refers to as

guiding center coordinates, which are effectively a simplified

version of the solution of the Hill’s equation given in Eq.

(1.5), with the perturbing moon at the origin. To simplify

the discussion of the following sections, we present those

equations here in the form

x

am
= X − e cos(φ),

y

am
= Y + 2e sin(φ),

z

am
= I cos(ζ), (1.141)
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where

Y (t) = Y0 − 3

2
Xnt,

φ(t) = φ0 + nt,

ζ(t) = ζ0 + nt. (1.142)

The use of guiding center coordinates (X, Y, e, I, φ, ζ) led

to the development of a set of local cell boundary condi-

tions that can be applied to these perturbed systems (Lewis

and Stewart, 2002). The key observation for these boundary

conditions is that the value of φ, the angle of the particle

motion around the drifting guiding center, is set by the pass

by the moon and that it is not significantly altered by colli-

sions during the time it takes the particle to drift across the

simulation cell. The reason this is true is that the relative

velocity differences of the particles are very small compared

to their systematic velocities associated with the satellite-

forced eccentricities and inclinations. Given that, when a

particle drifts out of the edge of the local cell, it can be

brought back on the other side by altering the y value by

the width of the cell, and pulling back the φ angle by the

amount that it would normally advance crossing the cell.

One can view this as replacing a particle that moves out

of the downstream edge of the cell by an earlier image of

itself entering on the upstream edge. If the azimuthal length

of the cell is Ly, then the time it would take the guiding

center of the particle to move across the cell is

∆t =
2Ly

3Xn
(1.143)

and the angle should be decremented by n∆t. The systems

being simulated typically have at least one real radial edge,

either at the inside or outside of the cell. For that reason,

the radial boundaries are left open. In addition, while the

“sliding brick” boundary conditions discussed in section 1.2

remain stationary over the course of the simulation and

particles move through them, in the local cell method for

perturbed rings, the calculation region moves azimuthally

downstream, typically at the drift rate of the inner edge.

Note that these boundary conditions can be applied inde-

pendent of whether or not gravity or collisions are consid-

ered, and do not depend on how gravity or collisions are

calculated in the simulation.

This local cell approach has been applied to both the

Encke gap region and narrow rings with a single nearby

satellite (Lewis and Stewart, 2000, 2005; Lewis et al., 2011).

Figure 1.42 shows a simulation that reproduces a number of

the results of those papers.

The strip down the right side shows geometric optical

depth. Each row in the figure represents one time step. The

values were calculated every 20 time steps by breaking the

simulation into radial bins and adding the cross sectional

surface area of the particles whose centers are in each bin.

The cell began the simulation at the top of this strip, a few

thousand kilometers before encountering Pan. It then moved

down the plot during the simulation as the material is ra-

dially exterior to the moon. Note the wavy edges produced

by the eccentric motion of the particles after passing by the

moon, and the moon wakes that form from the streamline

compression. Also present at this scale is the radial migra-

tion of particles that begins around 10 degrees downstream

from the moon. This is the location where the streamlines

begin to intersect on the inner edge of the particle distribu-

tion in this simulation. This critical angle where streamlines

shear through was called θcrit by Showalter et al. (1986).

Using Eq. 1.141, Lewis et al. (2011) express it as

Ycrit = −3X2

2e
. (1.144)

Note that this derivation assumes a constant e, and ec-

centricity gradients can alter the exact location at which

streamlines cross. For this simulation, the forced eccentric-

ity after passage by the moon is 1.3 × 10−5 on the inner

edge, X = (a − am)/am = 1.21 × 10−3, and 1.2 × 10−5 on

the outer edge, X = (a − am)/am = 1.29 × 10−3. Plugging

these values into Eq. (1.144) gives -0.169 radians or −9.7◦

at the inner edge and -0.208 radians or −11.9◦ at the outer

edge.

Beginning at Ycrit, the material at the inner edge un-

dergoes orbital alterations that moves it outward, into the

main body of the ring. Angular momentum has to be con-

served, so an equal mass of particles shifts inward radially.

Most of the mass movement that balances the motion of the

inner edge comes from the middle of the distribution, not

the outer edge. This is due to the fact that this migration

is powered by the forced eccentricity, and can only “reach

out” a distance roughly equal to the forced eccentricity. The

magnitude of the forced eccentricity corresponds to 1.7 km;

see the amplitude of the edge waves in Fig. 1.42. This mi-

gration leads to a peak in the density of particle semimajor

axes, X around 165 km from Pan and then a trough around

167 km. This trough is most pronounced around 35◦ down-

stream from the moon. At that point, the particles at the

inner edge have lost roughly 60% of their initial forced ec-

centricity and those at the outer edge have lost over 80% of

their initial forced eccentricity.

Figure 1.42, left side, shows individual particles at a few

selected locations downstream from the moon. The locations

of these regions are marked by horizontal lines across the

surface density plot in the right. Interesting interactions be-

tween the gravity wakes and the Pan wakes are seen. As was

discussed in section 1.7.2 and shown in Eq. 1.126, the wave-

length of gravity wakes ∝ λT ∝ Σ, so the natural wavelength

of gravity wakes would be larger in high density regions and

smaller in low density regions. However, the Pan wakes exist

because the large scale motion of the particles causes high

densities where material is pushed together and lower den-

sity where it is pulled apart. The structures in the gravity

wakes are compressed to have smaller wavelength, to the ex-

treme of having no separation, moving into the moon wakes,

and then they are pulled back apart leaving the peak of the

moon wake and going back into the rarefied region. This

causes the two structures to be at odds with one another.

The first highlighted region in Fig. 1.42, at φ = 9◦ down-

stream from the moon, is an early snapshot from the sim-

ulation, just as the moon wakes are becoming strong. The

second (φ = 14◦) is after Ycrit has been passed and some

particle migration has occurred. The third (φ = 33◦) is after
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Figure 1.42 This figure shows the particle densities for a
simulation of the outer edge of the Encke gap. The initial
particle distribution was 10 km × 10 km. The particles have a

power law size distribution with a differential slope of q = 3
ranging from 1.3 m to 13 m in radius. The particles have
ρ = 500 kg/m3 and the distribution has Σ = 500 kg/m2 and
τD = 0.14 with roughly 0.55 million particles. The origin of the

coordinate system is on Pan, which is assumed to have a
perfectly circular orbit with a semimajor axis of am = 133, 584
km and a mass of 4.95 × 1015 kg. Collisions are calculated using

the Bridges et al. (1984) velocity dependent coefficient of
restitution. Particle self-gravity if calculated using a tree
method. Pan perturbs the particles, producing wavy edges in
the large-scale view on the right. Streamline compression leads

to moon wakes. Collisions in the wakes prevent streamlines from
shearing through and modify particle orbits, leading to particle
migration and increased optical depth of material at the inner
edge. The frames on the left show the actual particles at specific

time steps marked by lines on the right. Note the formation of
oversized gravity wakes in the inner edge region.

there has been substantial damping of the forced eccentrici-

ties and significant particle migration. At the last snapshot

the inner edge has an enhanced density due to particle mi-

gration, and the gravity wakes in this region have become

much larger, thick, ropey structures. This is due to more

than just the high density. The regular motion caused by

having higher eccentricities and a strong eccentricity gradi-

ent also play a role. They are not static structures with a

Figure 1.43 Radial slices through the simulation region for the
highlighted locations in Fig. 1.42. The plot shows the τD and e
values both as a function of radial location x, with a solid line,

and as a function of mean distance X, with a dotted line.

fixed angle. They go from being almost azimuthal in a wake

peak to being slightly closer to radial than what is shown in

Fig. 1.42. These oversized gravity wakes have been compared

to images of “straw” seen in high resolution Cassini images

of nonlinear density waves. The low density region from 166

to 168 km was depleted in the formation of the high density

edge region, and is thus not just caused by orbital motion.

