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Abstract

We investigate the spin rates of moonlets embedded in planetary rings, subject to col-

lisions with surrounding small particles, using three-body integrations including friction

and spins. All successive impacts of the particle with the moonlet are followed, including

a possible sliding phase after the initial inelastic rebounds. Two methods for treating im-

pacts, 1) as instantaneous velocity changes and 2) using an impact force model, are applied

after Salo (1995, Icarus 117, 287). Conducting a series of integrations with various initial

summed spin velocity of the moonlet and the particle, we determine the equilibrium spin

rate for which the averaged torque vanishes. This equilibrium spin rate corresponds to the

final spin rate of the moonlet if the moonlet is much larger than the surrounding particles;

it also corresponds to the mean spin rate for a ring composed of identical particles. We find

that the equilibrium spin rate is enhanced by sliding orbits as compared with the spin rate

determined by considering only the first impacts of the particles with the moonlet. If the

random velocities of incident particles are small enough, the resulting equilibrium spin rate

of the moonlet can be larger than the synchronous rotation rate, for rp ∼ 1, where rp denotes

the sum of radii of the colliding pair normalized by their mutual Hill radius. In this special

case aggregates without internal strength may become rotationally unstable. However, the

equilibrium spin rate decreases with increasing random velocity, and aggregates are always

rotationally stable in the more likely case where the relative velocities are comparable to

the mutual escape velocity. We also compare our results with the mean spin rates found in

previous N-body simulations, and find a good agreement for optically thin rings; however

the spin rates for optically thick rings are significantly larger than those predicted by our

three-body calculations.

Key words: Planetary rings, Saturn
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1 INTRODUCTION

Planetary rings, such as Saturn’s rings, provide good local laboratories for studying the dy-

namics of flat collisional systems. In most parts of the rings, tidal force of the planet prevents

ring particles from accreting into larger bodies. However, numerical N-body simulations sug-

gest formation of apparently stable aggregates (moonlets) in outer parts of Saturn’s A ring, if

the internal density of particles is not much smaller than that of solid ice (Salo 1992, 1995, Kar-

jalainen and Salo 2001). Existence of moonlets is suggested also in Saturn’s F ring by Barbara

and Esposito (2002), who showed that a moonlet collision model can consistently reproduce the

localized brightenings seen in the Voyager images and during the ring plane crossing observa-

tions.

Unfortunately, observation of these hypothetical moonlets is quite difficult, because their

expected size is under the resolution limit of Voyager cameras (∼ 10 km), and because their

total cross section is much smaller than that of the smaller particles. Using ground based stellar

occultation observations, French and Nicholson (2000) estimated the upper limit for particle

radius in the Saturn’s A (and B) ring to be roughly 20m. However, a single power law dis-

tribution of particles sizes was assumed, which might not be applicable for moonlets made by

runaway growth (see Barbara and Esposito 2002). Hence, the existence of moonlets with size

of 100m–1km is still controversial.

If there are moonlets and the accretion of surrounding particles onto them continues, there

would be no rings in these regions. Thus, there needs to be some mechanisms which break these

moonlets, perhaps implying a balance between continuous accretion and breakup processes

(e.g., Weidenschilling et al. 1984). Other possibility is that large moonlets clear gaps around

them and thus avoid further accretion: the minimum size of a moonlet to be able to open a gap

is estimated to be roughly 1 km (Spahn and Sremčević 2000, Daisaka et al. 2001, Sremčević et
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al. 2002). Even in this case, one needs an explanation for why other particles do not continue

to form other stable moonlets.

Besides its internal density, the spin rate of a moonlet is an important factor affecting its

stability against the subsequent break up. Although there are many formulations related to the

so-called classical Roche Limit, a model of Harris (1996) is quite simple to understand. He

considered a solid, strengthless, spinning, and self-gravitating prolate ellipsoid and derived a

simple expression for the distance acrit inside which the disrupting centrifugal and tidal forces

overcome the self-gravitating force (see also Davidsson 1999),

acrit

R∗
=

(
2ρ∗/ρ

1/ f − (ω/ωc)2

)1/3

, (1)

where R∗ and ρ∗ are the radius and density of the planet, ρ is the density of the body, f ≥ 1 is

the axis ratio of the ellipsoid, ω is the spin frequency of the body, and ωc stands for the surface

orbit frequency of the body (ωc
2 = 4π/3Gρ). Eq. (1) suggests that an aggregate becomes more

easily unstable (acrit is larger) with an increased absolute value of the spin frequency.

Besides rotational instability, mutual collisions of moonlets offer a plausible mechanism for

their breakup (Barbara and Esposito 2002). Also in this case, the pre-impact spin state is an

important factor affecting the collision outcomes (Leinhardt et al. 2000).

Main factor to determine the spin rate of a moonlet, whether it is a strengthless aggregate or

a cohesive body having a non-zero yield strength, is likely to be the collisions and/or accretion

of surrounding particles. Also for the moonlets in gaps, like Pan in the Encke gap (Showalter

1991), their rotation is likely to be determined by accretion processes of small particles, since

the time scale to reach synchronous tidal locking is very long for such small bodies. If more

moonlets will be found, whether these reside in gaps or not, and their spin states can be clarified

(though it is questionable if this is possible even by the Cassini mission), this will help to con-

strain many physical parameters for the moonlets and small ring particles, such as the internal
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densities and the coefficient of restitution, by comparing with theoretically expected values.

There are many studies about the collisional evolution of spins of celestial bodies. A lot

of studies have addressed the problem of how planetary spins are determined by planetesimal

accretion, usually assuming a perfect accretion (e.g., Ida 1990, Lissauer and Kary 1991, Dones

and Tremaine 1993, Ohtsuki and Ida 1998). In the case of planetary rings, however, the accre-

tion probability of colliding particles becomes small due to the planetary tide (Ohtsuki 1993).

In this case, the spin rate of a moonlet is determined by inelastic rebounds of small particles,

including multiple hits of the same particle, possibly occurring with very small time intervals

(so-called “sliding phase”: see Petit and Hénon 1987, Wisdom and Tremaine 1988).

Salo (1987b) performed numerical simulations of the collisional evolution of ring particles,

including spins of particles (and thus also frictional force). He obtained ratios of the kinetic

energy of spin motions to that of the random motions, as well as determined the dispersion and

the mean spin of the particles, but only in the case where self-gravity of particles was neglected.

Also some theoretical calculations exist for the spin evolution of ring particles (Salo 1987a,

Araki 1991, Hämeen-Anttila and Salo 1993). According to these studies, the particles’ mean

spin acquires a nonzero vertical component, of about 0.3 times the orbital frequency, depending

only little on various parameters (optical depth, elasticity model), consistent with numerical

results in Salo (1987b). However, in these theoretical studies, self-gravity of particles was

included only approximately (the mean vertical gravitational field and the scattering by binary

encounters), so that the effects of accretion and multiple impacts were not included.

In subsequent local N-body simulations with self-gravitating particles by Salo (1995), some

runs included friction and spins of particles, and it was found that the vertical component of

the mean spin is much larger than the above theoretical expectation. Examples of aggregate

formation were also given in Salo (1995), but the longterm stability or spin evolution of aggre-
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gates was not studied in detail. The used local method, with periodic boundary conditions, is

not well suited for this purpose. Namely, if the conditions for aggregate formation are satisfied,

then most of the mass becomes rapidly contained in one or few aggregates, and there are little

further collisions by small particles, in comparison to a realistic ring where a continuous flow

of particles is supplied by the surrounding regions. Also, to study the subsequent evolution

of the aggregate in a realistic manner, the supply of new particles would need to correspond

to a non-perturbed ring region, violating the strict periodicity assumed in the code. Thus, the

existing local simulations (Salo 1992, 1995; Karjalainen and Salo 2003, in preparation) have

limitations in their relevance to the evolution of spin rates of the aggregates.

On the other hand, three body calculations provide an easier way to investigate the effects

of collisions and self-gravity of particles, at least in the low optical depth limit. In this case, the

flow of particles is a given Keplerian flow, and each particle-moonlet interaction is treated sep-

arately from all others. Using numerical calculations of three body problem, Petit and Hénon

(1987) examined the sliding phase and the evolution of the velocity dispersion of particles by in-

elastic collisions and gravitational encounters. However, they did not include friction nor spins

of the particles. Ohtsuki (1993) examined the capture probability of colliding particles with

various normal and tangential restitution coefficients. He did not consider spins of particles, in

other words, the particles were assumed to keep the synchronous rotation, with no exchange

of energy between random motions and spin motions. Thus, the evolution of spins was not

clarified.

In the present paper, conducting three body orbital integrations including spins and friction,

we examine the collisional evolution of spin rates of moonlets embedded in a swarm of smaller

particles. Actually, the method to obtain the final spin rates of moonlets is completely the same

as that to obtain the mean spin rate for a ring of identical particles, so that we can compare our
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results with those obtained by previous N-body simulations. We also calculate the capture prob-

ability of colliding particles, in a similar fashion as Ohtsuki (1993). Further, we also calculate

the sliding probability representing the rate of temporally (but not permanently) captured orbits.

Throughout our calculations, we compare the two different methods for treating collisions used

in Salo (1995).

