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ABSTRACT
The shearing sheet is a model dynamical system that is used to study the small-scale dy-
namics of astrophysical discs. Numerical simulations of particle trajectories in the shearing
sheet usually employ the leapfrog integrator, but this integrator performs poorly because of
velocity-dependent (Coriolis) forces. We describe two new integrators for this purpose; both
are symplectic, time-reversible and second-order accurate, and can easily be generalized to
higher orders. Moreover, both the integrators are exact when there are no small-scale forces
such as mutual gravitational forces between disc particles. In numerical experiments these
integrators have errors that are often several orders of magnitude smaller than competing
methods. The first of our new integrators (‘SEI’) is well suited for discs in which the typical
interparticle separation is large compared to the particles’ Hill radii (e.g., planetary rings), and
the second one (‘SEKI’) is designed for discs in which the particles are on bound orbits or the
separation is smaller than the Hill radius (e.g. irregular satellites of the giant planets).

Key words: methods: numerical – celestial mechanics – planets and satellites: dynamical
evolution and stability – planets and satellites: formation – planets and satellites: rings.

1 IN T RO D U C T I O N

Hill’s approximation, or the shearing sheet approximation, is an
essential tool for the study of the small-scale dynamics of astro-
physical discs (for a general review of Hill’s approximation, see
e.g. Binney & Tremaine 2008). The method was originally devised
by Hill (1878) to study the motion of the Moon, and has been ap-
plied to galaxy discs (e.g. Goldreich & Lynden-Bell 1965; Julian
& Toomre 1966; Goldreich & Tremaine 1978); accretion discs (e.g.
Hawley & Balbus 1992; Stone & Gardiner 2010); planetary rings
(e.g. Wisdom & Tremaine 1988; Salo 1992; Richardson 1994; Crida
et al. 2010; Rein & Papaloizou 2010); and planetesimal discs (e.g.
Tanga et al. 2004; Johansen, Youdin & Mac Low 2009; Bai &
Stone 2010; Rein, Lesur & Leinhardt 2010). Hill’s approximation
is widely used in numerical simulations when it is impossible to
model an entire disc with an adequate numerical resolution.

This paper discusses numerical methods for the following orbits
in Hill’s approximation. We first describe the relevant equations
of motion in Section 2. Then we review existing integrators in
Section 3, and describe two new algorithms. In Section 4 we com-
pare the convergence and performance of all these integrators. We
summarize and discuss several generalizations in Section 5.

2 H ILL’S A PPROX IMATION

For simplicity we consider mainly the three-body problem, although
the results we describe are easy to generalize to other systems such
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as planetary rings (see Section 5). Thus we follow the motion of two
nearby small bodies with masses m1 and m2 in the gravitational field
of a large body of mass M � m1, m2 (a more careful version of this
derivation is given by Hénon & Petit 1986). The two small bodies
follow approximately the same orbit around the large body, and we
assume that this mean orbit is circular with semimajor axis a. The
angular speed of the mean orbit is then � = [G(M + m)/a3]1/2 where
m = m1 + m2. Formally, to derive Hill’s equations of motion, one
lets m/M shrink to zero while assuming that the mass ratio m1/m2

is fixed and the separation between the two small bodies is of the
order of (m/M)1/3.

Let us adopt a local right-handed Cartesian coordinate system
with its origin at m1, rotating uniformly with angular velocity �.
The unit vector ex points away from the larger mass M, the unit
vector ey points in the direction of motion along the mean orbit,
and the unit vector ez points in the direction of the angular velocity
vector of the mean orbit. Hill’s equations of motion for the relative
position r = r2 − r1 are then

r̈ = −2� ez × ṙ + 3�2(r · ex) ex − �2(r · ez) ez + f , (1)

where the force exerted by m1 on m2 is f = −∇� with �(r) =
Gm/|r|. The Hamiltonian corresponding to these equations of mo-
tion is

H (r, p) =1

2
p2 + � ( p × r) · ez + 1

2
�2

[
r2 − 3 (r · ex)2

] + �(r)

≡ H0(r, p) + �(r), (2)

where p = ṙ − � r × ez is the canonical momentum conjugate
to r .

C© 2011 The Authors
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



Symplectic integrators 3169

Note that when f = 0 the equations of motion (1) are invariant
under the shear transformation

r → r + cx

(
ex − 3

2
�ey t

)
+ cy ey (3)

for arbitrary constants cx and cy. This invariance allows the use of
periodic shearing boundary conditions for the study of the local
dynamics of discs and is one reason why Hill’s approximation is so
useful.