At φ = 33◦, very few particles have semimajor axes in that

area.

Figure 1.43 shows both eccentricity and optical depth at

the three locations highlighted in Fig. 1.42. In the top frame,

we see an eccentricity distribution that has only been slightly

modified from that induced by the passage of the moon with

the value gently decreasing with radial distance. At φ = 14◦

the eccentricities have damped significantly interior to 168

km, and a concentration of particles has begun to build at

the inner edge. This trough in eccentricity leads to a steep

negative gradient near the edge and an inversion outside

that. At φ = 33◦, the particle density between 166 and 168

km is near a low point, and the only particles in that area are

those with large eccentricities. The steep eccentricity gradi-

ent across the high density region persists. This is significant

as it effectively moves the location of Ycrit, the azimuthal

location at which streamlines cross, downstream, which al-

lows this region to maintain a high eccentricity for longer.

Without this, the streamlines would shear through, which

leads to more energetic collisions what would damp the ec-

centricity much more quickly.
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Figure 1.44 The average eccentricity of the particles for an
azimuthal slice at 170 km radial distance from Pan. The
eccentricity is drawn for both as a function of radial location x

and as a function of mean distance X. The former oscillates
around the latter as the particles orbit due to the eccentricity
gradient in e over radial distance. Plotted along with this is an
analytic expression for the eccentricity value that would cause

streamlines to shear through one another at those locations.

In these simulations, particle streamlines never shear

through one another by more than a tiny amount, even in

rather low average optical depth simulations, as low as 0.01

average optical depth. This is the root cause of the particle

migration seen here, and why it doesn’t begin until Ycrit is

reached. This fact is highlighted by Fig. 1.44, which shows

the eccentricity values in the actual simulation compared to

what ones gets solving Eq. (1.144) for e for a cut through the

simulation. Note that the eccentricity is consistently damped

just enough to keep it below the level that would cause the

streamlines to shear through one another.

The boundary conditions described earlier in this section

have the advantage that they allow a small cell and fewer

particles. However, they have a limitation in that there can

only be a single perturber on a circular orbit. If there are

multiple perturbing moons, then the drift rate that is used

for Eq. (1.143) differs between the moons. If the moon is

on an eccentric orbit, then the magnitude of the forced ec-

centricity varies with azimuth, breaking the assumptions

needed for wrapping particles.

The circular orbit restriction can be lifted by using a larger

cell whose size is determined by the length of the synodic

period of the ring particles relative to the perturbing moon.

This approach was used by Lewis and Stewart (2005) to

look at the dynamics of the F ring, ignoring the influence of

Pandora. These boundary conditions have open edges on the

radial bounds, and the azimuthal bounds are pure periodic,

but they are not parallel. The length of a synodic period

from Eq. 1.142 is given by how long it takes for φ to advance

2π, or ∆t = 2π/n. The azimuthal length of the simulation

cell needs to be

Ly = 3πX (1.145)

in order for periodic bounds to make sense. Using this az-

imuthal length guarantees that particles at opposite ends of

the cell pass by the moon when it is at the same point in its

orbit, so particles can be wrapped around without having a

discontinuity in their eccentricity.

These extended boundary conditions work very well ex-

cept for the period of time when the cell is close to the moon,

as particles at the front edge will get a forced eccentricity

before those at the back edge, and if they are wrapped dur-

ing that time, there will be a sharp, and non-physical dis-

continuity in the particle distribution. For this reason, the

boundary conditions should be turned off completely before

the cell reaches the moon, and they should remain off un-

til after the cell is sufficiently past the moon for the back

edge to be clear of the perturbations of the moon. At that

point, they can be turned back on. During the time they

are off, the cell will shear out. This is acceptable in practice

because the cell is broad enough that the amount of shear is

relatively small compared to the azimuthal length of the cell.

In addition, the cell shape is a trapezoid to begin with, and

it is easy to make it so that the edge that is not oriented

along the radial axis shears toward the radial axis during

this time.

Lewis and Stewart (2005) used these boundary condi-

tions in simulations of F ring-like systems with an eccen-

tric Prometheus and no Pandora. This work showed that

a variety of different structures, including braid-like struc-

tures, could be created by a single eccentric perturber. By

altering the radial distance between the perturbing moon

and the center of the ring particle distribution, it was found

that rings centered on resonance tended to have their mate-

rial collapse to a small azimuthal extent, effectively forming

arcs.

1.10.2 Global and Semi-Global Simulations

Neither of the local cell methods work when there are two

perturbing satellites as having a second perturbing satellite

breaks all the symmetries that are assumed by the bound-

ary conditions. As a result, the simulation cell must be large

enough to be effectively global. The term “effectively” is

used because for some systems, the dynamics can be ex-

plored in a time scale on the order of 10-20 orbital periods,

and the cell only needs to be larger than the azimuthal drift

of the particles over that period of time.

Perhaps the first simulations of perturbed rings performed

by Hänninen and Salo (1994) used this approach. More re-

cently, these types of simulations have been performed for

the Keeler gap (Perrine and Richardson, 2006, 2007; Lewis

and Stewart, 2006a,b; Hansen and Lewis, 2015) and the F

ring (Lewis and Stewart, 2007).

Due to the proximity of the moon in the Keeler gap, the

synodic period is extremely long, and the streamlines collide

almost instantly, leading to very rapid damping of the forced

eccentricity. As a result, the simulation cell need only be

azimuthally long enough to cover the shear of 20 orbits in

order to see the dynamics that one is interested in.

Figure 1.45 shows the rapid change in the edge features

caused by particle collisions in the moon wakes in the 3-4

orbits after passing the moon. As in the Encke gap simu-

lation, an edge region builds up with an enhanced surface

density. This also leads to the material pulling back radially
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Figure 1.45 This figure shows a large section of a Keeler gap
simulation using a semi-global boundary condition. The full cell
is larger than what is shown here. This simulation used roughly

80 million particles, each with a radius of 5.5 m and
ρ = 700 kgm−3. The simulation region has Σ = 600 kgm−2 and
τD = 0.12. Other aspects of the simulation are the same as for
the Encke gap simulation described in section 1.10.1. At the

bottom of the figure, one can see a triangular region of particles
with a smooth distribution. These particles began the

simulation downstream of the moon, and were never perturbed

during the simulation. Note that the aspect ratio of this figure is

compressed in the azimuthal direction.

from the moon in a manner that is consistent with what is

seen in Cassini observations.

The surface density used in this simulation is higher than

what is inferred for this region based on density wave mea-

surements. The reason for this choice was to see if we could

induce the straw-like extended wakes shown in Fig. 1.42 for

the Encke gap as a possible alternate explanation for obser-

vations of gaps near gap edges in Cassini occultations (Al-

bers et al., 2015). Figure 1.46 shows a small section of this

simulation where these structures did indeed form. Their

presence is indicated in figure 1.45 by the grainy appearance

of some of the later moon wakes. These extended gravity

wakes do not work as an explanation for the observations of

Albers et al. (2015). Those observations show regions with a

radial extent for a kilometer or more that have no material

in them at the level of sensitivity of the Cassini occultation

Figure 1.46 Individual particles from one small region of a
Keeler gap simulation of Fig. 1.45, where oversized gravity
wakes have begun to form in the inner edge region.

measurements. Synthetic occultations of this simulation fail

to reproduce that type of structure.

1.10.3 Single-sided Shepherding (Negative

Diffusion)

Many of the previous sections have shown material getting

more dense in various radial regions after passing by the

moon. This type of behavior is seen in most of the simula-

tions that have been done of rings with nearby perturbers

going back to Hänninen and Salo (1994, 1995). It explains

observed features like the enhanced optical depth of material

at gap edges. It can also be used to explain the confinement

of narrow rings in a way that is less dependent on the details

of the perturbing moons than resonant models based on the

ideas of Borderies et al. (1989) and Goldreich et al. (1995).

