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Abstract. A new method for 2-dimensional simulations of galaxy
encounters is introduced. The simulation system consists of two
planar particle disks embedded in rigid spherical halos. In
addition to stellar component reacting solely to gravitational
forces, gaseous component is included by allowing for dissipative
impacts between some of the particles. The new feature of the
model is in the calculation of the gravitational potential: this is
performed simultaneously in two moving, mutually overlapping
logarithmic polar coordinate systems, attached to the centers of
each halo. Polar coordinates are used only for potential calcula-
tions, the integrations for particles as well as for halo centers
being carried out in an inertial rectangular system. The advantage
of this method lies on the fact that due to the use of two polar
coordinate systems the resolution of the potential calculation is
always greatest in the regions where particle density is highest,
whereas integrations can be performed by using simple and fast
cartesian leapfrog methods. Also, when using a logarithmic grid,
itis very easy to cover a large region by a rather limited number of
cells, so that there is practically no limitations for the distance
between the systems. However, both disks must lie on the orbital
plane. In future the code will be applied to systematic survey of
gravitationally induced activity in galaxies. Some preliminary
results concerning tidal triggering of stellar bars and their effects
on the gaseous component are presented.

Key words: numerical methods — active galaxies — kinematics and
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1. Introduction

Nowadays there exists a wealth of data suggesting connection
between galaxy-galaxy gravitational interactions and the different
kinds of star formation and nuclear activity manifested by them.
This has been demonstrated by statistical studies of large samples
of close pairs as well as by detailed studies of individual strongly
interacting systems (e.g. Dahari 1984, 1985; Kennicutt & Keel
1984; Joseph & Wright 1985; Cutri & MacAlary 1985; Bushouse
1987). However, the connections are all but simple: for example
there seems to be no clear dependence between the mutual
separation of the systems and the level of activity shown by them.
In fact, not even those close pairs with clear morphological signs
of tidal features always display excess activity, whereas some signs
of excess activity can sometimes be observed also in samples of

galaxies extending to large mutual separations (Laurikainen &
Moles 1989). This implies that there must be a large number of
factors governing the response of systems to tidal perturbations.
These probably include, in addition to the strength and geometry
of the external perturbation, for example the internal dynamical
state of the galaxy as well as the amount of gas and its distribution
before the encounter. Also, possible mass transfers between the
components might in some cases have importance.

This paper represents a first phase of study aiming to address
the connection between the dynamics of galaxy encounters and the
different types of induced activity. In order to achieve this goal, a
new N-body code has been constructed, including both the stellar
and gaseous components of the galaxies. Therefore, in addition to
the previously well-studied tidal phenomena induced in the mass
distribution of the systems, we can also get a handle to the
behaviour of gas, and thus to the probable distribution of recent
star formation regions, more closely related to the apparent
luminosity distribution of the systems. The choice of the simula-
tion method is based on the desire to be able to perform
systematic surveys of as many different model parameters as
possible. We shall, therefore, limit our attention to 2-dimensional
encounters of disk systems, and exclude mergings. In the present
paper the simulation method is described, together with some
results concerning the conditions necessary for the formation of
tidally induced stellar bars. This problem was considered to be
extremely important, since bars are very efficient in changing the
angular momentum distribution of gas component, thus for
example enabling the large-scale gas infall to the nuclear regions,
offering a source of energy to active nuclei (see e.g. Noguchi 1988).

Two-dimensional particle-mesh codes offer a fast method for
surveys of the dynamical evolution of essentially flat disk systems.
Gravitational potential arising from the disk particles is typically
calculated in rectangular or polar coordinate grids, by employing
FFT-methods. Halos are treated as an inert component, based on
the fact that due to their large random velocities they should react
only weakly to perturbations. However, this assumption is based
on simulations of isolated systems (see Sellwood 1981) and it is
somewhat unclear how well justified it is in the case of external
perturbations. Anyway, once the potential is constructed, by
adding disk potential and rigid halo component, forces can be
calculated by various interpolation schemas. The CPU time
consumption in both the force calculation, and the integration of
particle orbits scales proportionally to N, making it possible to
reach easily up to N = 10*-10° or even more particles. Typically,
in accordance with the approximativeness of force calculations,
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only simple second-order integration methods are used. The
advantage of using cartesian grids lies on the fact that very fast
explicit leapfrog methods can be used for orbit advancement.
Also, application of FFT is very straightforward, as well as
extensions to 3-dimensions. On the other hand, polar grids offer
much better resolution in the central parts of the system, and are
thus very efficient when simulating centrally condensated planar
systems like disk galaxies. Therefore, smaller total number of
mesh points is needed to cover the area of interest with a necessary
resolution. However, there are disadvantages in using polar
coordinates: for example, special treatment is necessary in the
center of the coordinate system. Also, in typical polar methods
(e.g. Miller 1976), implicit leapfrog schemas are needed.

The simplest way to study galaxy interactions is to replace the
perturbing system by a point mass while the other system
possesses a full particle disk (e.g. Byrd et al. 1986; Sundelius et al.
1987). In this case the perturbing potential can simply be added to
the self-gravitational potential of the disk and the rigid halo
component at the mesh area, thus causing only insignificant extra
CPU-time consumption as compared to study of isolated disks.
However, if both systems are to possess a full disk simple polar
methods are not practical, and cartesian grids covering both
systems are usually applied. Since a large area must then be
covered with equally sized bins, resolution becomes inevitably
rather poor.

The present study describes a method for simulations of two
disks, which tries to combine the advantages of both cartesian and
polar grids. The new feature concerns the tabulation of gravita-
tional potential: this is performed with two moving, mutually
overlapping polar grids, whose centers are attached to centers of
the two halos. For each particle coordinates are calculated with
respect to both grids, while its mass is assigned only to one grid.
The logaritmic polar grid method of Miller (1976) is used for both
grids separately after which forces from both grids are added
together. Thus the good resolution is retained near the centers of
the both systems. However, orbital calculations, both for particles
and halo centers, are performed in cartesian coordinate system,
thus allowing the use of fast explicit leapfrog integration. Since
logarithmic grids can cover large areas with very limited number
of mesh points, there is no restrictions on the distance between
interacting systems: large initial separations can be used, thus
assuring that systems have time to settle into steady state before
tidal forces start to influence their dynamics.

In addition to stellar disks, gaseous component is also
included, by allowing a certain fraction of particles to represent
gas clouds experiencing dissipative impacts. In contrast to typical
treatment in N-body simulations where collisions are assumed to
take place whenever two clouds fall into a same “collisional bin”,
here the orbits are followed to the exact location of impact, as is
commonly done in collisional simulations of, say, planetary rings
(Brahic 1977, Himeen-Anttila & Lukkari 1980; Salo 1985, 1987;
Wisdom & Tremaine 1988). This makes it possible to follow to
greater accuracy, for example, the formation of shock fronts when
the gas of two galaxies collides. Also, for the sake of completeness
a simple model is included to mimic the star-formation cycles,
largely following the model of Roberts & Hausman (1984) and
Noguchi (1988), where cloud-cloud collisions produce stellar
associations which after certain lifetime explode as supernovae
and affect the motions of nearby clouds, thus partially feeding
back kinetic energy lost in impacts. Future studies will concentrate
on refining this aspect of the code.