Alternatively, we can work in a non-rotating but accelerated ref-
erence frame with origin at m1. If the relative position in this frame
is R = (X, Y , Z) and the (x, y, z) and (X, Y , Z) reference frames
coincide at t = 0, then

R̈ = �2 ([r · ex(t)] ex(t) − R) + f , (4)

with ex(t) = cos(�t)eX + sin(�t)eY . The Hamiltonian is

H (R, P, t) = 1

2
P2 + 1

2
�2

{
R2 − 3[R · ex(t)]2

} + �(R), (5)

where �(R) = �(r) = −Gm/|r| since |R| = |r|.
The physical interpretation of equations (1) and (2), and the

optimum choice of integrator, depend on the relative size of the
terms on the right-hand side. This can be parametrized using the
Hill radius, rHill ≡ ( 1

3 Gm/�2)1/3, which sets the relevant scale in
the problem.

(i) If the mass of the small bodies is negligible (m → 0, rHill → 0)
their relative motion is simply epicyclic motion, which can be solved
exactly (see e.g. Hénon & Petit 1986; Binney & Tremaine 2008, or
below). If m is sufficiently small, the motion can be regarded as a
perturbed epicycle. Quantitatively, this requires that one or more of
the first three terms on the right-hand side of equation (1) be much
larger than | f | = Gm/r2, or

r

rHill
� min

[
1, (�rHill/v)1/2

]
, (6)

where v is velocity. One example is a planetary ring with semimajor
axis a much less than the Roche limit aR = 2.46[3M/(4πρp)]1/3;
here M is the planet mass, m1 and m2 are the masses of the ring
particles and ρp is the ring-particle density. For the two particles
the separation between them cannot be less than twice their radius,
which implies that r/rHill � aR/a � 1.

(ii) If the force due to the mutual gravity of the small masses is
large, we can interpret the solution to equation (1) as a Keplerian
orbit perturbed by Coriolis and tidal forces (the terms proportional
to � and �2, respectively). For a circular orbit of semimajor axis
r the ratio of these perturbing forces to the Kepler force Gm/r2 is
(r/rHill)3/2 and (r/rHill)3, respectively. One example is the irregular
satellites of the giant planets of the Solar system, which typically
have r/rHill � 0.1–0.5.

3 IN T E G R ATO R S

3.1 Leapfrog integrator

Many N-body simulations, in Hill’s approximation and other con-
texts, use the standard leapfrog integrator (e.g. Springel 2005;
Binney & Tremaine 2008). However, as we will show below,
leapfrog does not work well in Hill’s approximation because there
are velocity-dependent forces. Leapfrog is best suited for integrating
equations of motion of the form

r̈ = −∇�(r), (7)

where �(r) is a (in general time-dependent) potential. Note that
equation (1) cannot be written in this form. The Hamiltonian corre-
sponding to equation (7) is

H (r, p) = 1

2
p2 + �(r) ≡ HKin( p) + �(r). (8)

We assume that we have the position and velocity1 of a particle
at time tn, rn ≡ r(tn) and vn ≡ ṙ(tn) = p(tn). The goal is to
approximate the new position and velocity at time tn +1 = tn + �t.
Leapfrog is usually written as a chain of three operators, labelled
Kick, Drift, Kick, applied successively:2

vn+1/2 = vn + 1

2
�t f n Kick,

rn+1 = rn +�t vn+1/2 Drift,

vn+1 = vn+1/2 + 1

2
�t f n+1 Kick,

where f n = −∇�(rn). The kick operator corresponds to follow-
ing the trajectory exactly under the influence of the Hamiltonian
�(r), the potential energy; the drift operator corresponds to the
Hamiltonian HKin( p), the kinetic energy. Thus if we denote the
operator for the exact evolution of a trajectory for a time-step �t
under an arbitrary Hamiltonian H by Ĥ (�t), a single leapfrog step
is the operator ĤKin( 1

2 �t)�̂(�t)ĤKin( 1
2 �t). Each of these operators

is symplectic since they are governed by a Hamiltonian, which im-
plies that the leapfrog operator is also symplectic (Saha & Tremaine
1992). Moreover, leapfrog is time reversible and second order, that
is, the error after a single time-step is O(�t3).