A full discussion of this process is laid out in Lewis et al.

(2011). The basic idea is that collisions tend to prevent

streamlines shearing through, and in order to do that, parti-

cle eccentricities damp and their semimajor axis values mi-

grate, typically moving up density gradients. Figure 1.47

shows a simulation created just to explore this process. The

left side of Fig. 1.47 shows the physical optical depth. The

right side shows the semimajor axis distribution to high-

light how much the radial distribution compressed. Note
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Figure 1.47 This figure shows the negative diffusion process in
a narrow ring with a single perturber after one pass by the
moon. The simulation included roughly 300,000 particles with

radii between 4m and 13m pulled from a power law distribution
with a differential slope of q = 3. It used the local cell boundary
conditions (Sect. 1.10.1) with a Gaussian particle distribution in
the radial direction with an average τD = 0.1. Collisions were

calculated, but not particle self-gravity. The left section shows
optical depth of the physical particles. The right section shows
density in (X, Y ) or semimajor axis and mean anomaly. This
shows how an initial distribution that was initially over 10 km

in radial width can collapse by more than a factor of 5 just from
organized particle collisions after being perturbed by a moon.

that this occurs after a single pass by the moon, so there

can be no resonant effects. The value of Ycrit in this simula-

tion is around 3.5◦. That happens to be the location where

we first see the modification in the semimajor axis distribu-

tion. Note that the streamline do not shear through. Instead,

they consistently pile on top of one another in orbit after or-

bit. For 10-20 orbits after Ycrit, this leads to migration of

semimajor axes and damping of eccentricities. Unlike with

the inner edge region of the Encke gap simulation in section

1.10.1, the eccentricity gradient in the simulation becomes

very strongly positive. This configuration remains roughly

stable with almost no further damping of the eccentricity

for many orbits.

1.11 Photometric modeling of dynamical

simulations

The dynamical simulations described in above sections op-

erate with surface density and particle number densities.

However, these are not directly observable quantities, as the

observations give the amount of sunlight reflected or trans-

mitted through the rings, and the attenuation of stellar light

when observed through the ring. The ring brightness is mea-

sured with I/F , the observed brightness in comparison to

an ideal Lambert surface illuminated with the incident solar

flux πF . In general, the I/F for a given ring region depends

on the illumination elevation B⊙, the viewing elevation B,

and the corresponding azimuthal angles θ0 and θ. Often the

phase angle α between the illumination and viewing direc-

tions is specified instead of azimuthal angles,

α = cos−1 [cos(θ − θ0) cos B cos B⊙ + sin B sin B⊙] . (1.146)

In case of homogeneous systems this angle is sufficient. How-

ever, in case of self-gravitating systems also the direction

with respect to self-gravity wakes matters, so that the az-

imuths themselves need to be specified. The line-of-sight

optical depth relates to the fraction of light I/I0 passing

through the ring at a given direction (B, θ), with

τLOS = − ln I/I0 (1.147)

Usually τLOS is converted to the normal optical depth, cor-

responding to B = 90◦ with the formula

τ⊥ = τLOS sin B. (1.148)

A quantitative comparison of dynamical models to ob-

servations requires calculating the photometric properties

(I/F, τ⊥) of the simulated particle fields for various illumina-

tion and observing geometries. A large amount of modeling

has been done in the framework of classical radiative trans-

fer, which however is strictly applicable only to low filling

factor rings (D3 → 0) where particle separations are much

larger than their sizes. If the rings are densely-packed and

highly inhomogeneous, as suggested by dynamical models

and many observations (see Dones et al. (1993)), an effi-

cient modeling method is to use radiative ray tracing. Since

the ring particles are much larger than visible light wave-

length geometric optics can be used. For example the effects

of dense packing (Salo and Karjalainen, 2003; Porco et al.,

2008) and self-gravity wakes (Salo and Karjalainen, 2003;

French et al., 2007b; Porco et al., 2008) have been studied

with a combination of photometric and dynamical simula-

tions.

1.11.1 Photometric ray tracing method

The idea in photometric ray-tracing simulations is to shoot

a large number of photons (Nphot) from the light source and

follow their paths through successive scatterings from parti-

cle surfaces until they leave the particle layer (Fig. 1.48). The

simplest way to obtain the brightness would be to count the

number of photons Nobs which escape to the solid angle dΩs

around the observer’s direction. However, even if relatively

large dΩs is used (poor angular resolution), Nobs ∝ ΩsNphot
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Figure 1.48 Schematic illustration of Monte Carlo ray tracing:

a path of a photon, initially arriving from the direction of the
sun, is shown through two successive scatterings from the
surfaces of dynamical simulation particles. The post-scattering
direction is Monte Carlo sampled from the single scattering
phase function. In each scattering event also the probability of
being scattered toward the observer is stored (taking into
account the visibility of the observer’s direction). Figure from

Salo and Karjalainen (2003).

would be very small. Since the relative error in I/F is pro-

portional to Nobs
−1/2, such a calculation would be very in-

accurate even for a large Nphot. It is therefore crucial to

combine such direct ray tracing with an indirect (”back-

ward”) method, where each scattering event, regardless of

the direction of the post-scattering photon, is registered also

from the viewpoint of the observer. If the scattering point is

not blocked behind any ring particle, then the contribution

of the scattering is added to the observed brightness by cal-

culating what the probability of scattering to the direction

of the observer would be. Now in principle every initial pho-

ton and scattering event contributes to the obtained I/F ,

and the relative uncertainty in I/F becomes proportional

to Nphot
−1/2 << Nobs

−1/2. Salo and Karjalainen (2003)

estimated that the use of indirect method can speed-up the

calculations by a factor > 1000, for the same accuracy of

the results.

The obtained I/F will depend on the spatial distribution

of particles, and on how the individual particles absorb and

scatter light. The scattering can be defined either by specify-

ing the surface element’s reflection law 13 , or alternatively,

13 The surface element’s reflection law gives the probability
S(µi, φi, µe, φe)dµedφe that a photon arriving the surface from
the direction (µi, φi) will scatter to an interval dµe, dφe around
the direction (µe, φe), where µi = cos(i) and µe = cos(ǫ), with
i and e denoting the angles of incident and emergent rays with
respect to the local normal of the surface element at the scattering
point, and φi and φe are the corresponding azimuthal directions.
A simple example is the Lambert reflection law, S = SL(µi, µe) =
µe/π, which corresponds to a diffusively scattering surface whose
brightness (∼ S/µe) is independent of viewing direction. For a
spherical particle the integration over the illuminated hemisphere
gives the corresponding spherical particle Lambert phase function
P (α) = (8/(3π)[sin α + (π − α) cos α].

via a particle phase function P (α) which describes the phase

angle distribution of emerging photons from a particle as a

whole; this corresponds to integrating over the surface ele-

ments of the illuminated hemi-sphere. The particle albedo A

gives the total fraction of scattered radiation over all angles.

Photometric ray tracing methods applied to Saturn’s rings

have been described in detail in Salo and Karjalainen (2003)

and in Porco et al. (2008). The main difference of the meth-

ods is in the handling of multiple scattering: in the former

study in each scattering event a single photon is Monte

Carlo sampled from the particle phase function (or surface

element’s scattering law) to represent the scattered light,

whereas in the latter study the light ray is divided in a deter-

ministic fashion into a bundle of rays after each scattering,

and each of these new light rays is then followed (and re-

divided in the next scattering etc.). The two methods yield

similar results, and they have both been verified by exten-

sive comparisons to classical results in the low filling factor

limit, both with Chandrasekhar (1960) analytic al single and

multiple scattering results and with Dones et al. (1993) cal-

culations with the doubling method. However, the method of

Porco et al. (2008) is much more CPU-intensive for a given

accuracy since it spends most of the time in the calculation

of the higher scattering orders whose contribution to the to-

tal I/F is very small. Since the former Monte Carlo method

spends less and less CPU time on each higher scattering or-

der (or at most an equal amount), it can be extended to

very high orders of scattering with very little extra CPU-

time consumption. The same MC method has been recently

adopted in Ciarniello et al. (2014) for testing Hapke (2008)

theoretical models.

