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Chapter 14
Dynamics of Saturn’s Dense Rings

Jürgen Schmidt, Keiji Ohtsuki, Nicole Rappaport, Heikki Salo, and Frank Spahn

Abstract The Cassini mission to Saturn opened a new era
in the research of planetary rings, bringing data in unprece-
dented detail, monitoring the structure and properties of
Saturn’s ring system. The question of ring dynamics is to
identify and understand underlying physical processes and
to connect them to the observations in terms of mathematical
models and computer simulations. For Saturn’s dense rings
important physical processes are dissipative collisions be-
tween ring particles, their motion in Saturn’s gravity field,
their mutual self-gravity, and the gravitational interaction
with Saturn’s moons, exterior to or embedded in the rings.

The importance of the rings’ self-gravity became strik-
ingly clear from the identification of gravitational wakes in
Cassini data nearly everywhere in the A and B rings. Self-
gravity wakes imply that the rings are in a flat, dynamically
cold state, ring particles colliding very dissipatively, being
densely packed in the ring plane, continuously forming tran-
sient gravitationally bound opaque clumps, that are disrupted
again by shear on the orbital timescale. Current mathemati-
cal dynamical models usually treat self-gravity in an approx-
imate manner, which does not lead a wake state.

The dense packing of ring particles, in turn, strongly in-
fluences the collisional dynamics, since the mean free path
of the particles is then comparable to or smaller than the par-
ticle size. This leads to a strong nonlocal component of pres-
sure and momentum transport, which determines the viscous
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evolution of the rings, the damping of density waves, as well
as the stability properties of the ring’s flow. A strong non-
local contribution to viscosity is, for instance, favorable for
viscous overstability, leading to axisymmetric waves of about
100 m wavelength. Such wavelike perturbations in the ring’s
opacity, consistent with overstability, are seen in Cassini stel-
lar and radio occultations.

A classical topic of ring dynamics is the interaction of
moons and rings. On the one hand, there are exterior moons
with resonances in the rings, creating numerous density and
bending waves. With the large sets of Cassini occultation and
imaging data, improved estimates of the ring surface mass
density and viscosity are obtained from fits of the observa-
tions to dynamical models. On the other hand, the embedded
moons Pan and Daphnis open the Encke and Keeler gaps,
respectively, and moonlets in the rings, too small to open
a circumferential gap, are found to produce a characteristic
propeller structure.

Comparison between theoretical studies and Cassini ob-
servations of thermal emission from the rings provides con-
straints on spin rates of ring particles, which are otherwise
not directly observable. The size distribution of particles and
small moonlets embedded in the rings, together with the
observed shapes and internal densities of small moons just
exterior to the rings, underline the importance of accretion
and fragmentation for the dynamical evolution of Saturn’s
ring system.

14.1 General Theory and Recent Advances

In this section we outline elements of the theoretical mod-
elling of dense planetary rings. We start with a basic de-
scription of the physical processes that crucially influence the
steady state properties of the rings – dissipative collisions and
shear – and discuss the importance of the elastic properties
of ring particles. Section 14.1.3 then gives an introduction to
self-gravity in Saturn’s rings.
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14.1.1 Steady-State of a Dense
Non-gravitating Particle Disk

The dynamics of an unperturbed planetary ring consisting of
macroscopic particles is basically determined by inelastic bi-
nary particle collisions and the shearing motion in the gravi-
tational field of the central planet. In this section we discuss
how these processes determine the energy budget of a dense
planetary ring.

14.1.1.1 Dissipative Collisions

Inelastic physical collisions of the ring particles continu-
ously dissipate energy from the particles’ random motion.
The dissipation can be quantified by the normal coefficient
of restitution "n, defined as the ratio of the post-collisional
to pre-collisional normal component of the relative velocity
of the colliding particles1. Particles will collide with an im-
pact speed on the order of the velocity dispersion c of the
ring so that the kinetic energy (per unit mass) dissipated in a
single collision can be estimated as c2

�
1 � "2n

�
. The rate of

collisional energy loss is then

@c2

@t

ˇ̌
ˇ̌
loss

/ ��cc
2
�
1 � "2n

�
(14.1)

with the collision frequency �c . In dilute planetary rings
(where c � D�, with the dominant particle diameter D),
we have

�c � 3��; (14.2)

with Kepler frequency �.r/ DpGMplan=r3 (angular veloc-
ity on a circular orbit at distance r from a planet of mass
Mplan, where G is the gravitational constant). This expres-
sion does not depend on the velocity dispersion, although
in principle �c / nspaceD

2c, where nspace is the ring par-
ticles’ space number density. The explicit c dependence can-
cels out, however, since the space density for a given � is in-
versely proportional to c, due to collisional coupling between
horizontal and vertical motions. For very flattened systems
(c � D�) the impact frequency can exceed significantly the
value implied by Eq. 14.2 (Salo 1992b).

14.1.1.2 Shear Stress

In viscous shear flow, energy is transferred from the sys-
tematic motion to the random motion of the particles. There
is a transport of angular momentum (related to this energy

1 In addition, kinetic energy may be lost in surface friction, reducing the
tangential relative velocity between colliding particles and transferring
energy of random motions into the particles’ spin and vice versa. For
simplicity we restrict the discussion here on normal restitution.

transfer), i.e. momentum in flow direction is transported per-
pendicular to the flow. In a system of particles with finite
diameter D there are two different modes of transport, local
and nonlocal, both connected to collisions and coupling to
the shear rate.

In a local frame rotating at distance r0 around the planet
with Kepler frequency �.r0/, the Keplerian orbital velocity
reads v D Œ� .r/ ��.r0/
 r . Introducing x D r � r0 this
may be approximated as

v D �3
2
� .r0/ x CO

h
.x=r0/

2
i

(14.3)

and the shear rate s reads

s � @v

@x
D �3

2
� .r0/ : (14.4)

The rate of gain of kinetic energy (per unit mass) is given by
the kinematic viscosity � and shear rate s as

@c2

@t

ˇ̌
ˇ̌
gain

/ �s2 (14.5)

Local Shear Viscosity

Local shear stress is connected to the particles’ radial random
motions (Fig. 14.1a). This kind of momentum transport is la-
beled ‘local’ since it is not necessary to distinguish the parti-
cle positions in a collision. Let an imaginary line L separate
the flow radially into an inner and outer region (Fig. 14.1).
When particles cross the line between collisions (Fig. 14.1a)
they carry across the line the mean momentum per particle of
the ring region they come from. Since (due to shear) the mean
velocity at the new position is slightly different, the particles
have, on average, a small amount of excess momentum with
respect to the surrounding particles, which is transferred to
the flow in the subsequent collisions. In this way, neighbor-
ing ring regions are effectively coupled by a drag force: The
inner part of the ring tends to accelerate the outer part, and
vice versa.

For the local kinematic shear viscosity Goldreich and
Tremaine (1978c) derived the formula

�l D c2

�

�

1C �2
: (14.6)

For large optical depth �l / 1=� , which is reminiscent of the
density dependence � / 1=¡ of hydrodynamics (Chapman
and Cowling 1970). For low optical depth we have �l / � .
This deviation from the hydrodynamic density dependence
results from the motion in the central gravity field: In a dilute
system the radial excursions of a particle are limited by the
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Fig. 14.1 Left panel: Velocity profile of the ring in a local frame
co-rotating at distance r0 from the planet. The X-axis points radially
outward, the Y-axis in the direction of orbital motion. Right panel: Typ-
ical particle paths and collisions. (a) Momentum transport across the

(dashed) imaginary line L by a crossing particle (local transport). (b)
Particle moving on an epicycle (no transport). (c) Momentum transport
across L in a collision (nonlocal transport)

epicyclic length (Fig. 14.1b), which reduces the momentum
transport / £.

Non-Local Shear Viscosity and Pressure

In a dense collisional system the mean free path is on the or-
der of the particle dimensions and the momentum transferred
by a collision (Fig. 14.1c) over the distance of one particle
diameter is important. Describing this process statistically
(Shukhman 1984; Araki and Tremaine 1986), the positions
of particle centers in a collision must be distinguished, and
hence the corresponding stress is labeled nonlocal.

From mean-free path arguments the nonlocal kinematic
shear viscosity can be estimated to be on the order of
(Shukhman 1984)

�nl D �D2�: (14.7)

Consider the transport of momentum across the dashed line
in Fig. 14.1, counting only binary collisions where particle
centers are on opposite sides of the line (Fig. 14.1c). The
number of particles crossing the line per unit length and unit
time is roughly J D .¢=m/ c, with surface mass density ¢
and particle mass m. To count only those particles actually
intersected by the line, we multiply this particle flux density
by the factor D=l , where l is the mean free path l D c=�c .
The maximal momentum transported over a radial distance
of one particle diameter is �p D mDs. Given the (verti-
cally integrated) shear stress by Pxy D J�p and identifying
it with the hydrodynamic relation Pxy D ��nl s, we obtain
Eq. 14.7. The significance of nonlocal viscosity for planetary
rings was first pointed out by Brahic (1977). Similar argu-
ments lead to an order of magnitude estimate for the non-
local (vertically integrated) pressure as

pnl D ��c�D: (14.8)

Total Shear Viscosity and Pressure

Summing up the local and non-local viscosities we obtain

�

�D2
D k1

� c

�D

	2 �

1C �2
C k2�; (14.9)

with constants k1; k2, and with the local pressure p D �c2

we obtain the total pressure

p=�

.�D/2
D
� c

�D

	2 C c

�D
�: (14.10)

14.1.1.3 Steady State and Thermal Stability

Summing up the cooling (Eq. 14.1) and heating (Eq. 14.5)
rates one obtains the energy budget of the ring particle en-
semble

@c2

@t
D s2

�
k1
c2

�

�

1C �2
C k2�D

2�

�
� k3��

�
1 � "2n

�
c2

(14.11)

where k1; k2; k3 are positive dimensionless constants (e.g.
Stewart et al. 1984; Morishima and Salo 2006). For a ve-
locity independent coefficient of restitution this equation has
the fixed point solution

�
c�

�D

�2
D k2 .s=�/

2
�
1C �2

�

k3
�
1 � "2n

�
.1C �2/ � k1 .s=�/2

(14.12)

which is stable for

"n < "crit D
s
1 � k1

k3

.s=�/2

1C �2
(14.13)
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Fig. 14.2 Theoretical thermal stability boundary "crit.�/, from
Hämeen-Anttila (1978); Goldreich and Tremaine (1978c), who used
different approximations in the evaluation of the collision integrals.
Also shown are effective steady-state values of "n from two series
of simulations, performed with velocity-dependent coefficient of resti-
tution: upper points correspond to a ‘hot’ simulation with velocity
dispersion c >> D� (this dilute ‘mass-point’ limit approximates the
assumptions behind the theoretical curves), while the lower points cor-
respond to simulations performed with the Bridges et al. (1984) elas-
ticity formula. The average ©n in simulations is measured by weighting
each impact with the square of the normal component of impact veloc-
ity, < "nvn2 >=< vn2 >. Redrawn from Salo

and unstable otherwise. This critical value "crit was first de-
rived by Goldreich and Tremaine (1978c) and an equivalent
expression (Fig. 14.2) was given by Hämeen-Anttila (1978).
In systems with constant "n < "crit the particles establish
a thermal equilibrium mainly due to the non-local viscous
gain. This steady state corresponds to a flattened system with
a geometric thickness of a few particle diameters only and
a velocity dispersion c � �D. For "n > "crit the local vis-
cous gain always dominates the dissipation, no energy bal-
ance can be achieved, and the system inevitably disperses
via continuously growing random velocities. With increas-
ing £ the reduced mean free path between impacts limits the
local viscous gain and "crit increases (Fig. 14.2). For rough
particles tangential friction adds to the dissipation and "crit is
shifted closer to unity (Shukhman 1984; Araki 1988).

For realistic materials "n is a decreasing function of im-
pact velocity (Fig. 14.3), or, on average, of velocity dis-
persion. In this case the stability behavior of Eq. 14.11
is different. Systems with "n .c/ > "crit will heat up, so
that "n .c/ decreases until an equilibrium of collisional en-
ergy loss and viscous gain is established (Goldreich and
Tremaine 1978c). Due to non-local shear stress, however,
this equilibrium value of "n .c/ is generally smaller than "crit.
Only mass point systems (D ! 0) can establish "n .c/ D
"crit. The exact value of the steady-state velocity dispersion

Fig. 14.3 The normal coefficient of restitution from theoretical mod-
els (black curves) and measurements for frosty ice particles (radius
2.75 cm, red curve) by Bridges et al. (1984) and larger ice particles with
compacted frost surface-layers (radius 20 cm, green curve) by Hatzes
et al. (1988). The triple-dotted dashed curve shows results from visco-
elastic models including adhesion (Albers and Spahn, 2006) and the
thick solid curve is derived from an extension of this model (Brilliantov
et al., 2007). The dashed curve is from a visco-elastic model (Brilliantov
et al., 1996)

is determined by the dependence of "n on v, and, at least in
principle, a ring’s configuration can range from a thick mul-
tilayer of particles to a near monolayer ring. In the latter case
the steady-state is in practice indistinguishable from the case
of constant "n < "crit.

14.1.1.4 Mechanical Properties of Particles

The coefficient of restitution of ice particles was deter-
mined experimentally at the low temperature and pressure
appropriate for the planetary ring environment. The labo-
ratory measurements by Bridges et al. (1984) and Hatzes
et al. (1988) indicated that the normal restitution coefficient
"n decreases monotonically with the normal component of
impact speed vn, as required for thermal balance of the ring
(Section 14.1.1.3). Measurements yielded the dependencies
(Fig. 14.3)

"n .vn/ D .vn=vc/
�0:234 ; .frosty/ (14.14)

"n .vn/ D 0:90 expf�0:22 �vn=1 cm s�1�g
C0:01 �vn=1 cm s�1��0:6; .smooth/: (14.15)

Relation 14.14 was widely used in computer simula-
tions of planetary rings. It was obtained for frosty ice
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spheres of radius 2.75 cm (Bridges et al. 1984) with vc D
0:0077 cm s�1 .� vB/ and it corresponds to fairly inelastic
impacts, or, to very flattened rings. The relation 14.15 was
obtained for ice particles (radius 20 cm) covered by a com-
pacted frost layer (Hatzes et al. 1988). We have chosen this
formula from the results of Hatzes et al. (1988) to display the
effect of more elastic particles in the following.

The functional dependence "n .vn/ is sensitive to the
surface properties of the particles. Higa et al. (1996, 1998)
measured "n for a much wider range of impact velocities (1–
1000 cm s�1). They found that fracture of the ice ball occurs
and "n decreases significantly when vn is larger than a critical
value. Experiments with glancing collisions showed that tan-
gential velocities are decreased by about 10% for collisions
at vn � 0:1 cm s�1 (Supulver et al. 1995).

Impact experiments under micro-gravity suggest that
normal and tangential rebound velocities are significantly
smaller if ring particles are covered by regolith (Colwell and
Taylor 1999; Colwell 2003). If ring particles are covered by
a frost layer cohesive forces may even cause sticking of col-
liding particles at low-velocity impacts (Hatzes et al. 1991;
Bridges et al. 1996; Supulver et al. 1997).

Considerable effort has been invested to derive theoreti-
cal expressions for the restitution coefficient. Dilley (1993)
proposed an empirical damped oscillator model to describe
dissipative collisions, which can be tuned to reproduce, for
instance, the experimental results for the Bridges et al. (1984)
velocity-dependence of "n, as well as the mass-dependence
determined in later experiments (Dilley 1993; Dilley and
Crawford 1996). Brilliantov et al. (1996) generalized the
nonlinear elastic collision model by Hertz (1882) to the

case of visco-elastic dissipation. Adjusting one single pa-
rameter, characterizing the viscous properties of the par-
ticle, the model reproduces the measurements of Bridges
et al. (1984) fairly well (Fig. 14.3). Albers and Spahn (2006)
included cohesive forces between elastic solids in contact
(Johnson et al. 1971) in the visco-elastic model (Brilliantov
et al. 1996). Their "n is consistent with Bridges et al. (1984)
for high impact velocities, where cohesion is negligible. For
low impact speeds the cohesive force becomes dominant and
particles stick for impact velocities smaller than a critical
value (Albers and Spahn 2006; Brilliantov et al. 2007) as ob-
served in experiments.

Although the actual mechanical properties of particles in
Saturn’s rings are poorly known, comparison between obser-
vations and dynamical investigations suggests that they are
fairly dissipative and under-dense (Section 14.1.3).

14.1.1.5 Steady State Dynamical Properties

A difference in the elastic properties of particles is reflected
in the predicted steady-state properties of the ring, and it
leads to qualitative differences in the stability properties of
the system. A system of fairly elastic particles, dynami-
cally hot at low optical depth £, exhibits a large reduction
of the steady-state velocity dispersion as the optical depth
increases, basically because the local viscous gain becomes
less effective as the mean free path between impacts is re-
duced. In the left panel of Fig. 14.4 this is illustrated in terms
of the effective geometric thickness: for the’smooth’ particle
model (Eq. 14.15, Fig. 14.3) the thickness may drop by as

Fig. 14.4 Steady-state geometric thickness and viscosity for the
‘smooth’ and ‘frosty’ elasticity models (Eqs. 14.14 and 14.15),
Fig. 14.3). Left frame: Symbols show the simulated effective geometric
thickness H Dp

12 hz2i, in units of particle radius R (H corresponds
to the full thickness of a homogeneous layer with the same vertical
dispersion as the actual distribution). The dashed line is the effective
thickness estimated from the vertical velocity dispersion,

p
12cz=�;

in the case of low filling factor these two measures are identical.

Middle frame: Kinematic viscosity �; the contribution from local
viscosity is shown separately (dashed lines). Right frame: Dynamic
viscosity £� (£ is used instead of ¢ since surface density is unspec-
ified in non self-gravitating simulations). Filled blue squares indicate
the £-regime with negative @�£=@£, susceptible to viscous instability
(Section 14.2.2). A particle size R D 1m and Saturnocentric distance
a D 100;000 km are assumed. Adapted from Salo
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much as a factor of five as optical depth increases from zero
to above unity. On the other hand, the ‘frosty’ particle model
(Eq. 14.14, Fig. 14.3) leads to a nearly constant velocity dis-
persion. The different steady-state velocity dispersion alters
the local and, to a lesser degree, non-local contribution to vis-
cosity. For a cool system the dynamic viscosity, given by the
product £�, is monotonically increasing. For a hot system it
decreases for some range of optical depths (marked by filled
squares in Fig. 14.4), if the aforementioned reduction of �l
with � is strong enough. A negative d .£�/ =d£ should lead to
viscous instability (Section 14.2.2), whereas a strong enough
positive slope may indicate overstability (Section 14.2.1).

Since the mechanical properties of ring particles are
uncertain, all equilibrium states sketched above might be
possible in different parts of Saturn’s ring system. For ring
particles covered with regolith one may expect even smaller
"n values than those obtained in the Bridges et al. (1984)
laboratory experiments. In any case, at very large optical
depth the simulated steady-state properties in non-gravitating
systems with viscosity are dominated by effects of finite par-
ticle size and are practically independent of the elastic model.

In systems with a particle size distribution the steady-state
velocity dispersion of smaller particles generally exceeds the
one of larger particles, implying a larger vertical scale height
for small particles (e.g. Cuzzi et al. 1979a, b; Salo 1992b;
Salo and Karjalainen 2003). For low optical depth rings this
was shown by solving the evolution equation for the velocity
dispersion (Ohtsuki 1999, 2006b)

dc2m
dt

D
Z
ns
�
m0� fCVS C �

m0c2m0

� mc2m
�
CDFgdm0;

(14.16)

where cm and ns .m/ are the velocity dispersion and surface
number density of particles with mass m, and CVS and CDF
are the rate coefficients related to the viscous stirring and dy-
namical friction due to inelastic collisions (and gravitational
encounters in the case of gravitating particles). Owing to the
contribution of viscous stirring and the effect of inelastic
impacts, the system remains far from energy-equipartition:
for example for the ‘frosty’ elasticity model the velocity
dispersion of the smallest particles is at most a few times
larger than for the largest ones, regardless of the width of the
size-distribution (Salo 1992b). More elastic particles allow
for a wider range of velocity dispersions, the maximum ra-
tio still staying below about five. For a system with extended
size size distribution, similar to the one inferred from obser-
vations, the dynamics is governed by the largest particles. In
this case the overall velocity dispersions scale proportionally
to that particle size, as in the case of identical particles. The
size distribution and dynamical factors affecting its evolution
are discussed in more detail in Section 14.4.