Ohtsuki (2003a, b) also address the same topic of this paper, and his and our studies are

complementary to each other. Taking into account the Rayleigh distribution of orbital eccen-

tricities and inclinations of impacting particles, he estimated not only the systematic (averaged)

component but also the random component of the moonlet spin, which arises from the colli-

sions of large impactors; this is not considered in the present paper studying just the systematic

component. The reader is recommended to read these papers as well.

In the present study, we assume that the moonlet and colliding particles are spherical and

do not have surface irregularity, and that there is no sticking force between contacting bodies.

As a result, the sliding phase plays a significant role in determining the final spin of a moonlet.

Hence, we make a special effort to investigate the sliding phase as accurately as possible. It

should be noted, however, that the assumption of spherical particles without surface irregularity

is a highly idealized model. Hence, one should be careful when applying the results in the

present paper to realistic rings. Nevertheless, it is clear that one needs first to understand the

ideal case before continuing to the more realistic (and thus more complex) case.

In Section 2, we describe our methods for calculating collisions. In Section 3, we describe

the basic orbital behavior of particles in the sliding phase. In Section 4, we show the depen-

dence of the moonlet spin on various parameters, like the strength of gravity and friction. In

Section 5, we compare our results with those of Ohtsuki(2003a ,b), discuss briefly the stabil-

ity of rubble pile aggregates, and moreover compare our results with those obtained in earlier
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N-body simulations. Finally, our conclusions are given in Section 6.

2 METHODS

2.1 Hill’s Equations

Consider a moonlet experiencing collisions with surrounding ring particles and orbiting

around a planet. We examine the spin rate of the moonlet determined by the collisions of ring

particles, subject to the tidal field and the moonlet’s gravity. To describe the motion of these

bodies, we adopt the Hill’s approximation which assumes that the masses of the ring particles

and the moonlet are much smaller than the planet’s mass and that their random velocities are

much smaller than the Keplerian velocity around the planet. We adopt a rotating local Cartesian

coordinate with the origin at the center of the moonlet, with the x-axis pointing radially out-

ward from the planet, the y-axis pointing in the orbital direction, and the z-axis pointing in the

direction perpendicular to the orbital plane according to the right-hand rule. The equations de-

scribing the relative motion between a ring particle and the moonlet are given by Hill’s equation

(e.g., Petit and Hénon 1986, Nakazawa and Ida 1988):

ẍ = + 2ẏ + 3x − 3x
r3

ÿ = − 2ẋ − 3y
r3

(2)

z̈ = − z − 3z
r3
,

where r = (x2 + y2 + z2)1/2. The above equations are written in a non-dimensional form: time

is normalized by the inverse of the Keplerian angular velocity of the moonlet Ω−1, and length is

normalized by the Hill radius given by

RH = ah = a

(
m1 + m2

3M∗

)1/3

, (3)
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where a is the semimajor axis of the moonlet, h is the reduced Hill radius, M∗, m1, and m2 are

the masses of the planet, the moonlet, and the ring particle, respectively. In the following, we

use normalized quantities unless otherwise indicated.

[Figure 1]

The relative strength of the gravity to the tidal force of the planet is characterized by rp

parameter, defined as the sum of the radii of the moonlet and the particle, normalized by the

Hill radius. For Saturn’s rings,

rp = r1 + r2 = 0.77

(
Dρ

900 kg m−3

)−1/3 ( a
108 m

)−1 1 + (Dµ)1/3

(1 + µ)1/3
, (4)

where r1 and r2 are the physical radii of the moonlet and the small particle normalized by RH,

ρ is the internal density of the small particles, µ = m2/m1, and D denotes the volume filling

factor of the moonlet. The value ρ = 900 kg m−3 corresponds to the density of non-porous solid

ice, while the density of the aggregate, Dρ, may be smaller due to voids. Figure 1 illustrates

the dependence of rp on a for Saturn’s rings, for various values of ρ,D, and µ. We conduct our

calculations for a wide range of non-dimensional radii, 0.5 ≤ rp ≤ 2.0, covering well the tidal

environment in planetary rings.

When the ring particle is far from the moonlet and thus their mutual gravity is negligible,

the solution of Eq. (2) is given by the epicyclic motion,

x = b − e cos(t − τ)

y = −3
2

b(t − φ) + 2e sin(t − τ) (5)

z = i sin(t − λ),

where φ defines the origin of time (we choose φ = 0 and thus the possible impacts occur near

t = 0), b = (a2 − a)/RH stands for the impact parameter, i.e., difference in the initial semimajor
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axis (where a2 is the semimajor axis of the small particle), e = e∗/h, i = i∗/h for the reduced

eccentricity and the reduced inclination (where e∗ and i∗ are the eccentricity and the inclination

in the ordinary use), τ, and λ for the longitude of pericenter, and the longitude of ascending

node, respectively (see Nakazawa and Ida 1988 for details). We set the initial azimuthal distance

as |y0| = max(40, 20e) which is large enough for neglecting the mutual gravity. We mainly show

the results for the case of e = i = 0, but also discuss the cases with different values of e (≤ 3.5),

with fixed e/i = 2. This range of e covers well the plausible range of velocity dispersion

vr =
√

e2 + i2, since the escape velocity of the moonlet equals vesc =
√

6/rp; the e/i ratio

approximates that found in low optical depth rings dominated by gravitational encounters (Ida

1990, Ohtsuki 1999).

We numerically integrate Eq. (2) using a fourth-order variable time-step Runge-Kutta method

and calculate the torque exerted on the moonlet by the collisions of particles. When the parti-

cle is far enough from the moonlet, the typical time step is ∼ 10−2, whereas it is shortened to

∼ 10−4 near the moonlet in order not to miss any collisions. Details of treating the collisions

are explained in next subsection. Each orbital integration is continued until the particle goes far

away from the moonlet (|y| > |y0| with t > 0), or until the Jacobi energy E becomes negative, as

adopted in Ohtsuki (1993), where E is the energy integral of Eq. (2) given by

E =
1
2

(ẋ2 + ẏ2 + ż2) − 3
2

x2 +
1
2

z2 − 3
r
+

9
2
. (6)

Small particles colliding with the moonlet have initially positive values of E, but if E becomes

negative after some collisions the particle can not escape from the moonlet. Strictly speaking,

negative E does not always guarantee the capture, since we include the spins of small particles

and the additional pressure force at the time of impact. However, we find that an escape of a

particle after its Jacobi energy becomes negative is very rare, and therefore use the condition

E < 0 for the capture. It is clear that the capture is not possible if rp > 1, in which case all the
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points on the surface of the moonlet extend beyond the Hill’s surface (E > 0 even for a zero

relative velocity).

In order to obtain accurate results, we need to divide the orbital parameter space into a fine

grid. In the case of e = i = 0, we sample the impact parameter with ∆b = 0.003. In the case

of e � 0, we adopt ∆b = 0.1 and use divisions of τ and λ as (2π/∆τ, π/∆λ) = (40, 20). Using

these divisions of parameters, we find about a few hundreds and five thousands colliding orbits

in each parameter set for e = i = 0 and e � 0, respectively. Additional tests with a finner grid

indicate that our results are not significantly changed.

2.2 Treatment of Impacts

Two different methods are used in the calculations of impacts, following Salo (1995): in the

first method, the locations of impact points are searched and the corresponding instantaneous

velocity changes are calculated, whereas, in the second method, particle orbits are integrated

through impacts, including additional visco-elastic forces arising between the slightly overlap-

ping particle and moonlet. The latter method has significant advantages for N-body simulations

of dense self-gravitating systems (e.g., Salo 1995, Salo et al. 2001), although it uses more CPU

time relative to the first method in three body calculations. We briefly describe both methods in

the following.

In terms of the relative velocity u = (ẋ, ẏ, ż), the velocity difference u at the contact point is

given by

u = u − rp(ωp − N) × n, (7)

with

ωp =
r1ω1 + r2ω2

rp
, (8)
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where n is the unit vector pointing to the direction of the center of the small particle, ω1,

ω2, ωp are the spin angular velocity vector of the moonlet, that of the small particle, and the

averaged spin vector in the inertial (not rotating) co-ordinate system, respectively, and N is the

unit vector in the z direction. Note that in Eq. (7), ωp − N represents the spin vector in the

rotating co-ordinate system and that the components of the inertial spin vector ωp need to be

expressed with respect to the instantaneous axis directions of the rotating system. Therefore,

the equatorial components of ωp change even between collisions as

dωp

dt
= ωp × N. (9)

(1) Instantaneous impact model

In the first method, the post-collisional velocity difference u′ is given by (Salo 1987a,

Richardson 1994)

u′ = −εnun + εtut, (10)

where εn and εt stand for the normal and tangential restitution coefficients (εt = 1 corresponds

to a frictionless impact: note that our εt was denoted by (1 − β) in Salo 1987a and by (1 − εt)

in Salo 1995, respectively), and un = (u · n)n and ut = u − un are the normal and tangential

components of the pre-collisional velocity difference at the contact point, respectively.