The new code is described to some detail in Sects. 2 and 3,
covering the treatment of stellar disks and gas clouds, respectively.
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In Sect. 4 results concerning the tidal triggering of stellar bars are
presented, while Sect. 5 briefly discusses the behaviour of gas.
Finally, Sect. 6 gives a few examples of the more realistic two disk
runs.

2. Simulation system

The simulation system consists of two planar disks embedded in
rigid spherical halos. The disk movement relative to each others is
confined to the common plane of the disks. Various initial density
models can be used for the disks as well as for the spherical halos.
Optionally, a single isolated disk can be simulated, or a disk
perturbed by a point mass or by any arbitrary spherical mass
distribution. Both stars and gas clouds exert gravitational forces,
butif desired, either of them or both can be treated as massless test
particles. The treatment of clouds differs from that of stars in the
sense that they can collide dissipatively. Alternatively, they can
also be treated as another stellar component, possessing for
example different initial distributions or random velocity disper-
sions as compared to ordinary stars. This enables two-component
runs, for example for the studies of relaxation problems. All the
different combinations are possible for each galaxy separately.
The aim has thus been to produce a method as versatile as
possible, to be used for various problems without need for major
modifications.

In addition to stars and gas clouds a third category of particles,
representing ballistically moving newborn stellar associations
(OB-particles hereon) can be followed, assumed to be formed as a
consequence of star forming cloud-cloud collisions. However, this
crude and possibly grossly misleading inclusion of astrophysical
processes should not be taken too literally. Rather, OB-particles
can be considered simply as a convenient way of tracing where
collisions predominantly take place. Therefore, their distribution
is proportional to the square of the gas density. As demonstrated
by Larson (1987) several possible accretion mechanisms for the
formation of massive molecular clouds might lead to approxima-
tively same type of proportionality between star formation rate
and gas density.

2.1. Equations of motion

Since there is no special advantage in choosing either of the
moving halos as the center of the coordinate system, orbital
integrations are carried out in an inertial coordinate frame. The
equations of motion for 2 halos and N particles can then be written
down as:

N
kk= - Z ijk("j—Rk)—Ms—sz—k(Rs—k—Rk), k=1,2, @
=1

j=

N
= .Zl mi(ri_rj)/[(ri_rj)2+82]3/2
i4j

2
+ ) M F(r;—R), j=1,N. o)
k=1

Here the radius vectors of particles are denoted by r; while R,
stand for the halos, their masses being m; and M, , respectively.
Softening length is denoted by e, and the vector F, represents the
radial force function (acceleration per unit halo mass) due to halo
k, F,=—1/M, V®,. The units have been fixed by setting the
gravitational constant G into unity.
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It is evident that the assumption of halos moving rigidly is
anything but correct. Also the use of the same force function F, for
the halo-particle and halo-halo interaction is only an approxi-
mation. These and other model restrictions are addressed
below. However, in the case of point-mass perturber the above
formulation in terms of moving halos is totally equivalent to the
typical method (see e.g. Sundelius et al. 1987) where a rigid halo is
assumed and its center is fixed at the origo of the coordinate
system, while both direct and indirect perturbations are included.

2.2. Force calculations

The practical way of constructing the self-gravitational forces in
the righthand side of Egs. (2) is to use the polar grid method,
deviced by Miller (1976) for an isolated disk. Here this method is
applied to the two disks separately, and since there is little
difference in the details of the calculations, only a brief summary is
given.

The potential grid is defined by coordinates « and v,

R=Rcent expocu, 0<u§NR9 (3)
¢ =ov, 0<v=N,—1, @

where R and ¢ are the polar coordinates with respect to the halo
center, and « = 27/N;, where N, denotes the number of azimuthal
mesh points. In radial direction the mesh extends over Ny cells,
while R, stands for the radius of the central hole in the grid. Due
to the logarithmic nature of the grid, each mesh-box is approxima-
tively square, and the relative resolution at each distance is
constant, determined by N,: the box size corresponding to unit
increment in u and v is AR/R=A¢ =2n/N,. On the other
hand Ny determines the relative extent of the grid: Ry 4/ Reent =
exp (2nNg/N,). In Miller’s original simulations fixed values N, =
36, Ng =24 were used, implying R4/ Reen =~ 60.

In the calculation of the potential, a density table is construc-
ted by assigning mass of each particle to the nearest mesh point
(NGP assignement). The selfgravitational potential of the disk at
each grid point is then obtained by double summation over the
grid, performed with the help of discrete Fourier transform (see
Miller 1976). Once the potential due to disk is obtained, the rigid
halo potential is added, being pre-tabulated at the beginning of the
run. The forces due the total potential are calculated with the
original 9-point interpolation formula of Miller.

Extra treatment is needed for particles falling outside the
potential mesh. In previous simulations particles falling outside
grid are simply ignored, or advanced by using forces calculated
with more approximate methods, whereas particles entering the
“grid hole” are moved through it by some analytical approxi-
mation (Miller 1976; Sundelius et al. 1987). However, we have
chosen to calculate forces on all the particles with the same
accuracy: the forces for both interior and exterior particles due to
disk are obtained by direct summation. By using grid large enough
in radial direction, number of particles requiring extra treatment
can be kept very small, so that this means insignificant extra CPU
time consumption. On the other hand the fact that all particles are
treated in the same manner simplifies and considerably speeds up
the integration of particle orbits. Actually, the number of particles
falling outside the grid (or two grids, see below) can be kept to
strictly zero, while only a few particles at each step fall inside the
central hole. In order to achieve this, we have used values of R,
which are of the order of 5 10~ times the initial disk radius. Since
this is an order of magnitude smaller than typical values of
softening length, the resolution of the potential calculation close
to the center is at least two orders of magnitude better than is
actually needed! However, grid extending this close to origo offers

very convenient means for the interpolation of forces and
therefore optimizes total time consumption, including potential
calculations, force interpolation, and orbital integrations.

The advantage of the polar method over rectangular potential
evaluation is evident. Since the systems studied are centrally
concentrated, density assignement and potential resolution as well
as force interpolation are most accurate at the region where the
density and self-gravitational effects are largest. However, in the
case of two disks one polar mesh is clearly unsuitable.

This method has been extended to the simulation of two disks
in a simple but efficient manner (see Fig. 1). For each particle we
calculate its coordinates with respect to not only one but both halo
centers, and construct two density and potential tables. Mass of
each particle is assigned to the disk where it belongs to in the
beginning of the simulation. Radial and tangential force contri-
butions from both disk+halo systems are interpolated at the
particle location in the same manner as before, and added together
to yield total forces in a cartesian coordinate system were
integrations are carried out. This method of course requires that
the two grids overlap, but this is easily achieved with logarithmic
grids. For example if we choose Ny =48, N, = 36, the relative
extent of the grids is Ryi4/Reen & 4000. If the disk radii are of the
order of unity and R,.,, = 0.005, this means that separations of at
least 20 disk radii can be handled, without extra treatment of
external particles. It is easy to see that the arguments for the good
resolution in the single disk case are still valid.