14.1.2 Balance Equations for Dense Rings

14.1.2.1 Kinetic Theory

Kinetic theory describes the evolution of the local velocity dis-
tribution function of an ensemble of particles in terms of the
Boltzmann equation (Chapman and Cowling 1970) or a suit-
able generalization of it, like Enskog’s theory of hard sphere
gases. The kinetic equation can be derived from Liouville’s
theorem (Binney and Tremaine 1987; Resibois and DeLeener
1977), appearing as the leading equation in a hierarchy of
equations describing n-particle distribution functions in phase
space and neglecting correlations between particle pairs. Tak-
ingmomentsof thekineticequationgivesasetofbalanceequa-
tions for particle number density, momentum, and the compo-
nents of the pressure tensor (see e.g. Goldreich and Tremaine
(1978c); Araki and Tremaine (1986)).

Kinetic theory allows us to incorporate the full complex-
ity of the dynamics of a planetary ring in a statistical de-
scription, such as the effects of the motion of ring particles
on curved orbits between inelastic collisions, their finite size,
the anisotropy of the velocity dispersion, and in principle also
coagulation and fragmentation of the ring particles.

The first approach to extend kinetic theory to a sys-
tem of inelastically colliding particles was undertaken by
Trulsen (1972), aiming at a description of clustering and pos-
sible focusing of streams of inelastic grains in a protoplane-
tary disk. Goldreich and Tremaine (1978c) investigated the
steady state properties of a disk consisting of point masses,
assuming a (triaxial) Gaussian velocity distribution. In this
limit they derived the relation between the coefficient of resti-
tution of the particles and optical depth of the disk shown in
Fig. 14.2 and the expression given by Eq. 14.6 for the local
viscosity of the ring.

Shukhman (1984) included effects of the finite size of par-
ticles in the kinetic description of a steady state ring. The
importance of such effects had been noted by Brahic (1977)
in his collisional ring simulations. In the collision integrals
Shukhman (1984) explicitly took into account the difference
of the positions of particle centers in the moment of a col-
lision. He derived an expression for the nonlocal viscosity
(Eq. 14.7) and described how the disk settles into a non-
local equilibrium with a vertical thickness on the order of
only a few particle diameters (see Eq. 14.12). In addition, in
Shukhman’s work rotational degrees of freedom of ring par-
ticles and surface friction are incorporated.

Shu and Stewart (1985) used a Krook collision term to
avoid the mathematical complexity of the solution of the col-
lision integrals. In this way they obtained a closed solution
for the pressure tensor of an unperturbed planetary ring. The
enhancement of collision frequency in dense disks is pointed
out in their work.
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Araki and Tremaine (1986) extended the theory of
Goldreich and Tremaine (1978c) and Shukhman (1984) for
the steady state of a planetary ring in the spirit of Enskog’s
kinetic theory of hard spheres (Chapman and Cowling 1970).
This goes beyond Shukhman’s approach in that it also takes
into account the finite volume occupied by particles, limit-
ing the space available for the particles’ motion, in terms of
the Enskog factor in the collision integral. This effect leads
in a dense system to a drastic increase of the collision fre-
quency. Araki (1988) investigated the effect of particle spin
and surface friction in a kinetic treatment of dilute rings and
Araki (1991) presented a combined kinetic theory for dense
and spinning particle disks.

Araki (1991) analytically reduced the collision integrals to
a fourfold integration that had to be carried out numerically,
which made an application to dynamical problems infeasible.
Further progress was made by Latter and Ogilvie (2006) who
developed a kinetic theory for dilute rings carrying out all
collision integrals analytically. Their work was extended by
Latter and Ogilvie (2008) to dense systems, studying stability
properties of a dense ring.

An alternative statistical description of planetary rings
was formulated in a series of papers by Hämeen-Anttila
(Hämeen-Anttila 1978, 1981, 1982; Hämeen-Anttila and
Salo 1993) improving and generalizing an earlier approach
(Hämeen-Anttila 1975, 1976, 1977a, b). It uses a kinetic
equation of Boltzmann type for the description of the evolu-
tion of the one-particle phase space distribution function, in a
similar manner as gas-kinetics. Hämeen-Anttila gives analyt-
ical solutions for the collision integrals, where necessary in
terms of appropriate approximations. The theory presented
in Hämeen-Anttila and Salo (1993) can treat systems of non-
identical, rotating, inelastic particles in a Keplerian field. Ar-
bitrary (velocity dependent) collision laws can be applied to
describe translational and rotational energy losses in an im-
pact. The effect of self-gravity is taken into account in a self-
consistent manner in the local vertical gravity field of the disk
and in its effect on close particle encounters. In principle the
theory can treat the average effect of particle surface irreg-
ularities stochastically and it is formulated so that it can be
extended to describe particle fragmentation and coagulation.
The biggest advantage is that the balance equations for mass,
stress, and scale hight of the ring, are given analytically as
partial differential equations. Thus, the theory can be applied
to investigate the dynamical evolution of a planetary ring.

14.1.2.2 Hydrodynamics

The dynamic equations resulting from kinetic theory are
of great complexity. For instance the kinetic approach de-
veloped by Goldreich and Tremaine (1978c), Araki and

Tremaine (1986), and Araki (1988) (1991) gives insights into
steady state properties of a planetary ring, but the important
question of spatial and temporal evolution is not addressed.
The approaches by Latter and Ogilvie (2008) and Hämeen-
Anttila and Salo (1993) allow the application to dynamical
problems but the equations are so involved that even the solu-
tion of small-scale dynamical problems would require a large
computational effort.

Hence, for simplicity hydrodynamic models are often em-
ployed to investigate the dynamical evolution of rings. The
hydrodynamic equations, introduced below, describe the bal-
ances of mass, momentum, and energy. They can be derived
from the moment equations of kinetic theory (Chapman and
Cowling 1970; Stewart et al. 1984), relating the stress and
the heat flow to the gradients of velocity and temperature via
the concept of the transport coefficients. In dynamical stud-
ies parameterizations, suitable for a planetary ring, for the
density dependence of these transport coefficients and the
equation of state are often employed. These are motivated by
simulations (Wisdom and Tremaine 1988; Salo et al. 2001;
Schmidt and Salo 2003) or kinetic theory (Goldreich and
Tremaine 1978c; Shukhman 1984).

For reference we give here vertically integrated hydrody-
namic balance equations in cylindrical coordinates (r; ®) for
a vertically thin planetary ring with surface density ¢ , planar
components ur ; u' of velocity, and the granular temperature
T (energy of particles’ random motion)2:
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T D �OP W rEu

�r 	 Eq � �; (14.20)

2 The temperature T D Tr OC=3 is defined as the trace of the veloc-
ity dispersion tensor OC D hcI! cI! i, where Ec D Ev-Eu, Eu is the hy-
drodynamic velocity and Ev the instantaneous velocity of a ring particle
(Chapman and Cowling, 1970). The average h	i is over the particle ve-
locity distribution function f

�Ev�.



U
nc

or
re

ct
ed

 P
ro

of

420 J. Schmidt et al.

where

r 	 Eu D 1
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r 	 Eq D 1

r

@ .rqr /

@r
C 1

r

@q'

@'
: (14.26)

The disk’s self-gravity potential ˆDisk couples to the surface
mass density through Poisson’s equation

1

r

@

@r

�
r
@ˆDisk

@r

�
C 1

r2
@2ˆDisk

@'2
C @2ˆDisk

@z2
D 4�G�ı .z/ ;

(14.27)

and the gravitational potential of the planet is denoted by
ˆPlanet. In Eqs. 14.17–14.26 OP is the vertically integrated
symmetric pressure tensor and Eq the heat flux. The term �

accounts for the cooling due to dissipative collisions (see
Section 1.1.1, Salo et al. (2001)). It does not appear in the
hydrodynamic description of molecular gases, but it is com-
mon for granular flows (Brilliantov and Pöschel 2004).

If specifically OP is of Newtonian form then

Prr D p � 2�@ur
@r

C
�
2

3
� � �

�
r 	 Eu (14.28)
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Fourier’s law affords

qr D ��D @T
@r
; q' D ��D

r

@T

@'
: (14.31)

The system of Eqs. 14.17–14.20 and Eqs. 14.28–14.31 is
closed by an equation of state p D p .¢; T / and by the pre-

scription of the dependence of the transport coefficients
˜ .¢; T / ; Ÿ .¢; T /, and �D .�; T / – dynamic coefficients of
shear viscosity3, bulk viscosity, and heat conductivity – on
density and granular temperature (i.e. velocity dispersion).
It is important to note that for the description of a planetary
ring, in general, neither the approximation of incompressibil-
ity can be adopted, nor can the transport coefficients assumed
to be constant.

Further simplifying assumptions allow us to construct
models that use only a part of these equations. For instance,
often the approximation of an isothermal ring is applied and
one deals with Eqs. 14.17–14.19 while Eq. 14.20 reduces to

0 D OP W rEu C �; (14.32)

i.e. to the balance of collisional cooling and viscous heat-
ing, which sets the steady state velocity dispersion of the
ring (Eq. 14.12). Although thermal excitations are important
(Spahn et al. 2000; Salo et al. 2001; Schmidt et al. 2001)
for specific problems (Section 14.2.2), isothermal mod-
els usually provide a good qualitative description of many
dynamical problems in planetary rings (Ward 1981; Lin and
Bodenheimer 1981; Schmit and Tscharnuter 1995; Spahn
and Sremčević 2000; Spahn et al. 2000; Schmidt et al. 2001;
Schmidt and Salo 2003; Tremaine 2003).

Most instability mechanisms proposed for planetary rings
(Section 14.2) aim describing axisymmetric patterns on
scales that are short compared to the dimensions of the ring.
In this case, one can neglect curvature terms and restrict
the analysis to radial perturbations, so that the isothermal
Eqs. 14.17–14.19 and 14.27 read in a frame that co-rotates
in the rings with local Kepler frequency �0 � �.r0/ at a
radial distance r0 from the planet

P� D � .�u/0 (14.33)

Pu D �uu0 C 2�0v � p0

�

C 1

�

��
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3
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�v00 C �0
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2
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��
(14.35)

@2ˆDisk

@r2
C @2ˆDisk

@z2
D 4�G�ı .z/ : (14.36)

3 Dynamic quantities are defined as the product of the kinematic quan-
tities and density, e.g. ˜ D ¢�, with the kinematic shear viscosity �.
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Here v is the deviation of the tangential velocity from the sys-
tematic Kepler speed (approximated by Eq. 14.3). The dots
and primes denote the derivatives with respect to time and ra-
dial coordinate r � r0, respectively. A further simplification
results from the assumption that the dynamic bulk viscosity
Ÿ has the same dependence on the ring’s surface density as
the dynamic shear viscosity ˜. If �0; �0 denote their constant
unperturbed values then

� D ˛�; ˛ � 4

3
C �0

�0
D const: (14.37)

This assumption is neither justified by kinetic theory, nor
by simulations, nor is there a satisfactory understanding of
the particular effect of bulk viscosity in a planetary ring at
all. Generally, bulk viscosity Ÿ is tied to internal degrees of
freedom in molecular systems (vibration and rotation). It
accounts for the effect of a (small) relaxation time necessary
to establish energy equipartition, say, the translational
degrees of freedom (Chapman and Cowling 1970). But in
dense systems a non-zero bulk viscosity arises already due
to non-local effects (Chapman and Cowling 1970). Salo
et al. determined values for the bulk viscosity, fitting the
theoretically expected dynamic pressure to a simulated
low amplitude compression wave. Although the values of
the bulk viscosity found this way4 led to a quantitative
description of the stability boundary and the growth rates
of overstable modes in simulations in dense rings (Schmidt
et al. 2001; Schmidt and Salo 2003), it was noted later that
the same procedure failed to describe the physics of a dilute
planetary ring. The values of the bulk viscosity determined
from dilute simulations would lead to overstability in the
theoretical model, which is not seen in the simulations. The
reason for this failure is out-of-phase oscillations of the com-
ponents of the pressure tensor, described in terms of kinetic
theory by Latter and Ogilvie (2006). This non-Newtonian
behavior of the pressure tensor they labeled as ‘non-local in
time’. In the limit of a dense uniform system with large colli-
sion frequency these oscillations are damped on a time scale
that is faster than the orbital time (Latter and Ogilvie 2008),
and one is left with a small relaxation time necessary for the
adjustment of excitations between different components of
the pressure tensor, i.e. a situation which is similar to the
effect of bulk viscosity in a molecular system. In this case
(Eqs. 14.33–14.37) provide a good qualitative description of
the radial viscous evolution of a uniform dense ring.

In a dense ring non-axisymmetric self-gravity wakes will
form. This will generally lead to strong non-Newtonian grav-
itational stresses, not included in Eqs. 14.33–14.37. How-
ever, for dynamical problems on length-scales that are

4 Exceeding a dense ring’s shear viscosity by a factor of �0=�0 D 2�3.

much larger than the wavelength of the wakes, the ap-
proximation of gravitational viscosity can then be adopted
(Section 14.1.3).

14.1.3 Self-gravity of the Ring

In Section 14.1.1 the local steady-state properties of plane-
tary rings resulting from the balance between viscous heat-
ing and the collisional dissipation of random energy have
been discussed. The inclusion of particles’ mutual gravita-
tional forces modifies the local dynamics in several, partially
competing ways, depending on the mass density of the ring
and the distance from the planet.

At low optical depth collective effects of self-gravity
are negligible and the main effect stems from gravitational
heating via close binary encounters (Cuzzi et al. 1979a, b;
Hämeen-Anttila 1984; Petit and Hénon 1987; Ohtsuki 1992).
For higher densities, the mean vertical self-gravity can be-
come comparable to or even exceed the corresponding com-
ponent of the central force, causing a strongly enhanced
impact frequency and a reduced ring thickness (Salo and
Lukkari 1982; Araki and Tremaine 1986; Wisdom and
Tremaine 1988). However, in this case the ring is also suscep-
tible to gravitational instability in the plane, which manifests
in the formation of transient trailing density enhancements,
called self-gravity wakes or Toomre wakes (Salo 1992a; see
also Julian and Toomre 1966; Toomre and Kalnajs 1991).
With increasing distance from the planet, tidal forces get
weaker and eventually the direct gravitational sticking of par-
ticles becomes possible, causing the particles in the wakes to
degrade into local aggregates (Salo 1995, Section 4); a simi-
lar clumping may take place at low optical depth via pairwise
sticking of particles. In general, the inclusion of self-gravity
leads to a strong enhancement of ring viscosity, due to in-
creased impact frequency and gravitational stirring of the
particle ensemble, and most importantly, due to gravitational
torques exerted by the wakes, and the collective motion as-
sociated with them (Daisaka et al. 2001).

A convenient parameter characterizing the importance of
self-gravity relative to the disrupting tidal force is the ratio
of the mutual Hill-radius for a pair of particles to the sum of
their physical radii (Daisaka et al. 2001):

rh � RHill

R1 CR2
D
�

	0

3	plan

�1=3 �
a

rplan

�
.1C �/1=3

1C �1=3
;

(14.38)

where a is the semi-major axis and RHill D f.m1 C m2/=

3Mplang1=3a, � D m1=m2 with mi D .4�	0=3/R
3
i being

the mass of particle i of density 	0, andMplan, rplan, and 	plan

denote mass, radius and density of the planet. In the case of
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identical particles (Ri � R0, mi � m0), rh can be expressed
in terms of physical parameters as

rh D 0:82

�
Mplan

5:69 	 1026 kg
��1=3 �

	0

900 kgm�3

�1=3

�
�

a

100;000 km

�
; (14.39)

and values of rh based on Eq. 14.39 are used in the follow-
ing (e.g., Figs. 14.7–14.9). With this formula the results for a
given rh can be scaled to other distances and internal densi-
ties of particles. Assuming solid ice density for the ring par-
ticles, the main rings of Saturn correspond to rh D 0:6� 1:1,
from the inner C ring to the outer A ring, respectively. Sim-
ilarly, Uranian rings extend between 0.65 and 0.8 if made
of ice. Note that instead of rh, rp � r�1

h is also often em-
ployed to parameterize gravity (Ohtsuki 1993; Salo 1995);
the advantage of using rh is that larger values correspond to
stronger gravity; also the limit rh D 0 corresponds to non-
gravitating particles.

14.1.3.1 Gravitational Encounters

For low £ the main effect of gravity comes from close binary
encounters, which act like totally elastic impacts: the kinetic
energy of the encountering pair is conserved, while the de-
flection of mutual orbits transfers energy from the systematic
velocity field to random motions. This extra heating is effi-
cient if the velocity dispersion c is smaller than the mutual
escape speed vesc Dp

2Gm0=R0 of particles, but becomes
inefficient for c > vesc. Thus, encounters, if acting alone,
would establish a state with c � vesc (Safronov 1969; Cuzzi
et al. 1979a, b). However, if the physical impacts are able to
maintain c > vesc, then the effect of encounters is negligi-
ble. The condition for the importance of encounters can be
written in terms of an upper limit for the vertical thickness,
H < Hesc, where the effective geometric thickness defined
by H D p

12 hz2i denotes the full thickness of a uniform
layer with the same vertical dispersion as the actual distribu-
tion. For low optical depths we have H � 2c=�. Writing
vesc Dp

24r
3=2

h R0� implies

Hesc

R0
� 10rh

3=2 (14.40)

In the case of constant coefficient of restitution "n� � 0:5,
AQ2

the impacts alone maintain H=R0 � 5, which implies that
gravitational encounters dominate over physical impacts for
rh > 0:7.

14.1.3.2 Vertical Self-gravity

In very dense systems (high optical depth £ and filling factor
	=	0) the collective effects of self-gravity become increas-
ingly important. First of all, the vertical component of self-
gravity, Fz, may exceed the corresponding component of the
central force, Fc D ��2z. For simplicity, assume an infinite
homogeneous layer of identical particles with an effective ge-
ometric thickness H . Inside the layer, with given density ¡,
Poisson’s equation gives for the vertical self-gravity

Fz .z/ D �2�G
Z z

�z
	
�
z0� d z0 D �4�G�z

H

so that

Fz

Fc
D 4�G�

H�2
D 48�rh

3 R0

H
(14.41)

Assuming a Gaussian vertical mass distribution, the vertical
self-gravity near the equatorial plane is a factor

pI 6=  larger
if Fz=Fc is parameterized in terms of H as defined above.
Analogous toHesc we defineHf z as a thickness of the system
for which Fz � Fc ,

Hf z

R0
� 65� rh

3; (14.42)

(for the case of a Gaussian mass distribution). For typical
values of Saturn’s B-ring, rh � 0:8, £ � 1:5, the vertical self-
gravity exceeds the central component, unless H=R0 > 50.
As shown in simulations (Wisdom and Tremaine 1988;
Salo 1991) the extra vertical force tends to reduce H quite
markedly, both due to the increased vertical frequency
itself and also indirectly via the enhanced dissipation (see
Fig. 14.5). This implies a strongly enhanced viscosity for
any given £. However, there are other effects of self-gravity
which will lead to an even more drastic enhancement
of viscosity.