The changes of the relative velocity and the spin vectors are derived from the conservation

of linear and angular momentum as

u′ − u = −(1 + εn)un − α

1 + α
(1 − εt)ut, (11)

rpω
′
p − rpωp =

1
1 + α

(1 − εt)n× ut, (12)

where u′ and ω′p are the relative velocity and the averaged spin vector after the impact, respec-

tively, and α is the effective moment of inertia of the colliding pair, whose moments of inertia

13



are J1 = α1m1R1
2 and J2 = α2m2R2

2, defined by

1
α
=

m1m2

m1 + m2

(
1

m1α1
+

1
m2α2

)
. (13)

In what follows, we assume that both the particle and the moonlet have a homogeneous internal

mass distribution, so that α1 = α2 = α = 2/5. Changes in the spin velocity of the moonlet r1ω1

and in the spin velocity of the small particle r2ω2 are obtained by multiplying Eq. (12) with

µ/(1 + µ) and 1/(1 + µ) , respectively. Thus, the collision outcome for an arbitrary mass ratio µ

can be obtained by one orbital calculation.

If we find overlapping of the small particle and the moonlet during the integration, we go

back one step, to the time before the impact, and analytically estimate the location and velocity

of the impact using a second-order Taylor expansion for the particles’ mutual separation. Then

changing the velocity and the spin vectors following Eqs. (11) and (12), we extrapolate the

position and velocity to the end of this time step, and continue the integration with the Runge-

Kutta method. If we simply change the velocity after finding an overlap, without using the

above way for correcting to the more accurate impact time, this easily leads to an error that the

particle sinks deeper into the moonlet.

In the sliding phase, we set εn to unity if the perpendicular component of impact velocity is

smaller than un,crit = 0.01, as adopted in previous studies (Wisdom and Tremaine 1988, Ohtsuki

1993, Salo 1995). We find that we can not exclude errors caused by sinking of the small particle

into the moonlet without this treatment. Note, however, that the efficiency of friction depends

on un,crit (see Appendix A).

(2) Force model

In this method, the normal force exerted between the overlapping particle and the moonlet is

given by the linear visco-elastic model of Dilley (1993), and the tangential force is also included.
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The additional translational acceleration u̇add arising between the overlapping, colliding pair is

modeled as

u̇add = −ξ̈(n− α

1 + α
�f nt), (14)

with

ξ̈ =


−ω2

0ξ − ξ̇s , (ξ ≥ 0),

0 (ξ < 0),
(15)

where ξ = rp−|r| is the penetration depth, �f denotes the coefficient of friction, and nt = ut/|ut| is
the unit vector pointing in the tangential direction. In the above, ω0 is the undamped frequency

of the harmonic impact force, and s is the characteristic time of damping, respectively. The

equation for averaged spin motion is given by

d(rpωp)

dt
= − 1

1 + α
�f ξ̈n× nt, (16)

where α is the factor defined in Eq. (13). Note that the spin evolution of the moonlet and the

small particle can be obtained by multiplying with the same mass coefficients as in the case of

Eq. (12).

The attractive characteristic of the linear force model is that the parameters ω0 and s can

be tied to the normal restitution coefficient εn, and the duration of the impact (Salo 1995). The

solution of Eq. (15) for ξ ≥ 0 is given by

ξ =
ξ̇(0)
ωm

e−t/2s sin (ωmt), (17)

where ωm is the modified frequency given by

ωm =

√
ω2

0 − 1/(2s)2. (18)

Using the above equations, the normal restitution coefficient is described as

εn = − ξ̇(π/ωm)

ξ̇(0)
= e−π/2ωm s, (19)
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where the impact starts t = 0 and finishes t = π/ωm. We adopt ω0 = 200, which is the same

value as used in Salo (1995). In fact, the impact duration (∼ TK/(2ω0) where TK(= 2π) is the

orbital period) derived from this value of the frequency is much longer than realistic collision

time (< 1 sec, in the dimensional form), but we checked that results do not differ from those

obtained by using a higher value of ω0. This scaling of the impact duration to be longer than

the physical impact duration is very convenient as it allows the use of larger integration steps.

After ω0 is fixed, the damping parameter s is determined by the desired εn via Eqs. (18) and

(19).

If we include the gravity term 3/r2
p from Eq. (2) into Eq. (15), a constant term 3/(rpω0)2 is

added to the solution Eq. (17). Note that this term is generally negligible for the first hit of each

particle. However, when the normal component of the impact velocity is reduced by several

impacts, the gravity term can become significant, and Eq. (19) becomes a wrong description

for εn since the solution of ξ remains slightly positive, which means the sliding phase. This is

the one of fundamental differences from the instantaneous method, in which the sliding phase

is always described by a sequence of small impacts. However, as in this case no energy is lost

via inelasticity, this corresponds to setting εn = 1 in the instantaneous impact method when

un < un,crit.

The other important difference is the way of describing friction. Comparing the normal and

tangential components of velocity change in each impact for both impact models, the relation

between the friction coefficient �f and the tangential restitution coefficient εt is given by

�f =
(1 − εt)
(1 + εn)

|ut|
|un| . (20)

Thus, if εt is constant �f can not be a constant and vice versa, and either one should have an

impact-angle dependence. The laboratory experiments of ice particle collisions by Supulver

et al. (1995) showed that the value of εt is about 0.9 for glancing 1cm sec−1 impacts, also
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suggesting that εt becomes smaller for more perpendicular impacts. This seems to be consistent

with �f rather than εt being constant. Unfortunately, since they did not clearly show the impact-

angle dependence of ice particle collisions (they only showed that for rubber ball collisions),

we do not know how accurately �f is constant; there is also a possibility that neither �f nor εt is

independent of impact angle. In any case, experiments by Supulver et al. (1995) suggest that

the value of �f is small (< 0.1).

Taking into account the above uncertainties we think that it is worth compare both methods,

with a range of different friction parameters, and study the differences in the implied spin states

in the rings. It should also be noted that for the initial impact in each encounter, the average

value of |ut|/|un| is expected to be about unity, whereas in the sliding phase this value becomes

much larger than unity. Therefore, if εt is constant, the strength of friction (∝ (1 − εt)) in the

sliding phase is strongly overestimated compared with the case of �f being fixed.

In numerical integrations using the force model, we find that a large relative error occurs in

ut when |ut| ∼ 0, in which case the numerical time step is automatically shortened too much.

This follows from the discontinuity of tangential force at |ut| ∼ 0. In order to avoid this discon-

tinuity, we replace nt = ut/|ut| by ut/ut,crit if |ut| < ut,crit = 0.001. However, the results are not

sensitive to the exact choice of ut,crit.

2.3 Method for Obtaining the Equilibrium Spin Rate

Using the two types of impact methods described above, we calculate the torque exerted

on the moonlet by the collisions of small particles. This is obtained by evaluating the spin

change ∆ωp in each orbital integration and averaging it over all impacting orbits. In the case

that the particle escapes from the moonlet, this change is obtained simply from the difference

between the final and initial ωp. However, if the small particle is captured, we put the final spin

17



velocity as ωp = N, instead of using the instantaneous value at the time when the numerical

integration is terminated. This treatment is justified, as N-body experiments indicate that the

captured particles eventually accumulate at the the subplanet points (x, y, z) = (±rp, 0, 0), with

u = u = 0, which according to Eq. (7) implies ωp = N.

Conducting the calculations with various initial spin rates ωp,ini, we determine the equilib-

rium spin rate ωp,eq for which the averaged torque vanishes (〈∆ωp〉 = 0). It should be noted

that the equatorial components of the averaged torque must vanish when ωp,ini,x = ωp,ini,y = 0,

because of the symmetry of the distribution of impacting particles with respect to z and ż, so

that we only need to consider the z-component of the averaged torque. In the following, we

omit the subscript z from the z components of spins, in order to avoid complicated expressions

(e.g., ωp,eq ≡ ωp,eq,z).

In the equilibrium state, the following equation is satisfied,

rpωp,eq = r1〈ω1〉 + r2〈ω2〉 (21)

where 〈ω1〉 and 〈ω2〉 represent the averaged spin angular velocities of the moonlets and the

incoming particles (consider averaging over a lot of moonlets independently surrounded by

small particles, or equivalently, time averaging about one moonlet). If there are enough mutual

collisions between small particles, 〈ω2〉 is expected to be less than unity (e.g., Salo 1987b), and

as we show later ωp,eq is also of order of unity. Thus, if we consider the case r1 � r2, the

second term in the right hand side of Eq. (21) is negligible, so that we can treat ωp,eq itself as the

equilibrium (or time averaged) spin rate of the moonlet 〈ω1〉. On the other hand, if we consider

collisions of identical particles (r1 = r2 and 〈ω1〉 = 〈ω2〉), one can immediately find that ωp,eq

represents 〈ω1〉 also in this case. Thus, we can also check our 3-body results by comparing with

N-body simulations of identical particles.
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3 SLIDING PHASE

[Figure 2]

Before studying the dependence of the equilibrium spin rate on various parameters like the

strength of gravity and friction, we describe the typical orbital and spin evolution, focusing on

the sliding phase. Figure 2 shows (a) an example of colliding orbit including the sliding phase

and (b) the corresponding evolution of physical quantities as functions of time, obtained by the

instantaneous impact model. After some large rebounds, the particle in Fig. 2 starts to slide on

the moonlet in the retrograde direction (θ̇ < 0, where we adopt cylindrical co-ordinates (r, θ);

(x, y) = (r cos θ, r sin θ)), as seen in the rotating frame. During the sliding phase, the relative

tangential velocity at the contact point, uθ = rθ̇ − rp(ωp − 1), remains small because the spin

rate more or less compensates the rotation rate (ωp − 1 � θ̇). This happens unless the friction

strength 1 − εt (or �f for the force model) is too small. The Jacobi integral E oscillates due to

the exchange between the spin energy and the translational kinetic energy, but on the average E

decreases with time due to frictional energy loss. With decreasing E, the time averaged value of

θ̇ increases. Finally, the sliding direction around the moonlet switches to the prograde direction

(θ̇ > 0), after that the particle escapes from the moonlet almost immediately. It should be noted

that the spin experiences a large jump shortly before escape. Qualitatively same results are

obtained also when using the force model, or with different strengths of friction.

