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ABSTRACT

We present a new numerical method for studying the equilibrium properties of planetary rings, in which
a small patch of the ring is simulated with periodic boundary conditions. The results of the simulations
compare favorably with the results of kinetic theory of dense fluids so long as the filling factor in the
midplane is less than about 0.5. The conclusion of Araki and Tremaine (1986) that the condition for
the viscous instability is not fulfilled is confirmed. We find that the “standard” ring model, with the
particles all of the same size, develops vertically stratified layers at large optical depths (72 1) when

mean self-gravity is included.

L. INTRODUCTION

What shall we say to a great stratum of rubbish jostling and
Jjumbling round Saturn without hope of rest or agreement in

itself...
Maxwell (1857)

Despite recent advances in our understanding of the dy-
namics of planetary rings, much of the structure that is ob-
served in the Saturnian ring system remains unexplained.
The B ring, in particular, exhibits large irregular variations
in optical depth that are not associated with any resonances
with known satellites. The presence of this irregular struc-
ture is surprising because the timescale on which such irreg-
ularities should be removed by viscous diffusion is much
shorter than the age of the solar system. A principal candi-
date mechanism to explain this irregular structure has been
the “visocus instability” of Lin and Bodenheimer (1981),
Lukkari (1981), and Ward (1981). The instability arises if
the viscous stress is lower in regions of high surface density
or optical depth. Material then migrates to regions of high
optical depth from regions of lower optical depth, leaving
annular bands of contrasting density. A condition for this
instability is that the product of the optical depth 7 and the
height-averaged kinematic ring viscosity ¥ must decrease
with increasing optical depth over some interval of optical
depth. The velocity-dependent coefficient of restitution
found in the experiments of Bridges, Hatzes, and Lin (1984)
on low-velocity collisions of icy spheres seemed to confirm
that the 7v condition for the viscous instability was indeed
satisfied, on the basis of the relationship between the coeffi-
cient of restitution and the viscosity for a dilute gas of inelas-
tic spheres. However, it is likely that the ring is not dilute, in
other words, that the fraction of the ring volume occupied by
the ring particles (the “filling factor” or “solid fraction”) is
not small compared to unity. In this case there is a significant
new contribution to the viscous stress, corresponding to mo-
mentum transport through sound waves in the ring particles
(the “nonlocal” viscosity). Araki and Tremaine (1986) ar-
gued that, when nonlocal viscosity is taken into account, the
7v condition for the viscous instability is no longer satisfied,
at least in the models they examined.

Several alternate mechanisms for producing the fine-scale
structure of the B ring have been suggested. Borderies, Gold-
reich, and Tremaine (1985) and Araki and Tremaine
(1986) pointed out that if the filling factor is as large as ~0.5
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there might be a liquid-solid “phase transition,” in which
local patches or radial annuli of the ring behave like a solid
rather than a fluid. Similar behavior is common in granular
shear flow and is known as “plug” flow. However, axisym-
metric solid rings are not in dynamical equilibrium unless
there is adhesion between the ring particles or confining
pressure from adjacent regions in which the ring is liquid.
Thus, although the liquid—solid phase transition is known to
occur at a filling factor of 0.48 in a stationary hard-sphere
fluid, it is not known whether a similar transition occurs in a
shearing ring.

Another possibility is that the B ring structure is a conse-
quence of unstable density waves. Borderies et al. (1985)
used a simple heuristic model of the viscous stress in a dense
ring to establish that density waves could be unstable (this
can be regarded as a viscous overstability, in contrast to the
viscous instability discussed earlier). They predicted that
standing waves generated by this internal overstability
might be present in narrow rings, a prediction that is consis-
tent with the subsequent discovery of an m = 2 normal mode
in the Uranian 8 ring and an m = 0 mode in the y ring
(French et al. 1987).

Explanations of the fine-scale structure of the B ring can
be divided into two general classes: those that involve long-
range gravitational forces between the ring particles (such as
unstable waves), and those that involve only short-range
forces arising through direct collisions (such as the liquid—
solid phase transition). In this paper we concentrate on the-
ories of the second class. More explicitly, we investigate the
behavior of disks composed of inelastic, smooth, spherical
particles, all of the same size, orbiting in a Keplerian force
field (this is sometimes called the “standard model” of plan-
etary rings ). More complicated models, involving a distribu-
tion of particle sizes, rough or nonspherical particles, can be
investigated by straightforward extensions of the techniques
described here.

Studies of the standard model so far have largely been
pursued in the context of kinetic theory, where numerous
statistical assumptions must be made. For instance, theories
based on the Boltzmann equation assume that successive
collisions are uncorrelated (“molecular chaos”), that the
phase-space distribution function is adequately represented
by products of single particle distribution functions, and that
only binary collisions are important. To simplify the analy-
sis, additional assumptions are usually made: that the distri-
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bution of velocities is a triaxial Gaussian, that the vertical
distribution is isothermal, etc. One major goal of our study is
to verify the conclusions of kinetic theories, to be able to test
the assumptions that enter at each stage of the development.

A direct numerical simulation of a planetary ring is im-
possible, there are just too many particles. The compromise
that has been used up to now is to limit the number of parti-
cles to a manageable number, say 100-200, and increase
their size so they will collide with one another at a sufficient-
ly rapid rate (e.g., Brahic 1977; Brahic and Hénon 1977,
Lukkari 1981; Salo 1987). This approach can only provide a
crude qualitative check on the analytic theories, though the
experiments of Brahic did elucidate the importance of the
finite size of the particles in the determination of the equilib-
rium velocity dispersion. The optical depths in these experi-
ments are extremely low. Consequently, such experiments
cannot be used to test detailed predictions of kinetic theories
at realistic optical depths of order unity.