14.1.3.3 Gravitational Wakes

Intuitively, the planar components of self-gravity might be
expected to have less importance than the vertical compo-
nent, due to partial cancellation of forces. However, as shown
by Toomre, a self-gravitating differentially rotating particle
disk is locally unstable against the growth of axisymmetric
disturbances if its radial velocity dispersion falls below the
critical value

ccr D 3:36G�

�
; (14.43)
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Fig. 14.5 Comparison between vertical and full self-gravity in simu-
lations. In the left panel only physical collisions between particles are
taken into account, for a simulated ring with "n D 0:5, £ D 0:75,
rh D 0:82 (corresponding to a D 100;000 km for a solid ice particle
density of 900 kgm�3, or to a D 126;000 if ¡ D 450 kgm�3). In the
middle panel the vertical component of self-gravity is included, calcu-
lated in a self-consistent manner from the vertical density distribution
(Salo, 1991). Near the central plane the ratio of vertical self-gravity to
the vertical component of central force Fz=Fc 
 8:8, corresponding
to an enhanced frequency of vertical oscillations by a factor �z=� Dp
1C Fz=Fc 
 3:1: a very similar result would be obtained with the

method of Wisdom and Tremaine (1988), who used a constant enhance-
ment factor �z=� D 3:6 to describe the vertical gravity. In the right

panel all components of self-gravity are included, leading to the forma-
tion of self-gravity wakes. In comparison to the non-gravitating case,
the inclusion of vertical gravity reduces the ring thickness in this ex-
ample from H=R0 
 5 ! 3, and increases the collision frequency
by about a factor of 8. Both these effects enhance the viscosity, which
in the studied example increases by a factor of two. However, when full
self-gravity is included, the viscosity becomes even 30 times larger than
in the non-gravitating case. A snapshot from a comoving local simula-
tion region is displayed: the x-axis points away from the planet and the
y axis in direction of orbital velocity. Note that the size of the simulation
system here corresponds to 2�cr � 2�cr , implying that the wake struc-
ture is somewhat suppressed in comparison to what would be obtained
with larger calculation regions (adapted from Salo (1995))

where › denotes the epicyclic frequency (› D � for the
Keplerian case). This critical value offers a very convenient
measure for the closeness of the system to the instability
threshold in terms of the Toomre parameter, defined as

Q D cr

ccr
D cr�

3:36G�
; (14.44)

where cr denotes the radial velocity dispersion. For identical
particles,

cr

R0�
� 10Q� rh

3: (14.45)

Comparison to Eq. 14.42 indicates that whenever the vertical
self-gravity is important, the system is also near the threshold
of collective planar instability: Fz=Fc > 1 corresponds to
Q < 2:5.

How does this gravitational near-instability manifest? The
gravitational collapse is opposed by the particles’ random ve-
locities, washing out small scale agglomeration, and by dif-
ferential rotation, dissolving large condensations. As long
as Q exceeds at least a few times unity (Q � 2–3), the
collective instability is completely avoided, and the sys-
tem remains practically uniform: the main effect of gravity
comes via pairwise encounters stirring up the velocity dis-
persion. However, if the optical depth, and thus ¢ , increases,

or alternatively, if a ring location further away from the planet
is inspected, Q could fall below about 2–3. In this case, the
collective gravity, together with differential rotation, leads to
the formation of shearing tilted wake structures, with indi-
vidual wakes forming and dissolving in a time scale of about
one orbital period (Fig. 14.5). The prominence of these struc-
tures stems from the swing amplification process Goldreich
and Lynden-Bell; Toomre which significantly enhances the
tiny kinematic wakes triggered by small density fluctuations.

The resulting self-gravity wakes correspond to a super-
position of numerous Julian–Toomre wakes excited around
each individual ring particle. Although the features are
transient, in contrast to the steady response around an or-
biting mass enhancement in a stellar disk studied by Ju-
lian and Toomre, this analogue is demonstrated by the sim-
ilar autocorrelation function; this correspondence also jus-
tifies calling these features as wakes, even in the absence
of any prominent individual perturber. Self-gravity wakes
have also been discussed as models of flocculent spiral
structure in late type galaxies (Toomre 1991; Toomre and
Kalnajs 1991), in which context, however, some form of ad
hoc dissipation is needed to balance the gravitational heat-
ing induced by the wakes themselves, which heating oth-
erwise would rapidly suppress the swing amplification. In
planetary rings, the dissipation via partially inelastic impacts
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provides a natural cooling mechanism, leading to a statistical
steady-state withQ � 1–2, characterized by a continuous re-
generation of new wakes. The formation of wakes for plau-
sible Saturn ring parameters was first demonstrated in sim-
ulations of Salo (1992a) and has thereafter been confirmed
in several studies (Richardson 1994; Daisaka and Ida 1999;
Ohtsuki and Emori 2000). Moreover, spatial auto-correlation
analysis of simulated wakes (Salo 1995; see also Toomre
and Kalnajs (1991); Salo et al. 2004 see also Toomre and
Kalnajs (1991)) confirms the close correspondence to Julian–
Toomre stellar wakes.

For Saturn’s rings, the approximative condition for the
AQ3

formation of wakes,Q < 2, corresponds to (see Salo (1995),
Ohtsuki and Emori (2000), Salo et al. (2004))

� > �min � 0:2
� a

108m

	�3 � 	0

900kgm�3

��1
; (14.46)

implying �min � 0:3 � 0:1, from the inner C ring to the
outer A ring, respectively, if the internal density of solid
ice is assumed for ring particles. This �min gives a conser-
vative lower limit, since Eq. 14.46 is based on the assump-
tion of fairly dissipative identical particles that in the absence
of self-gravity would concentrate in a very thin ring, just a
few particle diameters thick. This is the expected behavior
of particles if they follow the Bridges et al. (1984) formula

for the coefficient of restitution. In regions with � > �min,
wakes may form, depending on the actual particle elasticity,
with more elastic impacts implying an increased �min (see
Fig. 14.6, comparing the ‘frosty’ and’smooth’ impact mod-
els). However, � > �min is not a strict boundary for wake
formation: autocorrelation analysis reveals that weak wakes
are always present regardless of the value of Q. Wake for-
mation is also affected by the particle size distribution: large
particles provide seeds for strong wakes. This effect is coun-
teracted by the larger velocity dispersion achieved by small
particles (Salo 1992a, b), which acts as a stabilizing factor.
As a net result the wake structure is stronger among the
largest particles whereas the small particles tend to have a
smoother distribution (Salo et al. 2004).

The tilt angle of wakes with respect to tangential direction
is determined mainly by the shear rate: for the Keplerian case
the asymptotic tilt angle of the tails of the wakes is �15ı
(Julian and Toomre 1966). However, the inner portions of
wakes have larger pitch angles, depending on the physical pa-
rameters. As an effective mean value �20ı can be adopted.
The typical radial spacing between wakes found in simula-
tions (Salo 1995; Daisaka and Ida 1999) is close to Toomre’s
critical wavelength (Toomre 1964)

�cr D 4�2G�=�2: (14.47)

Fig. 14.6 The dependence of simulated self-gravity wakes on the as-
sumed elasticity. In the left panel Bridges et al. (1984) formula (‘frosty’)
is used, while in the right panel a formula from Hatzes et al. (1988) for
more elastic’smooth’ particles is assumed (Fig. 14.3). In both cases a

system with £ D 0:5 and rh D 0:85 is simulated, using a 4�cr � 4�cr
region. For more details of the effect of particle elasticity on the wake
structure, see Fig. 11 in Salo (1995)
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For uni-sized particles this can be expressed in terms of the
optical depth and the parameter rh as

�cr

R0
D 48�� r3h (14.48)

For Saturn’s A-ring the expected spacing is �cr � 50–100m.

14.1.3.4 Survey of Self-gravity Wake Structures

Figure 14.7 displays a simulation survey of wake structures
expected for different planetocentric distances. The figure il-
lustrates clearly the gradual increase in the strength of wakes
as the assumed distance or optical depth is increased, as
well as the increase in the clumpiness of the wakes, and
their eventual collapse into aggregates at large distances (see
Section 14.4 for detailed discussion of gravitational accretion
of ring particles). Changes of the appearance of the wakes

are also visible. For instance, at large rh the simulated wakes
are narrow structures separated by wide gaps, whereas for
large £ and intermediate rh � 0:6 the gaps and wake widths
are more comparable. The regime of overstable oscillations
(rh < 0:6, £ > 1) is also noticeable: apparently in this regime
the self-gravity is sufficiently strong to lead to a strong in-
crease of viscosity with density, as required for the onset of
overstability (Section 14.2.1), but simultaneously the non-
axisymmetric wakes are not yet too strong to suppress the
coherence of axisymmetric oscillations.

14.1.3.5 Gravitational Viscosity

In the case of strong wakes the total viscosity is dominated
by the angular momentum transfer related to the gravitational
torques exerted by the inclined wakes (gravitational viscos-
ity), and by the transfer associated with the large scale mo-
tion of the wakes (adds to the local viscosity, whose other

Fig. 14.7 The dependence of self-gravity wakes on optical depth £,
and the strength of gravity relative to the tidal force, quantified in
terms of the rh parameter. Also indicated are those values of Sat-
urnocentric distance a (in units of 1000 km) to which rh corresponds
for ¡ D 900 kgm�3. Simulations use identical particles with "n D 0:5.
The size of the calculation area covers 4�cr � 4�cr region, thus scal-
ing proportional to expected scale of wakes (physical size scales ac-
cording to �cr=Ro � r3h� , varying from 35 to 600 particle radii). Note
the region in the upper left (� > 1, rh � 0:6) where axisymmetric
overstable oscillations (Section 14.2.1) coexist with the inclined grav-
ity wakes. Also note that £ here refers to the average geometric optical
depth of the system (the total area of particles divided by the calcula-

tion area). The photometric optical depth would be generally different,
its value also depending on the observing direction (Salo et al., 2004;
Porco et al., 2008; Robbins et al., 2009). The insert shows schemati-
cally the dynamical regimes where physical impacts, pairwise gravity,
and collective gravity dominate, based on a simple estimate of which
ingredient alone would maintain the largest radial velocity dispersion
(cr D 2R� for impacts, cr D vesc for encounters, orQ D 2 for wakes;
see Salo (1995), Ohtsuki and Emori (2000), Daisaka et al. (2001). Also
indicated is the region where overstability occurs in simulations, and the
boundary beyond which particles clump into local aggregates in simu-
lations (rh 
 1:2, see Salo (1995) and Karjalainen and Salo (2004))
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contribution is associated with random motions5). Compared
to these, the nonlocal (collisional) viscosity has a minor con-
tribution. Based on dimensional arguments, the gravitational
viscosity is expected to be of the order of L2�, where L is
the typical radial scale of momentum transport and L� is
the associated (specific) tangential momentum. Using L D
�cr / G�=�2 and including a semi-empirical correction
factor C .rh/ D 26r5h obtained by fits to viscosities deter-
mined from simulations, Daisaka et al. (2001) derived the
formula

�grav � 1

2
C .rh/

G2�2

�3
: (14.49)

Moreover, they showed that in the case of strong wakes (rh >
0:7) the local viscosity associated with the streaming motion
related to wakes is of the same order of magnitude as the
gravitational viscosity; in this case the numerical value of
total (kinematic) viscosity can be approximated as

� � �grav C �l � C .rh/
G2�2

�3
: (14.50)

Similar formulae, but without the correction factor, have
been discussed for example by Ward and Cameron (1978)
and in the context of spiral torques in galaxy disks by
Lynden-Bell and Kalnajs (1972). As discussed by Daisaka
et al. (2001), the strong distance-dependence implied by the
correction factor C .rh/ is likely to be associated with the
particulate nature of the system now in question. Namely,
the maximal density of a gravitationally perturbed region
is limited by the internal density of particles: this limita-
tion is increasingly severe as rh is decreased, since the scale
of wakes is then reduced compared to the particle size (see
Eq. 14.48). No such limitation is present in the analysis of a
continuum fluid where the surface density perturbations can
at least in principle be of the order of the surface density
itself.

The values for the viscosity determined by Daisaka et al.
were fully confirmed by Tanaka et al. who showed that the
most convenient way of measuring the total viscosity in self-
gravitating particle simulations is via the associated energy
loss in impacts. When the wake amplitude has reached a
statistical steady-state, the time averages of energy loss and
viscous gain are equal, and � is obtained from Eq. 14.5. Sim-
ilar method was used in the nongravitating simulations of
Salo et al. (2001) to check the viscosities measured with the
Wisdom and Tremaine (1988) method.

5 These two kinds of local viscosity formally correspond to a stress
tensor which is split into two terms as Pxy D � Nvx Nvy C…xy . Here Nv is
the mean velocity of (a large number of) ring particles in a (still small)
Lagrangian surface element of the rings. The componenent …xy (the
pressure tensor) then corresponds to the random motion of particles in
this Lagrangian element. With shear rate s the viscosities are defined as
� s � D Pxy .

Figure 14.8 displays the dependence of the total viscosity
on £ and rh in simulations. The dependence of various contri-
butions are shown separately (upper panels), illustrating the
dominance of �grav and the close agreement in numerical val-
ues �l � �grav in the case of strong wake structure (rh > 0:7).
The lower panel displays the total viscosities (gravitationalC
local C nonlocal contributions), also indicating the good
agreement with Eq. 14.50. Strictly speaking, this formula
was obtained by fits to simulations assuming constant elastic-
ity "n D 0:5. However, for the plausible frosty particle elas-
ticity laws, the total viscosities are not extremely sensitive
to the applied elasticity. According to Fig. 14.9, the viscosity
varies less than a factor of two for a constant 0 < "n < 0:6;
for the Bridges et al. (1984) formula the viscosity varies at
most by three if the scale factor vc=vB < 10.

14.1.3.6 Observational Signatures of Self-gravity
Wakes

Self-gravity wakes, trailing by �20ı with respect to tan-
gential direction, offer a straightforward explanation for the
long-known quadrupole azimuthal brightness variation of
Saturn’s rings, i.e. the fact that in Earth-bound observations
the post-elongation quadrant of each ansa appears brighter
than the pre-elongation quadrant. This variation results as
the reflecting surface area is the smallest when the wakes
are seen more or less along their long-axis (at ring longi-
tudes �20ı before ansae), and largest when seen edge-on
(see Fig. 14.10). The effect was first noted for the A ring –
where it amounts to even 35% – in ground-based photo-
graphs (Camichel 1958; Lumme and Irvine 1976; Thompson
et al. 1981) and was later analyzed in detail from Voyager
data (Franklin et al. 1987; Dones et al. 1993).

The realization that trailing inhomogeneities would ac-
count for such variations is due to the seminal paper
Colombo et al. where the probable connection to Julian and
Toomre (1966) wakes was first suggested (see also Franklin
et al. (1987); Dones and Porco 1989). First detailed pho-

AQ4
tometric modeling of self-gravity wakes was carried out in
Salo et al., demonstrating that N-body wake models (with
Bridges et al. (1984) elasticity law and particle internal den-
sity one-half of solid ice density), can account in a robust
manner for the overall longitude and elevation dependence
of the A ring brightness variations, as seen in ground-based
observations, and in Voyager observations in both reflected
and transmitted light. This conclusion was confirmed by the
comparison to the extensive Hubble Space Telescope data
set in French et al., where the observed asymmetry ampli-
tude and longitude of minimum brightness were character-
ized as a function of Saturnocentric distance for a full range
of geometries accessible from Earth. It was also shown that
there is a trade-off between various dynamical parameters:
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Fig. 14.8 Upper left panel: The dependence of various contributions to
viscosity on rh (£ D 0:5 and "n D 0:5) from simulations. The grav-
itational viscosity �grav becomes dominant for rh > 0:7 � 0:8, which
increase is accompanied with an increased �l . This regime corresponds
to the emergence of strong wake structure (Fig. 14.7). Upper right panel:
Dependence on £ for fixed rh D 0:82, "n D 0:5. The inset shows the
slope “ D @ log �=@ log £, rising from “ D 1 at low £ to “ > 2 due
to the increased contribution of gravitational viscosity. Lower panel:

Total viscosity as a function of £ and rh (for "n D 0:5). Ring regions
corresponding to the values of rh are indicated (for internal particle den-
sities ¡ D 900 kg m�3 and ¡ D 450 kg m�3). The dashed line indicates
the Daisaka et al. (2001) fitting formula �tot=

�
R20�

� 
 380rh
11�2,

expected for the case of strong wakes; this formula is the same as
Eq. 14.50, now written in terms of rh and £. In physical units, the sim-
ulated viscosity for a D 130;000 km corresponds to about 100 cm2s�1

(for ¢ D 400 kg m�2 and ¡ D 900 kg m�3)

the modeled asymmetry is reduced for more elastic parti-
cles, lower internal density, or smaller optical depth, and
vice versa (these dependencies are qualitatively consistent
with the dynamical strength of wakes, measured in terms
of �grav in Figs. 14.8 and 14.9); also, assuming an extended
size distribution reduces the modeled asymmetry. Neverthe-
less, the fact that maximum asymmetry amplitude is seen in
the mid A-ring (a � 129;000 km) favors underdense parti-
cles: for example, for solid ice density the modeled asym-
metry would peak at mid B-ring and fall sharply at the A
ring region (see Fig. 14.23 of French et al. (2007)). The HST
data also showed that a weak azimuthal brightness asym-
metry is present in the inner B ring, with an amplitude of
roughly one-quarter of the maximum amplitude in the mid
A-ring: this reduced amplitude is consistent with the weaker
self-gravity wakes forming closer to the planet, even when
allowing for the presumably larger surface density of the
B ring. The B ring asymmetry was also inferred from the
rings’ radar echo (Nicholson et al. 2005); altogether the
A ring asymmetry amplitude appeared about twice larger

in radar signal (12.6 cm) compared to optical, while being
consistent with the longitude dependence: this can be inter-
preted as a evidence that the wake structure is more dom-
inant in the population of large particles as compared to
smaller ones. Azimuthal variations are also present in Sat-
urn’s microwave radiation reflected and transmitted by the
rings (Dunn et al. 2004, 2007).

An even more striking demonstration of gravity wakes
in Saturn’s rings is offered by stellar occultations observed
by the Cassini Ultraviolet Imaging Spectrograph (UVIS)
(Colwell et al. 2006a, 2007), the Visual and Infrared Map-
ping Spectrometer (VIMS) (Hedman et al. 2007) and oc-
cultations recorded by the Radio Science Subsystem (RSS)
(Marouf et al. 2006). These studies indicate a significant
longitude-dependence of optical depth throughout the A and
B rings, consistent with the brightness asymmetry (the non-
detection of ground-based reflection asymmetry in the dense
B ring is due to low brightness contrast in the case of high
£). The apparent optical depth depends also strongly on el-
evation (Colwell et al. 2006a, 2007), consistent with the
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Fig. 14.9 Effect of particle elasticity on viscosity. In the left frame
different values of the constant coefficient of restitution are compared,
while in right frame a Bridges et al. (1984) type velocity-dependent for-
mula is applied with different scale factors (see Eq. 14.14). In the case
of constant "n, the local viscosity diverges for "n > 0:75, since then no
thermal equilibrium is possible in the system (see Fig. 14.2 for "crit.�/):

when this limiting "crit is approached, the steady-state velocity disper-
sion increases and the role of self-gravity becomes insignificant. Sim-
ilarly, an increase of the scale factor in the velocity-dependent "n .vn/
leads to hotter systems, reducing all other contributions to viscosity in
comparison to local viscosity

Fig. 14.10 Schematic presentation of self-gravity wakes and azimuthal
brightness asymmetry (from Salo et al. (2004)). At low elevation angles
B the wakes, trailing here by about 21ı with respect to the local tangen-
tial direction, are seen roughly along their long axis at ring longitudes
of 249ı and 69ı, and perpendicular to their long axis at longitudes of
339ı and 159ı. In the former case the rarefied regions between wakes
are visible, reducing the reflecting surface area: this corresponds to min-
imum brightness. In the latter case rarefied regions are hidden by the
wakes in low tilt angle images, maximizing the reflecting area. A simi-

lar effect is seen in the apparent optical depth observed in occultations,
which is smallest when viewed along the wakes. In reflected light at
low phase angle the modeled asymmetry amplitude for the A ring has a
maximum at B � 10� 15ı, consistent with HST observations (French
et al., 2007); similar maximum is seen also in CIRS observations of
ring thermal emission (Ferrari et al., 2009). For the optical depth the
expected variation increases toward smaller elevations: VIMS occulta-
tions at B D 3:45ı indicate a very strong longitude-dependence in the
A ring transmission (Hedman et al., 2007)
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predictions of the wake models (Salo et al. 2004). The az-
imuthal brightness variations based on observations with
Cassini Imaging Subsystem (ISS) have been recently ana-
lyzed in Porco et al., also favoring very dissipative, under-
dense particles. Azimuthal variations have also been ob-
served in the ring’s thermal radiation by the Cassini Com-
posite and Infrared Spectrometer (CIRS) instrument (Ferrari
et al. 2009), implying a striking agreement with the ampli-
tude of reflected light variations.