In addition to particles, one must move the halos in a
consistent way. This is done as follows. The forces due to the disk
belonging to the halo in question are calculated by summing over
the disk density array. Typically, this back-action of the disk is
very small (it vanishes in the axisymmetric case, and has appar-
ently been altogether ignored in previous simulations), but is here
included for the sake of completeness. The force due to the other
halo and disk is calculated in the same manner as on any ordinary
particle, by interpolating from the potential grid of the external
system. This assures that halo centers and disks move coherently.
However, treating halo centers and particles in similar manner can
cause inaccuracy: in the case of non-identical halo potential
models for the two systems, the forces between halos are not
strictly equal, since they do not take into account the extended
nature of both mass distributions simultaneously but simply
replace one in turn with a mass point. Therefore, conservation of
momentum is not fulfilled unless the halos are far from each other.
Similar problems concern the calculation of particle-halo interac-
tion, softened particles corresponding to small Plummer sphere
halos with scale length of the order of ¢. In general, the separation
between halo centers must be at least 2—3 times that of the larger
scale length in order to ensure symmetrical forces.

Other limitations for the method follow from the assumption
of rigid spherical halos. For example, the tidal distortions of
halos are not taken into account so that the overall poten-
tials remain generally rounder than they should. Also, the
amount of dynamical friction is underestimated, since only disks
can convert orbital energy into random motions. Here, without
detailed comparisons to fully self-consistent methods it is hard to
estimate the significance of these inaccuracies. Nevertheless as
long as close encounters are excluded these problems as well as
that of unbalanced halo-halo forces should not be too severe.

2.3. Orbital integrations

Although polar grids are used for force evaluation, integrations
are carried out in cartesian coordinates. In each step we have to
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Fig. 1. Schematic representation of the 2-grid coordinate
system used in the simulations. Two moving, logarithmic
polar-coordinate grids, attached to the centers of the halos,
are used in the potential calculations and force
interpolations, while the equations of motion (both for halos
and the particles) are integrated in the cartesian center-of-
mass coordinate system. Actual overlapping grids used have
36 azimuthal and 48 radial gridpoints, thus extending over
20 disk radii. Forces on the few particles crossing the
“central holes” are calculated separately, by summing over
density distributions in the grid areas

make two transformations, from rectangular positions x, y of each
particle into u, , v;, the logarithmic polar coordinates with respect
to grids k=1 and 2, and then from polar force components
09, /0uy, and 8P, /0v, to cartesian forces F, and F,,

2
Fo=— Y 1/arf (x,00,/0u, — y,0®,/0vy), %)
k=1
2
Fy=— 3 1/arg (5 0Py/0u, + x,.09,/0v,), (©6)
k=1

where x,, y,, and r, stand for the cartesian components and radial
distance with respect to halo center k. This disadvantage of back
and forth transformations is more than outweighted by the fact
that simple explicit time-centered leapfrog schema can be used,
accurate to the second order in the time-step.

2.4. Initial conditions

In the present code one can choose between several possible
surface density distributions for the disk, as well as between
various halo potentials, yielding rotational velocity curves of
different characteristics. So far we have concentrated on the
Kuzmin disk (Toomre ModelI) with the surface density

Y(R)=aM_2n(R*+a®) %%, O<R 0

where M , is the total mass of the disk and ais a scaling factor. The
potential corresponding to this model is (Sellwood 1981)

®(R)=—GM Ja(1+ R?*/a®)~1/?, %)

For the halo potential, one can use the same model (R is now a 3-
dimensional radial coordinate), in which case Eq. (8) becomes the
so called Plummer model with total mass M., and Plummer radius
a (hereon denoted by b). The theoretical rotational curve due
to Kuzmin models has a rising part close to center, reaches
its maximum slightly past the distance a and then gradually
declines (see Sect.4). In simulations truncated Kuzmin disks

(0 < R < Ry;q,) will be used, and the simulation length unit will be
determined by setting the truncation radius Ry = 1. The frac-
tional mass, 1 — a/(1+a?)"/? falling outside Ry, will be redis-
tributed inside Ry, . Similarly, halo mass M,,,, will denote the
mass of the Plummer sphere within Ry, My, = Mo (1 +b2) 732,

In setting up the initial conditions the desired surface density
distribution is represented in terms of a finite number of particles.
In order to suppress unrealistically large random fluctuations,
positions are typically assigned in some regular fashion. As in
Miller’s original code this is achieved by putting particles into
regular rings, N, particles in each, the separations between rings
reflecting the surface density law (each radial is located at the
center of mass distance of the mass increment it represents).
However, since a certain fraction of particles represents colliding
gas clouds, they have a finite size assigned to them. In order to
avoid overlapping in the initial state, typically in the inner- and the
outermost parts of the disk, a slightly different method of setting
up initial positions for gas clouds is used. Therefore, for gas
particles not N, but some integer multiple KT times N,, particles
are placed in each ring. The factor KT is chosen in such a manner
that tangential separations are as close as possible but smaller than
radial separations between rings. The fact that KT is integer
assures the initial symmetry of density also in the case gas particles
possess mass. However, for self-gravitating gas the use of KT > 1
will introduce high-order components into the overall density
distribution which must be filtered out in the solution for
potential.

The construction of initial velocities is realized by giving each
ring a certain circular velocity and then adding random velocities
for each particle. There are at least two different ways of
determining appropriate circular velocities. One can either calcu-
late them from the theoretical total potential, V,;,. = (RO®/IR)'/?,
or calculate them self-consistently from the actual density distri-
bution and the forces calculated by the method described in
Sect. 2.2. These two methods, however, yield a slightly different
Vire» partly due to finite number of particles and the approxima-
tive interpolation of forces, partly due to the softening used.
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Although small, the difference if uncompensated, would be large
enough to make any model out of equilibrium. Therefore, if
analytical description is preferred, one must calculate a correction
potential just balancing the difference between theoretical and
actual velocity curves. This correction potential is then added to
the rigid halo potential and is applied throughout the simulation.
For example, Byrd et al. (1986) and Sundelius et al. (1987) take
this approach. In the present code, no correction potential is used,
but instead V. is constructed in a selfconsistent way, as in
Sellwood (1981). This choice is largely a matter of taste, and no
tests have been carried out to check if this makes any significant
difference on the evolution of the system. However, when
calculating velocities selfconsistently from the created particle
positions, one can also use surface density models, for which no
simple analytical potential models exist. For example, in some
runs gas particles might have a constant surface density in some
annular region.

The amount of random velocities is determined by specifying
the value of the Toomre stability parameter,

0r=0,/336G2, ©)

where k is the epicyclic frequency (calculated from the actual
distribution) and o, the radial velocity dispersion. Random
velocities are assumed to be normally distributed, and the ratio of
radial and tangential velocity dispersions is calculated from the
epicyclic approximation,

o,jo,=28/x. (10)

The circular velocities are correspondingly corrected for the
pressure support by random velocities, by the procedure of
Ostriker & Peebles (1973), also applied by Sundelius et al. (1987).

The above described setting up of the initial conditions is
always performed for both disks separately, before mutual
gravitational interactions between disks are taken into account. In
joining the two systems, their relative movement must be specified.
At the moment the code allows for arbitrary hyperbolic (or
parabolic) encounter between the systems. The geometry is
defined by specifying the pericenter distance and velocity, together
with the moment of time this is achieved. Normal celestial
mechanical methods are used, involving the solution of hyperbolic
Kepler-equation, by replacing the total masses of both systems
with point masses placed at their centers. Therefore, actual closest
distances and velocities, as well as the time when this occurs, differ
slightly from those initially specified, partly due to the initially
extended distribution of masses, partly due to the gravitational
interaction between systems.