When leapfrog is used in Hill’s approximation, to integrate the
equations of motion governed by equation (1) rather than equa-
tion (7), the additional terms on the right-hand side are added to the
kick step, since they change the velocity. Thus we have (partly in
component notation, for clarity):

vn+1/2
x = vn

x + 1

2
�t

(
3�2 xn + 2�vn

y + f n
x

)
vn+1/2

y = vn
y + 1

2
�t

(−2� vn
x + f n

y

)
Kick,

vn+1/2
z = vn

z + 1

2
�t

(−�2 zn + f n
z

)
rn+1 = rn + �t vn+1/2 Drift,

vn+1
x = vn+1/2

x + 1

2
�t

(
3�2 xn+1 + 2�vn+1/2

y + f n+1
x

)
vn+1

y = vn+1/2
y + 1

2
�t

(−2�vn+1/2
x + f n+1

y

)
Kick.

vn+1
z = vn+1/2

z + 1

2
�t

(−�2 zn+1 + f n+1
z

)
However, because of the velocity-dependent Coriolis force on the
right-hand side, in this form leapfrog loses most of its desirable
properties: (i) it is neither symplectic nor time reversible; (ii) it is
only first-order accurate rather than second order, that is, the error
after a single time-step is O(�t2); (iii) it leads to secular drifts in
quantities that should be conserved.

1 For the Hamiltonian in equation (8) the canonical momentum p is the same
as the time derivative of the position (the velocity). This is not the case for
the Hamiltonian in Hill’s approximation, equation (2).
2 One can also apply the operators in a different order: Drift, Kick, Drift.
This does not change any conclusion of this paper.
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In principle these difficulties could be avoided by using leapfrog
to integrate the equations of motion in the form (4), which have
no velocity-dependent forces; so leapfrog is symplectic, time re-
versible and second order. We do not pursue this option because
(i) these equations are not invariant under the shear transformation,
equation (3), which limits their usefulness for the study of discs and
rings; (ii) the method described in Section 3.5 below is better.

There are schemes for constructing symplectic integrators for
arbitrary Hamiltonians, but these are generally implicit and often
algebraically complicated, at least for high-order schemes. The first
explicit symplectic integrator for trajectories in Hill’s approxima-
tion is due to Heggie (2001). However, Heggie’s integrator is not
time-reversible and is only first-order; we will not discuss it further
because our numerical experiments show that it is not competitive
with the integrators described below.

3.2 Modified leapfrog integrator

One can improve the standard leapfrog algorithm by using a pre-
dictor step to approximate the velocity-dependent forces at the end
of the time-step. This leads to the following scheme:

vn+1/2
x = vn

x + 1

2
�t

(
3�2 xn + 2� vn

y + f n
x

)
vn+1/2

y = vn
y + 1

2
�t

(−2�vn
x + f n

y

)
Kick,

vn+1/2
z = vn

z + 1

2
�t

(−�2 zn + f n
z

)
v̄n+1

x = vn
x + �t

(
3�2 xn + 2�vn

y + f n
x

)
v̄n+1

y = vn
y + �t

(−2�vn
x + f n

y

)
Drift,

rn+1 = rn + �t vn+1/2

vn+1
x = vn+1/2

x + 1

2
�t

(
3�2 xn+1 + 2� v̄n

y + f n+1
x

)
vn+1

y = vn+1/2
y + 1

2
�t

(−2� v̄n
x + f n+1

y

)
Kick.

vn+1
z = vn+1/2

z + 1

2
�t

(−�2 zn+1 + f n+1
z

)
Here v̄n+1 is the predicted value of the velocity at time t + �t. This
integrator is second order, 1 order higher than standard leapfrog,
but is neither time reversible nor symplectic. This method is im-
plemented in the particle codes GASOLINE and PKDGRAV (Wadsley,
Stadel & Quinn 2004).

3.3 Symmetrized leapfrog

Mikkola & Merritt (2006) describe a simple algorithm that converts
any one-step integrator to a time-reversible integrator. We have
applied the Mikkola–Merritt algorithm to the standard (first-order)
leapfrog integrator of Section 3.1, thereby upgrading it to a time-
reversible and second-order (but not symplectic) integrator. Time-
reversibility endows integrators with most of the same desirable
properties as symplecticity.