Some poorly understood observations relevant to wake
structure remain. For example, the A ring asymmetry drops
significantly beyond the Encke gap. One possibility (French
et al. 2007) is that wakes become clumpier at larger radial
distances (before collapsing to aggregates) which reduces the
longitude dependence of ring reflectivity or opacity. How-
ever, the observed drop is even more rapid than models
predict. A more likely explanation is a wider particle size
distribution in the regions beyond the Encke gap, which
would reduce the contrast of wakes (Salo et al. 2004; French
et al. 2007). Both factors may contribute also simultane-
ously: Robbins et al. suggest that clumpier wakes can stir up
smaller particles, leading to apparently wider size distribu-
tion. Stronger wakes also lead to increased maximal impact
velocities, which may lead to enhanced release of impact-
debris, if regolith-covered particles are assumed (Salo and
Schmidt 2007). This in turn would reduce the wake contrast;
a similar model helps to account for the propeller brightness
contrast (Section 14.3.3). Another poorly understood obser-
vation (Dones et al. 1993; French et al. 2007) is the very rapid
rise in the brightness asymmetry amplitude from the inner
to the mid A ring (amplitude peaks at a � 129;000 km), in
comparison to the much shallower rise in the modeled am-
plitude, when fixed particle properties are assumed (French
et al. 2007). Again, radius-dependent size distribution could
account for this, but no self-consistent models yet exist.

The extensive set of Cassini occultation profiles has made
it possible to probe the gravity wake properties as a function
of radial location. To facilitate this, the wake structure has
been modeled as an alternating sequence of dense wakes and
rarefied inter-wake regions, describing the wakes as parallel,
infinitely long slabs with a rectangular (Colwell et al. 2006a;
see also Dunn et al. (2004); Colwell et al. 2007, see also
Dunn et al. (2004) or ellipsoidal (Hedman et al. 2007) cross
section, defined by the wake’s radial width W and geometric
thickness H . The UVIS and VIMS occultations suggest (see
also Chapter 7.7) that the A ring wakes have H=L � 0:1,
where L is the radial separation between adjacent wakes.
Identifying L with the Toomre wavelength �50m, this sug-
gest that the geometric thickness of A ring wakes is only of
the order of 5 m (Hedman et al. 2007; Colwell et al. 2006a).
The UVIS observations imply W=L � 0:4 for the A ring
wakes (thus the inferred gaps are wider than wakes). On the
other hand, the deduced W=L approaches even unity for the

optically thickest parts of the B ring (densely packed wakes
with only narrow gaps); in fact Colwell et al. (2007) suggest
that the photometric optical depth reflects mainly the density
of packing between the wakes.

The density wave estimates of total viscosities seem con-
sistent with the expected total viscosity in the presence of
gravity wakes. In particular Tiscareno et al. (2007) esti-
mated surface densities and viscosities of the A ring from
low amplitude density waves observed in Cassini ISS im-
ages, and found a very good agreement with Eq. 14.50, for
both the magnitude of the derived viscosity and its radial in-
crease with Saturnocentric distance. However, the agreement
in magnitude can be partly fortuitous, since it was obtained
by assuming a solid ice density for particles, whereas all the
aforementioned studies of the A ring azimuthal brightness
variations favor under-dense particles; low internal densities
were deduced also in Robbins et al., based on model-
ing UVIS observations of ring transmission. According to
Eqs. 14.39 and 14.49, �grav / 	5=3 for a fixed distance and
¢; reducing ¡ by one-half would thus imply a factor of three
smaller viscosity. Nevertheless, Eq. 14.49 refers to a identical
particles and a specific elastic law ("n D 0:5); releasing these
assumptions might easily compensate for the difference.

14.2 Instabilities

A classical problem of planetary ring dynamics is the sta-
bility of the ring flow. It addresses dynamical processes on
time-scales that are small compared to the secular viscous
evolution of the disc. If the ring is in a steady state then small
perturbations are unavoidable (for instance through the grav-
itational force of the satellites of the planet). The question of
stability theory is whether the perturbed ring will return to
the steady state, i.e. whether the ring is stable with respect to
the perturbation, or, if the perturbation will grow. In the latter
case the steady state is unstable. If the flow is unstable, the
steady state is destroyed by perturbations of arbitrarily small
magnitude and it will eventually be replaced by another con-
figuration which is stable, and, in general more complex and
structured.

The wealth of radial structure of Saturn’s B ring re-
vealed by the Voyager observations (Smith et al. 1982; Lane
et al. 1982) stimulated the search for mechanisms of intrinsic
instability, that could produce at least part of the observed
structure. Prominent models proposed in the literature are
the viscous (diffusion) instability (Lukkari 1981; Lin and
Bodenheimer 1981; Ward 1981), ballistic transport mod-
els (Durisen 1995), angular momentum and mass transport
related to electromagnetic effects on small grains (Goertz
et al. 1986; Goertz and Morfill 1988; Shan and Goertz 1991),
viscous overstability (Schmit and Tscharnuter 1995, 1999;
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Spahn et al. 2000; Salo et al. 2001; Schmidt et al. 2001;
Latter and Ogilvie 2009), or instability of the radial shear
profile due to a certain dependence of shear stress on the
shear rate of the flow (Tremaine 2003).

14.2.1 Viscous Overstability

If a planetary ring is overstable, it spontaneously develops
axisymmetric waves on a 100 m scale. These waves bear
many similarities to density waves although overstable waves
develop without external resonant perturbation. A planetary
ring becomes overstable if the viscosity is increasing steeply
enough with optical depth, which is expected in dense rings.
In this case the shear in the compressed phase of the wave can
feed back energy from the ring’s flow to the oscillations. In
contrast to density waves overstability is not strictly bound to
self-gravity of the ring, although self-gravity generally alters
the conditions necessary for the onset of overstability, and the
wavelength and frequency of the oscillations. Axisymmetric
100–200 m wavelike perturbations in Saturn’s A and B rings,
consistent with overstability, are seen in Cassini RSS (Thom-
son et al. 2007) and the UVIS data (Colwell et al. 2007).

Viscous overstability was proposed by Borderies et al.
(1985), expanding on earlier work (Borderies et al. 1983b),
to explain the eccentricity of narrow ringlets observed around
Saturn and Uranus (see also Longaretti and Rappaport
(1995)). Borderies et al. (1985) also mention the possibil-
ity of axisymmetric oscillatory instability of a planetary ring,
and Goldreich and Tremaine (1978b) point out that density
waves may become overstable. As a spontaneous local insta-
bility of Saturn’s B ring overstability was investigated in de-
tail in terms of an isothermal hydrodynamic model by Schmit
and Tscharnuter (1995) (1999). Spahn et al. (2000) included
the thermal balance equation in this concept.

In local simulations of a perturbed dense planetary ring
Mosqueira (1996) showed that the condition for viscous
overstability derived by Borderies et al. (1985) can be ful-
filled. The first direct demonstration of viscous overstabil-
ity in an unperturbed dense collisional ring was given in
self-gravitating local simulations by Salo et al. (2001), using
parameters plausible for Saturn’s B ring (see also Daisaka
et al. 2001). The simulations spontaneously developed ax-
isymmetric oscillations on a length of about 100 m, for an
optical depth £ > 1. Generally the oscillatory pattern was
found to coexist with self-gravity wakes (Fig. 14.11).

In their local simulations Salo et al. (2001) also used an
enhanced frequency of vertical oscillations�z=� > 1 to ap-
proximate effects of the ring’s vertical self-gravity (Wisdom
and Tremaine 1988). For�z=� D 3:6 the stability boundary

was again about £� 1 and for �z=� D 1 (i.e. no self-
gravity) overstability developed for £ > 4. This suggests
that the conditions necessary for overstability are not con-
nected to self-gravity itself but rather to a large collision
frequency, which determines the viscous properties. Further,
Salo et al. (2001) showed that overstability develops in simu-
lations with a broad distribution of particle sizes. A quantita-
tive comparison of simulations to overstability on the linear
level in a hydrodynamic model was carried out by Schmidt
et al. (2001), the nonlinear saturation of overstable waves was
studied by Schmidt and Salo (2003), and nonlinear wavetrain
solutions are derived by Latter and Ogilvie (2009).

14.2.1.1 A Linear Model

Linearizing the isothermal Eqs. 14.33–14.37 about the steady
state solution ¢ D †, u D 0, v D 0 we obtain

P� D �†u0 (14.51)
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where �0 denotes the dynamic shear viscosity of the unper-
turbed flow, ’ is the constant defined by Eq. 14.37, and we
use

p .�/0 D @p
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� 0;

the subscript indicating that the derivative is taken at the
steady state. Further, we inserted the solution

ˆDisk .r; z/ D �2�Gjkj � .r/ exp Œ�jkzj
 (14.54)

of the thin disk Poisson Eq. 14.36, valid for harmonic radial
modes with wavenumber k (Binney and Tremaine 1987).

We write
�0 D �0

†
(14.55)

for the unperturbed kinematic shear viscosity and define
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ˇ̌
ˇ̌
0

(14.56)

to display the proportionality of @˜=@¢ to the kinematic vis-
cosity �0 explicitly. For harmonic perturbations

u / exp Œst C ikx
 (14.57)
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Fig. 14.11 Transition from wake dominated (upper row) to oversta-
bility dominated self-gravitating simulations. Optical depth and surface
mass density are fixed (£ D 1:4, ¢D840kgm�2) while particle radius
and internal density are varied (plot labels indicate particle radius in
meters and internal density in units of kg/m3). In the left panels the sim-
ulation cell is seen from above and particle centers are plotted as dots.
The planet is to the left and the direction of orbital motion is upward.
The size of the simulation region is Lx � Ly D 10�cr � 4�cr where
�cr D 4�2G�=�2 is Toomre’s critical wavelength (Toomre, 1964) (see

Section 14.1.3). In the case of strong wake structure the Toomre param-
eter Q assumes a value of about one. (The relatively small Q is due
to the low internal density of the particles. In earlier simulations that
used the density of solid ice Q D 2 was found.) On the panels in the
middle the system is seen from aside. The axisymmetric oscillations
are also seen in the profiles of radial velocity (right panels), as well as
in tangential velocity and velocity dispersion (not shown). From Salo
et al. (2001)

we then obtain from Eqs. 14.51–14.53 the dispersion relation
(Schmit and Tscharnuter 1995)
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Equation 14.58 has, in the limit of long wavelengths, the ap-
proximate roots
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The first root corresponds to the viscous instability mechanism
(Ward 1981; Lukkari 1981; Lin and Bodenheimer 1981),

for long modes k ! 0 being unstable if @ ln �
@ ln �

ˇ̌
ˇ
0
< 0 (see

Section 14.2.2). The conjugate complex modes correspond
to viscously damped or amplified wave solutions. A more
rigorous analysis (valid for all k) shows that if
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the amplitude of the waves grows, i.e. the system becomes
overstable (i.e. it undergoes a Hopf bifurcation) if the viscos-
ity increases steeply enough with the surface density of the
ring. For the parameterization � / �ˇ of the surface density
dependence of the shear viscosity often adopted in hydrody-
namic studies (Schmit and Tscharnuter 1995; Durisen 1995;
Schmit and Tscharnuter 1999; Spahn et al. 2000; Salo
et al. 2001; Schmidt et al. 2001; Schmidt and Salo 2003)
one recovers the criterion (Schmit and Tscharnuter 1995) for
overstability (k ! 0)

ˇ > ˇcr WD 2 � ˛
3

D 1

3

�


�
� 2

3

�
: (14.62)

It can be shown that the same criterion follows from the
condition for overstability given by Borderies et al. (1983a),
namely that their viscous coefficient t1 is positive, at low-
est order in the nonlinearity parameter q. For narrow rings
Papaloizou and Lin (1988) derived an equivalent criterion,
not taking into account bulk viscosity. Assuming that bulk
and shear viscosities are equal (’ D 7=3) Eq. 14.62 implies
ˇcr D 1=9; inclusion of axial self-gravity (see Eq. 14.61)
leads to ˇcr even slightly less than zero (Schmit and Tschar-
nuter 1995). But according to direct simulation the stability
limit is rather ˇcr � 1. It was suggested that this discrepancy
could follow from the assumption of isothermality (Spahn
et al. 2000; Salo et al. 2001; Schmidt et al. 2001) made in the
above analysis: in practice the velocity dispersion also ad-
justs locally to overstable oscillations, which acts as a stabi-
lizing factor. The value of the bulk viscosity was determined
from simulations (Salo et al. 2001; Schmidt et al. 2001) and
included to the analysis, improving the agreement with lin-
ear growth rates at large optical depth. However what was
interpreted as the influence of bulk viscosity is in part related
to out-of-phase oscillations of the components of the veloc-
ity ellipsoid (see discussion in 1.2.2). This effect cannot be
modeled by Newtonian stress (Latter and Ogilvie 2006).

Taking the time derivative of Eq. 14.52, using Eqs. 14.52
and 14.53 to eliminate v and setting

� D �†
Z t
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d Ntu0 .Nt /

we can write Eqs. 14.51–14.53 formally as a forced wave
equation
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An approximate solution for the oscillatory mode is ob-
tained by assuming that �0 in Eq. 14.63 is a small parame-
ter (compared to �=k2) and using a multi-scale expansion
(Kevorkian and Cole 1996). In this case (Eq. 14.63) indeed
becomes an equation for a viscously forced inertial-acoustic
wave and the dynamics splits on two well separated time
scales t and � D �0t so that

u .x; t; �/ D A .�/ u0 .x; t/ ;

where A is a slowly variable amplitude and u0 is the rapidly
oscillating solution of the homogeneous problem. At zeroth
order in �0 one obtains a wave with dispersion relation6
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At order �0 we get an equation for the evolution of the am-
plitude A
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Thus, a solution to the linear Eq. 14.63, applicable to long
modes (i.e. neglecting O

�
k4
�
), is
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This describes a radial wave with exponentially growing or
damping amplitude, recovering the growth rate (Eq. 14.60).

From the nonlinear Eqs. 14.33–14.35 one can derive
an equation for the amplitude growth which contains a

6 The same dispersion relation is obtained for tightly wound spiral den-
sity waves.
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term which is cubic in the amplitude A, in addition to the
linear terms in Eq. 14.65. This cubic term, arising from
the nonlinearities in the system, leads to a saturation of the
growth of overstable modes at a certain amplitude depend-
ing on the wavelength (Schmidt and Salo 2003; Latter and
Ogilvie 2009). It has been shown analytically and in simula-
tions that generally standing waves are unstable with respect
to traveling wave solutions.

14.2.1.2 Overstability and Self-gravity

Self-gravity of the ring has a twofold effect on overstable
oscillations. On the one hand, self-gravity promotes over-
stability by steepening the dependence of viscosity on den-
sity (Fig. 14.8). On the other hand, in the case of strong
self-gravity, the nonaxisymmetric wakes tend to suppress the
the growth of axisymmetric overstable oscillations, although
simulations (Salo et al. 2001) show that the co-existence of
both phenomena is permitted (Figs. 14.7 and 14.11). Cur-
rently no analytical theory exists to model the formation of
overstability in a ring with self-gravity wakes.

Another important effect is related to the axisymmetric
component of self-gravity. Namely, in non-selfgravitating
models the wavelengths of overstable oscillations are ob-
served to grow with time (Schmit and Tscharnuter 1995,
1999; Schmidt and Salo 2003). It is not clear at present if
this growth would eventually be limited by the curvature of
the ring flow (which was neglected in the modeling so far) or
by nonlinear effects. In contrast, the inclusion of self-gravity
leads to a limited regime of wavelengths which can grow.
This was noted by Schmit and Tscharnuter (1999) and is
in agreement with the results from direct simulations where
only axisymmetric gravity is included.

14.2.2 Viscous Instability

Viscous instability was discussed after 1980 as a promis-
AQ5

ing candidate to explain the banded structure of Saturn’s
B ring seen in the Voyager images (Lukkari 1981; Lin
and Bodenheimer 1981; Ward 1981; Hämeen-Anttila 1982;
Stewart et al. 1984). It is a diffusion instability, developing in
sheared collisional systems if the dynamic shear viscosity ˜
fulfills the condition

@�

@�
< 0; (14.67)

which follows from the linearized Eqs. 14.51–14.53 in the
non-selfgravitating or long wavelength limit (see Eq. 14.59).
In this case the (viscous) collisional flux of particles
is directed away from ring regions of depleted density,
thereby amplifying perturbations in the density profile. Ear-

lier, viscous instability was discussed for accretion discs
(Lightman and Eardley 1974).

From the linearized Eqs. 14.51–14.53 one can easily
derive a diffusion equation, assuming a slow viscous radial
migration of material and v D 0 (i.e. purely Keplerian veloc-
ity). In this case Eq. 14.53 can be solved for u which gives
together with Eq. 14.51

P� D 3
@�

@�

ˇ̌
ˇ̌
0

� 00 (14.68)

For harmonic perturbations (Eq. 14.57) we recover the
growth-rate (Eq. 14.59).

In Section 14.1.1.5 we demonstrated in terms of simu-
lations that the steady state viscous properties of a plan-
etary ring depend sensitively on the particle elasticity. If
the particles are as dissipative as suggested by the Bridges
et al. (1984) collision law, then the ring is in a very flat state
with high filling factor. Then non-local viscosity will domi-
nate (Wisdom and Tremaine 1988; Araki and Tremaine 1986;
Araki 1991) and condition (Eq. 14.67) is not fulfilled (see
the curves labeled ‘frosty’ in Fig. 14.4). Such a flattened
and dense ring state is strongly supported by the presence
of self-gravity wakes (see Fig. 14.6), which are found in
Cassini data, practically all over the A and B rings (chapter
by Colwell et al.).

Nevertheless, assuming more elastic collision laws one
can in principle expect viscous instability. In this case the
ring particles maintain in thermal equilibrium a relatively
large velocity dispersion, and thus, form a ring with a vertical
scale height that is much larger than the particle diameter.
Then the filling factors are small, local viscosity dominates
at small optical depth, and the condition 14.67 can be ful-
filled at intermediate optical depths, while at large optical
depth the non-local viscosity becomes important. Such be-
havior, leading to viscous instability, is expected for example
for the’smooth’ elasticity law (Fig. 14.4), for 0:6 < £ < 2:0.
The instability can be demonstrated in direct simulation (Salo
and Schmidt 2009), provided that the calculation region is
large enough to cover the smallest unstable wavelengths of
the order of hundred particle diameters. An example is shown
in Fig. 14.12. After initial growth, the system has saturated
to a bimodal quasi-steady state where collisional flux from
dense dynamically cool regions is in balance with rarefied
dynamically hot regions (�£ is radially constant). At the large
wavelength limit the initial linear growth rates agree with
Eq. 14.59.