3. Collisional processes

The simplest way to incorporate gas dynamics and dissipative
processes in N-body codes is to let particles experience partially
inelastic collisions. This can be realized with various degrees of
exactness. One can take the attitude that since the model is
artificial and the particles in every case have unphysical dimen-
sions, it is unnecessary to calculate individual impacts with any
great precision. Accordingly various particle grid methods are
employed: for example Schwartz (1984), Thomasson (1987),
Combes & Gerin (1985) allow during each step every particle in
the same rectancular bin to collide if they are approaching each
other. Collisional frequency must then be scaled separately. On
the other hand, Noguchi &Ishebashi (1986), Noguchi (1988) use a
more accurate method by checking at each step for overlapping

particles and making these collide, with the restriction that only
one impact/cloud/step is allowed. Enough small stepsize must be
used in order to assure that not too many impacts are missed.
However, even this method is not very reliable if gas cloud number
density is high, or if they have large streaming velocities.

The present code takes an altogether different approach, in
using a method which aims to find every impact in its precise
location, with the full accuracy provided by the leapfrog in-
tegrator. Partly this is done for aesthetic reasons to avoid
potentially dangerous simplifications when possible, partly
because in this manner the code has many potential applications in
simulations of predominantly collision governed systems, like
planetary rings. Also if the gas clouds were to possess different
radii this would automatically ensure proper relative frequencies
of impacts between different size groups.

In order to see the effects of dissipative processes each particle
representing gas must, in average, experience several impacts
during the simulation. If the total number of steps is limited due to
CPU time consumption in force calculations for stellar popu-
lation, it is necessary that several impacts take place during a single
dynamical step. For example, if 1000 dynamic steps are taken
while, say 5000 gas clouds are studied, 10 impacts/cloud/simula-
tion would require about a total of 25 impacts/step. In the state of
quiet evolution, most of the impacts take place between different
clouds in altogether different locations of the systems, so that the
problem of one cloud experiencing multiple impacts in one step is
not severe. However, if shocks are produced, or if gas disks merge,
most of the collisions occur in very localized areas. Therefore,
some particles will collide very frequently, and it is hard to avoid
missing impacts if one particle is allowed to collide only once
during each dynamical step. An ideal solution would seem to be to
be able to account for several impacts/step, not only between
separate particles but for one particle. Due to simplicity of the
leapfrog scheme this is indeed rather easy to achieve.

The standard leapfrog integrator is equivalent to second-
order expansion

R(t)=R(0)+ V(—DT/2)t+1/2F(0)t(t+DT) 0<t<DT,
11
V(t)=V(—DT/2)+ F(0) (t+ DT/2), (12)

which gives the correct positions at the endpoints of the time
interval (¢ =0 and ¢ = DT) and correct velocity in the middle (the
beginning of the timestep has been taken as a reference point).
Let’s assume that the particle experiences a velocity change AV at
the instant 0 < ¢* < DT, when its position is R*= R(¢*) and
precollisional velocity V'* = ¥ (¢*). In terms of its initial values in
the beginning of the time step, this is equivalent to transformation

R(0)>R(0)—AVr*, (13)
V(=DTJ2)— V(—DT]2) + AV, (14)

as can be verified by inserting these modified values into
expansions (11) and (12). Therefore, we can account for a collision
during the time step merely by changing the initial position and
velocity before performing leapfrog. If there were several velocity
changes during the step, they could all be simultaneously included
by making successive transformations to R(0) and V(—DT/2).
This fact enables convenient calculation of multiple impacts of
one gas particle during a single dynamical step.

In the present simulations, a simple impact model retaining the
identity of the colliding clouds has been studied. In this model, the
perpendicular component of the relative velocity of the impacting
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clouds is reversed and its magnitude is decreased by a factor k, the
coefficient of restitution. Conservation of linear and angular
momentum then determines the changes of velocities of individual
particles (Salo 1987),

AVy = —pofpy AV, = pp[(uy + 1) (1 +k) Vg - CC, 13

where C= (R, — R,)/(o, + 7,) is the unit vector in the direction
joining the centres of the colliding particles, while g, , g, , 4, and u,
stand for their radii and masses, respectively, and V,, =V, — V;
for the precollisional relative velocity. It is clear that this model in
no way approximates the real behaviour of colliding molecular
clouds, where the actual outcome might rather be a coalescence or
fragmentation of impacting clouds than partially inelastic re-
bound, depending on the amount of the gravitational binding
energy as compared to postcollisional kinetic energy. In future,
more realistic models, based for example on the hydrodynamical
simulations of molecular cloud collisions (Latanzio & Henriksen
1988) should be studied.

In practice the search of impacts is done as follows. In the
beginning of each step gas particles are arranged according to the,
say, increasing x-coordinate. All pairs of clouds residing closer
than a certain minimum distance are picked up, and for these
selected pairs, potential collisions are checked for by approximat-
ing the relative orbits with the parabolic approximation, Eq. (11).
If impact is found possible during the step, the event is stored.
Impact with smallest time is performed, and calculated changes in
velocity are used to modify the initial positions and velocities of
the clouds in question. Also, all entries involving either one of the
just collided clouds are removed from table of potential collisions,
and are replaced with new impact times, possibly with different
particles than before, calculated from modified initial values
[Egs.(13) and (14)]. Only collisions occurring after the just
performed impact are accepted. In this manner the continuously
modified collision table is searched through, until no more
potential collisions are left for that step. After this leapfrog is
performed.

Although the above method works adequately in the case of a
single gas disk, overlapping of gas disks requires some special
attention. In this case, multiple impacts are not the only problem,
but also the fact that the relative velocities between clouds are not
determined by random velocity dispersion, but depend more on
the systematic velocity difference between the two systems.
Therefore, quadratic approximation of impact distance is poor, if
large steps are used. For this reason, the time-step for gas particles
(and OB-particles) can be made smaller than for the stellar
population. In doing this we calculate the potential only once for
every DT, although forces are always interpolated with appropri-
ate positions.

The above procedure is probably unnecessarily accurate in the
present context of galaxy encounters, but as was stated is useful if
the same code is applied for purely collisional simulations.
However, in future some faster methods will be investigated, and
more attention will be paid on mimicking the actual physical
processes.

4. Tidally triggered stellar bars

During a close interaction between two disk galaxies the mutual
perturbations induce tidal deformations in both the stellar and
gaseous components of the systems. Typically the bridge and tail
features produced are sharper in the gas but otherwise fairly
similar, being essentially determined by the direct impulsive tidal
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force exerted during the closest passage. On the other hand, the
long term evolution is governed by the self-gravity of the systems
and by the gas hydrodynamics, and can differ significantly for gas
and stars. As pointed out by the simulations of Noguchi (1987,
1988; see also Noguchi & Ishebashi 1986) the behaviour of gas
depends strongly on whether or not bar is formed in the stellar
component. If this happens, large amounts of gas can be
transferred into nuclear regions, thus offering at least qualitative
support for the suggested connection between interactions and
nuclear activity.