3.1 Analytic Solution for Sliding Motion

The basic behavior in Fig. 2 can be easily understood by the analytical solution of the sliding

phase, derived by Petit and Hénon (1987). Introducing cylindrical co-ordinates and neglecting

19



friction, the equation of motion in the two-dimensional case is written as

r̈ = rθ̇2 + 2rθ̇ + 3r cos2 θ − 3
r2 + γ

θ̈ = −2ṙ
r (θ̇ + 1) − 3

2 sin 2θ,
(22)

where γ denotes the radial acceleration due to the pressure force between contacting particles.

In the sliding phase, r ≈ rp, and thus ṙ = r̈ = 0. Therefore we need only study the behavior of θ

with time. Multiplying Eq. (22) by θ̇ and integrating, we obtain

θ̇ = ±
√

3 cos2 θ + C, (23)

where the constant of integration C is related to the Jacobi integral as C = 2(E + 3/rp − 9/2)/r2
p.

If C is positive, the solution corresponds to a retrograde (θ̇ < 0) or prograde (θ̇ > 0) revolution

around the moonlet. If C is negative (but C > −3), it describes an oscillation around θ = 0 or π,

θ̇ obtaining both negative and positive values. In Fig. 2, C is positive at first, which corresponds

to E > 0.75, and the particle revolves around the moonlet in a retrograde direction. After C

becomes negative, the type of motion is changed. If the gravity is sufficiently strong so that

the particle can keep its sliding motion, it starts to oscillate on the moonlet. But in the case of

Fig. 2, the particle escapes practically immediately after C becomes negative.

This escape can be understood by estimating the radial acceleration. Substituting Eq. (23)

into Eq. (22), the condition for maintaining the sliding phase (r̈ < 0 for γ = 0) is written as

6 cos2 θ +C ± 2
√

3 cos2 θ + C <
3

r3
p
. (24)

The left hand side attains its maximum when θ = 0 or π. Thus, putting C = 0, the condition for

keeping retrograde rotation around the moonlet becomes

rp < rp,1 =

(
3

6 − 2
√

3

)1/3

= 1.058. (25)
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On the other hand, the condition for maintaining the sliding phase after the type of motion is

changed from retrograde rotation to the oscillation is given by

rp < rp,2 =

(
3

6 + 2
√

3

)1/3

= 0.682. (26)

Since the value of rp = 0.8 of Fig. 2 is between these two limiting values, the sliding phase can

be maintained during retrograde rotation, but not after the sign of θ̇ becomes positive, leading

to an escape. It should be noted that Eqs. (25) and (26) are the conditions for the particle not to

separate from the moonlet, whereas separation does not always result in escape. In practice we

find that in order to actually escape from the moonlet after retrograde evolution, the value of rp

must be larger than about 0.76 (this is almost independent of the strength of friction), which is

slightly larger than rp,2.

In Appendix A, we explain the effect of the friction on the sliding phase in detail, including

analytical estimates for the energy dissipation.

3.2 Contribution of Sliding Orbits to Averaged Torque

[Figure 3]

Next we study what fraction of particles in the parameter space experience the sliding phase,

and how they affect the equilibrium spin rate of the moonlet. Figures 3a and 3b show the final

values of the spin change ∆ωp and the Jacobi integral E, as functions of b, respectively, obtained

by using the instantaneous impact model. Adopted parameters are the same as those in Fig. 2.

It can be easily recognized that the final spin changes are much larger than those obtained due

to first impacts for b = 1.85–2.0 and for b = 2.2–2.45. These orbits experience a cascade

of consecutive impacts, that is, the sliding phase, and finally escape from the moonlet. The

occurrence of the sliding phase is also confirmed by the final value of E which is smaller than
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that corresponding to C = 0. From these results, it is expected that the equilibrium spin rate

ωp,eq is much larger than that obtained by considering only the first impacts, because of the

sliding orbits.

As we showed in Fig. 2, uθ becomes very small during the sliding phase unless the strength

of friction is too small. Thus, the spin in the sliding phase is approximately given by ω p−1 � θ̇.
From Eqs. (23) and (24), the condition for the particle to escape from the moonlet is found as

2θ̇2 + 2θ̇ − C > 3/r3
p. Thus, the value of θ̇ at the time of escape, θ̇esc, is given by

θ̇esc �
−1 ±

√
1 + 2(C + 3/r3

p)

2
, (27)

where the sign of θ̇esc is always positive in the case of e = i = 0. The value of C at the time

of escaping depends on the history until the escape. If the particle initially revolves around

the moonlet in a retrograde direction, C decreases gradually, so that the value of C at the time

of escaping is roughly 0. This leads to θ̇esc = ∆ωp = 1.28 for the parameters used in Fig. 3

(rp = 0.8 and ωp,ini = 1.0). This value of ∆ωp is roughly consistent, although slightly larger than

that shown in Fig. 3. This overestimation is due to approximationsωp−1 � θ̇ and C = 0. In fact,

the latter approximation is bad especially for orbits with b = 1.85 − 2.0, since they loose much

energy by large inelastic rebounds, and do not experience any retrograde revolution around the

moonlet. It should be noticed that there also exist some captured orbits (E < 0) for b � 1.9: for

these orbits ∆ωp = 0.

4 EQUILIBRIUM SPIN RATE OF MOONLETS

Now we study the equilibrium spin rate of the moonlet. If the averaged spin change 〈∆ωp〉
is positive, the torque exerted on the moonlet is also positive so that the spin rate of the moonlet

increases and vice versa. With changing the initial spin rate ωp,ini, we can obtain the equilibrium
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spin rate ωp,eq for which the torque vanishes (〈∆ωp〉 = 0 ). The collision rate Pcol(e, i) of small

particles per unit surface number density onto the moonlet is given by (e.g., Ida and Nakazawa

1989)

Pcol(e, i) =
∫

pcol(e, i, b, τ, λ)
3
2

bdb
dτdλ

(2π)2
(28)

where pcol = 1 for collision orbits and otherwise 0. Using this collision rate, the averaged final

spin is given as

〈∆ωp〉(e, i, ωp,ini) =
1

Pcol

∫
∆ωp(e, i, b, τ, λ, ωp,ini)pcol(e, i, b, τ, λ)

3
2

bdb
dτdλ

(2π)2
. (29)

We assume that distributions of small particles with respect to b, τ, and λ are uniform.

[Figure 4]

Figure 4 shows an example of the averaged spin change 〈∆ωp〉 as a function of the initial

spin rate ωp,ini. The instantaneous impact method was used, with the same parameters as used

in Fig. 3: e = i = 0, rp = 0.8, εt = 0.9, and εn = 0.5. We obtain the equilibrium spin rate

ωp,eq ≈ 1.8 at the zero point, by a linear interpolation using the nearest two points. In the same

manner, we obtain the equilibrium spin rate also in other cases. In most of the cases, there is

only one equilibrium solution. However, there are a few special cases which have two stable

equilibrium solutions (see Appendix B).

As shown in Section 3.2 (see Fig. 3), the equilibrium spin rate is affected by the fraction of

sliding and captured orbits relative to the total number of collision orbits. Therefore, to help

to understand the dependence of the spin rate on various parameters, we define the capture

and sliding probabilities. For the capture probability Ccap the definition introduced in Ohtsuki

(1993) is used:

Ccap(e, i, ωp,ini) =
1

Pcol

∫
pcap(e, i, b, τ, λ, ωp,ini)

3
2

bdb
dτdλ

(2π)2
, (30)
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where pcap is 1 for collision orbits with final E < 0, and otherwise 0. In order to define the slid-

ing probability in the same manner, we need an exact definition for sliding orbits. In the present

paper, we treat orbits with tslid > tlim and final E > 0 (thus excluding orbits that eventually are

captured) as sliding orbits, where tslid and tlim are the total duration of the sliding phase and the

limiting time, respectively. The sliding phase corresponds to |c · u| < vcrit for the instantaneous

model and to ξ > 0 for the force model. We adopt the limiting time as t lim = π/(2
√

3) ∼ 0.9,

which corresponds to the quarter of the period of infinitesimal oscillation around the subplanet

points (see Eq. (38)). Using this definition of sliding orbits, the sliding probability C slid is given

by

Cslid(e, i, ωp,ini) =
1

Pcol

∫
pslid(e, i, b, τ, λ, ωp,ini)

3
2

bdb
dτdλ

(2π)2
, (31)

where pslid is 1 for sliding orbits and otherwise 0.