The above example of viscous instability relies on the
assumption of probably unrealistically elastic particles, and
thus, is of limited interest. However, the studied case of iden-
tical particles with fixed elasticity is not necessarily represen-
tative of real planetary rings. Indeed, if we take into account
a particle size distribution, and allow for size-dependent
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Fig. 14.12 Viscous instability in a non-gravitating simulation with
£ D 0:94 using the ‘smooth’ particle elasticity model of Fig. 14.3. Dur-
ing the first 100 orbital periods the system divides into several ringlets.
In the plot a snapshot after 500 orbital periods is displayed. The solid
line indicates the optical depth profile (upper frame). The density of
the two leftmost ringlets has saturated to an almost constant level. The

second ringlet from the right has started to disperse, the material being
captured mainly by the rightmost ringlet which is slowly growing and
migrating toward the dispersing one. It is likely that more of the ringlets
will slowly disperse, and that eventually one large ringlet remains stable
in the simulation box. In this way the process could generate a large-
scale radial structure over long time scales. (From Salo and Schmidt)

Fig. 14.13 Example of size-selective viscous instability. The non-
gravitating simulation system consists of two particle sizes, with radii
R D 0:333m and R D 1m; both components have £ D 0:5. Ini-
tially both particle species were uniformly distributed; here the distri-
bution after 700 orbital periods is displayed. The upper frame shows a
slice through the equatorial plane, the lower frame shows a side view.
Symbol size corresponds to particle size and 1/5th of all particles are

plotted. The solid red and and black-green dashed curves indicate the
density profiles of small and large particles, respectively. In this simu-
lation the Bridges et al. (1984) type elasticity model is used, with the
scale parameter (see Eq. 14.14) depending on the size group of collid-
ing particles: vc=vB D 0:1; 1; 10 for collisions of a small-small, small-
large, and large-large pair of particles. Note that identical particles with
vc=vB D 10 would not lead to instability. (From Salo and Schmidt)

elastic properties, new interesting possibilities open up. In
particular, if the impacts between small particles are more
inelastic than those of large particles (this is at least quali-
tatively in accordance with laboratory experiments (Hatzes

et al. 1988; Dilley and Crawford 1996)), simulations indicate
that it is possible to obtain selective instability, where the
density fluctuations of small particles are enhanced against a
more uniform background of large particles (see Fig. 14.13).
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Qualitatively, the instability is due to the fact that an in-
crease of the partial concentration of small particles locally
reduces their velocity dispersion, since their energy balance
becomes dominated by their mutual very dissipative impacts:
this makes the viscosity drop with the relative concentration
of small particles.

An attractive feature of this kind of selective instability
is that the attained density contrast depends on the size ra-
tio and the difference in elastic parameters between the pop-
ulations: at least in principle this allows for a much richer
variety of structures than the simple identical particle model
leading to strictly bimodal optical depth variations. Further
studies of selective instabilities, including ring self-gravity
are in progress (Salo and Schmidt 2009).

14.2.3 Instabilities due to Ballistic
and Electromagnetic Transport

Particles of Saturn’s main rings are subject to hypervelocity
impacts (10 to 50 km/s) of micro-meteoroids (100�m to mm
in size). This process leads to erosion of the ring particles
by ejection of dust-sized and larger debris (Durisen 1984;
Durisen et al. 1989). If the ejecta are re-absorbed at some
distance by the rings it can lead to the (radial) re-distribution
of mass and momentum. The latter mechanism is called bal-
listic transport (Ip 1983; Lissauer 1984).

It was shown by Durisen et al. (1992) that ballistic trans-
port can produce the ramps in optical depths seen interior to
the inner edges of the A and B rings (see Fig. 13.1 and dis-
cussion in Chapter 17).

As a consequence of ballistic transport Durisen (1995)
proposed an instability mechanism for rings of intermedi-
ate optical depths 0:1 < £ < 1. The idea is that for a
given radial throw-distance of ejecta (or given distribution of
throw-distances) small radial variations in the optical depth
profile of certain length-scales can amplify. In principle this
may happen by direct re-distribution of mass and/or by ra-
dial migration of ring material due to torques exerted by re-
absorbed ejecta. Durisen (1995) investigates the linear stabil-
ity of a mathematical model coupling the equations for mass
and momentum conservation with appropriate gain and loss
terms, using models for meteoroid bombardment and ejecta
distributions developed earlier (Cuzzi and Durisen 1990).

Durisen (1995) shows that the ballistic transport in-
stability should produce radial undulations in the inner
B ring of about 100 km wavelength. In the outer B ring
optical depth is too high for this instability to develop. This
is consistent with analysis of pre-Cassini data (Horn and
Cuzzi 1996) and structure seen in Cassini SOI images (e.g.
Fig. 14.5b of Porco et al. (2005)). For conditions plausible

for the B ring the instability is driven by ballistic mass
transport, momentum transport playing an insignificant role.
Durisen (1995) argues that the observed structure can grow
in a few million years. His derivation includes the smoothing
effect of viscous diffusion but does not take into account
gravitational viscosity. The qualitative conclusions, however,
are not likely to change.

A conceptually similar instability mechanism was pro-
posed by Goertz and Morfill (1988) (Shan and Goertz 1991).
It appears as a consequence of the radial transport of
charged sub-micron sized dust grains, lifted from the rings
(Morfill et al. 1983; Goertz 1984). Due to their large charge
to mass ratio such grains are affected strongly by the plan-
etary magnetic field, which tends to force them to co-
rotation. At re-accretion the angular momentum the particles
gained from (or lost to) the magnetic field is transferred to
the ring.

The dominant process driving this instability is angular
momentum exchange of different ring segments with Saturn,
mediated by the charged particles. The transported masses
are insignificant. The instability should generate radial vari-
ations in the ring’s surface mass density on a length of
hundreds of kilometers (Goertz and Morfill 1988). Near syn-
chronous orbit (at 1.87 planetary radii in the outer third of
the B ring), however, the mechanism becomes inefficient
since at that location charged grains have zero relative ve-
locity to the corotational magnetic field. The growth rate of
the instability is sufficiently large to overcome the smooth-
ing effect of viscous diffusion only if the ring’s viscosity
is smaller than roughly 50 cm2/s. The viscosities estimated
from the damping of density waves in the A ring are gen-
erally larger by a factor of 2 to 4 (Tiscareno et al. 2007).
However, the A ring viscosity is probably dominated by self-
gravity wakes whose strength depends on the distance to
Saturn and surface mass density. Extrapolation of formula
(Eq. 14.49) (Daisaka et al. 2001) gives for the inner B ring
(r < 100;000 km) viscosities below 50 cm2/s if the surface
mass density is smaller than 800 kg=m2 (assuming a particle
internal density 900kg=m3).

14.2.4 Shear Rate Instability

The instability model proposed by Tremaine emphasizes the
importance of investigating more general forms of the stress
tensor in the dynamics of planetary rings than the Newtonian
form (Section 14.1.2, Eqs. 14.28–14.30), demonstrating that
non-Newtonian stress can lead to interesting dynamical con-
sequences.

The basic idea is to consider shear stress as a non-
monotonic function of shear rate s D j@v=@xj (here x is
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the radial coordinate and v is circumferential velocity of the
flow), such that the stress-shear curve is generally increasing
with s but decreasing over some interval of shear rates. If the
Keplerian shear rate sk D 3=2� lies in this interval, then the
flow can assume three different shear rates s1 < sk < s2 for
the same value of the stress. In this case sk will be unsta-
ble and the flow divides into radial bands of alternating shear
rates s1 and s2.

In principle, adhesion between particles can lead to
such a non-monotonic relation between shear and stress.
A solid, rigidly rotating annulus would require a certain
amount of tensile stress (Pxx) to balance the tidal forces
(Tremaine 2003). This stress can be provided by adhesive
forces in a state when ring particles stick on each other. More
generally, one can imagine that adhesion provides a certain
amount of stress also in a non-rigidly rotating ring, so that
particles stick temporarily, but are released again in a col-
lision with a third particle, or, by tidal forces, the precise
balance of sticking and release depending on the shear rate.
This stress would lead to deviations from the purely Keple-
rian rotation. Whether adhesion can indeed produce the re-
quired non-monotonic stress-shear relation in Saturn’s rings,
such that the Keplerian shear rate lies somewhere in the
middle of the interval with decreasing stress, is not clear at
present.

For planar, incompressible, viscous shear flow, neglecting
self-gravity, we have a nonlinear diffusion equation for the
evolution of the shear rate (Tremaine 2003)

@s

@t
D � 1

�

@2

@x2
Pxy .s/ (14.69)

with the condition that the mean shear rate is fixed at sk . The
constant surface mass density of the ring is denoted by ¢ .

Stability analysis of Eq. 14.69 demonstrates that any shear
rate sk in the region @Pxy=@s < 0 is unstable. Numerical so-
lution shows that the shear profile rapidly evolves to a piece-
wise linear pattern that alternates between s1 and s2. In the
long term evolution smaller domains merge, and the typical
length of the pattern grows. Thus, the overall behavior of the
mathematical model (Eq. 14.69) is similar to the viscous in-
stability model (2.2). In both cases the stress depends non-

AQ6
monotonically on a parameter (here shear-rate s; for viscous
instability the optical depth £) which leads to an instability
such that the system develops into a state where the parame-
ter alternates between two given stable values.

The assumption of a constant surface mass density ¢ ,
leading to Eq. 14.69, is a very strong one. Since the stress
also depends on the surface density, in addition to the shear
rate dependence studied here, it seems unavoidable that si-
multaneously perturbations in ¢ will develop.

14.3 Ring Moon Interactions
and Narrow Rings

Saturn’s rings owe a large part of their dynamical structure
to the gravitational action of numerous satellites. Large satel-
lites with orbits outside the rings generate resonant gravita-
tional perturbations in the ring at particular radial locations,
where combinations of orbital frequencies of the satellites
and the ring particles are in a ratio of two integer numbers.
The perturbations excite density or bending waves: spiral
patterns in the ring, co-rotating with the perturbing satellite
(Section 14.3.1). Such waves have been observed at numer-
ous resonance locations mainly in Saturn’s A ring. At the
strongest resonances, the negative angular momentum car-
ried by a density wave may cause an inward migration of
ring particles, opening a gap in the rings.

Another class of structures are generated by small moons
(moonlets or ring-moons) embedded directly in the rings.
There are gaps (Section 14.3.2) cleared by the embedded
satellite, density wakes at the gap edges, and also propeller-
shaped features (Section 14.3.3) induced in the ring’s density
by skyscraper-sized moonlets. Furthermore, embedded small
moons may play a crucial role in confining, sustaining and
sculpting narrow ringlets (Section 14.3.4) like the F ring and
the Encke-gap ringlets.

14.3.1 Spiral Waves

14.3.1.1 Background

Gravitational perturbations by satellites can excite spiral
waves in planetary rings. Density waves form in the ring at
radial distances where combinations of horizontal frequen-
cies of ring particles and satellite are in the ratio of two inte-
ger numbers. They are driven by an interplay of self-gravity
and inertial forces, forming a spiral pattern of compression
and rarefaction of the ring. If the satellite is exterior to the
rings they propagate outward with group velocity �G�0=�,
where �0 and › are the background surface mass density
and the epicyclic frequency, respectively. Such density waves
transfer angular momentum from the rings to the satellite,
causing the ring particles to spiral inward, while they are
damped by a combination of nonlinear and viscous effects.
Similarly, spiral bending waves are vertical corrugations, ex-
cited at vertical resonances with a satellite. If the satellite is
external to the rings, the bending wave propagates inward
from the resonance location.

Goldreich and Tremaine predicted spiral density waves
excited at locations of strong resonances with satellites
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such as Mimas and Titan, suggesting that such a wave
(excited at the 2:1 inner Lindblad resonance with Mimas)
created the Cassini Division. Many density waves asso-
ciated with resonances of Prometheus, Pandora, Janus,
Epimetheus, Mimas, and Iapetus (mostly in the A ring)
were discovered in the Voyager data (Cuzzi et al. 1981;
Holberg 1982; Holberg et al. 1982; Esposito et al. 1983;
Longaretti and Borderies 1986; Rosen et al. 1991a 1991b;
Spilker et al. 2004). Bending waves were identified by
Shu et al. (1983), who also developed the theory of forced
bending waves, and further analyzed by Lissauer (1985)
and Gresh et al. (1986). Rosen and Lissauer (1988) studied
the bending wave in the C ring at the nodal resonance with
Titan, where the satellite’s forcing frequency equals the
regression rate of the nodes of particles’ orbits.

The linear theory (Goldreich and Tremaine 1978a, b,
1979b; Shu et al. 1983; Shu 1984) was often employed
to analyze the waves, whereas nonlinear effects are impor-
tant for most density waves found by Voyager. The non-
linear theory was developed by Shu et al. (1985a, b), and
Borderies et al. (1985, 1986), and nonlinear effects were in-
cluded in the study of observed waves (e.g., Longaretti and
Borderies 1986; Rosen et al. 1991a, b). The large number of
high resolution occultation profiles obtained by Cassini over
a longer period of time led to considerable advances in mod-
eling of density waves (see Section 14.3.1.3).

There are several motivations for analyzing density
waves. Simply speaking, in the linear regime, the surface
density can be derived from the dispersion relation, which
governs the decrease of wavelength with the distance from
the resonance and the ring viscosity can be inferred from
the damping rate, which is estimated from the decrease
in the amplitude of the wave (see, e.g., Goldreich and
Tremaine 1978b; Shu 1984).

A motivation to study especially nonlinear density waves
is to determine the torques exerted by satellites on the rings.
The measurement of the torque is relevant for the dynamical
evolution of the satellites that are close to Saturn’s rings, and
the age of the ring-satellite system that we observe presently.

14.3.1.2 Elements of Theory

Two approaches exist to study spiral density waves in a plan-
etary ring, the fluid dynamical approach and the streamline
approach. The fluid model was introduced by Goldreich and
Tremaine based on the Euler equations with perturbations
arising from the planet, a satellite, and the disk. It was fur-
ther developed by Goldreich and Tremaine (1978a, 1979b),
Shu (1984), and Shu et al. (1985a, b).

The streamline formalism was developed by Borderies
et al. and its application to density waves is described in de-
tail in Rappaport et al. Because self-gravity acts as a cohesive

force, particles sharing the same semi-major axis are ex-
pected to follow the same m-lobe orbit in the reference frame
rotating with the pattern speed. The shape of the streamlines
is given by:

r D a Œ1 � e .a/ cos .m� Cm�.a//
 ; (14.70)

where e .a/ 
 1 is the eccentricity and �.a/ is a phase an-
gle. This description assumes a Lagrangian approach to fluid
motion. An unperturbed fluid particle follows a circular or-
bit and has coordinates a; ¥. Once perturbed by the satellite,
this same particle follows an m-lobe orbit and has coordi-
nates r .a; ¥/ ; — .a; ¥/. The degree of horizontal compression
of the ring material is measured by

J D @r

@a

ˇ̌
ˇ̌
�

D 1 � q cos .m� Cm�C �/ ; (14.71)

where we neglected the small term e cos.m¥Cm�/, and

q cos � D a
de

da
; q sin � D mae

d�

da
: (14.72)

Streamline crossing is prevented as long as q < 1. We define
the phase function as (Rappaport et al. 2009)

f .a/ D m�.a/C � .a/ : (14.73)

Conservation of the mass of a ring element between its un-
perturbed and perturbed state implies

dmT� .r; / rdrd D �0.a/adad�;

so that at lowest order in e

� D �0

J
(14.74)

where ¢ and ¢0 are the perturbed and unperturbed (or back-
ground) surface mass densities. If the ring particle distribu-
tion (with respect to size, spin, shape, etc.) is constant in time,
we also have

� D �0

J
; (14.75)

where �0 is the unperturbed, or background, optical depth.
Based on the above streamline formalism, the nonlinear

dispersion relation for tightly wound density waves was de-
rived by Borderies et al. (1986, see also Shu et al. (1985b);
Borderies et al. (1985)) as

K
a � ares

ares
D 2�G�0jkjC .q/ � 2k2H 0 �q2� c2K

3 .m � 1/�2
;

(14.76)
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where ares is the semi-major axis of the resonance, K D £=¢

is the opacity, and

k D df

da
(14.77)

is the wave number. The expressions

C .q/ D 4

�

Z C1

0

du
sin2 u

u2
H 0

 
q2 sin2 u

u2

!
;

H 0 �q2� D 1 �p1 � q2
q2
p
1 � q2

result from the derivation of the self-gravitational accelera-
tion via summation of mass-loaded streamlines of the per-
turbed ring. The dispersion relation (14.76) for free density
waves in the linear regime (q ! 0) is given by Eq. 14.64 (see
also Shu 1984).

14.3.1.3 Advances in Modeling

The Waves Associated with the Co-Orbital Satellites

The density waves associated with Janus and Epimetheus are
especially interesting. These two co-orbital satellites swap
orbits every 4 years, with the most recent reversal having oc-
curred in January 2006. The resonance locations produced
by these bodies typically shift by tens of kilometers at the
times where the orbits switch around. Therefore, we expect
the density waves excited at the resonances of these satellites
to show temporal changes. It turns out that the group veloc-
ity is

vg � 0:1

�
�

100 g cm�2

�
cm s�1;

so that the waves propagate over 100 km in a time scale of
about 3 years.

Lissauer et al. first studied the long term evolution of
Janus and Epimetheus under the influence of ring torques ex-
erted on the satellites. They find that the moons should evolve
from their horseshoe-type configuration to a tadpole config-
uration in only 20 million years. They also note the multiple
wavetrain excitation at the resonance locations.

Tiscareno et al. developed a model for the complex mor-
phology of the (linear) second order waves that result from
these reversals and compare to ISS images. They assume that
the reversal occurs instantaneously while the waves gener-
ated at the previous resonance locations continue to prop-
agate and new waves are launched at the new resonance
locations. The observed morphology results from superpo-
sition of the various wavetrains.

This model shows in general good agreement with Cassini
images, with the exception that there are regions where it
predicts zero perturbation, while the image scans show oscil-
lations. This may be due to the fact that the reversals are not
instantaneous but take several months.

Power Spectrum Density Methods

The application of Power Density Methods to planetary
rings was pioneered by Spilker et al. with the Voyager data.
Colwell et al. used spectral methods to study density waves
in stellar occultation profiles recorded by the Cassini UVIS,
using a linear dispersion relation. For the Atlas 5:4 density
wave Colwell et al. determined a surface density of 1.6 g/cm2

and a viscosity of 5 ˙ 2 cm2/s, corresponding to a ring
thickness of 10 m. For other waves which have a very short
damping scale, they used Fast Fourier Transforms, Maxi-
mum Entropy Methods, and Wavelet transforms. They found
results roughly consistent with previous published values, but
there is considerable scatter between different occultations
and different techniques.

Tiscareno et al. applied the continuous Wavelet transform
to weak (i.e. nearly linear) density waves in high resolution
Saturn Orbit Insertion imaging data. The Wavelet transform
is particularly well suited for the detection of weak waves
and provides the ability to isolate multiple waves superim-
posed on top of each other. Tiscareno et al. fitted the wave
parameters of 32 density waves, most of them previously un-
observed. They found a linear increase of the surface density
from the inner to the mid A ring. The ring viscosity they in-
ferred from the wave damping increases monotonically from
the Cassini Division to the Encke Gap. This is likely a con-
sequence of the increasing strength of self-gravity wakes in
this ring region, which is seen in the increasing amplitude of
the brightness asymmetry (Dones et al. 1993).

Application of the Nonlinear Theory

Kinetic parameters �0 .a/, q .a/, f .a/, ae .a/, and � .a/ are
used to describe a density wave in the streamline formalism
(Section 14.3.1.2). Rappaport et al. developed an inversion
method to derive these parameters as a function of semi-
major axis for a given density wave in the nonlinear regime,
using multiple ring optical depth profiles. The method is ap-
plied to eight RSS radio occultation profiles of the Mimas
5:3 density wave. Figure 14.14a shows the solution for the
five wave functions. The dotted lines correspond to the region
where the functions for at least one of the profiles were ex-
trapolated. In this extrapolation region, the functions �0 and
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Fig. 14.14 (a) Kinematic parameters of the Mimas 5:3 density wave
derived from the inversion procedure. The kinematic parameters ob-
tained by considering the profiles independently from each other are
shown in blue. The mean solution is displayed in red. The dotted lines
refer to the region in which the parameters for at least one profile are
simply extrapolated rather than obtained by the inversion method, be-
cause the approximation used in the method is not valid in these regions.

For e and ” only mean profiles are determined (red lines in bottom pan-
els). (b) Radio optical depth profiles for eight occultations (in blue) of
the Mimas 5:3 density wave and the solution obtained by the inversion
method (in red). The profiles are stacked. For each profile, the vertical
scale goes from 0 to 4. Intermediate tick marks represent both the £ D 0

level of the next profile, and the £ D 4 level of the previous one. The
resonance radius is 132301 km (Rappaport et al., 2009)

q increase. These functions are nearly constant between 50
and 120 km from the resonance radius. In this domain the
phase f is very well determined. Figure 14.14b shows the
radio optical depth profiles for eight occultations (in blue) of
the Mimas 5:3 density wave and the reconstructed profiles (in
red). Excellent agreement is found between the observations
and the model, considering the large fluctuations in optical
depth in the data, notably at the peaks.