With the indirect method one can tabulate separately the

contributions of different orders of scattering. There is thus

no need to specify the albedo before the calculations, but

instead one can re-construct the final I/F for any choice of

albedo (Salo and Karjalainen 2003),

I =
max
X

k=1

Ak∆Ik, (1.149)

where ∆Ik is the tabulated contribution from photons after

k’th scattering and A is the particle albedo; during the cal-

culation itself the albedo has been treated as unity so that

the ”weight” of the photon is kept constant over its path.

The calculation of the photon path through successive

scatterings involves finding the intersection points with all

particles along the current photon direction, and then choos-

ing the closest intersection for the next scattering. If no in-

tersections are found then the photon leaves the ring layer.

The calculation has many similarities with the finding of

particle impacts in dynamical simulations. In particular, if

the simulated particle field contains a large number of par-

ticles it is crucial not to check every particle for a possible

intersection. A simple but very efficient solution is to place

a 2D grid on top of the particle field, and find first the grid

cells the current photon path is crossing, and then search

intersections only among the particles in these cells. A 3D

grid can also be used, but since the systems of interest are
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Figure 1.49 Relation between dynamical and photometric

optical depth. In a) and b) homogeneous particle fields were
simulated with various τD and H/R; the curve labeled H/R = 0
refers to a 2D monolayer. In c) the self-gravitating simulation
depicted in Fig. 1.54 was analyzed, both along the wake major
axis direction (“min”), perpendicular to it (“max”), and at the
ring ansa. The curve labeled “NG” refers to a corresponding
non-gravitating simulation with τD = 0.5, yielding practically

constant τ⊥ ≈ 0.55 for all B’s. Redrawn from Salo and
Karjalainen (2003); Salo et al. (2004).

usually very flattened this does not yield significant improve-

ment over a 2D grid.

It is important to take accurately into account the peri-

odic boundaries of the dynamical simulations: when the pho-

ton leaves the actual calculation region through its radial or

tangential boundaries, it enters an identical copy of the par-

ticle field (see Eq. 1.8). Thus the photon should leave or enter

the particle field only from below or above. In practice it is

easier to handle the periodic image particles in terms of an

image-photon re-entering the original particle field, so that

there is no need to store any extra particle locations. The

correct treatment of boundaries is particularly important in

case of shallow illumination/viewing angles, where the light

rays can, at least in principle, travel very long horizontal

distances before leaving the particle layer. Similarly, taking

into account periodic images is essential for the calculation

of τLOS, in particular when the true probability of passing

the particle layer is small: even a few missed intersections

might then bias the result.

The brightness due to the illumination by the planet can

be calculated in a similar manner as that due to Sun, ex-

cept that the directions of the incoming photons are sampled

from the solid angle extended by the planet at the distance

and longitude of the dynamical simulation. A model for the

brightness distribution of the planet’s globe is needed: both

in Salo and Karjalainen (2003) and in Porco et al. (2008),

the Dones et al. (1993) model based on Barkstrom (1973)

law was used.

1.11.2 Examples of photometric modeling

1.11.2.1 Dynamical and photometric optical depth

In low volume filling factor rings the vertical thickness of

the system is much larger than particle radius: for a pla-

narly homogeneous, vertically uniform system of identical

particles we have H/R = 4τD/(3D3). At the limit D3 → 0

the photometric and dynamical optical depths are equal.

However, for vertically flattened systems the photometric τ⊥
exceeds τD. To justify these assertions, consider a vertically

extended ring, and divide it into k layers each contributing

∆τD = τD/k to the total dynamical optical depth. The frac-

tion of flight passing through a single layer is 1−∆τD, and

assuming that the layers are independent, the fraction of

light passing through all layers is (1− τD/k)k → exp (−τD)

as k → ∞. Clearly the two definitions of optical depth are

then equal. On the other extreme, consider a 2D monolayer

with k = 1. Now τ⊥ = − ln(1 − τD) > τD.

Figure 1.49, based on quantitative ray tracing calculations

(Salo and Karjalainen, 2003), illustrates the dependence of

τ⊥/τD on D3 and τD. The particle fields in a) and b) were

constructed by random placing of identical non-overlapping

particles into a cuboidal volume. In the case of many particle

thick layer (H/R = 100 in the figure; implies D ∼ 0.01) we

have τ⊥ ≈ τD, but as H/R is reduced τ⊥/τD increases.

Similar result holds also for realistic dynamical simulations

with vertically non-uniform particle distribution, although

in the case of size distribution the difference between τ⊥
and τD is somewhat decreased with increasing Rmax/Rmin.

As a rule of thumb,

τ⊥/τD ≈ 1 + kD3, with k = 0.7 − 1.5, (1.150)

in good agreement with the theoretically estimated enhance-

ment factor of 1/(1 − D3) (Esposito, 1979).

Photometric simulations also show that Eq. (1.148) for

converting slanted τLOS to τ⊥ works well for non-gravitating

simulation systems, regardless of their vertical flattening

(excluding strict monolayers, see Salo and Karjalainen

(2003)). On the other hand, in the case of self-gravity (Fig.

1.49c), the deduced τ⊥ depends on the observing elevation

and the direction with respect to wakes (Salo et al., 2004;

Robbins et al., 2010; Tiscareno et al., 2010).

1.11.2.2 Non-zero volume density and enhanced
single-scattering

Besides optical depth, non-zero volume density has a sig-

nificant effect on the observed I/F . In general, a reduced

ring vertical thickness leads to brightening of the reflected

component and reduction of the transmitted one. In Fig.

1.11.2.1 the upper row shows the reflected and transmitted

single scattering components for various values of D3, in

comparison to theoretical values at the limit D3 → 0,

„
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where µ0 = | sin B⊙| and µ = | sin B|. The calculations in

the figure use perpendicular illumination B⊙ = 90◦, but

similar qualitative results hold for slanted illumination ge-

ometries. Also, Lambert phase function is assumed, although
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Figure 1.50 The effect of non-zero D3 on the brightness of

perpendicularly illuminated layer. Lambert phase function is
used with A=0.5. Monte Carlo simulations with τD = 1 for four
different non-zero filling factors (D3 = 0.001, 0.02, 0.10, 0.20) are

compared. Single scattering and and multiply scattered fluxes
are shown separately. Also shown are theoretical Iss(D3 = 0) for
τ⊥ = 1.0. Figure from Salo and Karjalainen (2003).

the ring particles are known to be more strongly backward-

scattering (see Dones et al. 1993); the used phase function

does not affect the relative change of Iss. According to the

figure, the calculated Iss agrees with the theoretical value

at D3 ≈ 0 but is significantly different for non-zero D3: for

homogeneous systems the enhancement in reflected Iss at

intermediate viewing elevations is about 30% for D3 = 0.2.

The enhancement is particularly strong at small phase an-

gles (here close to B = 90◦), which is the well-known

shadow-hiding opposition effect: as the zero phase angle is

approached, the shadows cast by particles are hidden by the

particles themselves. The shadow-hiding opposition peak ex-

tends to larger phase angles as D3 increases, in good agree-

ment with theoretical models in Lumme and Bowell (1981).

The figure also shows an enhancement of Iss near B = 0◦:

this is somewhat specific to the perpendicular illumination

assumed in the figure, and follows from the fact that at low

viewing angles mainly the illuminated upper surfaces of the

outermost particles are visible.