Further, we define the averaged spin changes for sliding and non-sliding orbits, which are

also helpful for understanding the following results. The averaged spin change of sliding orbits

〈∆ωp〉slid is defined as

〈∆ωp〉slid(e, i, ωp,ini) =

∫
∆ωp(e, i, b, τ, λ, ωp,ini)pslid(e, i, b, τ, λ, ωp,ini)3

2bdbdτdλ
(2π)2∫

pslid(e, i, b, τ, λ, ωp,ini)3
2bdbdτdλ

(2π)2

. (32)

Replacing pslid by pnon−slid, which is 0 for sliding (and also for captured) orbits and otherwise

1, the averaged spin change for non-sliding orbits 〈∆ωp〉non−slid can be obtained in the same

manner.

4.1 Dependence of Spin Rate on rp

[Figure 5]
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Figure. 5a shows the equilibrium spin rate ωp,eq as a function of rp for the case εn = 0.5 and

e = i = 0. We compare the results for four different cases: for two different impact methods with

two different strengths of friction (εt = 0.5 and 0.9 for the instantaneous impact method, and

�f = 0.1 and 0.4 for the force method, respectively). To aid understanding of this figure, we also

show the equilibrium spin rate obtained by considering only the first impact of each particle

with the moonlet, as would be appropriate in the case of instantaneous sticking. In addition,

Fig. 6 shows the sliding and capture probabilities. For the case of large enough rp (∼ 2.0), the

colliding particles escape immediately after the first impact, so that the equilibrium spin rate

is almost the same as that obtained by the first impacts only. Further more, this value is very

close to the theoretical value 1/4 obtained for the zero random velocity case when neglecting

the mutual gravity and thus also multiple impacts and the possible sliding phase and/or capture

(Salo 1987a, Ohtsuki 2003a, b)

On the other hand, although the obtained equilibrium spin rate depends on the impact

method and the strength of friction, the equilibrium spin for rp ∼ 1 is much larger than that

promoted by first impacts only. This follows because significant fraction of colliding particles

experiences the sliding phase which enhances the torque, as we showed in Fig. 3. For rp > 0.8,

the sliding probability increases with decreasing rp, and also, θ̇esc and ∆ωp of the sliding orbits

increase (see Eq. (27)). Hence, the equilibrium rotation rate increases with decreasing rp. For

rp < 0.7, most of the colliding orbits are captured, and there are no sliding orbits. It means that

all of the colliding orbits which experience a sliding phase longer than t lim are captured finally.

Thus, the equilibrium spin rate is mainly determined by captured orbits and almost equals the

synchronous rotation rate.

As compared with Ohtsuki (1993), our capture probabilities for the cases of rp = 0.7 and

0.75 are significantly larger. Since friction was not included in his numerical calculations,

25



the Jacobi energies of the sliding orbits remained constant during the sliding phase. Thus,

some of the orbits were able to continue their sliding motions indefinitely with positive Jacobi

energies, and therefore were not counted as captured orbits in his paper. Since we include

friction, however, the Jacobi energies of these orbits can decrease during the sliding phase and

become finally negative. Hence, our capture probabilities become larger than those in the case

without friction. For the case of rp ≤ 0.6, the capture probabilities in the present paper are well

consistent with those in Ohtsuki (1993). This suggests that for small rp Jacobi energies of the

colliding particles become typically negative already before they start the sliding motion.

4.2 Dependence on the Collisional Method and Friction

[Figure 6]

An interesting feature seen in Fig. 5 was that whereas for the force model an increased

strength of friction leads to larger ωp, the opposite was true for the instantaneous impact model,

giving ωp,eq(εt = 0.9) > ωp,eq(εt = 0.5). This is further illustrated in Fig. 6, showing the

equilibrium spin rate ωp,eq as a function of 1 − εt (for the instantaneous impact model) and �f

(for the force model,) in the case of e = i = 0, rp = 1.0, and εn = 0.5. One of the most important

characteristics of this figure is that ωp,eq obtained by the instantaneous model is generally larger

than that by the force model. Also, ωp,eq seems indeed to have a peak around 1−εt = 0.1 for the

instantaneous impact model whereas ωp,eq increases monotonically with �f for the force model.

[Figure 7]

In order to understand the difference between the impact methods, we examine the depen-

dences of the characteristics of sliding and non–sliding orbits on the impact method and the

strength of the friction. Figure 7a and 7b show 〈∆ωp〉slid and 〈∆ωp〉non−slid as functions of 1 − εt
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and �f, for the parameter values of Fig. 6. We compare the results for two different values of

ωp,ini = 0.5 and 1.5, the equilibrium spin rate falling between these values. If we assume, like in

Sec. 3.2, that C = 0 and uθ = rp(θ̇ − (ωp − 1)) = 0 (corresponds to strong friction) at the time of

the escape after the sliding phase, then 〈∆ωp〉slid should be about 1.32 and 0.32 for ωp,ini = 0.5

and 1.5, respectively. Indeed, when the strength of friction is increased, 〈∆ωp〉slid becomes close

to these estimated values. For the case of weaker friction, ωp is less enhanced at the time of

escape, since the spin rate can not adjust quickly enough to keep uθ ∼ 0, resulting in smaller

〈∆ωp〉slid. Thus, if the spin evolution of moonlet were determined only by sliding orbits, the

equilibrium spin rate ωp,eq would increase with increasing the strength of friction. On the other

hand, 〈∆ωp〉non−slid becomes smaller with increasing friction for ωp,ini � ωp,eq. Also in the case

of force model, similar trends of 〈∆ωp〉slid and 〈∆ωp〉non−slid are seen.

Thus, the strength of friction for which the largest value of ωp,eq is obtained is determined by

the balance between these two contributions. For the instantaneous impact model, ωp,eq attains

maximum for 1 − εt � 0.1, for which value the contribution to the torque from non-sliding

particles is small whereas 〈∆ωp〉slid is large. For the force model, the increase of 〈∆ωp〉slid with

�f is stronger, and ωp,eq simply becomes larger with increasing friction, the contribution of non-

sliding particles being less important.

It is also evident from Fig. 7 that the smaller value of ωp,eq for the force model in comparison

to the instantaneous model is due to a typically smaller value of 〈∆ωp〉slid. In the force model, the

strength of friction is proportional to the mechanical pressure between the slightly overlapping

small particle and moonlet. Hence, the effect of friction is diminished immediately before

escaping, which induces a smaller value of ωp at the time of escape, and thus, leads to smaller

ωp,eq.
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4.3 Dependence on εn

[Figure 8]

Although the normal coefficient of restitution is an important parameter affecting the orbits

of small particles, ωp,eq is insensitive to εn, unless εn is close to unity, or unless the effect of

friction is very strong. This can be seen in Fig. 8 where we plot ωp,eq as a function of εn,

comparing the same four different cases as in Fig. 5. We also show the sliding probability

which is found to depend strongly on εn. If the effect of friction is weak, ωp,eq is determined

almost solely by sliding orbits even if their fraction is not so large. Since the value of 〈∆ωp〉slid

does not change so much for different values of εn, ωp,eq is insensitive to εn. However, if

friction is strong enough, the contribution from non-sliding orbits becomes important, so that

ωp,eq decreases with decreasing sliding probability. If εn is close to unity, most particles escape

after the first rebound, and there are only few sliding orbits. Therefore ωp,eq becomes small,

being practically identical to that obtained by considering just the first impacts, shown in Fig. 5.

However, the case of εn close to unity is of a limited interest, as in this case the expected velocity

dispersion is so high that no formation aggregates is expected (Salo 1992, 1995).

In the present paper, we assume that εn is constant, although generally it is expected to

depend on the impact velocity. Typical collision velocity of small particles onto the moonlet is

likely to be at least of the order of rp. In dimensional form, this velocity corresponds to � 0.1 cm

s−1 for moonlets with 10m radii in Saturn’s outer A ring. According to laboratory experiments

of collisions between ice particles with frosted surfaces, the value of εn for this impact velocity

is about 0.5 (Bridges et al 1984), whereas εn is about 0.8 for impacts with frost-free surfaces

(Supulver et al 1995). For the latter case, one can find that the enhancement of spin rates by

sliding orbits is less effective from Fig. 8. However, if we consider 100m-sized moonlets, thus

impacts with � 1 cm s−1, εn is smaller than 0.5 regardless of the surface conditions. In this case,
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the equilibrium spin rate is almost the same as for a fixed εn � 0.5

4.4 Dependence on the Random Velocity

So far, we have discussed the results only for the case e = i = 0. However, if there are large

aggregates in rings, the random velocity of small particles, vr =
√

e2 + i2, is enhanced due to

gravitational scatterings by these aggregates. The magnitude of the velocity may depend on the

abundance of moonlets, as well as on the optical depth of the ring. If aggregates are common,

vr is expected to be of the order of the escape velocity of these aggregates, vesc =
√

6/rp. On

the other hand, if there are only few moonlets and the optical depth is large, then the energy

dissipation in the mutual collisions of small particles between the encounters with the moonlets

is likely to reduce vr to a much smaller value than vesc. For the case of identical particles without

aggregates, vr is also expected to be near the escape velocity of the small particles, although the

exact value depends on collisional parameters such as εn (Salo 1995, Ohtsuki 1999).