The tests described below show that symmetrized leapfrog is not
competitive with some of the other integrators discussed here. How-
ever, this elegant integrator could be profitably applied to systems
described by more complicated time-reversible Hamiltonians and
also systems that are not governed by a Hamiltonian at all.

3.4 Quinn et al. integrator

Recently, Quinn et al. (2010) described an integrator that exhibits
the desirable features of leapfrog despite the presence of velocity-
dependent forces in Hill’s approximation. In particular, the Quinn
et al. integrator is symplectic, time-reversible and accurate to second
order. We refer the reader to the original paper for a derivation. Here,
we merely list the final algorithm, which can also be written as three
operators, Kick, Drift, Kick:3

vn+1/4
x = vn

x − 1

2
�t

(
�2xn − f n

x

)
P n

y = vn
y + 2�xn + 1

2
�t f n

y

vn+1/2
x = vn+1/4

x + �t �P n
y Kick,

vn+1/2
y = P n

y − �xn − �
(
xn + �t vn+1/2

x

)
vn+1/2

z = vn
z + 1

2
�t

(−�2 zn + f n
z

)
rn+1 = rn + �t vn+1/2 Drift,

vn+3/4
x = vn+1/2

x + �t �P n
y

vn+1
x = vn+3/4

x − 1

2
�t

(
�2 xn+1 − f n+1

x

)
vn+1

y = P n
y − 2�xn+1 + 1

2
�tf n+1

y Kick.

vn+1
z = vn+1/2

z + 1

2
�t

(−�2 zn+1 + f n+1
z

)

3.5 Symplectic epicycle integrator (SEI)

Mixed variable symplectic (MVS) schemes such as the Wisdom–
Holman integrator have become the method of choice for long-term
integrations of planetary orbits (Kinoshita, Yoshida & Nakai 1991;
Wisdom & Holman 1991). Like leapfrog, MVS schemes split the
Hamiltonian into two parts, H (r, p) = HA(r, p) + HB(r, p), each
of which is analytically integrable. First, the trajectory is advanced
under the influence of HB for half a time-step, then HA for a full
time-step, then HB again. In contrast to leapfrog, where HA and
HB are the kinetic and potential energy (cf. equation 8), in MVS
schemes HA and HB are chosen so that |HB| � |HA|. Thus in the
planetary case HA is chosen to be the Kepler Hamiltonian while HB

represents the small gravitational forces from other planets. MVS
integrators are symplectic (since the trajectory is advanced by a
sequence of Hamiltonian maps) and time-reversible, and the error
per time-step is O(�t3)O(HB/HA).

Interestingly, it is even easier to derive an MVS integrator for
Hill’s equations of motion than for Keplerian motion. As we show
below, it is possible to solve for the epicyclic motion, that is the mo-
tion that is governed by the Hamiltonian H0(r, p) in equation (1),
in closed form with almost no computational effort (see also Hénon
& Petit 1986). We use this result to construct two new MVS inte-
grators, one each for the two cases given at the end of Section 2:
systems in which the forces f due to the gravity of the small bodies
or other sources are relatively small (this section), and systems in
which the gravity between a single pair of bodies dominates their
motion (Section 3.6).

3 The Drift step is the same as in a standard leapfrog, but the Kick step is
modified.
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We first solve the equations of motion governed by H0(r, p).
To do that we shift the particle to a coordinate system where the
particle’s centre of epicyclic motion is at the origin. We then do a
rotation to account for the evolution in the epicycle. Finally we shift
back and account for the shear.

Using the same notation as above,4 the centre of epicyclic motion
of a particle is at

xn
0 = 2vn

y �−1 + 4xn,

yn
0 = yn − 2vn

x �−1. (9)

We can then define

xn
s = � (xn − xn

0 ),

yn
s = 1

2
�(yn − yn

0 ). (10)

The evolution of these quantities during one time-step �t can be
written as a rotation around the origin with an angle ��t:

xn+1
s = xn

s cos(��t) + yn
s sin(��t),

yn+1
s = −xn

s sin(��t) + yn
s cos(��t). (11)

Now we have only to undo the previous shift to the centre of
epicyclic motion and account for the shear to get the position and
velocity at the new time tn + �t:

xn+1 = xn+1
s �−1 + xn

0 ,

yn+1 = 2yn+1
s �−1 + yn

0 − 3

2
xn

0 ��t,

vn+1
x = yn+1

s ,

vn+1
y = −2xn+1

s − 3

2
xn

0 �. (12)

The integration of the vertical motion can also be described by a
rotation, so that the new vertical position and velocity at time tn +
�t are given by

zn+1 = zn cos(��t) + vn
z �

−1 sin(��t),

vn+1
z = −zn� sin(��t) + vn

z cos(��t). (13)

In some uses of Hill’s approximation such as galactic discs, the
epicycle and vertical frequencies may differ from the azimuthal
frequency �, but this generalization is easy to incorporate. The
operator corresponding to the steps (9)–(13) may be written in our
notation as Ĥ0(�t).