In simulations with realistic size distributions the en-

hancement of reflected Iss/Itheory is somewhat smaller than

with identical particles. This is related to the effective vol-

ume filling factor at the vertical layer where τLOS ∼ 1 is

achieved, which layer is responsible for most of the reflected

light. As illustrated in Salo and Karjalainen (2003), the ef-

fective D3(τLOS = 1) gets smaller when more extended dis-

tributions are simulated. Because of this, the angular width

of the opposition brightening is reduced, in good agreement

with Hapke (1986) theoretical estimates. For the same rea-

son, the opposition peak becomes narrower for lower view-

ing elevations: τLOS ∼ 1 along shallow viewing is achieved

at more rarefied outermost particle layers. In practice, dy-

namical/photometric simulations indicate that for the inter-

Figure 1.51 In a) Voyager observations at 122 500 km are
compared with D3 ≈ 0 models, using same power-law phase
functions as the classical radiative models in Dones et al. (1993).
The anisotropy parameter −1 ≤ g ≤ 1 describes how strongly

backward scattering the particles are: g = −1 means perfectly
backscattering particle. A particle albedo A = 0.5 matches well
the low α brightness but overestimates the high α brightness by
a factor of 2. In b) D3 = 0.1 and the models can now match

both low and high α, provided that a somewhat smaller albedo
is assumed. The plot uses scaled reflectivity 4(µ + µ0)/µ0

×(I/F ), so that observations with different µ, µ0 can be

combined. Figure from Salo and Karjalainen (2003).

particle shadow hiding (Salo and French, 2010)

HWHM ∝ B, (1.152)

where HWHM is the Half-width half-maximum of the op-

position peak. For example, assuming a “frosty” ice elas-

ticity law, τD = 1.5, q = 3 power law size distribution

from 0.01 to 5 meters, implies HWHM ≈ 1.5◦ and 3◦ for

B = 10◦ and 25◦, respectively. For a narrower distribution,

with Rmin = 0.1 meters, the simulated HWHM is about a

factor of 4 wider.14

Dones et al. (1993) pointed out problems when trying to

explain Voyager observations of Saturn’s ring photometry in

the framework of classical radiative transfer, such as match-

ing simultaneously the low and high phase angle I/F of the

B and the inner and middle A ring: the rings appeared too

dark at high α compared to what the classical models fitted

at low α predicted (Fig. 1.51a). They proposed that the dis-

crepancies stem from vertical flattening of the rings. Indeed,

when including the enhancement of Iss due non-zero D3,

the fit to the observed low phase I/F indicates a smaller A.

This leads to reduced multiple scattering and thus smaller

high phase brightness since this is mainly due to Ims. Also,

the nonzero D3 itself reduces the high α multiple scattering

compared to that in the classical limit: together these two

effects bring the model and observations to a good match

(Salo and Karjalainen, 2003, Fig. 1.51b). A similar conclu-

sion was reached by Porco et al. (2008).

14 The modeled HWHM is sensitive to the way how it is de-
termined: the numbers given in the text refer to simulated opposi-
tion enhancement for 0◦ ≤ α ≤ 90◦. Fitting a linear-exponential
model to α ≤ 10◦ would yield 2-3 times narrower HWHM (see
Fig. 8 in Salo and French (2010)). Similar uncertainties can be
even more severe when analyzing observed phase curves with
sparse or uneven coverage of phase angles.
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1.11.3 Opposition brightening

Saturn’s rings show a strong opposition effect: a steep rise

in I/F when the Sun-observer phase angle α → 0◦. Hub-

ble Space Telescope observations during the 2005 opposition

(French et al., 2007a) indicated that the brightness increase

continues all the way to zero phase angle: the I/F increases

by about 2/3 for α < 6◦, half of this increase taking place

within α < 0.5◦. Most strikingly the opposition ”spike” is

demonstrated by the zero-phase Cassini images (Déau et al.,

2013), which show a bright localized spot on the ring loca-

tion centered at exact opposition.

Two main explanations for the Saturn ring’s opposition

brightening are i) the reduced amount of mutual interparti-

cle shadowing, and ii) the intrinsic brightening of the ring

particles themselves. As demonstrated by Fig. 1.11.2.1, the

mutual shadow hiding effect is inevitable in a densely packed

ring, although it depends on the spatial and size distribu-

tion of ring particles whether the brightening is as strongly

peaked at α = 0◦ as observed. Similarly, theoretical and lab-

oratory studies suggest that icy particles exhibit a significant

intrinsic brightening at α → 0◦ due to constructive interfer-

ence between the incoming and outgoing light rays (coherent

backscattering (CB), see e.g. Hapke, 1990; Muinonen et al.,

1991; Mishchenko, 1992; Nelson et al., 2000). The expected

magnitude and width of CB depends on the surface structure

and optical properties of particles. Rough particle surfaces

can also exhibit an intrinsic shadow hiding effect.

A long-term challenge has been to separate interparticle

and intrinsic contributions to the opposition effect: unless

this can be done it is not possible to extract reliable in-

formation of the particle surface properties by fitting the

observed curves with theoretical CB models (e.g. Poulet

et al., 2002; Déau, 2015), without including the interparti-

cle shadow. Likewise, the early volume density estimates for

Saturn’s rings (D3 ≈ 0.02, Lumme et al. (1983)), based on

interpreting the brightening solely in terms of interparticle

shadow hiding were prone to lead to wrong answers.

The expected functional forms of the intrinsic and inter-

particle opposition effects are very similar (see e.g. Hapke,

1986, 1990), so that their contributions can not be entangled

based on an individual phase curve. However, such a sepa-

ration becomes possible with multi-wavelength observations

covering a whole range of observing/illumination elevations.

Namely, while the interparticle shadowing effect depends on

B (Eq. (1.152)), it should be independent of the wavelength

λ. On the other hand, CB is expected to depend on λ but

not on B.

Salo and French (2010) exploited the full set of Saturn

ring phase curves obtained with the Hubble Space telescope

WFPC2 instrument during 1996-2005 (Cuzzi et al., 2002;

Poulet et al., 2002; French et al., 2007a). In this data set,

covering 4.5◦ < Beff < 26◦ in 5 broadband filters, the op-

position brightening gets significantly more pronounced as

Beff decreases, confirming the expected contribution of in-

terparticle shadowing.15. Fig. 1.52 illustrates this in terms of

15 The HST observations at slightly different B,B⊙ are re-
duced to a geometrically corrected (I/F )corr corresponding to
an effective common elevation angle Beff , defined by µeff =

Figure 1.52 In the left: The symbols show the near-opposition

brightness enhancement in HST observations of Saturn’s C and
B rings, measured in terms of OE = I(α = 0.5◦)/I(α = 6◦).
Lines indicate the modeled OE in size distribution simulations

with different Rmin (all have Rmax = 5m and q = 3). For the C
ring model τD = 0.1 and for the B ring models τD = 2. In the
right, the OE is normalized with that at 20◦ opening angle:
note that normalized OE is practically independent of the

wavelength. Figure from Salo and French (2010).

OE = I(0.5◦)/I(6◦) for ring regions selected from the C and

B rings. Both rings exhibit clearly larger OE at Beff = 4.5◦

compared to larger opening angles (left frames). The rel-

ative increase of OE with elevation is also independent of

wavelength, as seen when OE is normalized to its value at

Beff = 20◦ (right frames).

Fig. 1.52 shows also results from a grid of dynami-

cal/photometric simulations performed for different τD’s

and different size distributions. For example, the Beff de-

pendence of the C ring OE is best matched with τD ∼ 0.1

and a wide size distribution with Rmin/Rmax . 0.01. On

the other hand, the B ring comparisons suggest τD & 2 and

a much narrower distribution Rmin/Rmax & 0.1.