[Figure 9]

Figure 9 shows ωp,eq as a function of e, for a fixed ratio e/i = 2, in the case of rp = 1.0,

εt = 0.9, and εn = 0.5. Note that e = 2.19 corresponds to vr = vesc in this case. In the

figure, ωp,eq decreases monotonically with e. In order to understand this result, we also plot the

sliding probability Cslid and the averaged spin change of sliding particles 〈∆ωp〉slid for the case

ωp,ini = 1.0. As shown by Fig. 7a, the contribution to the torque from non-sliding orbits is found

to be insignificant for the case εt = 0.9, so we focus on the properties of sliding orbits. The

figure indicates that Cslid decreases with e, though it varies very little for e < 1.5. The decrease

of Cslid may reduce the ωp,eq. However, a more important point is that 〈∆ωp〉slid decreases with

e, suggesting that sliding particles can escape with a much smaller value of θ̇ than that in the
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two-dimensional case (Eq. (27)). Thus, it is this three dimensional effect which significantly

reduces the equilibrium spin rate. Nevertheless, we find that the spin rate is still enhanced by

sliding orbits even for a large e.

[Figure 10]

Figure 10a shows ωp,eq as a function of rp for the case of vr = vesc, e/i = 2, and εn = 0.5.

We compare the results for the same four different friction cases as studied in Fig. 5, which was

for vr = 0. Further, in Fig. 10b, we plot Ccap + Cslid and Cslid for the corresponding parameters

of Fig. 10a. Compared with the case of e = i = 0, now ωp,eq is smaller for all rp, and also

Ccap + Cslid becomes smaller. For rp ≤ 0.7, ωp,eq is almost unity because of the captured orbits,

regardless of the friction strength. For larger rp, ωp,eq decreases with rp and depends on the

friction strength. For 0.7 < rp < 1.2, the dependence of ωp,eq is similar to that in the case of

vr = 0: ω is larger for the instantaneous impact model than for the force model. Also, as in

Fig. 5, ωp,eq(εt = 0.9) > ωp,eq(εt = 0.5), and ωp,eq(�f = 0.4) > ωp,eq(�f = 0.1). Since the value of

rp in most parts of the Saturn’s rings is considered to be within the above range, the spin rates of

embedded moonlets might constrain the physical parameters, if these rates can be determined

by observations. For rp > 1.2, ωp,eq is about the same as or slightly smaller than that obtained

by considering first impacts only (we confirmed that if we use εn � 1, ωp,eq is more accurately

consistent with that by first impacts).

5 DISCUSSION

5.1 Comparison with Ohtsuki (2003a, b)

Ohtsuki (2003a, b) also address the topic of this paper, and his and our studies are comple-

mentary to each other. Taking into account the Rayleigh distribution of orbital eccentricities
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and inclinations of impact particles, he estimated not only the systematic component but also

the random component of the moonlet spin, which arises from the collisions of individual large

impactors, not considered in our paper. In Ohtsuki (2003a), he obtained analytic results for the

non-gravitating limit, and in Ohtsuki (2003b), based on the numerical orbital integrations, he

showed the results for a large range of velocity dispersions but mainly for rp = 1, and found a

good agreement with the analytic results for the high-velocity limit.

In the case of e = i = 0, we confirmed that our equilibrium spin rate for rp = 1, εn = 0.5,

and εt = 0.9, is consistent with his results (ωp,eq � 1.4), and that our equilibrium spin rate

approaches to his analytic result (ωp,eq = 1/4) with increasing rp (note that the self-gravity

becomes negligible for large rp: see Fig. 4). For the three dimensional case with e/i = 2, he

used velocity dependent εn (Bridges et al. 1984), and the effective value of εn is larger than

0.5 with his assumed moonlet size (1m). Therefore, the direct comparison with our results is

difficult. However, our equilibrium spin rate for large rp is roughly consistent with his analytic

result (ωp,eq = 0.3665: see Fig. 11). He found that the equilibrium spin rate taking into account

the Rayleigh distribution of e and i is roughly equal to the value obtained with a fixed e provided

that the fixed e � 〈e2〉1/2. Thus, our results for the case of e/i = 2 obtained with neglecting

the eccentricity distribution may give reasonable estimates even for the general case with a

distribution of e and i.

He also found that the effect of the random component on ωp,eq can be significant if the

velocity dispersion is as large as the escape velocity and the large impacts are common. In this

case, slow rotation of the moonlet in both prograde and retrograde direction would be possible.

These large collisions would also be destructive if the moonlets are rubble-pile aggregates as

we will discuss below.
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5.2 Stability of Moonlets

Here we discuss the stability of rotating moonlets with a zero internal strength (rubble pile

aggregates). The acceleration toward the center of the aggregate at the subplanet points is given

by (Harris 1996)

g =
3
r2

p

− rpω
2
p − 2rp, (33)

where the first, second, and third term represent self gravity, centrifugal force, and tidal force,

respectively. Note that dimensionless quantities defined in Sec. 2 are used: e.g. the spin rate is

normalized by the Keplerian angular velocity. This equation also follows from Eq. (22), with

g = −r̈, evaluated for r = rp with θ̇ = ωp − 1. If g is positive, a spherical aggregate is stable, as

all other locations in its surface feel a weaker disrupting effect than that in the subplanet points.

In local N-body simulations, performed for various distances and internal densities of parti-

cles, aggregate formation takes place for rp < 0.6–0.7 (Salo 1995, Karjalainen and Salo 2003 in

preparation). Strictly speaking, this result corresponds just to the onset of aggregate formation:

due to limitations mentioned in Introduction, the actual fate and stability of the aggregates has

not been evaluated, as the simulations so far performed lack the effect of continued collisions

and accretion of particles arriving from adjacent unperturbed ring regions. In principle, this

subsequent evolution might endanger the stability of the aggregates, if for example their spins

would be strongly excited. However, based on the results of the current study this seems not

probable: for the typical case of vr = vesc, the equilibrium spin rateωp,eq we found is smaller than

the synchronous rotation rate for all rp’s (see Fig. 10), whereas according to Eq. (33), the rota-

tional instability would require ωp greater than 1.96, 1.45, 1.0 for rp = 0.8, 0.9, 1.0, respectively

(see Fig. 11)

On the other hand, for the case of vr = 0, ωp,eq may attain values larger than unity, espe-

cially for the instantaneous impact model with εt ∼ 0.9 (see Fig. 5). In this case also g may

32



become positive for some parameter values. Such a small velocity dispersion could in principle

be achieved if the random velocities of small particles are sufficiently damped by their mutual

collisions between encounters with moonlets. This special situation, that a few moonlets would

form in a ring that is otherwise stable against aggregate formation, might happen if the density

of moonlets (or maybe their cores) is significantly larger than that of the other particles. Nev-

ertheless, even for vr = 0, if rp is smaller than about 0.8, the moonlets are always stable (see

Fig. 11).

There are also other important effects which tend to break the aggregates. One is their

elongated shape. Generally, aggregates forming in N-body simulations do not have a spherical

shape but are elongated in the radial direction due to planetary tide (for example, see Fig. 17

of Salo, 1995). Then, the gravity term becomes about 1/ f times smaller than that for the

spherical case given by Eq. (33) (Harris 1996; see also Eq. (1)), assuming that the aggregate

is a prolate body with a long/short axes ratio f . For example, using f = 2 (as suggested by

Fig. 17 of Salo, 1995), the stability criterion for a synchronously rotating aggregate becomes

rp < 0.79, which is a much more stringent condition than rp < 1 for a spherical aggregate

(Fig. 11). Even in this case, typical aggregates with rp < 0.7 should remain rotationally stable,

unless ωp is significantly larger than unity. Nevertheless, the spin rates for elongated moonlets

have not been calculated in the present study, and the possibility remains that ωp promoted by

impacts and accretion could be significantly different from that for a spherical case. Another

related factor not considered in the present study is the effect of surface irregularities: clearly, a

rubble pile aggregate can hardly be expected to have a smooth surface. In the non-gravitating

case, such irregularities, or deviations from a regular shape, might promote larger spin rates,

as suggested by theoretical studies and simulations (Salo 1987a,b). On the other hand, if we

include the mutual gravity, irregularities might prevent particles from sliding on the moonlet,
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which will reduce the spin rate of the moonlet. Therefore, it is uncertain if these effect promote

larger spin rates or not, and further studies are required.

Other important effect limiting the growth of aggregates may be the mutual collisions be-

tween large aggregates (Barbara and Esposito 2002). Since the value of rp is larger for equal-

sized particles, these collisions themselves are destructive, and also they can significantly ac-

celerate the spin rates of the aggregates, which may lead to a rotational instability.

5.3 Comparison of Spin Rates with N-body Simulations

As formulated in Sec. 2.3, the equilibrium spin rateωp,eq also corresponds to the z-component

of the mean spin rate for a collisional ring system of identical particles.

The case in N-body simulations to which we can directly compare our three-body results

are the systems with small optical depth and rather large rp-value, thus excluding cases where

gravitational wakes or aggregates form. Toyama (2001) (and personal communication with K.