From the model the nonlinear dispersion relation 14.76
(with the pressure term quadratic in k) is used to compute
the opacity, or equivalently, the surface density and the ve-
locity dispersion. The background surface density �0 of this
wave is found to be variable between 55 and 66 g cm�2. It is
enhanced at the beginning of the wave, which can be under-
stood by considering a uniform ring in which a strong den-
sity wave is launched. The viscous angular momentum flux
is negative in the region where q is close to unity but pos-
itive inward and outward. The result is that ring material is
transported to the zone where the wave is strongly nonlinear.
The velocity dispersion is �0.6 cm s�1 in the wave region.

The determination of �0 .a/ and q .a/ in the above ex-
ample is impaired by the considerable noise in the radio
data. Improved results may be possible by application of the
method to UVIS data with a better signal to noise ratio. Also
an improved treatment of the first wavelength of the wave is
needed for an accurate estimate of the mass of a perturbing
satellite.

14.3.2 Moonlet Induced Gaps

In the previous section we discussed waves generated at res-
onances with satellites on orbits outside the rings. With de-
creasing distance to the perturbing satellite the azimuthal
wavenumberm of a resonance increases and neighboring res-
onances and related structures become more closely spaced.
This is the case for instance for the resonances of Prometheus
and Pandora in the outer A ring, which, however, remain well
separated.

The situation is different for a satellite directly embed-
ded in the rings (moonlet). In the vicinity of the moonlet the
resonance order diverges (m ! 1) and the distance be-
tween the resonances vanishes (j�rmj ! 0). As a conse-
quence, density waves cannot be excited at these resonances,
since, firstly, the radial width Wr of a resonance exceeds
the inter-resonant distances Wm > j�rmj so that the reso-
nance regions overlap (Wisdom 1980; Duncan et al. 1989)
and phase-mixing destroys the resonant phase commensu-
rability, leading to chaotic particle motion. Secondly, these
distances do not give enough radial space for the waves to
develop, i.e. j�rmj < �, (œ – wavelength of resonant waves).

Instead, the gravitational angular momentum exchange
between embedded moonlet and surrounding (perturbed)
ring material tends to open a gap in the ring. Goldreich
and Tremaine (1980) derived the gravitational torque den-
sity dTMoonlet=dr / ˙M2

Moonlet=jxj4 exerted on a moonlet
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by an infinitesimally narrow ring of width dr (still contain-
ing a large number of resonances) located at radial distance
x D a � a0 from the moonlet at a0, where a denotes semi-
major axes. The signs correspond to ring matter inside and
outside the moonlet’s orbit, respectively: Angular momen-
tum is transferred to the moonlet (positive sign) by ring ma-
terial interior to its orbit and ring particles migrate towards
the planet. Ring material exterior to the moonlet’s orbit gains
angular momentum (negative sign), particles are pushed out-
ward. In steady state this transfer of angular momentum is
counteracted by a viscous torque T� / 3���r2�, mediated
by physical collisions (Lissauer et al. 1981) and gravitational
interactions (Daisaka et al. 2001) between the ring particles,
quantified by the viscosity �, with the result that a gap of
finite size is opened in the ring.

Integrating the torque density (summing all ringlet con-
tributions) and balancing with the viscous torques one ob-
tains for the width of the gap (Lissauer et al. 1981; Petit and
Hénon 1988; Spahn et al. 1992a, 1993)

WG /
(
M

1=3
Moonlet / RMoonlet; for MMoonlet < M0

M
2=3
Moonlet / R2Moonlet; for MMoonlet > M0:

(14.78)

where M0 corresponds to a kilometer sized moonlet (solid
ice density). A comparison of the Encke- and the Keeler
gaps, created by Pan and Daphnis, respectively, confirms
the scaling WG / M

2=3
Moonlet for large ring-moons fairly well

(MMoonlet; RMoonlet – moonlet mass and radius).
Density wakes form at the edges of the gap down-

stream from the moon (Cuzzi and Scargle 1985; Showalter
et al. 1986) as a response to the periodic perturbation by
the moon. The moonlet forces an eccentricity e / x�2 of
ring particles and their orbital phases become temporarily
synchronized, leading to the formation of a kinematic wake
(Showalter et al. 1986). The streamline wavelength �w D
3�x of a wake increases with mean radial distance x from
the moon. The wakes are more pronounced for larger moons,
because then diffusion (/ c2 [see Eq. 14.68]) cannot domi-
nate the systematic wake induced velocities / r0e .x/� .r0/

during one synodic period

tsyn D 4�

3� .r0/

ˇ̌
ˇr0
x

ˇ̌
ˇ : (14.79)

Such density wakes have been found at the edges of the
Encke gap (Cuzzi and Scargle 1985; Showalter et al. 1986)
and the Keeler-gap (Cooke 1991) which led to the detection
of the two embedded ring moons Pan (Showalter 1991) and
Daphnis (Porco et al. 2005), respectively.

Cassini cameras revealed a surprising “rope” structure
in the Pan wakes in the outer Encke gap edge (Porco
et al. 2005, their Fig. 6c). Such features were predicted by
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Lewis and Stewart (2005) as a consequence of the interac-
tion of the moonlet induced perturbation with the self-gravity
of ring. Apparently the compression and stretching of self-
gravitating material in the first cycles of the Pan wake leads
to magnified self-gravity wakes. On the other hand, further
away from the gap edges the moonlet wakes may disrupt self-
gravity wakes (Lewis and Stewart 2005), which formed in the
unperturbed region upstream from the moon.

The secular evolution of a satellite embedded within a
gap in a ring was studied by Hahn (2008) and Hahn (2007).
An eccentric satellite should excite resonant low-amplitude
density wave in the self-gravitating ring exterior to the gap
(Hahn 2008), which in turn tends to damp the moon’s ec-
centricity. In the case of Pan in the outer A ring the wave-
length would be on the order of hundreds of kilometer and
the amplitude��=� < 4�10�3. Similarly, an inclined satel-
lite should launch a spiral bending wave in the ring exterior
to the gap (Hahn 2007).

14.3.3 Propellers – the Action of Tiny Moons

If an embedded moonlet is smaller than (roughly) a few hun-
dred meters in size (solid ice density), then the gap it induces
in the ring can be closed by viscous diffusion before it ex-
tends around the complete ring circumference. This compe-
tition of gravitational scattering and viscous diffusion creates
a typical structure in the rings (Fig. 14.15a) dubbed “pro-
pellers” (Spahn and Sremčević 2000; Sremčević et al. 2002).
Such an S-shaped density undulation – typically induced in a
disk as the local response to an embedded mass – was stud-
ied by Julian and Toomre (1966), however, not taking into
account physical collisions between particles, which are es-
sential for planetary rings.

The first four propeller features were detected in high res-
olution Cassini images of the A ring (Tiscareno et al. 2006).
Later, a large number of propellers were found preferentially
interior to the Encke gap (Sremčević et al. 2007; Tiscareno
et al. 2008) and larger propellers also outside the Encke
gap (Sremčević et al. 2007; Tiscareno et al. 2008; Burns
et al. 2008).

A propeller can form in the rings if the eccentricities
forced by the moonlet’s gravity are much larger than those
implied by the quasi-steady velocity dispersion established
by the balance of viscous heating and collisional cooling.
The (incomplete) propeller-gaps develop roughly at radial
displacement ˙1:5RHill from the moonlet, where

RHill D r0

�
MMoonlet

3MSaturn

� 1
3

; (14.80)
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Fig. 14.15 Perturbations of the rings’ surface-mass density induced by
an embedded moonlet (Sremčević et al., 2002). Panel (a): The charac-
teristic propeller structure induced by a small moonlet (R D 100m;

moonlet’s density ¡ D 600 kg m�3), which does not extend around the
whole circumference. Panel (b): A complete gap induced by a moon
massive enough to create structure surviving a synodic period tsyn

is the Hill scale. Let the mean square radial distance h�r2i �
�t characterize viscous diffusion of a ring particle perform-
ing a random walk mediated by collisions (and gravitational
encounters) in the ring. Then the distance L .t/ D ph�r2i,
arising from Gaussian solutions of the linearized diffusion
Eq. 14.68, is the radial scale particles migrate on average dur-
ing time t . For moonlets withRHill < Rcrit WD L

�
tsyn .RHill/

�
all gravity-induced density undulations are smeared out dur-
ing one synodic period tsyn so that the gaps remain incom-
plete (Fig. 14.15a), while a complete gap is formed when
RHill > Rcrit (Fig. 14.15b).

The azimuthal extent of these density depletions can
be estimated (Spahn and Sremčević 2000; Sremčević
et al. 2002) by equating the radial length scales of gap for-
mation and closing

RHill D L .tE/ �p
�tE;

defining the time tE < tsyn necessary to viscously close the
moonlet-induced gaps. The time tE is related to an azimuthal
longitude 'E D 3�0tE=2 < 2� . This simple calculation
predicts the radial and azimuthal extent of a propeller-gap as
a function of moonlet mass and ring viscosity

RHill / M
1=3
Moonlet / RMoonletI'E / MMoonlet

�
/ R3Moonlet

�
:

(14.81)

These scalings have been confirmed with N-body simulations
by Seiß et al. (2005) using non-selfgravitating single-sized
particles.

The comparison of the scaling (Eq. 14.81) to observa-
tions (i.e. the dependence of the azimuthal length of a pro-
peller on the radial separation of the bright propeller streaks)
is complicated by several factors. First, in images of the
backlit rings, where propellers were first detected (Tiscareno
et al. 2006; Sremčević et al. 2007), the interpretation of low
brightness is ambiguous since opaque or totally void re-
gions both appear dark. Thus, the bright propeller streaks
could be moonlet induced gaps or density enhancements.
Second, the propeller should induce density wakes in the
ring, which flank the incomplete gaps downstream, similar to
the Daphnis and Pan wakes (Fig. 13.4) forming at the edges
of the Keeler and Encke gaps. This wake pattern can alter the
appearance of a propeller and it will scale differently from
(Eq. 14.81). Third, the moonlet induced structure in the ring’s
density is superimposed on, and may interact with, the self-
gravity wakes in Saturn’s A ring. As a result, the propeller
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induced pattern looks fuzzy (Fig. 14.16). Since the typical
length of the self-gravity wakes is independent of the moon-
let size this may well affect the observed scaling of the pro-
peller dimensions, especially for small moonlets. Fourth, the
perturbation of the moon may locally enhance the collision
frequency and collision speeds in the ring, leading to breakup
of loosely bound particle aggregates and to the release of
debris residing on larger ring particles. This would increase
the optical depth, and thus, the observed pattern of bright-
ness does not necessarily correspond directly to the pattern
in the surface mass density, thus leading to differences from
the scaling (Eq. 14.81). Fifth, the ring viscosity (entering the
scaling as a pre-factor) might vary significantly in the pro-
peller region (Tiscareno et al. 2007).

Analyzing twelve propeller features Sremčević et al.
AQ9

(2007) found a near linear dependence

'E / R˛Moonlet with ˛ � 1:1; (14.82)

and not the expected cubic scaling (Eq. 14.81). Tiscareno
et al. (2008) found a large scatter of the propeller dimen-
sions in their data set (fewer than a hundred resolved pro-
pellers) and argue that a cubic scaling should not yet be ruled
out. Sremčević et al. (2007) show that a near linear scal-
ing can be understood if the bright propeller-features in the

images are associated with the moonlet induced wakes and
not the gaps. For 100 m-sized moonlets these wakes are not
very pronounced and they are probably perturbed by the pat-
tern of self-gravity wakes in the rings (Fig. 14.16). Neverthe-
less, the moonlet wakes will be destroyed near the longitude
of streamline crossing 'S / RMoonlet, the longitude where
the collision frequency in the streamline rapidly increases
(Showalter et al. 1986; Spahn et al. 1994), which would re-
sult in the observed linear scaling with the moonlet size. This
idea was further quantified by photometric modeling of parti-
cle configurations from self-gravitating simulations of a pro-
peller by Sremčević et al. (2007). They showed that release of
regolith and a possible destruction of the self-gravity wakes
in the perturbed propeller regions in principle offers an ex-
planation of the observed brightness of the propeller-streaks
(Fig. 14.16) in backlit geometry. The re-accumulation of the
debris is only completed downstream from the streamline
crossing point (Sremčević et al. 2007), which would lead nat-
urally to a slightly increased value ’ > 1 in Eq. 14.82. More-
over, for this geometry the gaps are not expected to stand out
relative to the ring background brightness, in agreement with
observations. Earlier it has been suggested that the bright
streaks seen in backlit images are actually the propeller gaps
(Tiscareno et al. 2006). However, this interpretation would
require fairly large optical depths for the ring and the gap

Fig. 14.16 Upper frame: Effect of a 40 m diameter moonlet in self-
gravitating simulation. The frame shows a 4km by 0.6km azimuthally
elongated simulation region co-moving with the moonlet’s orbital mo-
tion (the planet is downward and orbital motion is to the right). Two
symmetric density enhancements are seen downstream of the moonlet,
in addition to smaller scale self-gravity wakes formed by the 1 m ring
particles. The simulation also illustrates the limited-accretion mech-
anism pointed out by Porco et al.: the moonlet with internal den-
sity 600 kgm�3 was able to accumulate lower density ring particles
(450 kgm�3) until its Hill sphere was filled. Lower frame: Synthetic im-
age constructed for the geometry of the Cassini SOI images where the
first propellers were detected (Tiscareno et al., 2006). A fair correspon-

dence to observed propellers (contours indicate a fit to the SOI4 pro-
peller feature in Tiscareno et al.; see Fig. 16 in Chapter 13) is achieved
if ring particles are covered with loosely-bound regolith, released in the
vicinity of the moonlet due to locally enhanced impact speeds: here it
is assumed that impacts with vimp > 1cms�1 lead to release of regolith-
debris, which is re-accumulated during the subsequent impacts. Even
a modest amount of such debris (here �debris D 0:025 averaged over
the calculation region) is able to hide the downstream gaps and enhance
the brightness of the density crests. Fig. 14 modified from Sremčević
et al. (supplementary online-material); photometric calculations with
the method of Salo and Karjalainen, Salo et al.
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(see Fig. S12 in Sremčević et al. (2007)), and it is inconsis-
tent with the observation of propellers on the lit side of Sat-
urn’s A ring (Tiscareno et al. 2008), since in reflected light
the brightness should saturate for optical depths near unity.

Tiscareno et al. (2006) derived a moonlet-size distribu-
tion n .R/ dR / R�qdR with q � 5 including the two
known ring-moons Pan and Daphnis in the fit. Sremčević
et al. (2007) derived a larger slope q > 9, and Tiscareno
et al. (2008) obtained q � 6, both considering Pan and
Daphnis to be isolated from the propeller-moonlet popula-
tion. This perception suggests three families of bodies in the
rings: ring-particles (cm < R < 10m, roughly), propeller-
moonlets (10m < R < 500m), and ring-moons (0:5 km <

R < 100 km). Such a classification seems to be consistent
with the scenario of ring-formation in episodic cascades (Es-
posito et al. 2005) where ringmoons and moonlets are con-
tinuously destroyed by meteoroid impacts (Section 14.4.1;
see also Chapter 17). Self-gravitating simulations with an ex-
tended particle size-distribution (Lewis and Stewart 2009)
suggest that a steep moonlet size distribution is essential for
the formation of distinct propeller features, since otherwise
frequent interaction with neighboring larger moonlets would
tend to destroy the propeller.

With a few exceptions the propeller features appear con-
centrated in a belt (Sremčević et al. 2007) in the mid-A ring
(interior to the Encke division) that is divided in three bands
of roughly 1000 km width (Tiscareno et al. 2008). It was sug-
gested that the belt represents a younger ring region, formed
after the destruction of a ring moon in a catastrophic colli-
sion (Sremčević et al. 2007). Tiscareno et al. (2008) argue
that the perturbations induced by the strong Pandora 7:6 and
Janus/Epimetheus 5:4 resonances, both lying in the propeller
belt, might locally hamper the formation of the propeller struc-
ture, in thiswaysplitting thepropeller region in threesub-belts.
It is intriguing that the propeller belt is found at the same ring
radius as the maximum of the brightness asymmetry of Sat-
urn’s A ring (Dones et al. 1993), the latter being a measure for
the strength of the self-gravity wakes. If this is a coincidence
or if the two phenomena are related is unclear at present.

Exterior to the Encke gap only a few (generally larger) pro-
pellers were found so far (Sremčević et al. 2007; Tiscareno
et al. 2008; Burns et al. 2008). The largest propellers show
clearly the theoretically expected incomplete gaps and moon-
let induced wakes. Fluctuations in the ring’s surface mass
density may cause (via gravitational interaction) a stochas-
tic migration of the moonlet (Burns et al. 2008) as seen in
simulations (Lewis and Stewart 2009). A very similar effect
(type III migration) was suggested for growing planetary em-
bryos embedded in pre-planetary gas-dust disks (Masset and
Papaloizou 2003; Papaloizou et al. 2007), offering a unique
opportunity to study this type of migration in Saturn’s rings.

In Cassini images of the F ring a pattern called “fans” was
observed (Fig. 13.25). These “fans” are essentially the wake

pattern induced by embedded moonlets in the dusty compo-
nent of the F ring.

14.3.4 Dense Narrow Rings

Prominent ringlets in the Saturn system are the Titan ringlet
(Porco et al. 1984) at 1:29RS (RS D 60; 330 km is Saturn’s
radius), the Maxwell ringlet at 1:45RS (Esposito et al. 1983;
Porco et al. 1984), the Huygens ringlet at 1:95RS , and the
ringlets in the Encke gap. Other locations are listed in Table II
of French et al. and Tables 13.2 and 13.4. The most striking

AQ10
narrow ring of the Saturnian ring is perhaps the F ring, dis-
cussed in detail in Chapter 13.

14.3.4.1 Confinement of Narrow Rings

Goldreich and Tremaine proposed that narrow rings are con-
fined in radius by gravitational torques from neighboring
satellites (shepherding). The confinement is due to the trans-
port of angular momentum, induced by disturbances created
in the ring by the shepherd satellites. A formula for linear
torques (adequate for small perturbations) was derived by
Goldreich and Tremaine and nonlinear torques (also valid for
large perturbations) were estimated by Borderies et al.

Voyager detected the satellites Prometheus and Pandora
on orbits slightly interior and exterior to the F ring. It is
clear that the gravitational perturbations of Prometheus in-
duce a wealth of pronounced structures in this ring (Kolvoord
et al. 1990; Murray et al. 2008; see also Chapter 13) and
both satellites are probably involved in the shepherding.
This shepherding role has been questioned (Showalter and
Burns 1982; Cuzzi and Burns 1988) on the ground that the
F ring seems not to be in torque balance between the two
satellites. However, based on the available data an accurate
determination of the mass distribution in the F ring is diffi-
cult, which would be necessary for the precise evaluation of
the torque balance. On the other hand, evidence for perturba-
tions induced in the F ring by Pandora (Porco et al. 2005;
Murray 2007) would lend further support to the idea that
Prometheus and Pandora act as shepherds of the F ring.

Stewart and Lewis offered an alternative view of the F
ring confinement, involving a weakening of the outward flux
of angular momentum. In a first phase, the particles migrate
to Lindblad resonances, forming ringlets while in a second
phase, the ringlets collide and partially merge. This expla-
nation is consistent with results of their N-body simulations.
The dynamics of the F ring and Prometheus and Pandora was
further studied in Lewis and Stewart.

Hänninen and Salo; Hänninen and Salo found that nar-
row ringlets can form at isolated Lindblad resonances.
Goldreich et al. explained such a single-sided shepherding
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as a consequence of the net negative angular momentum flux
(i.e. integrated over a streamline) promoted by satellite per-
turbations of the streamlines of the flow of particles. Lewis
and Stewart (2005) showed that a surprisingly complex and
variable structure can already arise from the perturbations
exerted by one nearby eccentric moon on a narrow, self-
gravitating ring of uni-sized particles. Using typical scales
and elements for Prometheus and the F ring, their simulations
develop many features similar to those seen in the F ring.