Figure 1.53 summarizes the results of photometric mod-

eling of opposition brightening based on the Hubble Space

telescope observations (Salo and French, 2010). When the

ring opening angle is large (here 23◦), the reflection is mainly

due to particles in the densely packed equatorial plane: con-

sequently the inter-particle shadow hiding contribution to

the peak in I/F is relatively wide. For low Beff , the reflec-

tion is mainly due to the uppermost, low filling factor layers,

which produce a stronger peak. The insert figures illustrate

the final separations of observed phase curves into interpar-

ticle shadow hiding (dependent on Beff) and intrinsic contri-

butions (same for all Beff). The intrinsic component is also

separated to CB and surface shadow hiding components, us-

ing the Hapke (2002) models which are commonly applied

2µµ0/(µ+µ0) and (I/F )corr = µeff/µ (I/F ). With this transfor-
mation the theoretical (I/F )corr depends only on Beff .
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Figure 1.53 Illustration of the opening angle dependence of
opposition phase curves (normalized by I/F (α = 6◦)). A
sideview of a dynamical τD = 1.25 model is displayed, together

with HST phase curves (symbols) observed at Beff = 23◦ and
4.5◦. The modeled contributions of intrinsic (filled; both CB and
SH) and interparticle contributions (hatched lines; mutual
shadowing) are shown separately. In the fits, the intrinsic

contribution is assumed to be independent of Beff , and the
opening angle dependent part is fitted by comparison to a grid
of simulation models. Figure from Salo and French (2010).

for the whole phase curve, without taking into account the

mutual shadow hiding between particles. Since the interpar-

ticle shadow hiding accounts about half of the total opposi-

tion brightening, its inclusion has an effect on the estimated

CB parameters.

The opposition effect has also been detected in the ther-

mal phase curves obtained with the Cassini CIRS instru-

ment (Altobelli et al., 2007; Altobelli et al., 2009). Such

“thermal beaming” provides very important constrains for

the shadow hiding models (both inter-particle and intrin-

sic) since there is no CB contribution (no phase coherence

between illuminating photon and thermally re-radiated IR

photons). Unfortunately, the analysis of observations (sepa-

rating temperature effects from beam filling factor and IR-

emissivity effects) and their modeling are very complicated

(thermal models need to account, besides the instantaneous

illumination and viewing geometries, also the thermal his-

tory of the ring layer and its constituent particles; see e.g

Morishima et al. (2010, 2011). Therefore it not yet certain

how the HWHM and amplitude of thermal opposition effect

compare with the visual opposition effect.

1.11.4 Self-gravity wakes and azimuthal brightness

asymmetry

Several types of observations support the existence of self-

gravity wakes in Saturn’s rings. Due to their small scale,

λT ∼ 100 meters, they are unresolved in direct images. Nev-

ertheless, the wakes have a global signature on how the rings

reflect and transmit light, since the reflecting surface area

will depend on the viewing direction with respect to the av-

erage direction of wakes (see Fig. 1.54). Similarly, the illu-
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Figure 1.54 The effect of unresolved self-gravity wakes on
global brightness: at intermediate ring opening angles the
reflecting surface area has a minimum at longitudes where the
rings are viewed along the average major axis of wakes, and
correspondingly a maximum when wakes are viewed
perpendicularly. Figure from Salo et al. (2004).

mination of wakes will depend on the longitude with respect

to solar longitude.

The wakes provide a natural explanation to the A ring az-

imuthal brightness asymmetry, discovered already in 1950’s

(Camichel, 1958), intensively studied in the pre-Voyager era

(Ferrin, 1975; Reitsema et al., 1976; Lumme et al., 1977;

Thompson et al., 1981). In the ground-based observations

the brightness at the mid A ring exhibits two symmetri-

cal minima at the ring longitude θmin ∼ 70◦ and ∼ 250◦

with respect to sub-observer direction. The detailed analy-

sis of low-phase Voyager images (Dones et al., 1993) showed

that the amplitude of variations peaks very strongly in the

mid-A ring, reaching a full amplitude ≈ 35% in reflected

light at the Saturnocentric distance of 128,000 km. The A

ring asymmetry was also seen in Voyager transmitted light

images (Franklin et al., 1987), whereas for the B ring no

asymmetry was detectable. Wakes have also been inferred

from the radar echo of rings (Nicholson et al., 2005), and

from the way how Saturn’s microwave radiation is transmit-

ted through the rings (Dunn et al., 2004). Wakes also affect

the ring opacity: the most detailed observations of wakes

have been made with the Cassini stellar (Colwell et al., 2006,

2007; Hedman et al., 2007, 2014) and radio occultation mea-

surements (Thomson et al., 2007). Wakes have also a clear

signature on the ring’s thermal emission probed with the

Cassini CIRS instrument (Ferrari et al., 2009; Morishima

et al., 2014).

The likely connection of azimuthal brightness asymmetry

to Goldreich and Lynden-Bell (1965) and Julian and Toomre

(1966) type self-gravity structures was pointed out already

by Colombo et al. (1976) (see also Franklin et al., 1987;

Dones and Porco, 1989; Dones et al., 1993). The first detailed

comparisons between dynamical self-gravitating simulations

and Voyager observations were made in Salo et al. (2004),

using the photometric Monte Carlo method described above.
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Figure 1.55 HST observations of the A ring azimuthal
asymmetry at two different ring opening angles, with
corresponding simulation models assuming identical ”frosty ice”
particles. Note the narrower minimum and the increased overall

I/F for Beff = 4.5◦. Figure from French et al. (2007b).
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Figure 1.56 The observed radial dependence of the asymmetry
amplitude is compared with dynamical simulations performed

for various internal particle densities (labels indicate ρ in units
of kgm−3). Simulations assumed τD = 0.5 and the ”frosty ice”
ǫn model. Both the Hubble Space Telescope observations (filled
light gray squares) and models correspond to Beff = 10◦. The

asymmetry amplitude from Voyager images (Dones et al., 1993)
is shown as a solid line, multiplied by a factor of 0.5 to account
for the difference in definitions of asymmetry amplitude. Figure
from French et al. (2007b).

It was shown that the trailing self-gravity wakes, systemati-

cally tilted by about 20◦ with respect to the local tangential

direction can explain in a quantitative way the A ring asym-

metry amplitude and longitude of minimum, both in the re-

flected and transmitted light observations (in the latter case

one also needs to take into account the Saturn-shine contri-

bution which also depends on ring longitude). A somewhat

surprising result was (and still is) that the observed θmin

is better matched by dynamical models consisting of identi-

cal particles, than by the presumably more realistic models

with an extended size distribution. The shift ∆θmin ≈ 5◦

between size distribution and identical particle models, is

the same as the difference in the wake pitch angle implied

by the auto-correlation analysis of simulated wakes (see Fig.

1.25). Same conclusion was reached in French et al. (2007b)

when comparing identical particle and size distribution sim-

ulations with the HST observations; similar shift is also seen

in Porco et al. (2008) models of Cassini phase curves.

French et al. (2007b) carried out detailed analysis of the

azimuthal brightness variations on the above described Hub-

ble Space Telescope data set, covering the full elevation and

phase angle ranges accessible from Earth. The change in

the asymmetry amplitude, and the width and location of

the brightness minima were all found to be in accordance

with the predictions of the dynamical wake models (see Fig.

1.55). For example, the asymmetry amplitude is largest at

Beff ∼ 10◦: when Beff → 0◦ the sparse inter-wake regions

are not anymore visible, while for larger Beff the reflect-

ing surface area is less sensitive to azimuthal orientation.

The observed width of minimum gets narrower at small Beff

which is expected since then the inter-wake gaps are visi-

ble only when viewed very precisely along the major axis

of wakes. Similar very narrow peak is seen in the amount

transmitted light in the low elevation (3.45◦) VIMS stellar

occultations (Hedman et al., 2007). Moreover, the HST ob-

servations made it possible to fully separate the dependence

of θmin on the sun-earth longitude difference.