Ohtsuki) conducted local N-body simulations for the case of rp = 1.0 and τd = 0.005, where

τd denotes the optical depth. He used the instantaneous impact method with εn = 0.5, and

examined the dependence of the mean spin 〈ωz〉 on εt. In the equilibrium state, the values of

〈ωz〉 that he found were about 0.60 and 0.45 for εt = 0.9 and 0.5, respectively. Our results in

Fig. 10 for vr = vesc and rp = 1.0 indicate that ωp,eq = 0.65 and 0.58 for εt = 0.9 and 0.5,

respectively. Thus, our results are consistent with his, the small differences being due to the fact

that the actual equilibrium random velocity is slightly larger than the mutual escape velocity

(〈e2〉1/2 � 2.5 in Toyama (2001), in comparison to e = 2.19 for vr = vesc). The agreement was

further confirmed by some additional N-body simulations performed with the instantaneous

impact method used in Salo (1995). For the above parameters, but utilizing more particles

(N = 500) and longer duration (Tdur = 1000TK) (N = 255 and Tdur = 200TK in Toyama 2001),
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these new simulations gave 〈ωz〉 = 0.56±0.03 and 0.55±0.05 for εt = 0.9 and 0.5, respectively.

Using data obtained by three body calculations and assuming an isotropic Gaussian distribution

of vr (which is roughly consistent with a Rayleigh distribution of e and i), we also calculated

the spin rates for the same values of the root mean square of vr as given by these N-body

calculations, yielding about 0.60 and 0.57, respectively. Thus, besides confirming the validity

of Toyama (2001) results, this agreement also shows the mutual consistency of our N-body and

three-body calculations, performed by entirely different codes and methods.

In Salo (1995) some simulations for the identical particle case included particle spins and

friction. The main difference to Toyama (2001) is that these simulations were performed for

a larger optical depth. The adopted distance a = 108m and internal density ρ = 900kg m−3,

correspond to rp = 1.22 for an identical particle pair (µ = 1 in Eq. (4)), and to rp = 0.77

for µ = 0. Using the instantaneous model with εn = 0.5 and εt = 0.5, it was found that

〈ωz〉 = 0.66±0.09 for τd = 0.4. For the case of such a high τd, gravitational wakes form and the

total velocity dispersion of the system, measuring largely the relative movement of wakes, was

much larger than the mutual escape velocity. However, in the wakes, the orbital elements of

nearby particles are aligned and the relative velocity inside them remains significantly smaller,

still corresponding to almost the mutual escape velocity of individual particles (Salo, 1995,

Daisaka and Ida 1999). Thus, we compare the results of these N-body simulation with our

present calculations for vr = vesc (Fig. 10). Our results shows that 〈ωz〉 � 0.4 for rp = 1.2, which

is much lower than that obtained in Salo (1995). There are at least two possible explanations

for this discrepancy. One is that distribution of direction and velocity of impacts is modified in

wakes, whereas we assume a uniform distribution of orbital elements (τ, λ, and b; see Sec. 4).

Other possibility is that wakes act like particle clumps, so that the effective value of rp becomes

smaller for collisions between the clumps and individual particles. Note that 〈ωz〉 increases with
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decreasing rp. For example, if we assume that the wakes can be treated as clumps containing

100 individual particles, then using µ = 0.01 and D = 0.7 in Eq. (4) would give rp = 1.03.

According to Fig. 10, this would already indicate 〈ωz〉 � 0.6. However, a detailed analysis of

collisions in wakes is required, in order to actually determine which explanation, if either of the

above, is valid.

Richardson (1994) also conducted simulations with almost same conditions as in Salo (1992,

1995), adopting a distribution of particle sizes. He found that 〈ωz〉 is between about 0.2 and 0.4.

This is a number-averaged value for all the particles, so that it actually represents the mean value

for the smallest particles. On the other hand, 〈ωz〉 becomes larger for larger particles, and 〈ωz〉
of the largest particles was as large as that obtained in Salo (1995) (see Table 2 of Richardson

1994). This size dependence is in principle simple to explain by the vr dependence of ωp,eq: the

equilibrium spin rate ωp,eq decreases with vr (Fig. 9). Because of the partial energy equiparti-

tion, smaller particles have a larger random velocity dispersion than the larger ones. Moreover,

difference of the normalized velocity vr is even more pronounced. Therefore, 〈ωz〉 is expected to

be larger for larger particles. Again, a more detailed analysis of N-body experiments is needed.

6 CONCLUSION

Conducting three body integrations including friction and spins, we have determined the

equilibrium spin rate ωp,eq normalized by the orbital angular velocity. The equilibrium spin rate

corresponds to the spin rate of the moonlet in a equilibrium state if the moonlet is much larger

than other particles, and also corresponds to the mean spin rate in a ring system with identical

particles.

We have found that ωp,eq is enhanced by sliding orbits as compared with the mean spin

rate determined by considering first impacts only. For the case of zero random velocity, ωp,eq
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becomes larger than unity for rp ∼ 1.0 in some range of strength of friction. With increasing

the relative random velocity, ωp,eq decreases. If the relative random velocity is as large as the

mutual escape velocity, ωp,eq is lower than unity for rp ∼ 1.0, but its value is still larger than that

obtained by first impacts. For rp < 0.7, captures happen after some collisions, by which ωp,eq

becomes almost unity for all the cases of collisional parameters.

Based on the obtained data of the equilibrium spin rate, we have discussed stability of rubble

pile aggregates. If the relative random velocity of incident particles is small enough, aggregates

become rotationally unstable for 0.8 < rp < 1.0 in some limited cases of the strength of fric-

tion. However, it might be rather special situations and aggregates are stable for larger random

velocity. There might be other mechanisms which break aggregates such as collisions between

large aggregates.

Compared with the mean spin velocities obtained by N-body simulations including spins,

we have found a good agreement with our results if the optical depth adopted in N-body simula-

tions is small enough. On the other hand, for the large optical depth case, in which gravitational

wakes form, the simulated mean spin velocity is much larger than that predicted by our results.

There are some plausible explanations for this discrepancy, but further studies are required to

clarify which one is correct.

The next paper in this series will extend our studies to larger optical depths with various

size distributions of ring particles, using local N-body simulations. Especially, the dispersion

of spin rate, which has not been examined in the present paper, will be very important, for the

interpretation of the infrared observation data that will be obtained in the Cassini mission (e.g.,

Spilker et al. 2002).
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Appendix A: Effect of Friction on Sliding Motion

[Figure 12]

If the particle initially slides in a retrograde direction around the moonlet, the time scale

of remaining on the moonlet for the particle is determined by the dissipation rate of C (thus

E) in the case of rp,2 < rp < rp,1. Figure 12 shows the dependence of the duration of the

sliding phase on the strength of friction, 1 − εt and �f, for the two different impact methods,

with parameter values fixed to those in Fig. 2. This figure shows that the duration of the sliding

phase has a minimum (corresponds to maximal energy dissipation rate) around 1 − ε t ∼ 0.01

for the instantaneous impact model and around �f ∼ 0.1 for the force model. On the other

hand, the duration of sliding becomes longer for both stronger and weaker friction. Small

energy dissipation in the case of weak friction is quite natural. On the other hand, how can we

understand the small energy dissipation for the case of strong friction? Apparently, if friction

is strong enough, the spin velocity quickly adjusts so that the tangential component of relative

velocity remains small during the sliding phase, resulting in small energy dissipation.

It is possible to estimate analytically the value of εt leading to strongest energy dissipation.

Including friction and spins, the equations of motion in the sliding phase are, from Eqs. (11)

and (12), and Eqs. (14) and (16), given by

d2θ

dt2
= −β

(
θ̇ − (ωp − 1)

)
− 3

2
sin 2θ, (34)
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dωp

dt
=

5
2
β
(
θ̇ − (ωp − 1)

)
. (35)

Here, β represents the strength of interaction between the small particle and the moonlet, defined

by

β =


2
7ν(1 − εt) (Instantaneous impacts),

−2
7

ξ̈�f
|θ̇ − (ωp − 1)| (Force model),

(36)

where ν = g/(2un,crit) represents the collision frequency in the instantaneous impact model,

with g = 3/r2
p − rpθ̇

2 − 2rpθ̇ − 3rp cos2 θ, which is of order of unity in the retrograde revolution

if rp � 0.8. Assuming that β is constant and using Eqs. (23) and (34), we obtain the equation

describing energy dissipation as

dC
dt
=

2
r2

p

dE
dt
= −2βθ̇

(
θ̇ − (ωp − 1)

)
. (37)

It is rather complicated to derive the general solutions for θ and ωp, but if we consider in-

finitesimal oscillation (|θ| � 1) around θ = 0, an approximative solution can be easily obtained.

Though this is not the exact solution describing evolution around the moonlet, it helps to under-

stand the dependency of energy dissipation on β. As we showed in Fig. 2, the basic motion of

the particle is dominated by the potential, even if there is friction, suggesting that friction can

be treated as a small perturbation. In the case the infinitesimal oscillation, the basic motion is

given by

θ̇ = c1 cos
√

3t, (38)

where we have chosen the initial phase angle to be zero and c1 is the amplitude of the oscillation.

Substituting this solution into Eq. (35), we obtain

ωp − 1 = c1
2.5β

2.52β2 + 3

(
2.5β cos

√
3t +

√
3 sin

√
3t

)
+ c2e−2.5βt, (39)

where c2 is an integration constant determined by the initial conditions. In the above, the expo-

nential term becomes small after a certain time, so we neglect this term. Substituting Eqs. (38)
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and (39) into Eq. (37), and averaging over one oscillation period, we obtain

∫ 2π/
√

3

0

dC
dt

dt = −c2
1

2π√
3

3β
2.52β2 + 3

. (40)

This has the maximum absolute value when β =
√

3/2.5.