The first application of the 2-disk N-body code has been to
study similar problems as addressed by Noguchi in his simulations
with point-mass perturber. We have started a systematic survey of
different factors affecting the tidal triggering of bars and the
subsequent evolution of gas. These factors include the initial
rotation curve, disk-halo mass ratio, strength and geometry of the
perturbation, initial distribution as well as the properties assigned
to gas. Here only preliminary results are reported: in fact most of
the simulations described concentrate on the evolution of single
disk perturbed by point-mass satellite, and on the stellar popula-
tion, whereas only a few examples of the gas behaviour are
shown. This seems to be a logical first step, since these results can
then be applied to estimate what happens in the case of two
realistically modeled disks, where the number of free parameters is
much larger, and the mass transfer between systems might also be
important in some cases. However, one must keep in mind that
present simulations are strictly 2-dimensional, which probably
affects the results. Also, realistic modeling of any particular
observed pair can not be attempted.

Two kind of plots will be used in studying the bar formation:
the projections of the particle distributions, and plots of the time
behaviour of the bar rotation rates and axial ratios. The latter is
done by calculating the principal axis of inertia for particle
populations after every 10 time steps. This is done separately for
the sub-systems of particles residing inside 0.25, 0.50, and 1.0
initial disk radii. In cases where clear rigidly rotating bars form
this gives rather reliable estimates for the rotation rate, as well as
for the shape of the bar feature, although in the case of weak
features, the axial ratios deduced are closer to unity than what one
would estimate for example by inspecting the projected outlook of
the system. In any case, although this simple method does not give
as much information as a detailed Fourier-component analysis
(seee.g. Sellwood 1989), it should clearly distinct between systems
where bar-like features form and systems which remain more or
less axially symmetric.

4.1. Choice of the galaxy model

In order to study tidally triggered bar formation one must first
construct an initially stable galaxy model, remaining axially
symmetric in the case of no perturbation, and having meaningfully
long 2-body relaxation time-scale. We have chosen to study the
truncated Kuzmin disk embedded in Plummer halo, defined by
Eqgs. (7) and (8). This choice was based on two reasons. Firstly,
Sellwood (1981) has studied bar formation in detail with these
models, and his simulations offer suitable test material for the
present simulation method (see Fig.2). More importantly, by
varying the parameters a and b, a large variety of rotation curves
can be constructed in a systematic way. If a = b both components
yield similarly shaped potential in the disk plane.

There are two main ways how bar formation can be prevented
in the case of an isolated galaxy: one can either increase the
random velocity dispersion, or decrease the active self-gravitating
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Fig. 2a and b. Comparison between the present simulation method and some of the simulations of Sellwood (1981), studying the bar formation in the case of single
isolated galaxy with M /M, = 0.75. The observed bar rotation rates (solid lines, calculated from particles residing inside 0.5 Ry;q, ) are compared for three models
with variable degree of halo concentration. Equation (7) has been used for the disk with a/Rg = 0.20, while the halo parameter b/ Ry in Eq. (8) is 0.06, 0.12, and
0.20 (Sellwood’s models 125, 126, and 127 respectively). Dashed lines are constructed from the “initial”” and “final” rotation rates given by Sellwood. In a Sellwood’s
units are adopted, while in b the same simulations are shown in our time units, for a longer duration (vertical line in b indicates the time corresponding to 7'= 2000 in
Sellwood’s units). All the essential model parameters (initial velocity dispersion, softening-length, particle number, disk truncation radius, etc.) are similar to those
used by Sellwood. Bar rotation rates were calculated by determining the directions of the principal axis of inertia after every 10 time steps (time step was 0.02
simulation units, corresponding to about 600 steps/orbit in the outer parts of the disk)

mass in the disk with respect to the inert halo. Large value of
softening can also prevent bar formation, but its physical
justification is questionable (see discussion by Sellwood 1981,
1986). Therefore, the value ¢ = 0.06, adopted by Sellwood (1981) is
used throughout these experiments. Notice that here ¢ is a
constant fraction of Ry, and does not depend on disk scale-length
a. Since excessively large velocity dispersion does not only prevent
bar instabilities but also suppresses the effects of tidal interactions,
the disk velocity dispersion has been limited by choosing Q=1
for the Toomre stability parameter. Several test runs were then
carried out decreasing the Mgy, /M,, ratio (here Mgy, and
M, = Mgy + My, denote the initial masses inside the trunca-
tion radius Ry;,) until essentially stable behaviour was found,
except for transient spiral features. This was done separately for
more concentrated models, with a = b= 0.2 and for less concen-
trated ones, a = b = 0.5. Since a equals b, the relative contributions
of disk and halo are independent of distance and depend only on
the mass ratio. In these and all the subsequent runs, N = 20000
particles have been simulated and the timestep has been 0.02 simu-
lation units (fixed by setting M, =1, in which case circular orbit
at unit distance requires about 27 time units). Simulation units can
be scaled to physical units by assigning numerical values to M,
and Ry, . For example, by choosing M, =2 10*' Mg, Ry =
20 kpc, simulation time unit corresponds to about 94 10° yr, and
velocity unit to 208 kms™!.

Figure 3 collects some of the results of these initial test runs: as
can be seen, for Mgy /M,, close to unity, 0.75, the systems
strongly deviate from axial symmetry in less than 10 simulation
units, corresponding to about two rotation periods. After the
rapid initial evolution, the shape of the bar remains essentially
constant, although its rotation rate is gradually decreasing (see

Fig.3b and also Fig.2). For My, /M, ~0.5, the onset of
instability takes longer, but in agreement with the survey of
Sellwood (1985), long-term stability seems to require M y;q /M, tO
be less or of the order of 1/3. Therefore, this value has been chosen
as the standard value in our perturbed runs, although a few cases
with smaller Mg, are also studied. However, for a=b=0.5
M 4/ M, could be increased to about 0.4 and the disk remained
practically stable for almost to the end of the simulation. The fact
that larger self-gravitating mass leads to slower rotation rate
probably follows from the strong initial expansion of the system
when the bar starts to form. Also, the observed gradual decrease of
rotation rate probably reflects the slow expansion of the system.

The four standard mass-models chosen for further studies are
illustrated in Fig. 4. In these models a = b varies from 0.2 Ry, to
0.5 Ry;q , While the ratio M g, /M, = 0.33. As the degree of central
condensation decreases the rotation curve of Modell, which is
steeply rising near the center and mildly decreasing in outer disk, is
gradually transformed into monotonically rising rotation curve of
Model IV. Estimated relaxation times (Fig.4, last panel) vary
between 10 to 40 simulation units, which are of the same order as
the lengths of the simulations (typically 50 time units, or about §
rotations at the edge of the disk). Therefore, bars appearing with a
very long formation time-scale are somewhat susceptible since
they might manifest the effects of unsuppressed relaxation and be
thus related to some secular instability as proposed by White
(1988). This might be supported by the fact that for
Myq /Mo, =0.50 and 0.40, bar formation takes longer with
a=>b=0.5, having also longer relaxation time-scale. However,
tests carried out with N =40000 particles did not reveal any
significant differences, so that the role of the relaxation remains
unclear. The only noticeable difference was found in runs with
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Fig. 3a. Examples of bar formation in isolated galaxy. Particle projections in runs with various combinations of M i and a = b are shown. Numbers denote time in
simulation units. More concentrated mass model leads to shorter bar in shorter timescale

N =10000 and N =40000 particles: in the former case random
velocity dispersions increased in a slightly larger rate. However,
since it seems evident that relaxation effects are negligible in the
case of strong, rapidly forming bars, we will not consider this
problem any further in the present context. Also, since tidal forces
increase random velocity dispersion, initial relaxation times
underestimate the real ones.