The presence of self-gravity wakes explains also the A-ring

inverse tilt effect (the overall I/F drops with Beff ; Cuzzi

et al., 2002): with increasing opening angle more light leaks

through the gaps between the wakes. In contrast to the A

ring, the B ring has a strong positive tilt effect, its bright-

ness increasing by ∼ 30% between Beff = 4◦−26◦. Early on,

this increase was interpreted in terms of enhanced contribu-

tion from multiple scattering at higher Beff (Esposito and

Lumme, 1977; Lumme et al., 1983), but as shown in detail

in Salo and French (2010) the observed positive tilt effect

follows naturally by the same models which account for the

elevation angle dependent opposition effect: in ground-based

observations at fixed small α, the brightness increases with

opening angle since the opposition brightening extends to

larger α for larger Beff (see Eq. 1.152).

The Hubble Space telescope observations in French et al.

(2007b) confirmed the very strong peaking of asymmetry

amplitude in the mid A-ring, matching very well the Dones

et al. (1993) measurements. Weak asymmetry was also dis-

covered in the inner B ring, consistent with the UVIS stel-

lar occultation observations (Colwell et al., 2007). Fig. 1.56

shows the observed HST asymmetry amplitude as a function

of Saturnocentric distance, and also compares it to a set of

dynamical and photometric simulation models. The simula-

tions assume different internal densities of particles (varying

from solid ice density 900 kgm−3 to 1/3 of solid ice density),

while all the other simulation parameters are kept fixed.

Depending on the assumed internal density of the particles,

the self-gravity wake structure emerges at different distances

(at certain rh, so that a ∝ ρ−1/3, see Fig. 1.24) leading to

growth of asymmetry amplitude. With increasing distance,

the wakes become clumpier, eventually degrading into par-
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Figure 1.57 a) The longitude of brightness minimum (wrt ring
ansa) in the Hubble Space Telescope observations of the A ring

(French et al., 2007b), for different ring opening angles Beff .
Also shown are wake orientations derived from VIMS (grey
symbols; Hedman et al., 2007) and UVIS (large crosses; Colwell

et al., 2006) occultation measurements. In b) a similar plot of
HST, and in c) of UVIS observations, covering both the B and
A rings. The labeled boxes indicate four simulation models
explored in (French et al., 2007b): the models are illustrated in

Fig. 1.58. The height of the box indicates the range of simulated
∆θmin for 4◦ < Beff < 26◦. Figure redrawn from French et al.
(2007b), Colwell et al. (2007), and Hedman et al. (2007).

ticle aggregates. This reduced the longitude-dependence of

the reflecting area and thus the amplitude of asymmetry.

Clearly, the distance dependence of the asymmetry ampli-

tude in the simulation models of Fig. 1.56, following solely

from the slow change in the tidal environment, is much too

weak compared to the observed strong peaking of ampli-

tude at the mid A-ring. As demonstrated in French et al.

(2007b), using higher τD, different ǫn(vn) or different size

distributions would modify the trends, if the parameters are

allowed to vary with distance. For example, the rapid drop

of the asymmetry amplitude at the outer A-ring could be

related to a rapid increase in the fractional amount of small

particles, suggested to rise due to higher impact speeds asso-

ciated with the stronger perturbations by external satellites

Figure 1.58 Four different dynamical simulations models
(viewed from 20◦ elevation) illustrating the possible self-gravity
wake structure at various Saturn ring locations. Photometric

modeling of these simulations yield the longitude of asymmetry
minima indicated in Fig. 1.57. Model I is for the peak of the A
ring azimuthal brightness asymmetry, and Model II for the
region beyond the maximum asymmetry; the models differ only
in the adopted size distribution (identical particles vs. a size
distribution with Rmax/Rmin = 10; in both models τD = 0.5;
calculations carried out for a = 130, 000 km.) Models III and IV
are for the B ring: size distribution with τD = 0.7, and identical

particles with τD = 1.5, respectively (calculations for
a = 100, 000 km). All models assume ρ=450 kgm−3 and “frosty”
ice elasticity. Redrawn from French et al. (2007b).
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(Dones et al., 1993), or perhaps by the self-gravity wakes

themselves (Salo and Schmidt, 2007).

The longitude of brightness asymmetry minimum pro-

vides information of the properties of the self-gravity wakes,

and also gives clues of the possible co-existence of wakes and

overstable oscillations, even when the latter ones can not be

directly resolved. Namely, while the pitch angle of wakes is

limited to values larger than φpitch ≈ 14◦ (the asymptotic

value in Keplerian velocity field, see Fig. 1.9), the overstable

oscillations are very accurately axisymmetric ( φpitch = 0◦).

Therefore, any effective pitch angle between these values is

likely to indicate the presence of both wakes and oversta-

bility. Figures 1.57 and 1.58 illustrate the trends of φpitch

with distance: the former figure collects wake orientation

estimates from HST (French et al., 2007b), UVIS (Colwell

et al., 2006, 2007), and VIMS (Hedman et al., 2007) mea-

surements, while the latter figure shows models more or less

matching the wake orientation (and the amplitude of HST

brightness asymmetry amplitude) at four selected locations.

The uppermost frame in Fig. 1.57 shows the longitude

of minimum brightness in the A ring, for HST observations

with different ring opening angles. The longitude is given

with respect to the ring ansa, thus measuring the pitch an-

gle of the trailing wakes (φpitch = −∆θmin). The minimum

moves closer to ansa when moving toward the distance where

the wakes are most prominent (the asymmetry amplitude

has its maximum at a ∼ 130,000 km). There is a also a sys-

tematic shift in longitude toward ansa with decreasing Beff :

the outer portions of wakes, with smaller φpitch become then

more dominant. The model I in Fig. 1.58 reproduces these

trends. Beyond a = 130,000 km, the minimum moves rapidly

away from the ansa, which is consistent with an increased

width of the particle size distribution (Model II in Fig. 1.58).

The HST observations are in good agreement with the stel-

lar occultation measurements, where the wake orientation

is deduced by fitting the transmission profiles from several

occultations with those implied by a geometric slab models

(either with rectangular, Colwell et al. (2006), or elliptical

cross-sections, Hedman et al. (2007)). The apparent differ-

ence between φpitch deduced from VIMS and UVIS is likely

to follow solely from the different elevation angles of the an-

alyzed occultations: the VIMS results indicated in the figure

are from an elevation of 3.45◦, and they agree very well with

the low Beff HST measurements; UVIS occultations corre-

sponds typically to B > 20◦ and are consistent with high

Beff HST measurements.

The lower frames of Fig. 1.57 show the ∆θmin for both

B and A rings, the HST (b) and UVIS measurements (c)

showing good general agreement. In the inner B ring the

deduced wake orientation is more or less similar to the mid

A ring, though the amplitude is smaller; the reduction is

amplitude is consistent with the reduced role of self-gravity

when closing the planet (Model III in Fig. 1.58). Interest-

ingly, in both dataset the region at 110,000 km - 115,000

km has φpitch ≈ 10◦. This is consistent with higher τD B

ring simulations (Model IV) where overstable oscillation are

superposed on self-gravity wakes.

1.12 Summary

1.12.1 What has been covered

In this chapter we have reviewed the basic ingredients of lo-

cal planetary ring simulations: the use of linearized dynami-

cal equations in a co-moving coordinate system, the shearing

periodic boundaries, the modeling of particle impacts, and

the calculation of self-gravity. Impacts were treated both as

instantaneous velocity changes (“hard sphere” collisions),

and in terms of visco-elastic forces affecting partially over-

lapping colliding particles (“soft spheres”). We described dif-

ferent methods for calculating the ring self-gravity, including

the often-used approximation in terms of enhanced nz/n.