Note that no function evaluation had to be performed during the
entire step [i.e. there is no call to sqrt()]. The sines and cosines
appearing in the above equations are constant and are the same for
all the particles. They can be pre-calculated at the beginning of the
time-step or even at the beginning of the simulation if the time-
step is fixed. All other operations are additions and multiplications.
No significant additional storage is needed when there are many
particles. Also note that the integrator can be completely described
by translations and rotations, making it an attractive choice for
programs running on graphic processors (GPUs).

In long, high-accuracy integrations, round-off errors in the ro-
tations in steps (11) and (13) can cause a linear drift in energy
and other integrals of motion, at the rate of |�E/E| ∼ ε · (t/�t),
where ε is the machine precision, typically 2−53 for double-precision
arithmetic. An elegant solution to this problem is described in
Appendix A.

4 Note that v is velocity, not the canonical momentum.

An MVS integrator that includes additional forces due to a po-
tential �(r) may then be written as

ĤSEI(�t) = Ĥ0

(
1

2
�t

)
�̂(�t) Ĥ0

(
1

2
�t

)
, (14)

where as usual �̂(�t) represents the kick step,

vn+1 = vn − �t ∇�
(

rn+1/2
)
. (15)

This integrator is symplectic, time reversible and second order and,
in contrast to the other integrators we have discussed so far, becomes
exact as ∇� → 0. More precisely, if the gravitational potential �

is O(ε) then the error of the SEI integrator after a single time-step
is O(ε �t3), while the error of the Quinn et al. integrator is O(�t3).

As pointed out by Quinn et al. (2010), numerical codes that imple-
ment collision detection usually assume that particles move along
straight lines. In that case collision detection can be done exactly
(although it is often done approximately). In contrast to the leapfrog
and Quinn et al. integrators, the trajectory of a particle in SEI is not
a straight line between kick steps. This might make collision de-
tection harder. However, the curved trajectories are a real feature
of the physics in Hill’s approximation. Therefore, it does not make
sense to choose an integrator that solves the equations of motion in-
correctly just to search for collisions exactly along those incorrect
trajectories – it is better to detect collisions approximately along
exact trajectories than the reverse. Developing an efficient collision
algorithm for curved trajectories of this kind is a research problem
that needs further work. An obvious first step is to re-use the already
implemented collision detection algorithms by approximating the
trajectory as the line that joins the initial and final positions defined
by the curved trajectory. This should work reasonably well so long
as ��t � 1.

3.6 Symplectic epicycle–Kepler integrator (SEKI)

The integrator described in the previous subsection is designed for
the case where the forces due to the potential � are small compared
to the forces that govern the epicyclic motion. We now describe
an integrator for a situation in which the force due to the Kepler
potential �(r) = −Gm/|r| is comparable to or stronger than the
forces governing the epicyclic motion.

We first note that one can integrate motion in the Kepler Hamil-
tonian HKep(r, p) ≡ HKin( p) + �(r) = 1

2 p2 − Gm/|r| exactly up
to machine precision. Efficient methods for doing so are described
by Wisdom & Holman (1991). Also note that one can rewrite equa-
tion (2) as

H (r, p) = H0(r, p) + HKep(r, p) − HKin( p). (16)

This motivates the following scheme, which we call symplectic
epicycle–Kepler integrator (SEKI):

ĤSEKI(�t) = Ĥ0

(
1

2
�t

)
ĤKin

(
−1

2
�t

)
ĤKep(�t)

×ĤKin

(
−1

2
�t

)
Ĥ0

(
1

2
�t

)
.