Dermott et al. (1980) proposed a confinement of a narrow
ring by an embedded ring-moon forcing the particles in the
ringlet area to revolve in horseshoe and tadpole orbits. The
long-term behavior and the gravitational action of multiple
moonlets in a narrow ringlet was studied by Spahn and Spon-
holz (1989; Spahn et al. 1992b) pointing to the existence of
a kilometer-sized moonlet in the F ring’s core (Spahn and
Wiebicke 1989). Cassini experiments (Esposito et al. 2008;
Murray et al. 2008) confirm moonlets populating the F ring
which can migrate chaotically (Winter et al. 2007), driven by
the shepherds and higher gravity moments due to Saturn’s
oblateness. If the ringlet contains a large fraction of dust
(Showalter et al. 1992; Encke ringlets, F ring) the continu-
ous loss of dust due to non-gravitational perturbations must
be balanced by sources in the ringlets (e.g. small moonlets;
Ferrari and Brahic 1997), replenishing the dusty material.

Rappaport studied the possible confinement of a large ring
by a narrow ring located in a gap at 1:470RS . She found that
the torque exerted by the ringlet is able to confine the gap’s
inner edge, but not the outer edge. This suggests that either
the gap’s edges are, as the ringlet itself, confined by reversal
of the viscous flux of angular momentum, or that one or sev-
eral small satellites located within the gap are responsible for
the confinement of the edges.

14.3.4.2 Rigid Precession

Most narrow rings are eccentric and/or inclined. Goldreich
and Tremaine proposed that differential precession (due to
the quadrupole moment of the planet) can be balanced by the
effect of a ringlet’s self-gravity, thus allowing a rigid preces-
sion of eccentric ringlets. The dynamics of narrow elliptical
rings in the presence of eccentricity excitation by shepherd
satellites, self-gravity and viscous forces was studied by Bor-
deries et al. They find that the mean eccentricity of the ringlet
is determined by a balance between viscous damping and ex-
citation by the shepherd satellites, and the eccentricity gradi-
ent is positive. Due to viscous forces, the line of apsides of
the inner and outer edges are not aligned in their model.

Chiang and Goldreich (2000) and Mosqueira and
Estrada (2002) studied the effect of particle collisions on
the interplay of the effects of planetary oblateness and self-
gravity. They show that collisional forces felt by the material

in the last �100m of a �10 km wide ring can increase equi-
librium ring masses by a factor up to �100, and can lead to
apse alignment of the inner and outer ring edges, in accor-
dance with Voyager radio measurements of the Uranian ©, ’,
and “ rings. Papaloizou and Melita used a fluid dynamics ap-
proach to derive a condition for the steady maintenance of
the eccentricity of a ring, which requires the external satel-
lite torque to balance the dissipative effects due to collisions.
Melita and Papaloizou further considered the case where the
pattern frequency of the eccentric ringlet is in a secular res-
onance with an external satellite. Applying the results to the
Titan ringlet (in a 1:0 resonance with Titan), they estimated
the mean surface density of the ringlet.

14.3.4.3 Excitation of Eccentricities and Inclinations

Goldreich and Tremaine showed that torques exerted at a
Lindblad resonance with a satellite excite eccentricities of
the ring particles, while torques exerted at a corotation res-
onance damp eccentricities. If the corotation resonances are
not saturated, these resonances win and the eccentricity of
the ring decreases. If the corotation resonances are partially
or fully saturated, then the Lindblad resonances win and the
eccentricity of the ring increases.

The excitation of inclinations was studied by Borderies
et al. Gravitational interaction of rings and satellites at verti-
cal resonances produce a secular increase of their inclination
until viscous dissipation leads to an equilibrium. Vertical res-
onances are similar to Lindblad resonances, involving incli-
nation instead of eccentricity. However, there is no equivalent
of the corotation resonances.

14.3.4.4 Viscous Overstability

Longaretti and Rappaport showed that spontaneous oscilla-
tions of viscous origin (overstabilities) can arise in a dense
narrow ring (see also Papaloizou and Lin 1988). They found
two possible regimes of instability, one in which the mean
eccentricity of the ring decreases to a small but finite and
nearly constant value, while internal modes of libration reach
comparable amplitudes. In the other regime the mean ec-
centricity of the ring increases to a much larger asymptotic
value, while internal librations are strongly reduced (though
not fully damped). Wave like features in the Maxwell ringlet
might be caused by this mechanism (Porco et al. 2005).

14.3.4.5 Ring Edges

Many ringlets have remarkably sharp edges. This can be ex-
plained by the reversal of angular momentum luminosity in
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the regions of the rings which are strongly perturbed (see
Borderies et al. 1982, 1983a, 1989). Angular momentum lu-
minosity is the momentum flux integrated over a stream-
line, i.e. the rate at which angular momentum crosses the
streamline. The perturbed streamlines oscillate with slightly
different wavelengths œ D 3 x (x is the modulus of the
difference in semi-major axes of satellite and streamline) so
that neighboring streamlines eventually intersect. The inter-
section occurs at quadrature, midway between periapsis and
apoapsis. If the streamlines are sufficiently perturbed, the or-
bital angular velocity of the particles increases outward at the
point of intersection (while for a circular orbit it would de-
crease). As a consequence, in this region the angular momen-
tum associated with particle collisions flows inward rather
than outward. Also, energy is dissipated and the streamline
eccentricities are damped. Considering the total angular mo-
mentum flux over the 360ı azimuth of the streamlines, the net
torque due to the collisions between particles can balance the
torque exerted by the satellite for a certain distortion of the
streamline. A more complete analysis indicates that the bal-
ance of the energy dissipation and angular momentum trans-
port occurs well before the hypothetical streamline crossing
for £ 
 1 and close to it for £ � 1. A sharp edge forms
because the angular momentum balance is established over
a few streamlines only. In this picture, the equivalent width
of one streamline is the radial width corresponding to the ex-
cursions associated with the particle orbital eccentricities.

Hahn et al. (2009) revisited the streamline approach for
a ring edge located at a Lindblad resonance with a perturb-
ing satellite. Applying their model to the outer B ring edge,
they point at difficulties in achieving the torque balance, un-
less a fairly high value of the rings bulk viscosity is as-
sumed (see discussion on bulk viscosity in Section 14.1.2.2),
or additional friction for the particles’ motion is invoked.
Shepelyansky et al. have shown that synchronization of the
orbital phases of ring particles near the resonance may lead
to a decreased collision frequency. As a result, diffusion of
particles can be drastically suppressed, which helps to main-
tain a sharp ring edge.

14.4 Size Distribution and Spins of Ring
Particles

Radio and stellar occultations at various wavelengths pro-
vide information about the size distribution of ring particles
smaller than a few tens of meters, while the size distribu-
tion of �100m-sized moonlets can be inferred from observa-
tion of propeller structures (Section 14.3.3). The importance
of accretion and fragmentation for the evolution of the size
distribution is implied by the observed shapes and internal

densities of small inner satellites, which is supported by dy-
namical studies (Section 14.4.1).

Oblique impacts between ring particles with rough and
irregular surfaces lead inevitably to rotation (Section 14.4.2).
Although the rotational states of ring particles are not directly
observable, particle spins have been constrained indirectly
from observations of the thermal emission from Saturn’s
rings made by ground-based telescopes, the Pioneer 11 in-
frared radiometer, Voyager’s infrared interferometer spec-
trometer, and Cassini CIRS (see e.g., Cuzzi et al. 1984;
Spilker et al. 2003, 2006). In principle, constraints on the
dynamical behavior and physical properties of ring particles
can be derived from the comparison of those observations
and model calculations including particle spins.

14.4.1 Particle Size Distribution
and Its Evolution

14.4.1.1 Particle Size Distribution Derived
From Observations

The results of the Voyager 1 radio occultation experiments
significantly advanced our knowledge about ring particle
size distribution (Marouf et al. 1983, Chapter 15; Zebker
et al. 1985, Chapter 15). In this experiment, the radio source
onboard Voyager 1 was used to measure the radio opac-
ity at two wavelengths (3.6 and 13 cm). A power-law dis-
tribution n .R/ D n .R0/ ŒR=R0


�q with Rmin < 1 cm and
Rmax � 1m was assumed, and constraints on the values of q
and n .R0/ were derived from the opacities. Also, measure-
ments of the differential scattering cross section and integral
inversion were used to derive a general size distribution over
the range of 1R15 m. Marouf et al. assumed a many-particle-
thick model, while Zebker et al. allowed for a near monolayer
system. The results imply that there exists an upper cutoff in
the size distribution at R � 5m. For centimeter-to-meter-
sized particles q � 3 was found, with a slightly larger value
for the C ring (q � 3:1), and slightly smaller in the Cassini
Division and the A ring (�2:7–3.0; Chapter 15). A tendency
of increasing q was also found from the inner to the outer
A ring, which indicates a greater abundance of small parti-
cles in the outer A ring (Tyler et al. 1983). The observation
that the optical depth is similar at visible and radio wave-
lengths suggests that sub-centimeter particles do not domi-
nate the surface area. The Cassini RSS occultations support
these earlier results (chapter by 15).

French and Nicholson derived the particle size distribu-
tion in Saturn’s rings from ground-based observations of the
3 July 1989 stellar occultation of 28 Sgr, and the Voyager
photopolarimeter (PPS) optical depth profile. They used the
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PPS occultation data (Esposito et al. 1983) to estimate and
then remove the directly transmitted signal from the 28 Sgr
observations, and derived particle size distributions from the
so obtained high SNR scattered light profiles at wavelengths
of 3.9, 2.1, and 0.9�m. Using a two-dimensional forward-
scattering model with the many-particle-thick-layer approx-
imation and a single power-law size distribution for each
major ring region, they obtained values for q,Rmin, andRmax

for each region, including the B ring, for which the Voyager
radio occultation experiment was unable to derive the parti-
cle size distribution due to its high opacity. The results for q
and Rmax derived for the A and C rings were fairly consistent
with those obtained by the Voyager radio occultation mea-
surements, although the values of Rmax obtained by French
and Nicholson were somewhat larger (Rmax D 10m for the
C ring, and 20 m for other locations). The values of Rmin for
the inner A ring and the B ring were as large as 30 cm, while
a greater population of small particles with Rmin D 1 cm was
suggested for the C ring and the outer A ring.

An independent estimate of the size of the largest par-
ticles was obtained by an analysis of the statistical proper-
ties of the Voyager PPS stellar occultation data by Showalter
and Nicholson. Owing to the finite size of ring particles,
the variance of the photon counts during stellar occulta-
tion can be significantly larger than expected from Poisson
statistics. Showalter and Nicholson derived an expression
for the noise in the PPS scan due to large particles, and
used the measured noise to constrain their sizes. The ex-
cess variance depends on the fourth moment of the particle
size distribution. Showalter and Nicholson expressed their
results in terms of an effective radius defined by R2eff DR Rmax
Rmin

R4n .R/ dR=
R Rmax
Rmin

R2n .R/ dR, finding Reff � 2 �
10m in the main rings (Chapter 15). French and Nicholson
calculated the values ofReff defined above, using the size dis-
tribution derived from their observations, and found excellent
agreement with the estimates by Showalter and Nicholson.

The surface mass densities estimated from the size distri-
bution by French and Nicholson are much larger than those
derived from studies of density and bending waves. Their
large mass densities for the A and B rings (q < 3) reflect
their inferred value of Rmax � 20m. The disagreement may
suggest that the largest particles with R � Rmax actually
represent loosely bound aggregates of meter-sized objects in
gravitational wakes (French and Nicholson 2000). A smaller
value of Rmax would lead to smaller surface mass densities
consistent with density and bending wave studies. Strong
gravitational wakes can also affect the apparent particle
size distribution, by enhancing the release of impact-debris
or stirring up small particles (Sremčević et al. 2007, Sec-
tions 1.3 and 3.3; Robbins et al. 2009, Sections 1.3 and 3.3).

The number of particles larger than the upper cutoff of
5–20 m is much smaller than extrapolation of the q � 3

power-law would predict. The power-law index for moonlets
with R10 m estimated from the analysis of propeller struc-
tures in the A ring (Section 14.3.3) is q � 5 (Tiscareno
et al. 2006), q � 6 (Tiscareno et al. 2008), and q � 9–11
(Sremčević et al. 2007).

14.4.1.2 Accretion of Particles in the Roche Zone

The evolution of the size distribution due to gravitational ac-
cretion and fragmentation has been extensively studied in the
context of accumulation of planetesimals in the protoplane-
tary disk (e.g., Wetherill and Stewart 1993; Weidenschilling
et al. 1997). Planetary accretion occurs far outside the Sun’s
Roche limit, and the effect of tidal forces on the outcome of
planetesimal collisions can be neglected. However, the tidal
effect is significant in the Roche zone, where planetary rings
are located. The Roche limit aR, which is defined as

aR

rplan
D 2:456

�
	plan

	

�1=3
; (14.83)

is the distance inside which no figure of hydrostatic equi-
librium exists (e.g., Roche 1847; Chandrasekhar 1969), and
is not the distance at which a planet’s tidal force exceeds
a satellite’s gravitational attraction. Thus, gravitational ac-
cretion is possible in the Roche zone under certain condi-
tions (e.g., Smoluchowski 1979, Chapter 17; Dobrovolskis
and Burns 1980, Chapter 17; Davis et al. 1984, Chapter 17;
Weidenschilling et al. 1984, Chapter 17).

The condition that the attraction between two radially
aligned, synchronously rotating particles in contact with
mass ratio � exceeds the tidal force due to the planet is (e.g.,
Weidenschilling et al. 1984)

a

rplan
>

�
3	plan

	

�1=3
1C �1=3

.1C �/1=3
: (14.84)

In terms of the ratio of the sum of the physical radii of the col-
liding particles to their mutual Hill radius denoted by rp (or
rh D r�1

p ; Eq. 14.38), this condition reads rp < 1 (or rh > 1).
Figure 14.17a shows the values of rp in Saturn’s rings, as a
function of the distance from Saturn and the mass ratio of
colliding particles; for icy particles around Saturn this condi-
tion gives a > 126;000 and 80,000 km for identical particles
or for very differently sized particles, respectively. On the ba-
sis of this criterion, Weidenschilling et al. (1984) and Davis
et al. argued that particle collisions should produce accretion
in Saturn’s rings, especially in the A ring, and that the rapid
accretionary processes are counterbalanced by tidal disrup-
tion of the larger accreted aggregates, which they called “dy-
namic ephemeral bodies.” Salo confirmed the formation of
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Fig. 14.17 (a) Contours of rp as a function of the distance from Sat-
urn and the mass ratio of colliding particles. Solid lines show the case
with a particle internal density of 0:9 g cm�3 (0:4� � rp� � 1,
with an increment of 0.1), while the dotted lines represent the case with

0:5 g cm�3 (0:5� � rp � �1). The radial locations of Saturn’s rings
are also shown. (b) Contours of the Hill potential U for the z D 0 plane.
Contour lines inside the Hill region are not shown

AQ11

gravitational wakes and aggregates in Saturn’s rings by local
N-body simulations (Section 14.1.3).

On the other hand, Ohtsuki derived accretion criteria for
colliding particles from an energy perspective, considering
both relative kinetic and potential energies under the Hill
approximation in the three-body problem. The linearized
equations of relative motion of the two particles in a local
coordinate system rotating with the Keplerian angular veloc-
ity � are written as

Rx D 2y�C 3x�2 � G .m1 Cm2/ x

r3

Ry D �2x� � G .m1 Cm2/ y

r3
(14.85)

Rz D �z�2 � G .m1 Cm2/ z

r3

where the x-axis points radially outward, the y-axis in the
direction of orbital motion, the z-axis is perpendicular to the

x-y plane, and r D �
x2 C y2 C z2

�1=2
. On the right-hand

side of Eq. 14.85, the 2 Py� and � Px� terms represent Cori-
olis forces; 3x�2 and �z�2 are the tidal terms; and those
proportional to 1=r3 represent the mutual gravity between
the two particles. Equation 14.85 hold a constant of motion

E D 1

2

�
x2 C y2 C z2

�C U .x; y; z/ ; (14.86)

where U .x; y; z/ is the Hill potential given as

U .x; y; z/ D �3
2
x2�2C1

2
z2�2�G .m1 Cm2/

r
C9

2
R2Hill�

2:

(14.87)

A constant .9=2/R2Hill�
2 has been added so that U van-

ishes at the Lagrangian points .x; y; z/ D .˙RHill; 0; 0/. The
contour lines of the Hill potential at the z D 0 plane are
shown in Fig. 14.17b (see, e.g., Nakazawa and Ida 1988).
The U D 0 surface defines the Hill sphere, which is actually
lemon-shaped with a half-width of unity in the radial direc-
tion, 2/3 in the azimuthal direction, and �0:638 in the verti-
cal direction. Since the Hill sphere is identical to the U D 0

surface and U < 0 inside the sphere, only particles with pos-
itive E can enter the sphere, and they cannot escape out of
the sphere if their energy is reduced to negative values by an
inelastic collision. Therefore, the criteria for gravitational ac-
cretion are (i) the relative position (x,y,z) must be inside the
Hill sphere, and (ii) E < 0 after impact.

Gravitational accretion is inhibited at the radial locations
close to the planet where rp > 1 (or rh < 1), while colliding
pairs with an arbitrary mass ratio can become gravitationally
bound in the outermost part of the ring system where rp 
 1

(or rh � 1), if there is sufficient energy dissipation in a
collision. In the intermediate region, gravitational accretion
is possible for particles which differ greatly in mass, while
like-sized particles overflow their mutual Hill sphere and
cannot remain gravitationally bound. Numerical results
of three-body orbital integration show that the capture
probability decreases abruptly for rp � 0:7, because par-
ticles overflow the Hill sphere in the azimuthal direction
when rp > 2=3 (Ohtsuki 1993, Fig. 14.18a). The capture
probability increases when surface friction is taken into
account, while it decreases significantly when the relative
random velocity becomes comparable to or larger than the
escape velocity (Ohtsuki 1993, Fig. 14.18b; Morishima and
Salo 2004, Fig. 14.18b). Neglecting the tidal terms in the
Hill potential, Ohtsuki obtained an analytic expression for
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Fig. 14.18 (a) Examples of particle orbits leading to collision with tar-
gets of different values of rp (0.6 and 0.75). In the case of rp D 0:6,
the orbit leads to accretion (i.e., E becomes negative) after two impacts,
while the orbit in the case of rp D 0:75 results in escape after the
first collision (Redrawn from Ohtsuki). (b) Capture probability aver-

aged over the Rayleigh distribution of particles’ eccentricities and incli-
nations obtained by three-body orbital integration is shown as a function
of rp . < e2 >1=2 a�=vesc represents particles’ random velocity scaled
by their escape velocity. The values of the normal and tangential coeffi-
cients of restitution are 0.5 and 0.9, respectively

the capture probability in the case of rp 
 1 and relative
random velocity larger than the escape velocity. Canup and
Esposito derived a simple expression for the capture criterion
by retaining the tidal terms and performing an angle-average
(Chapter 17). The derived criteria are roughly consistent with
the numerical results of Ohtsuki for low random velocities.
Cohesive forces between Saturn’s ring particles may extend
the zone for particle accretion radially inward and allow
small particles to be deposited on larger ones to form regolith
layers (Albers and Spahn 2006).