4.2. Tidal bar formation in stellar component

The strength of the tidal perturbation can be conveniently
described with the Dahari parameter, Op =M,/ M)/
(Rmin/Rais)®s estimating the direct tidal impulse. Figure 5

displays some examples of the time-evolution in simulations of
Model IV, perturbed by direct parabolic encounter with various
minimum separations, R,;,, while adjusting M, so that Q,
stays constant. Here M., stands for the mass of the per-
turber, described with a point-mass (or, more accurately, with a
Plummer sphere with scale radius of 0.06). Relatively large
perturbation has been applied, namely Qp, = 0.125. For Rpin>1,
stellar bar is induced in a very short time scale after the closest
passage, in close agreement with the experiments of Noguchi
(1987). Most importantly, as long as the minimum separation is
above about 1.5 Ry, the evolution stays essentially the same in
spite of the huge mass difference in perturbing masses. Also, the
final rotation rates of the bar are essentially similar, varying
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Fig. 3b. Evolution of bar rotation rates and axial ratios in simulations of isolated galaxies. Compared to Fig. 3a, two additional M, values are studied. For clarity,
in the case a=b=0.5, Mg, = 0.4, the rotation rate for the forming weakly elongated feature is not plotted

between 0.55 and 0.65 for R, > 1.5. However, close encounters
with small perturbers do not induce as clear a response as massive
distant ones. In any case, as long as we exclude penetrating
passages, O, itself seems sufficient to describe the perturbation,
and various combinations of R, and M., need not be consid-
ered separately. A few additional runs were also performed with
hyperbolic passages with R, ;, = 2, but they led to essentially same
behaviour. For more concentrated modelsI, II, and III, the
dependence on R,,;, should be even weaker.

The dependence of tidally triggered bar formation on the
shape of the rotation curve is illustrated in Figs.6 and 7. The
former figure displays the effects of strong perturbation on all four
models, while the latter compares in detail the bars formed in the

extreme ModelsI and IV. In each case the point-mass perturber
moves in a direct parabolic orbit. According to Fig. 6, as the
degree of central condensation is increased (ModelsII and I) the
formation of bar takes longer and results in a rounder and more
rapidly rotating feature. In fact, in the case of Modell, based on
the projections only (Fig. 6a) it would be tempting to describe the
result as a tightly wound spiral, although plots of the rotation rate
(Fig. 6b) show that a rigidly rotating bar is indeed formed.
However, much larger perturbation is needed in Modell as
compared to Model IV (Fig. 7) in order to produce a distinct bar.
In the former case Qp = 0.125 (Mery = 1, Ry = 2) is just about
the minimum required for the bar to form, at least during the
duration of the simulation. On the other hand, in ModelIV
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Fig. 4. Models used in the simulations. Egs. (7) and (8) are used for the disk and halo, with a = 5=0.2, 0.3, 0.4, and 0.5 (Models I, II, ITI and IV, respectively). The
ratio My /M, is fixed to 0.33, where M, is the total mass of the of the disk + halo inside the disk truncation radius Ry, = 1. The value ¢ = 0.06 Ry, has been
adopted for the softening length, while the Toomre parameter Qr = 1. The relaxation time estimates are based on White’s (1988) Eq. (4), and take into account both
the explicit softening (dominates in the inner regions) and that due to finite grid resolution (outer disk)

M, =0.25 (Qp = 0.03125) still leads to a bar-like elongation in
time-scales shorter than the relaxation time.

According to Fig. 6b, there is a smooth transition in the bar
characteristics as a function of parameter a = b: as the model is
made more concentrated a shorter and rounder but more rapidly
rotating feature is obtained. Also, it is important to note that
although there is a minimum amount of perturbation required
for the triggering of bar, once the bar is formed its rotation rate
seems to be only slightly dependent on the perturbation, being
essentially determined by the initial mass model (Fig. 7b). Indeed,
the rotation rates of tidally induced bars for ModelsI, and IV,
Wy, & 1.7 and 0.6, respectively, are fairly similar to those implied
by Fig. 3 for corresponding unstable isolated models. On the other
hand, the time-scale and final strength of bar depends on the
perturbation level: in the case of strong perturbation, the direct
tidal distortion is almost directly transformed into permanent bar,
while for weaker perturbation the bar formation can be delayed by
several time units (compare curves for Model IV in Fig. 7b). For
strong, thin bars the final rotation rate is slightly lower than for
weaker features, probably simply reflecting their larger radial
extent.

All the above experiments refer to relatively high disk mass,
Mgy /M, = 1/3. One might assume that decreasing disk mass
would make bar formation more difficult, since this must relay on
the self-gravitation of the perturbed disk. Indeed, when M ;g /M,
was reduced to 0.2 in Modell, perturbation with M., =1,

R, =2 could not produce any long lasting bar: initial tidal
distortion disappeared into tightly wound spiral, the system
retaining its round overall shape. Run with M., = 2 gave similar
result. However, in the case of ModelIV, even My /M, = 0.1
resulted in a permanent bar shaped feature with similar pertur-
bation, although rounder and weaker than with the standard
disk-halo mass-ratio. This explains why Noguchi (1987) obtained
bars although the maximum amount of active self-gravitating
material in his experiments was only 0.20: his rotation curves
resemble mostly our Model IV.

Some experiments were performed also with retrograde per-
turbers. However, even with R,;;, = 2, M,, = 16 (Qp = 2), no bar-
like features were obtained in any of the studied models (with
standard ratio My /M, = 0.33), although rather strong spiral
features were observed. In contrast to results of Thomasson et al.
(1989), typical long-lasting tidal spirals were found to be trailing,
just as in the case of direct perturbation, whereas some weak
leading spirals were observed but only just after closest passage.
On the other hand, Thomasson et al. (1989) postulate that with
strong retrograde perturbation (Qp>1) and massive halo
(Mya10/ M o, > 0.5) leading spirals should dominate. Since both
these conditions were fulfilled in the above mentioned experi-
ments, the discrepancy must follow from the different mass-model
studied, Kuzmin disk instead of Mestel disk used by Thomasson et
al. Regarding bar formation, it is of interest to note that in
Model IV, increasing the My, /M,, from 0.33 to 0.40 lead to a
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Fig. 5. Evolution of the Model IV in simulations with direct parabolic point-mass passage, with various minimum distances. Constant level of perturbation,
Op = 0.125, is applied. Simulations started at = —10 and the closest passage occurred at T~ 0. The evolution of particle distributions is plotted at various times

(2000 particles are shown, out of total number of 20000 particles)

clear bar also in the case of retrograde passage (R, =2,
M. =1), although the model was practically stable without
perturbation. Therefore, even retrograde encounters can signifi-
cantly strengthen the tendency for bar formation in the case of
initially mildly unstable system.