The establishment of local energy balance between colli-

sional dissipation and viscous gain (including local, nonlocal

and gravitational contributions) was discussed in quite some

detail, as well as how to measure from simulations various

pressure tensor related quantities characterizing this steady

state.

Extensive numerical simulation examples were given, and

our aim was to go systematically through the main free pa-

rameters of the models, the elasticity and friction in impacts,

the size distribution of particles, and their internal density.

When possible, the results were given a hydrodynamic in-

terpretation (see Stewart et al., 1984; Schmidt et al., 2009)

The central theme was to illustrate how the ν vs. τD re-

lation, deduced from small scale simulations, can be used

to make predictions concerning the viscous stability prop-

erties of the ring system. We then gave examples of how

the predicted viscous overstabilities and instabilities man-

ifest in larger-scale simulations. Also, we presented a sys-

tematic survey of the expected self-gravity wake structure,

when using two quite different elasticity laws representing

the range of uncertainty for the ring particle physical prop-

erties. The Bridges et al. (1984) ”frosty ice” models implies

strongly flattened rings (H ∼ 10 m at all τD) susceptible to

oscillatory instability (viscous overstability) and the forma-

tion of gravitational wakes, whereas the Hatzes et al. (1988)

”smooth ice” model leads to multilayer rings (H ∼ 100 m

at low τD) where self-gravity wake structure is harder to

obtain, but which might be susceptible to viscous amplifica-

tion of fluctuations (viscous instability). The conditions for

the formation of gravitationally bound particle aggregates

were also reviewed in detail, and several simulation exam-

ples were given of the behavior ring edges near perturbing

moons residing in ring gaps.

Finally, we discussed the photometric ray tracing model-

ing of the particle fields produced by dynamical simulations,

and illustrated how the dynamical models for dense flat rings

(with D3 ∼ 0.1) explain in a natural manner many photo-

metric observations of the rings, like the azimuthal bright-

ness asymmetry related to self-gravity wakes, and the overall

deviations from classical radiative transfer theory applicable

at the limit D3 = 0. Also, we demonstrated the importance

to take into account the mutual shadow hiding effect when

deducing particle intrinsic properties from the modeling of

opposition brightening.
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1.12.2 Material not covered

Several important aspects of ring dynamics have not been

covered by this review, both related to physical mechanisms

operating in planetary rings, and to technical aspects of

simulations. For example, we have not discussed in any de-

tail the effects of adhesive forces and particle coagulation

and fragmentation (see e.g. Albers and Spahn, 2006; Per-

rine et al., 2011; Perrine and Richardson, 2012): such pro-

cesses might have a fundamental role in determining the

ring’s particle size distribution (Brilliantov et al., 2015).

Also, while the influence of moons for the gap edges has

been treated, we have not described dynamical/photometric

simulations of propeller structures around embedded moon-

lets (Sremčević et al., 2007), or simulations addressing rings

perturbed by satellite resonance perturbations, either by us-

ing azimuthally complete rings (Hänninen and Salo, 1994,

1995) or with local calculation regions with a time-variable

radial width (Mosqueira, 1996), or by applying streamline

formalisms (Hahn and Spitale, 2013). On the technical side,

while we have briefly mentioned parallelization and tree

method for gravity calculations, we have not described in

detail current codes utilizing such methods, like pkdgrav

(Richardson et al., 2000; Porco et al., 2008), or the publicly

available rebound code (Rein and Liu, 2012). Similarly, we

have not covered simulations addressing the large scale evo-

lution of rings, in terms of viscous radial evolution (Charnoz

et al., 2010), or via ballistic transport of mass and angu-

lar momentum (Durisen et al., 1989; Estrada et al., 2015).

Some of these aspects are covered in more details in the

other chapters.

1.12.3 Some open questions

There are several open problems in the ring dynamics, which

in principle can be tackled by improved local simulations.

• What is behind the ubiquitous fine-structure observed in

Saturn’s rings?

The viscous overstability of dense, strongly flattened sys-

tems is the leading candidate for the regular axisymmetric

density variations seen in the inner A ring and the B ring. As

such, this would favor dissipative particle impacts (”frosty

ice”) and a very low internal density of particles (ρ . 300

kgm−3). Nevertheless, viscous instability might provide an

attractive alternative for the almost bimodal variations seen

in many locations of the B ring. In its simplest form it would

seem to require very elastic particles and dynamically hot

rings, which is not easy to reconcile with the existence of

self-gravity wakes. However, the size-dependent viscous in-

stability, observed in N-body simulations under certain con-

ditions (smaller particles more dissipative than larger ones)

can lead to a much richer structure. This mechanism is cer-

tainly worth a deeper study.

• What is the interplay between self-gravity wakes and vis-

cous overstability?

Inclusion of self-gravity leads to steeper density-viscosity

relation, and is thus expected to promote viscous oversta-

bility. Indeed, this is seen when the effect of self-gravity is

approximated via enhanced nz/n. However, when full self-

gravity is included the inclined self-gravity wakes, which

have roughly the same radial scale, seem to suppress the

growth of axisymmetric overstable oscillations. Is this due

to the limitations in the current fully self-gravitating simu-

lations? Another intriguing aspect of overstable oscillations

is their azimuthal coherence length: do the oscillation wave-

trains extend continuosly over the whole circumference of

the rings? Clearly, local simulations are not suitable for an-

swering this - further theoretical work is needed.

• What is the relation between ring optical depth and sur-

face mass density variations?

Several recent studies have indicated that there is a poor

correlation between ring optical depth and surface density

(Baillié et al., 2011; Tiscareno et al., 2013b; Hedman and

Nicholson, 2016). For example, the C ring plateaus are found

to have similar Σ as the background ring, regardless of hav-

ing a factor of four larger τ⊥ (Hedman and Nicholson, 2014).

The easiest explanation would be a larger fraction of smaller

particles in the plateau: such a difference might arise due to

size-selective viscosity instability described in Sect. 1.8.2.1.

However, this is not supported by the radio occultation mea-

surements, which indicate that the plateaus have a larger

average particle size (Cuzzi et al., 2009). Differences in par-

ticle densities and compositions have been suggested (Hed-

man and Nicholson, 2014) but no definite model yet exists.

• Why does the amplitude of azimuthal asymmetry peak

so strongly in the mid A ring?

The effective viscosities obtained from the damping of the

A ring weak density waves (Tiscareno et al., 2007) are con-

sistent with the viscosities estimated from self-gravitating

simulations (Daisaka et al., 2001, Sect. 1.7.2.2) performed

with solid ice density. Likewise, the outer edge of the A

ring fits well to the distance where frosty ice particles with

ρ ≈ 900 kgm−3 start rapidly collapsing into gravitation-

ally bound aggregates. Still, such parameters would im-

ply much stronger self-gravity wake structure than deduced

from photometric modeling, with a maximum brightness

amplitude attained much closer to planet, and with a much

shallower dependence on distance. Indeed, modeling of az-

imuthal asymmetry seems to work best for internal density

ρ ≈ 450 kgm−3. Another puzzle with azimuthal asymmetry

is the longitude of brightness minimum, which matches very

well with models of identical particles, but deviates clearly

from that currently predicted by size distribution models.

• The combination of photometric and dynamical simu-

lations is a very powerful modeling tool, which needs to be

applied to Cassini data in a similar manner as the HST data

has been analyzed. The superior imaging resolution (∼ km

in comparison to ∼ 103 km in HST) and coverage of wide

range of geometries provides extremely strong constraints

for any dynamical model.

Improved simulation models, including both adhesion and

fully consistent self-gravity, and allowing for the possibility

of size-dependent or otherwise variable particle properties

(elasticity, friction, internal density) are clearly needed for

better understanding of the real planetary rings.
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Hämeen-Anttila, K. A., and Lukkari, J. 1980. Numerical simu-

lations of collisions in Keplerian systems. Astrophys. Space

Sci., 71, 475–497.
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