In dense rings, collective effects among more than two
particles are important (Salo 1992a, Section 1.3, 1995,
Section 1.3). Using N-body simulation, Karjalainen and Salo
examined the criterion for aggregate formation in detail. Re-
sults of their simulations with equal-sized particles in Sat-
urn’s rings with 	 D 0:9 g cm�3, and a velocity-dependent
normal coefficient of restitution, based on Bridges et al.,
showed that formation of transient aggregates should occur
beyond a � 137;000 km and stable aggregates form beyond
a � 146;000 km, respectively. The critical radial location for
the formation of stable aggregates corresponds to rp � 0:84

(rh � 1:2), which is slightly larger than the afore men-
tioned rp � 0:7 criterion based on three-body calculations.
This indicates that gravitational accretion is facilitated by
many-body effects, as compared to accretion between two
solid bodies. Karjalainen and Salo also showed that the in-
clusion of the particles’ surface friction and/or size distri-
bution facilitates accretion, shifting the above accretion re-
gion by about 5,000 and 10,000 km, respectively. Karjalainen
performed N-body simulations of impacts between gravita-
tional aggregates in Saturn’s rings, and found that impacts
between aggregates, with mass ratios from 1 to 10, result on
average in disruption, while net accretion typically should

occur at a > 145;000 km. The shapes of the aggregates
formed in simulations are well described with Roche ellip-
soids, approaching spherical shapes as the distance increases
(Karjalainen and Salo 2004).

Porco et al. noted that accretion is facilitated if under-
dense ring particles accumulate around a high-density core,
as compared to the case of accretion of low-density particles
without core: under-dense particles are inferred from com-
parison between dynamical simulations and observational
signatures of gravitational wakes (Section 14.1.3). The mean
density of such an aggregate which has a high-density core
decreases with increasing size due to accretion of particles.
Therefore the size of the aggregate’s Hill sphere grows more
slowly than its physical size. As a result, accretion is halted
when particles fill the aggregate’s Hill sphere. Porco et al. an-
alyzed Cassini images of Saturn’s small inner satellites to de-
rive their sizes, shapes, and mean densities. They found that
the long axes of Pan, Daphnis, Atlas, and Prometheus agree
within 15% with the long axis of the Hill sphere for a body
of the given satellite mass and orbit. They also confirmed
the above process of particle accretion around a high-density
core using N-body simulation. Moreover, Cassini images re-
vealed that Pan and Atlas have equatorial ridges, which may
have formed by preferential accretion of ring particles onto
the equatorial surfaces of already-formed satellites embed-
ded in the rings (Charnoz et al. 2007, Chapter 17).

14.4.1.3 Processes and Models for Particle Size
Evolution

Multiple processes must have been involved to produce
the observed size distribution of ring particles and small
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moonlets. Studies of the size evolution of asteroids through
a collisional cascade show that a power-law n.R/dR /
R�qdR with q D 3:5 is expected in steady state if the de-
pendence of the critical specific energy for fragmentation on
target size is neglected (e.g., Dohnanyi 1969; Williams and
Wetherill 1994; Tanaka et al. 1996; Durda et al. 1998). Addi-
tional processes, including the tidally modified accretion in
the Roche zone described above, are likely to play a role for
the size evolution of ring particles. The role of satellite frag-
mentation and tidally modified accretion in the origin and
evolution of ring systems is further discussed in Chapter 17.

Davis et al. and Weidenschilling et al. examined the evolu-
tion of the particle size distribution in a planetary ring, using
a statistical simulation that includes accretion, rebound, as
well as the collisional and tidal disruption of particles. They
found that their simulation can reproduce the size distribution
inferred from the Voyager observation (Marouf et al. 1983),
if tidal disruption is assumed to occur at R D 10m, pro-
ducing large fragments and a shower of small particles with
a power-law size distribution. Longaretti developed an ana-
lytic theory for the particle size distribution and argued that
the upper cutoff can be explained by efficient collisional ero-
sion of the large particles.

Esposito and Colwell and Colwell and Esposito; Colwell
and Esposito (also Colwell et al. 2000) considered the evo-
lution of the sizes of satellites and their fragments around
Uranus and Neptune due to meteoroid impacts. Their sim-
ulations showed that once the initial disruption of a parent
satellite occurs, subsequent disruptions of its fragments oc-
cur relatively quickly. Their earlier simulations, which used
the critical impact energy for catastrophic fragmentation
based on a scaling theory (e.g., Housen and Holsapple 1990),
showed that many of the small moons of Uranus and Neptune
have lifetimes against catastrophic disruption shorter than the
age of the solar system (Colwell and Esposito 1992). These
lifetimes are significantly longer when the criterion for catas-
trophic disruption based on the asteroid collisional evolution
model of Durda et al. (1998) or from hydrodynamic impact
simulations (Benz and Asphaug 1999) is used. Colwell et al.
found that a model intermediate to that of the scaling the-
ory and that of Durda et al. would allow the fragments from
a 10–20 km radius parent satellite to produce a more steady
population of rings, moonlet belts, and small moons.

Canup and Esposito considered the effect of accretion and
performed numerical simulations of the accretional growth
of a disrupted satellite. In the Roche zone where only
bodies which differ greatly in mass can remain gravita-
tionally bound, Canup and Esposito (1995) found that a
fragmentation-produced debris distribution basically evolved
into a bimodal population, with one element consisting of a
swarm of small, high-velocity bodies and the other composed
of a small number of large moonlets with low random veloc-
ities. Canup and Esposito applied a similar model to Saturn’s

G ring, and found that evolution from the disruption of a 1.5–
3 km progenitor satellite can explain the G ring’s particle and
dust population inferred from observations (Showalter and
Cuzzi 1993; Gurnett et al. 1983; Van Allen 1983). Barbara
and Esposito performed simulations of collisional evolution
of particles in the F ring, including accretion and fragmen-
tation. They argued that collisions between moonlets (which
themselves formed as a result of accretion) can explain the
anomalous localized brightenings in the F ring observed by
Voyager (Showalter 1998).

The size and spatial distributions of the 20–250 m radius
moonlets, derived from the propeller structures observed in
the A ring region by Cassini, also provide a clue to the evo-
lution of the size distribution of rings and moonlets. As we
mentioned before, the derived size distribution for propeller
moons has a larger power-law index compared to q � 3

for ring particles with R10 m (Tiscareno et al. 2006, 2008;
Sremčević et al. 2007). Moreover, Sremčević et al. found that
the propeller structures are concentrated in a narrow 3,000-
km-wide annulus at a � 130;000 km. On the basis of these
observations, they proposed an explanation that such embed-
ded moonlets are remnants of fragments of a ring-moon of
Pan size or larger disrupted by a meteoroid impact. Large
fragments produced by the disruption evolve by further shat-
tering by meteoroid bombardment, explaining the steepened
size distribution of the moonlets responsible for the propeller
structures. They argue that the steepness of the moonlets’
size distribution and their apparent lack in the rest of the A
ring represent different phases of the moonlet destruction and
subsequent evolution.

As we mentioned earlier, observations suggest R �
0.1–30 cm as a minimum particle size depending on the ra-
dial location in Saturn’s rings (French and Nicholson 2000).
Poynting-Robertson drag (loss of orbital angular momen-
tum by absorption and reemission of radiation) and plasma
drag (angular momentum transfer due to physical collisions
and/or long-range charged particle interactions between ring
particles and ions and electrons tied to the planet’s mag-
netic field) are the important mechanisms of removal of
micrometer-sized ring particles Burns et al.

As another possible mechanism, the removal of small ring
particles due to thermal torques has been recently proposed.
The effect of thermal torques produced by the absorption and
re-emission of sunlight from an asteroid’s surface on its or-
bital evolution is called the Yarkovsky effect (e.g., Bottke
et al. 2002). Similar effects on small particles in Saturn’s
rings, i.e. thermal torques due to Saturn shine and the torques
due to illumination by the sun (the Yarkovsky–Schach ef-
fect) have been recently studied by Rubincam and Vokrouh-
lický et al. The removal of subcentimeter-sized particles due
to thermal torques may help to explain the observed paucity
of such small particles in Saturn’s rings. However, frequent
collisions of the small particles with large ring particles will
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rapidly re-distribute any extra torque received by the small
particles over the whole population. For this reason the evo-
lution of the small particles, most sensitive to the Yarkovsky
and Yarkovsky–Schach effects, cannot be considered inde-
pendently from the the large particles. Further studies in-
cluding the effects of particle collisions and resonances are
needed to clarify such effects on the long-term orbital evolu-
tion of the ring particle size distribution.

14.4.2 Particle Spins

14.4.2.1 Dynamical Studies

For rings consisting of non-gravitating equal-sized parti-
cles on circular orbits undergoing inelastic collisions due
to Kepler shear, the particles’ rotation rate ¨ is expected
to be on the order of the orbital angular velocity � (e.g.,
Weidenschilling et al. 1984). Detailed calculations, using N-
body simulation, show that spin rates follow a Gaussian dis-
tribution with mean spin rate being slow prograde rotation
with h¨i=� � 0.3–0.5, both in cases of non-gravitating and
gravitating particles (Salo 1987a, b, 1995; Richardson 1994;
Ohtsuki and Toyama 2005). However, the dispersion of spins
can be much larger, scaling as

ph�2i=� / c=R�, where
the proportionality constant depends on the coefficient of tan-
gential friction7, "t . Besides friction, also small-scale devia-
tions from spherical size are efficient in promoting particle
spins (Salo 1987a, b).

Because of the additional energy dissipation due to
surface friction, inclusion of rough surfaces and parti-
cle spins allow a large critical value ("cr ) of the normal
restitution coefficient for the thermal stability discussed in
Section 14.1.1.3 (Salo 1987a, b; Araki 1988, 1991; Mor-
ishima and Salo 2006; Ohtsuki 2006a). The strength of sur-
face friction also determines the ratio of the particles’ ro-
tational energy Erot D mR2

˝
�2
˛
=5 (for a uniform sphere

with mass m) and kinetic energy Ekin. In the non-gravitating
case, this ratio in the equilibrium state is obtained analyti-
cally (Salo 1987a; Morishima and Salo 2006) as

Erot

Ekin
D 2 .1 � "t /
14 � 5 .1 � "t / ;

which shows that equipartition between random motion and
spins is not realized, unless surface friction is extremely
strong (i.e. "t D �1). Compared to a system of smooth

7 "t is defined so that the tangential component of the relative veloc-
ity of the two contacting points is changed by a factor of "t (�1� �
"t � �1/ due to collision. Perfectly smooth spheres have "t D 1 while
perfectly rough spheres have "t D �1 (Araki and Tremaine, 1986).

particles, the inclusion of energy dissipation due to friction
slightly decreases the equilibrium velocity dispersion in the
non-gravitating case as well as for gravitating particles in a
low optical depth ring. In self-gravitating rings of larger op-
tical depth, i.e. where gravitational wakes are formed, the
additional energy dissipation due to surface friction facili-
tates the formation of gravitational wakes, and thus tends to
slightly increase velocity dispersion (Salo 1995). However,
such an effect is minor as compared to the major effect of
self-gravity in dense rings.

As an extreme case of the rotational evolution due to col-
lisions between particles with different sizes, the spin of a
moonlet embedded in a ring of small equal-sized particles
was studied in terms of three-body calculations and N-body
simulations (Morishima and Salo 2004; Ohtsuki 2004a, b).
Calculations show that the moonlet’s rotation reaches an
equilibrium state of slow prograde spin with h¨i=� �
0.3–0.5 when ring particles are much smaller than the moon-
let, while the moonlet can spin both in prograde and retro-
grade directions when the particle size is comparable to the
moonlet size.

The spin state of ring particles with size distribution was
examined in N-body simulations for various cases, including
dense self-gravitating rings (Salo 1987b; Richardson 1994;
Ohtsuki and Toyama 2005; Morishima and Salo 2006), while
analytic approaches and numerical three-body calculations
were used to study the size-dependence of rotation rates in
low-optical depth rings (Ohtsuki 2005, 2006a, b). Results of
these studies show that large particles spin slowly, with mean
spin period comparable to the orbital period, and a spin dis-
persion which is much smaller than the mean, while small
particles generally spin much faster, with a dispersion that
considerably exceeds the mean.

In the case of an extended size distribution, the spin pe-
riod was found to be roughly proportional to the particle size
(Fig. 14.19). Rapidly spinning small particles have larger or-
bital inclinations than slowly spinning large particles (Salo
and Karjalainen 2003; Ohtsuki 2005, 2006b; Morishima and
Salo 2006); thus, the ring particles’ rotational states have ver-
tical heterogeneity. The spin axes of slowly spinning large
particles tend to be aligned normally to the ring plane, while
the small particles’ spin axes are nearly randomly distributed
(see Fig. 14.9 in Salo 1987b; Ohtsuki and Toyama 2005).
Since in the case of a continuous size distribution the rotation
frequency of the largest particles is on the order of �, and
that of small particles is roughly inversely proportional to the
particle radius, the values of the rotation rates of smaller par-
ticles depend on the size of the largest particles. The overall
rotation rates also tend to increase slightly for stronger sur-
face friction and/or a shallower size distribution of particles,
but the R�1-dependence of the rotation rates is insensitive to
the values of these parameters (Ohtsuki 2005, Fig. 19, 2006b,
Fig. 19; Morishima and Salo 2006, Fig. 19).
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Fig. 14.19 Results of N-body simulations for the rotation rates of

particles in units of orbital angular velocity (i.e., q � R
˝
�2
˛1=2

),
as a function of particle radius. Solid lines show results for self-
gravitating particles at two different radial locations around Saturn
("n D "t D 0:5). Dashed lines represent results for non-gravitating par-
ticles with different widths of the particle size distribution (Morishima
and Salo, 2006)

In the case of rings with low optical depth, the rate of
change of the mean rotational energy of particles with mass
m due to collisions with other particles with mass m0 can be
written as

dErot .m/

dt
D
Z
ns
�
m0� fCCS C �

Erot
�
m0�

�Erot .m// CRF gdm0; (14.88)

where CCS and CRF are the rate coefficients, which de-
pend on the particles’ relative random velocity and can be
evaluated by three-body calculation (Ohtsuki 2005, 2006a).
The first term in parentheses in the integrand represents en-
ergy exchange between random motion and rotation (‘col-
lisional stirring’), while the second term tends to equalize
the mean rotational energy among particles with different
sizes and to decrease the rotation rates of large particles
(‘rotational friction’, by analogy with the dynamical fric-
tion term in the velocity evolution equation; see Eq.14.16).
Because of the former effect, equipartition of rotational en-
ergy among particles with different sizes (which would imply˝
�2
˛1=2 / R�5=2) is not realized.

14.4.2.2 Relation to Observations of the Rings’
Thermal Emission

While the primary heat source for the rings is the sunlight,
thermal radiation and reflected sunlight from Saturn also
contribute to the heating of the rings. Also, mutual heating

between nearby particles can be significant when the ring
is dense enough (Aumann and Kieffer 1973; Spilker et al.
2003). The response of ring particles to such heating depends
on their physical and dynamical properties, including albedo,
thermal inertia, and spin rates. Observations of the thermal
response of the rings during and after eclipse suggest low
thermal inertia of ring particles, with a thermal relaxation
time of about one hour, i.e. about one tenth of an orbital pe-
riod (e.g., Froidevaux et al. 1981; Spilker et al. 2003; Ferrari
et al. 2005). In this case, particles with spin period much
longer than the thermal relaxation time can be regarded as
slow rotators, which radiate their thermal emission mainly
from the face illuminated by the sunlight, while fast rotators
with random spin orientations radiate over their whole sur-
face area (Froidevaux 1981; Kawata 1983). Furthermore, in
dilute rings, some fraction of fast rotators have their spin axes
pointing nearly toward the Sun. The north and south sides of
such a particle with respect to its spin axis can have a tem-
perature contrast regardless of the rotation rate, if the interval
of collisions that would change the spin orientation is longer
than the thermal relaxation time (Morishima and Salo 2006).

Comparison between observations of the rings’ thermal
emission with model calculations provides constraints on
physical properties as well as spin states and structure of
the rings (e.g., Froidevaux 1981; Kawata 1983; Esposito
et al. 1984; Spilker et al. 2003; Ferrari and Leyrat 2006).
Cassini CIRS has acquired an extensive set of thermal mea-
surements of Saturn’s main rings for a number of different
viewing geometries (Spilker et al. 2006; Leyrat et al. 2008;
Altobelli et al. 2007). For example, the observed tempera-
ture decrease with increasing solar phase angle suggests that
the rings include a population of slow rotators. However, the
spin states of particles depend on their sizes, as mentioned
above. Furthermore, the thermal emission of the rings likely
depends on the particles’ vertical distribution and the rate of
vertical mixing as well as on the rings’ fine structure, such as
gravitational wakes in the A ring (Leyrat et al. 2008; Ferrari
et al. 2009; Morishima et al. 2009a, b). Further studies us-
ing models that include such effects and detailed comparison
with observations will provide unique constraints on physical
and dynamical properties of ring particles.

14.5 Open Problems

Cassini has considerably advanced our understanding of the
dynamics of Saturn’s dense rings. Naturally, new questions
arise and problems remain open.

An outstanding problem of ring dynamics remains the
pronounced structure of the B ring, notably region B2 where
the ring alternates between states that are practically opaque
and states of moderate optical depth (see Chapter by 13, and
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their Fig. 14.14). It seems clear that classical viscous instabil-
ity will not work here, still, the fact that this instability would
produce a bimodal pattern of optical depth is compelling. In
this chapter we have shown how the stability properties of the
rings can drastically depend on the elasticity of the ring parti-
cles. The study of the influence of a particle-size dependence
of elastic properties on the ring dynamics has only started. In
particular in an interplay with adhesion and self-gravity this
might well lead to new types of instabilities (or modification
of old ones) applicable to Saturn’s rings.

There are several Cassini observations that point at lo-
cal changes in the particle size distribution in perturbed ring
regions. One example are the propellers, where the bright-
ness of the propeller streaks relative to the surrounding ring
is difficult to understand. A plausible explanation is the re-
lease of small particles, otherwise sticking on the large ring-
particles, in those regions that are most perturbed. Another
example are the halos around strong density waves observed
in the A ring (Dones et al. 1993; Nicholson et al. 2008). They
can be similarly interpreted as the effect of small particles
locally released from the large ones where the density waves
perturb the ring (Nicholson et al. 2008). The third example
is the outermost region of the A ring outside the Keeler gap.
There the amplitude of the ring’s brightness asymmetry is
very small, if any. This means that the self-gravity wakes
either do not form here, or they are hidden by some pro-
cess. One possibility is that the combined perturbations of
the numerous resonances with Pandora and Prometheus in
that region lead to a release of small particles, decreasing
the contrast between the crests and troughs of self-gravity
wakes, and, in this way, the amplitude of the brightness
asymmetry. Altogether this implies that ring particles are
loosely bound aggregates, as predicted by Davis et al. (1984;

AQ12
Weidenschilling et al. 1984). Their size is determined by a
balance of coagulation and fragmentation, which in turn de-
pends on the typical speed of particle collisions, so that a
local increase in the velocity dispersion, induced by external
perturbations, leads to a gradual breakup of the aggregates,
changing the size distribution. The consequences of such a
variable size distribution for the ring dynamics (e.g. proper-
ties of self-gravity wakes, density waves, or instabilities) has
not been studied so far.

One challenge for future study is a unified description
of ring dynamics and self-gravity wakes. This might sig-
nificantly change the conclusions drawn from uniform ring
models using approximations of self-gravity. For example,
the interaction self-gravity wakes with periodically expand-
ing and contracting density waves might well lead to non-
trivial effects on the dispersion relation and the damping of
the wave. On the other hand the perturbed ring state in the
density wave region can alter the properties of the wakes.

Another question is the relation between viscous over-
stability and density waves. In fact, spontaneous overstable

waves and density waves obey the same dispersion relation.
In the derivation of the formula for the damping of tightly
wound waves, in the simple hydrodynamic treatment of Shu,
the density dependence of the viscosity has been neglected.
Such a term would, however, strongly modify the damping
behavior of the wave in that model, as noted by Goldreich
and Tremaine (1978b). Therefore, the viscosities fitted from
that model should be taken with care. Future study could ad-
dress the question if density waves can undergo an instability
similar to the viscous overstability. If this is the case, then
the resonance might even lead to such a strong perturbation
of the ring that no regular density wave-train is seen. For
instance the Janus/Epimetheus 2:1 and 4:3 resonances lead
to pronounced density waves in the inner B ring and inner
A ring, respectively, while it is a puzzle that the strong 3:2
resonance in the outer B ring does not produce a wave.
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