5. Evolution of gas component
Results of some preliminary runs with gas-component included

aredisplayed in Figs. 8 and 9. In these runs the gas component was
described with 2000 non-selfgravitating particles, with radius of

0.001, initially distributed in a homogeneous disk extending to
Rgisk- The coefficient of restitution was fixed to k = 0.5 and the gas
time step was 0.005, 4 times smaller than for stellar particles.
Without any perturbation the gas distribution and cloud-cloud
collision rate remains essentially constant during the length of the
simulation. On the other hand, in the case of perturbation the
collision rate increases, and the formation of stellar bar can
significantly alter the gas distribution.

Figure 8 shows the time evolution of the projection of gas
particles in runs with the standard models I-1V (direct parabolic
passage with M. =1, R,;,=2), corresponding to Fig.6 for
stellar population. With Models I and II the gas particles become
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Fig. 6a. Influence of rotation curve on the bar formation. Models I-IV were perturbed by a point-mass perturber (M ey =1) in a direct parabolic orbit with
minimum distance of two disk radii (Qp, =0.125). The evolution of particle distributions is plotted at various times

gradually concentrated into an oval-shaped region, aligned with
the stellar bar, whereas in Models III and IV, strong infall into
nuclear regions occurs. This is somewhat hard to appreciate in the
low resolution frames of Fig. 8, where for example in the case of
Model IV most of the particles end up in practically one point. In
fact, in the runs with Models IIT and IV the central regions become
so densily populated that the collision frequency increases almost
asymptotically into infinity (see Fig.9 for the total number of
impacts): this is the reason why run with Model IV could not be
followed longer than 30 time units. For Model I, larger pertur-
bations were also studied but they also lead to a ring-shaped
concentration, although somewhat larger fraction of the particles
ended up at nuclear regions. The formation of rings or rather,

oval-shaped concentrations is probably due to trapping of gas into
the inner Lindblad resonances. According to Fig.4, the bar
rotation rates are in every case higher than the maximum of
@ — x/2 derived from the initial distribution, implying that no ILR
should be present. However, even a slight increase in the central
concentration can rise the maximum of @ — x/2 just enough to
produce ILR. This phenomenon will be studied more carefully in
future.

As shown by the right panel in Fig. 9, for Model IV even rather
small perturbations can lead to a great increase of collision rate,
due to flow of gas particles into the nuclear regions. Indeed, in
agreement with Noguchi (1988), this is certainly not due to direct
perturbation but happens only after stellar bar is formed, as can be
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Fig. 6b. The evolution of bar rotation rates and bar axial ratios in simulations of Fig. 6a

clearly seen from the time delay between closest passage and the
increase of collision rate. No corresponding strong concentration
or infall was observed in the stellar population, in contrast with
the results of Byrd et al. (1987). This might follow from the fact
that Byrd et al. had a different mass-model, but also on their
defination of infall: they counted the total number of particles
which had crossed the central grid-hole at all times, without
paying attention to the actual distribution of particles at the
nuclear regions (see the discussion in Noguchi, 1988). However, it
seems rather certain that only for the gas component, losing
energy in dissipative processes, can there be any large-scale infall.

6. Two star + gas disks

As a final example of the potential applications of the new code,
we describe a few examples of runs performed with more realistic
encounters of two disk systems (Figs. 10 and 11). The primary
galaxy had a ModelIV mass distribution with M 4, /M, = 0.33,
and radius R, =1 and total mass M, = 1. The other system was
described with ModellI distribution, and had R, =0.5R, and
M, =0.5M,. The softening length for the smaller galaxy was one-
half (0.03) of its value for the larger galaxy. Parabolic encounter
with R, = R; + R, was studied. Gas component was described
with a uniform surface density distribution, by 4000 non-
selfgravitating particles in disk 1 and 1000 particles in disk 2, so
that the gas surface density was the same in both systems.
Coefficient of restitution was 0.5 and the radius assigned to gas
particles 0.0001. In the case of two non-identical systems there are
four different combinations of orbital geometry and internal
rotation: we have studied the two cases where the passage is direct
with respect to the rotation of the primary system, while from the
viewpoint of secondary it is either direct or retrograde. These will
be denoted as direct-direct and direct-retrograde encounter,
respectively (see first frame of Fig. 11).

The runs described in the previous Sections can be used to
estimate the behaviour in the direct-direct run. For the primary,
Qp=0.148, which combined with ModelIV mass distribution

leads (see Fig.7) into a strong bar immediately after the closest
passage and rapid infall of gas towards nuclear regions (see Fig. 8).
On the other hand, for the secondary Qj, is smaller, 0.074, which
combined with the Model I mass-distribution should lead only to
a very weak stellar bar and a mild ring-shaped gas concentration.
This indeed happens: the run had to be terminated at about 17
time units after closest passage, due to excessively high collision
rate in the nuclear regions of primary galaxy. At the same time, the
ring feature in the secondary had just started to become evident
(see last panel in Fig. 10). There had been a rather large transfer of
material from the primary to the secondary, but it had not
significantly altered the evolution of its original gas population.
This follows from the gentle manner in which the mass transfer
occurs: relative velocity of the systems tends to cancel the
differences following from opposite rotations in the disk edges
adjacent to each other.

The change of geometry into direct-retrograde passing did not
affect the evolution of stellar populations in any significant
manner: the only difference was the expected absence of tidal
bridge originating from the secondary. Also, the outlook of the
large scale tidal features in gas, determined by the larger system,
are essentially similar (Fig. 10 upper panel). On the other hand,
evolution of gas population in the secondary was dramatically
different (middle panel in Fig. 10 and Fig. 11). In the case of direct-
retrograde encounter the tidal gas bridge from the primary hits the
secondary disk with practically full relative orbital velocity of the
systems. Resulting high impact frequency leads to a very strong
dissipation and almost immediate infall into nucleus when gas
loses its rotational kinetic energy and angular momentum.
Consequently, the run had to be terminated at only a few time
units after closest passage, due to the excessive impact frequency
in the nuclear region of the secondary. Notice the large amount of
gas originating from the primary which ends up in the nuclear
regions of the secondary (middle panel of Fig.10). Notice
however, that due to planar geometry the collision frequency is
probably greatly exaggerated as compared to any realistic 3-D
situation.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1991A%26A...243..118S&amp;db_key=AST