(17)

Note that the drift operator, ĤKin, has a negative time-step. This
scheme is symplectic, second-order and time-reversible. These
statements are also true for other symmetric permutations of these
operators. This particular permutation has been chosen because the
computationally most expensive operator HKep is called only once
per time-step. Of course, if an output is not needed at every time-
step, the half-steps at the end of step n and the start of step n + 1
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can be combined; then the alternative scheme

ĤKep

(
1

2
�t

)
ĤKin

(
−1

2
�t

)
Ĥ0(�t)

×ĤKin

(
−1

2
�t

)
ĤKep

(
1

2
�t

)
(18)

is hardly more expensive.
Note that these operators are defined in (r, p) phase space. For

the operators ĤKin and ĤKep the canonical momentum p is equal to
the velocity v = ṙ = ∂H/∂ p but for Ĥ0 we have v = p+�r×ez.

4 TESTS

We ran many test integrations to study the convergence, accuracy
and computational cost of the integrators presented in the previous
section. We present only four representative examples. All of these
tests use the algorithm in Appendix A to minimize the round-off
errors. Without loss of generality, we set � = 1 from now on.

4.1 Epicyclic motion

We first examine the case in which the perturbing force f in equa-
tion (1) vanishes, which corresponds to m → 0 or rHill → 0. In this
case Hill’s equations of motion can be solved analytically and lead to
epicyclic motion. We initialize the particle position to r = (1, 0, 0)T

and the velocity to ṙ = (0,−2, 0)T , which corresponds to a trajec-
tory that is a clockwise closed ellipse centred on the origin. We
integrate the trajectory forward in time for one epicycle period
(t = 2π�−1).

To illustrate the behaviour of each integrator, we use a relatively
large time-step (1/10th of the epicycle period) and plot the position
of the particle at every time-step in Fig. 1. As expected, SEI and
SEKI follow the analytic solution exactly. The Quinn et al. integrator
yields an approximate ellipse but exhibits a phase error of 6◦ per
epicycle period. All the three versions of the leapfrog integrator
diverge badly from the analytic solution in less than one-quarter of
an epicycle period.

In Fig. 2(a) we plot the relative energy error as a function of
the time-step. As expected, SEI and SEKI are exact to machine
precision for all the time-steps. The Quinn et al. integrator and the

Figure 1. Particle motion during one epicycle using different integrators
and a time-step �t = 0.1 × 2π�−1. The initial position, which is also the
exact final position, is marked by a circle.

modified and symmetrized leapfrog integrators converge quadrati-
cally until machine precision is reached. Leapfrog converges only
linearly. In Fig. 2(b) we plot the computation time as a function of
the relative error. This plot shows the fastest integrator for a desired
precision. Of course, in this test case the choice is trivial, as SEI
and SEKI give the exact solution for any time-step.

4.2 Perturbed epicyclic motion

The motion of a test particle in the presence of a mass m �= 0
can be described by a perturbed epicycle when the mass is suffi-
ciently small, or, in other words, when the test particle is sufficiently
far away from the mass or moving sufficiently fast, as quantified
by equation (6). We place the particle initially on a circular orbit
around mass M (uniform motion along ey in Hill’s approxima-
tion), with positions and velocities r = (5.55, 2613.91, 0)T and
ṙ = (0, −8.32, 0)T . The trajectory passes the perturbing mass at
an impact parameter corresponding to 8rHill. The integration time
is 100 epicycle periods. As an astrophysical example of such tra-
jectories, we refer the reader to a study of the stochastic motion of
moonlets embedded in Saturn’s rings by Rein & Papaloizou (2010).

In Fig. 3 we plot the same diagnostics as in Fig. 2 and additionally
the phase error. We also looked at other measures of the accuracy
of the integrators but do not show the results. SEI (for unbound
orbits) and SEKI (for bound orbits, see below) perform at least as
well as the other integrators tested by all the measures that we have
examined, and much better by most of them. SEI and SEKI also
turn out to be exceptionally good at calculating the phase of the
epicyclic motion.

One can see from Fig. 3(a) that SEI and SEKI exhibit energy
errors that are up to 3 orders of magnitude smaller than any other
integrator for typical time-steps used in most simulations (�t ∼
10−3–5 × 10−2). Eventually the errors are dominated by round-off
errors (�t � 5 × 10−4) for all integrators. One can further see that
at a fixed time-step SEI produces a phase error that is up to 7 (!)
orders of magnitude smaller than the error produced by the Quinn
et al. integrator. From Fig. 3(b) it is clear that SEI is also by far the
fastest integrator for a given precision.