Using this value let us calculate the most effective value of εt. In the case of infinitesimal

oscillation around θ = 0, g = 3/r2
p − 3rp, equal to 2.3 for rp = 0.8. Since we use un,crit = 0.01 in

the instantaneous impact model, the collision frequency ν = g/(2un,crit) = 115. In this case, the

most effective energy dissipation is obtained for 1 − εt = 0.02. This estimate is consistent with

the results in Fig. 12, although a bit larger than obtained in orbital integrations. Experiments

with other values of un,crit also confirm the validity of the above approximative treatment.

Unfortunately, it is impossible to derive an analytic solution of the most effective value of � f

for the force model, because β can not be treated as a constant. But as suggested by Fig. 12, the

dependence of energy dissipation on the strength of friction is qualitatively similar to that for

the instantaneous impact model. One interesting feature is that the duration of the sliding phase

increases drastically around �f ∼ 0.25.

Appendix B: Multiple solutions for ωp,eq

[Figure 13]

Figure 13a shows a figure similar to Fig. 4 except for the case of rp = 1.2 instead of 0.8.

It is noticeable that there are two equilibrium slutions ωp,eq = 0.43 and 1.05 (see also Fig. 5).

This phenomenon is caused by the change of orbital behavior around ωp,ini = 1.0. Figure 13b

shows orbits of particles for two different values of ωp,ini = 0.8 and 1.2, respectively. The

particle starts the sliding motion with the retrograde direction. If ωp,ini is larger than about

1.0, the small particle can not go beyond the highest potential point (x, y) = (0, 1.2), and it
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changes its sliding direction to the prograde and escapes after that. On the other hand, for

smaller value of ωp,ini, the orbit continues sliding phase with the retrograde direction beyond

the highest potential point and separates from the moonlet near the subplanet point, hitting the

moonlet again before escaping. In the former case of orbits, the spin change ∆ωp becomes large,

due to the sliding phase in the prograde direction, whereas this does not happen for the latter

case. Same phenomenon occurs also for other b’s. Hence, the average value 〈∆ωp〉 changes

significantly around ωp,ini = 1.0. Similar transitions of orbital behavior are found for other

parameters if rp ∼ 1.2. For example, if we use εt = 0.5 and same other parameters as in

Fig. 13b, transition of the orbit behavior happens around ωp,ini = 0.4. However, this value is

much smaller than ωp,eq so that this transition does not affect for obtaining ωp,eq. Also for the

case of force model, similar transitions are found, but the contribution to the torque from the

sliding orbits themselves are not so significant for rp = 1.2. Anyway, this phenomenon happens

only in very limited cases, and thus does not have a physical significance.
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Figure captions

Figure 1. Dependence of the rp parameter on the semimajor axis a for Saturn’s rings, with

various values of the mass ratio µ, the volume filling factor of the moonlet D, and the internal

density of particles ρ. The locations of main rings are also shown. If the aggregate is composed

of identical particles, the typical volume filling factor found in N-body simulations is about 0.7,

very close to the maximum packing limit of identical spheres, π/(3
√

2) = 0.74 (Salo 1995). In

the case of size distribution, D can reach even 0.8.

Figure 2. (a) A typical example of a collision orbit including a sliding phase, shown in the

rotating Hill frame, for the case of e = i = 0, b = 2.3, rp = 0.8, and ωp,ini = 1.0. The method

of instantaneous velocity change in impacts is used with εn = 0.5 and εt = 0.9. Note that

the particle performs several tens of retrograde revolutions around the moonlet, as seen in the

rotating frame, before the final escape. (b) Corresponding evolution of various quantities as a

function of time (normalized by the orbital period TK(= 2π)). In order from the top panel, the

spin rate ωp, the angular velocity of mutual revolution θ̇, the relative tangential velocity at the

contact point including the spin velocity uθ = rθ̇ − rp(ωp − 1), and the Jacobi integral E are

shown, respectively.

Figure 3. Final values of the spin change ∆ωp (solid curve in the upper panel) and the Jacobi

integral E (solid curve in the lower panel), as a function of b. The case with e = i = 0, rp = 0.8,

ωp,ini = 1.0, εn = 0.5, and εt = 0.9 is studied. A dashed curve in the upper panel represents

the change of spin after the first impact: if it overlaps with the final value of the spin change,

it means that this orbit leads to an escape immediately after the first rebound, whereas orbits

which experience the sliding phase have much larger final spin changes than those obtained

due to first impacts. A horizontal dot-dashed line in the lower panel represents the value of E
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corresponding to C = 0. Note that the final values of C for orbits with the sliding phase are

negative (E < 0.75 for rp = 0.8).

Figure 4. Averaged spin change 〈∆ωp〉 (symbols) as a function of ωp,ini, together with a cor-

responding linear fit, in the case of e = i = 0, rp = 0.8, εn = 0.5, and εt = 0.9. The equilibrium

spin rate of the moonlet, for which 〈∆ωp〉 = 0, corresponds to 1.81.

Figure 5. (a) The equilibrium spin rate of the moonlet as a function of rp in the case of

εn = 0.5. Four different cases are shown: two different impact methods with two different

strength of friction: εt = 0.5 and 0.9 for the instantaneous method, and �f = 0.1 and 0.4 for

the force method, respectively. The equilibrium spin rate obtained by considering only the first

impacts is also shown. The statistical errors estimated by simulations using different grids in

the impact parameter b (but with the same ∆b), are smaller than the size of each mark. For

rp ∼ 1, the equilibrium spin rate is enhanced by particles experiencing the sliding phase, while

for rp < 0.7, ωp ∼ 1 due to the captured orbits. Two stable equilibrium solutions exist around

rp = 1.2 for εt = 0.9: the lower values are represented by the dashed curve. (b) Capture and

sliding probabilities corresponding to parameters of (a), but only for ε t = 0.9 (these probabilities

are almost independent of the impact method and the strength of friction). The dashed curve

shows the capture probability obtained in Ohtsuki (1993) for the frictionless case with εn = 0.5

Figure 6. Dependence of the equilibrium spin rate ωp,eq on the strength of the friction 1 − εt

and �f for the two different impact methods. The used parameters are rp = 1.0 and εn = 0.5.

Figure 7. (a) The averaged spin change for sliding (〈∆ωp〉slid: solid curves) and non–sliding

orbits (〈∆ωp〉non−slid: dashed curves) as a function of 1 − εt, shown for two different values of
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ωp,ini = 0.5 and 1.5. Instantaneous impact method is used. Indicated values 1.32 and 0.32 are the

theoretical maximum values of the averaged spin change for ωp,ini = 0.5 and 1.5, respectively

(see Eq. (27)). (b) Same as (a) but using the force method.

Figure 8. Dependence of ωp,eq on εn for the case of e = i = 0 and rp = 1.0. Four different

cases are shown: εt = 0.5 and 0.9 for the instantaneous method, and �f = 0.1 and 0.4 for the

force method, respectively. The sliding probability for the case of εt = 0.9 and ωp,ini = 1.0

(dashed curve) is also shown (being almost similar for all four cases and for different ωp,ini).

Figure 9. Dependence of ωp,eq on the reduced eccentricity e, with a fixed ratio e/i = 2. The

instantaneous method is used with εt = 0.9, εn = 0.5 and rp = 1.0. The averaged spin velocity

for sliding orbits and the sliding probability for the case of ωp,ini = 1.0 are also shown, as well

as the spin rate obtained if only first impacts are used. The equilibrium spin rate decreases with

increasing e, since the enhancement by sliding orbits becomes less effective.

Figure 10. (a) Same as Fig. 5 but for the case of non-zero random velocity, vr = vesc, with

e/i = 2. Error bars are shown only for εt = 0.9 and �f = 0.1. The equilibrium spin rate is much

smaller than that for e = i = 0, but is still enhanced by sliding orbits as compared with the spin

rate obtained by first impacts, for rp ∼ 1. (b) Capture and sliding probabilities corresponding to

parameters of (a) with ωp,ini = 1.0.

Figure 11. The minimum spin rate required for the rotational instability of a strengthless

aggregate as a function of rp parameter, for the case of f = 1 (dashed curve) and f = 2 (dotted

curve). The equilibrium spin rates ωp,eq for the case of vr = 0 and vesc (solid curves) obtained by

using the instantaneous method with εt = 0.9 are also shown. The smaller value of vr and the
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larger value of f make the moonlet more unstable.

Figure 12. Dependence of the duration of the sliding phase on the strength of friction, mea-

sured by 1− εt in the instantaneous impact model, and by �f in the force model. Values of other

parameters are the same as those in Fig. 2. The longer duration of the sliding phase corresponds

to a smaller energy dissipation rate.

Figure 13. (a) Same as Fig. 4 but for the case of rp = 1.2. Note that there are two stable

equilibrium spin rates, ωp,eq = 0.43 and 1.05. (b) Examples of orbits with different values of

ωp,ini = 0.8 and 1.2, in the case of rp = 1.2, e = i = 0, b = 2.4, εt = 0.9, and εn = 0.5.
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Figure 1. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 2. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 3. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 4. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 5. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 6. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 7. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 8. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 9. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 10. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 11. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 12. — Morishima and Salo, Spin rates of moonlets in rings
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Figure 13. — Morishima and Salo, Spin rates of moonlets in rings
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