—I185

FTI991ARA © 7243

131
2 T - T T 2 T T T 2 T T T
Model 1 : - Modelly - v Model IV -
40 : . 40 L - n . 0.25
L . . .. . ] L . L .. | L i
ol J ol 4 ol J
al ' R ' 1 -1p R -1 4
-2 - I L 2l L L 0 -2 i L i | 1
-2 -1 [] 1 2 -2 -1 ) 1 2 -2 -1 ) 1
2 T N T T 2 T R T T 2 T T T
Modell -’ Modelty . T . Model IV
20 o 20 ¢ FEUREE 0.125
1L : ‘ 4 1L T ] 1 4
8l ] 18 4 8l ]
-1t ’ 4 -1h 4 -1k J
-2 -2 ! : ! 1 -2 1 | o
-2 -2 -1 8 1 -2 -1 8 1
2 2 T T — 2 T T T
Model IV ' Model IV
1.0 0.0625
1L B 1L : i 1L N
oL 4 8L i 8L 4
Al 1) -t J
: 4
-2 ) 1 | L -2 i 1 . 1 -2 -l : ! 0
-2 -1 [] 1 -2 -1 [] 1 -2 -1 [] 1
2 T T T 2 T —T T 2 T T T
Model | . Model IV SO Lo ‘ Model 1Y
0S5 0.5 SO . . 0.0
1L i 1L ] 1L R
ol 4 sl - ] ol .
a1l J 1S ] -1p J
-2 1 A 1 -2 L - 1 1 B -2 1 L L
-2 o1 g 1 -2 | o 1 -2 o1 ® I

Fig. 7a. Response of the stellar population with decreasing amount of perturbation in Models I (left panel, M, =4.0 —0.5) and IV (middle and right panels,
M., =4.0 —0.0625). Snapshots of the particle distributions at time T"= 40 are shown for simulations where Models I and IV were perturbed by a point-mass passing
in direct parabolic orbit with minimum distance of two disk radii. For comparison, the case with no perturbation is also shown for Model IV
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Fig. 7b. The evolution of bar rotation rates and bar axial ratios in simulations of Fig. 6a, shown separately for Models I and IV. For clarity, bar rotation rates are
shown only for cases where clear bar was formed (for Model I, with M., = 1.0, and for Model IV, with M = 0.25)

Clearly, the method used for collisional calculations must be
modified in future studies, since it is not practical to follow every
impact once the density gets too high. One possibility would be to
let the code ignore some impacts, but this has to be done with
extreme care. Especially, just in the case of gas streaming from one
system to another, the present method with accurate calculation of
impacts is probably the most reliable one, since it makes it possible
to follow the evolution also with large relative velocities, some-
thing which is much harder to do when collisional “bins” are used.
In fact, an additional test was performed for the above direct-
retrograde case, in which the limiting initial distance for the search
of colliding pairs during step was not allowed to exceed 4 particle
diameters. Combined with the step size of 0.005 this means that
many of the impacts where the relative velocity was above
8 107*/5 1073 =0.16 were missed, therefore mimicking the less
accurate collisional methods. This does not significantly alter the
initial evolution of gas when the collisions are determined by the
random velocity dispersion inside a single system. However, in the

region where the gas from different systems overlaps, the
behaviour is very different, the gas streams largely penetrating
each other. This led to a clear delay in the infall as compared to the
more accurate method.

7. Conclusions

A new 2-dimensional code for studies of planar encounters of two
disk +halo systems has been introduced. In addition to stellar
disks, gaseous components are included, as well as a simple model
for star formation. In future, the code will be applied to detailed
studies of star formation activity in interacting systems. In the
present paper some preliminary applications were presented,
mainly extending Noguchi’s (1987) studies of tidally triggered
bars, and verifying them with an independent computational
method. Examples showing the potential possibilities of the code
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Fig. 8. Evolution of gas-particles in four simulations with Models I, II, III, and IV. In each experiment, direct parabolic encounter with My =1, Ry =2, was
studied, corresponding to Fig. 6 for the stellar component. Total number of collisions is shown in each frame. For Models I, I1, and III, the simulation extended to
T =40, while for Model IV, the simulation was terminated at T = 18, due to excessive amount of impacts (see text). Although not clearly visible in the plot, for this

case almost all gas particles became concentrated in the nuclear area

on studies of gas behaviour and gas transfer between systems were
also given.

The main results concerning tidally triggered stellar bars can
be summarized as follows:

1) The formation of stellar bars was shown to depend on the
simultaneous effects of the rotation curve, disk-halo mass ratio,
and the strength and geometry of the perturbation. However, a
single parameter, Q},, describing the direct tidal impulse, seems to
be sufficient to describe the strength of the direct perturbation, if
penetrating encounters are excluded.

2) For more centrally concentrated mass-models, stronger
levels of perturbation are needed in order to obtain bars: for

Model I, Q, must be larger than about 0.125, while for model IV,
0Op > 0.0325 is sufficient (for standard ratio Myy/M,, = 1/3).
Importance of disk-halo mass ratio depends also on rotation
curve: for ModelI smaller active disk mass prevents bar forma- -
tion, while for Model IV it has less significance.

3) Pattern speed of the bar, once triggered, is determined
mainly by the rotation curve, and is not much affected by the
strength of the perturbation, being fairly similar to that obtained
with unstable disk-halo mass ratios for corresponding isolated
models.

4) Timescale of the bar formation gets longer with smaller
perturbation, and the resulting bar is typically weaker and
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Fig. 9. The evolution of total number of cloud-cloud collisions in simulations with various rotation curve models (left-hand side plots correspond to simulations of
Fig. 8), and with Model IV with decreasing degrees of perturbation (right-hand side plots)

rounder. In the case of strong perturbation, the tidal distortion is
directly transformed into bar whereas for small perturbation, bar
forms only slowly after closest passage. Extremely long formation
timescales are, however, susceptible due to uncertain effects of 2-
body relaxation.

5) Retrograde encounters are not capable of triggering bar
formation in initially stable systems. However, they can signifi-

cantly speed up the growth of bar instability in marginally-

unstable cases.

Tidally induced stellar bars were shown to be able to induce
infall of gas into nuclear regions, as already shown by Noguchi
(1987). However, for centrally concentrated models formation of
gas rings was found to be the more likely outcome. Also, rather
small perturbations could induce infall, but with longer delays
after closest passage. No corresponding infall was observed in the
stellar component.

Just one example of two disk runs was presented. It showed
that the results of point-mass perturbers are applicable unless the

gas transfer between systems become important. An important
difference was found in the case of direct-direct and direct-
retrograde encounters, the latter leading to stronger activity in the
gas component of the secondary system. The example is rather
extreme, since the plane restricted geometry leads to unrealisti-
cally strong exchange of material, but nevertheless suggests that
factors related to internal kinematics can in principle affect the
observed activity in complicated ways. It also demonstrated the
importance of accurate collisional calculations. In future more
systematic surveys of two disk encounters will be reported. Also,
extensions to 3 dimensions will be investigated.
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Fig. 10. Example of 2-disk simulation
described in the text. Upper and middle panels
show the gas distributions for direct-direct and
direct-retrograde runs at time 7= 4. Gas
particles originating from different systems are
shown separately: NUC1 and NUC2 denote
the numbers of gas particles which have fallen
inside the central 0.1 Ry;q-regions in the
primary and secondary, respectively (originally,
NUC1 ~ NUC2 =~ 40). The direct-retrograde
run was terminated at this point. The last
panel shows the gas particle distributions close
to the end of the direct-direct run, at 7'=16.
In the primary, infall has occurred, while in
the secondary a ring is starting to emerge
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Fig. 11. Details of the direct-direct and direct-retrograde runs. Distribution of the gas in the 4 simulation unit wide region around the secondary galaxy is shown,
different symbols denoting particles from different systems. Notice the strong, immediate infall into secondary in the direct-retrograde case (right-hand side
frames). The numbers in the frames refer to the time of the projection and the total number of impacts
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