4.3 Strongly perturbed epicyclic motion

We also performed tests in which we place the test particle on an
orbit with an impact parameter of 1rHill, so the perturbing forces are
much stronger than in the previous case. The trajectory of the test
particle is then a horse-shoe orbit.

In Fig. 4 we plot the same diagnostics as in Fig. 3 for this case.
One can see that SEI and the Quinn et al. integrator perform equally
well as measured by the energy error. However, the phase error is
more than 2 orders of magnitude smaller using the SEI or the SEKI
integrator rather than for any of the other integrators. Note that
the SEKI integrator has significantly larger energy error than SEI.
This is because for this test case all of the Hamiltonian operators
in equations (14) and (17) are roughly of the same magnitude and
thus, the commutators of the operators give rise to large integration
errors. Because SEKI is based on a split into five operators while
SEI is based on three, there are more commutators and the total
error is larger in SEKI.

4.4 Perturbed Keplerian motion

We finally test the strong gravity regime, where the forces that gov-
ern the epicyclic motion can be viewed as a perturbation to a Keple-
rian orbit. The initial positions and velocities are r = (0.125, 0, 0)T
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Figure 2. Epicyclic motion with no perturbing forces (Section 4.1). In this case SEI and SEKI follow the motion exactly. The method described in
Appendix A was used to control round-off errors. The integration time is one epicycle period.

Figure 3. Perturbed epicyclic motion (Section 4.2). The trajectory passes the perturbing point mass at an impact parameter of 8rHill. The integration time is
100 epicycle periods.

and ṙ = (0,−0.354, 0)T , which correspond to an initially circular,
bound orbit of m1 and m2. The semimajor axis of this orbit cor-
responds to 0.18rHill. The integration time is 10 epicycle periods,
corresponding to 226 Kepler orbital periods.

In Fig. 5 we plot again the same diagnostics as in Fig. 2. The
SEKI integrator is the most robust integrator in the sample, with
the energy error at a given time-step more than 2 orders of mag-
nitude smaller than its competitors. This performance comes with

a drawback, as each time-step is computationally more expensive;
nevertheless, at a fixed energy error it is still more than 1 order
of magnitude faster than its competitors. Its relative advantage
improves further for orbits with smaller semimajor axis (relative
to rHill).

Also note that for integrations in which the evaluation of forces
is expensive (for example in a tree code), the SEKI integrator has a
further advantage as it uses fewer time-steps.
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Figure 4. Strongly perturbed epicyclic motion (Section 4.3). The trajectory has an impact parameter of 1 rHill corresponding to a horse-shoe orbit. The
integration time is 100 epicycle periods.

Figure 5. Perturbed Keplerian motion (Section 4.4). The initial orbit is circular with semimajor axis 0.18rHill. The integration time is 10 epicycle periods or
226 orbital periods around the mass m.

Fig. 6 shows the time evolution of the relative energy error in the
integration with �t = 10−5 2π�−1. All the integrators (except the
various flavours of leapfrog which are far off the scale and therefore
not plotted) show no sign of a linear drift in the energy error: the
maximum error is independent of time. This good behaviour is due
to the symplectic nature of these integrators as well as the use of
the procedure described in Appendix A to control round-off error.
The SEKI integrator is more than 2 orders of magnitude better than
any other integrator in this example.

5 C O N C L U S I O N S

We have presented two new integrators for studying the small-scale
dynamics of discs using Hill’s approximation.

The first is a simple symplectic and time-reversible integrator
for Hill’s equations of motion that we call symplectic epicycle inte-
grator (SEI). In the absence of small-scale forces such as the self-
gravitational forces of the disc particles, SEI solves Hill’s equations
of motion (epicyclic motion) exactly; otherwise the error over a
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Figure 6. Relative energy error using different integrators and a time-step
�t = 10−52π�−1. The algorithm described in Appendix A was used to
minimize round-off errors.

fixed time integral scales as O(ε �t2) when the small-scale forces
are O(ε). Numerical tests using a variety of measures have shown
that SEI always converges much faster than various flavours of
leapfrog, and often much faster than the Quinn et al. (2010) inte-
grator. For a small ε (ε ∼ 3(rHill/r)3 ∼ 0.01) the phase error can be
up to 7 orders of magnitude smaller than the phase error from the
Quinn et al. integrator at the same time-step (Fig. 3a). The com-
putational cost per time-step of SEI and the Quinn et al. integrator
are equivalent. Although SEI is simple to code, a C implementation
can be downloaded from http://sns.ias.edu/rein/.

The second integrator is also symplectic and time-reversible and
is called the symplectic epicycle-Kepler integrator (SEKI). This in-
tegrator is useful in following bound two-body orbits in the sheared
sheet and in this case can yield errors that are several orders of
magnitude smaller than SEI.

These integrators can be generalized in several ways. First, higher
order integrators can be constructed by concatenating SEI and SEKI
steps of varying lengths (e.g. Yoshida 1993). Second, although the
discussion in this paper has, for simplicity, focused on the three-
body problem, SEI can be applied to the N-body problem using
shear periodic boundary conditions (e.g. Richardson 1994). The
force f in equation (1) can also describe gas drag on particles,
although in this case the dynamics is not described by a Hamiltonian
so the advantage of a symplectic, time-reversible integrator is less
clear.

The SEKI integrator can also be generalized beyond Hill’s ap-
proximation. For example, consider a test particle orbiting in the
gravitational field of a binary star with masses M1 and M2. The
Hamiltonian can be written as a sum of two Keplerian Hamiltoni-
ans minus the kinetic energy,

H (r, p) = HKep,M1 (r, p) + HKep,M2 (r, p) − HKin ( p) . (19)

The first two terms can be solved exactly, and the last term is simply
a drift. Thus, the analogue of equation (17) provides a second-
order accurate, symplectic and time-reversible integrator that is
exact when the test-particle motion is dominated by the gravitational
field from either body.
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A P P E N D I X A : RO U N D - O F F E R RO R D U E
TO ROTAT I O N S

Floating-point operations on a computer are subject to rounding
errors. The IEEE standard for floating-point arithmetic (IEEE 754)
specifies the rounding algorithm and ensures that the rounding error
for additions and multiplications is quasi-random. Thus, the round-
ing error should grow with time as O(ε · (t/�t)1/2), where ε is the
machine precision.

Both the SEI and SEKI integrators use rotations, which are writ-
ten in equations (11) and (13) as a rotation matrix with angle φ =
��t. However, operating with this matrix on a position vector (x,
y) will not in general preserve the norm r = (x2 + y2)1/2 because
numerically sin 2φ + cos 2φ �= 1. Since φ is the same at every time-
step, the error grows linearly with the number of operations, O(ε ·
t), much worse than the O(ε · t1/2) behaviour described above (Petit
1998, and references therein). This results in an undesirable linear
drift in energy.

For other integrators that solve the Kepler problem using rota-
tions, such as the Wisdom–Holman integrator, this problem is usu-
ally not important. This is because the rotation angle in the Kepler
problem depends implicitly on radius (Kepler’s law) and thus the
rotation is actually a so-called twist map. There exists a KAM-like
theorem (Blank, Kruger & Pustyl’nikov 1997) for twist maps that
restricts the solution to an invariant torus in phase space.
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Petit (1998) describes one way to solve this problem by de-
composing the rotation operator in equation (11) into three shear
operators:(

cos φ sin φ

− sin φ cos φ

)
=

⎛
⎝ 1 0

− tan
1

2
φ 1

⎞
⎠ (

1 sin φ

0 1

) ⎛
⎝ 1 0

− tan
1

2
φ 1

⎞
⎠ . (A1)

Why does this help? Suppose we replace the rotation matrix in
equation (11) by an arbitrary matrix R. It is then straightforward
to show that the transformation from (xn, yn, pn

x , py
n)T to (xn +1,

yn +1, pn +1
x , py

n +1)T defined by equations (9)–(12) is symplectic
if and only if det R = 1. Since 1 and 0 are represented exactly in
floating-point arithmetic, each of the matrices on the right-hand side

of equation (A1) has a determinant of exactly 1. Thus the transfor-
mation is symplectic whether or not sin φ and tan 1

2 φ are related by
the appropriate trigonometric identity, and hence is insensitive to
round-off errors in evaluating these functions.

We tested both implementations of the rotation operator, equa-
tion (11) and equation (A1). As expected, the implementation using
shear operators shows no sign of a linear drift in energy (Fig. 6). In
contrast, for the test case presented in Fig. 6, the straightforward im-
plementation of equation (11) produces a linear drift of about 10−7

after only 100 epicycle periods. The additional computational cost
of implementing the rotations using shear operators is negligible,
and in long integrations this refinement can dramatically improve
the accuracy.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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