In this paper, we introduce a novel numerical method for
studying the equilibrium properties of planetary rings. It is
physically clear that the dynamics of the ring particles in one
region of the ring are statistically completely independent of
the dynamics of particles in other regions even a relatively
short distance away. We can incorporate this intuition into
our numerical model by only simulating a small region of the
ring and representing more distant parts of the ring as copies
of the simulated region. This is accomplished through an
appropriate choice of periodic shearing boundary condi-
tions. The unit cell must be large enough that there are no
significant correlations between the motions of particles on
opposite sides of the cell. Physically, we might expect that
correlations would not be significant beyond a few particle
radii. It is confirmed in our simulations that the two-particle
correlation function is negligible beyond a couple of particle
radii. Another important length scale is the radial mean free
path, since, roughly speaking, viscosity arises because in a
shearing situation the mean momentum of one region is car-
ried over a distance comparable to the mean free path to be
mixed with other regions where the mean momentum is dif-
ferent. The unit cell should also be larger than the mean free
path. In all cases considered in this paper the mean free path
is never more than a few particle radii, and typically much
smaller. Thus the equilibrium properties of a planetary ring
model can be well represented by the behavior of a patch of
the ring only a few particles in extent. A closely analogous
situation exists in the theory of liquids, where molecular dy-
namics experiments typically employ unit cells that are only
a few molecular diameters in size (see Evans and Morriss
1984 for a review). Our work is most closely related to nu-
merical studies of shearing granular flows such as occur in
avalanches, grain elevators, etc. (Campbell and Brennan
1985; Campbell 1986).

The details of our numerical model are discussed in Sec.
II. Included in this section are results that show the indepen-
dence of the computed equilibrium properties and the size of
the unit cell. We have verified that the e(7) relation of Gold-
reich and Tremaine (1978) correctly gives the stability
boundary for rings when the coefficient of restitution is inde-
pendent of impact velocity. Equilibrium properties for three
different ring models are presented in Sec. III, along with a
comparison with the predictions of kinetic theories, where
possible. Over the expected range of applicability, the kinetic
theories are verified to be quite accurate. In particular, the
conclusion of Araki and Tremaine (1986) that the 7v condi-
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tion for the viscous instability is not satisfied is confirmed, at
least for all of the particular models investigated. The inclu-
sion of the mean self-gravity has a dramatic effect on the
equilibrium properties of the ring. The most surprising result
is that at even moderate optical depths (7R 1) the ring parti-
cles form horizontal layers or sheets. We present a summary
of our results and conclusions in Sec. IV.

II. THE MODEL
a) Equations of Motion

Our model follows the dynamics of a collection of inter-
acting particles, moving in the gravitational field of a planet.
We assume that the system is azimuthally symmetric, and
focus our attention on a small region located a radial dis-
tance 7 from the planet. The coordinates of particles in this
region are referred to a reference point that moves on a circu-
lar orbit with semimajor axis a near r at the Keplerian angu-
lar velocity. We erect a rotating Cartesian coordinate sytem
with origin at the reference position, the x axis pointing radi-
ally outward, the y axis pointing in the direction of the orbi-
tal motion, and the z axis normal to the equatorial plane.

If x, y, z<€r, Newton’s equations for the motion of the
particles relative to the point of reference may be linearized
(Hill 1978; Julian and Toomre 1966)

¥ =20y —30% = —%,
ax
d¢

m QZ - P ,
it dz

where — V¢, is the force per unit mass due to the other ring
particles, and Q = {G_.#/a’ is the mean motion of the refer-
ence position.

The solution of Egs. (1) when ¢, #0 is

Xx =X, + A cos(¢t) + Bsin(N1),
Y =yo— 30xot — 24 sin(Qt) + 2B cos(N), (2)
z=Ccos(t) + Dsin(Q1),

where x,, yo, 4, B, C, and D are constants of integration. The
solution may be interpreted as having two contributions: the
guiding center motion and the epicyclic motion. The guiding
center motion represents the mean motion relative to the
reference point. The epicyclic terms take into account the
first-order effects of the orbital eccentricity.

Equations (2) have the constant of motion

H=p+20x =y, +10x, (3)

where p. =y + 3Qx is the y velocity relative to the mean
shear velocity at x. We shall call H the angular momentum,
which is only a slight abuse of convention since the true
angular momentum per unit mass in an inertial frame,
Ha + Qa?, differs from H only by additive and multiplica-
tive constants.

b) Boundary Conditions

In order to restrict attention to a small patch, it is neces-
sary to specify the behavior of the particles at the boundaries
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of the patch. A property of the linearized equations (1) sug-
gests an appropriate choice of the boundary conditions. The
linearized equations are invariant under the transformation
xX-x+L,,y-y+L,, X>x, p—y —JQL,, where L, and
L, are arbitrary. In other words, the dynamics of the linear-
ized model are independent of the choice of origin, except for
a uniform shear that is a consequence of the differential rota-
tionin a Keplerian disk. If we make the plausible assumption
that the dynamics of different portions of the ring are inde-
pendent so long as they are sufficiently well separated, we
can tile the ring plane with patches that are copies of one
another. Thus, we assume that every particle has an infinity
of image particles spaced at periodic intervals. A particle at
(x,y,z) has images at (x +nL,,y—3nL Qt + mL,.z),
where n and m are integers, and L, and L, are arbitrarily
chosen constants (which we generally take to be a few parti-
cle radii). The unit cell thus has a rectangular cross section
with area L, XL, and infinite extent in the z direction.
Whenever a particle center leaves the unit cell, one of its
images enters the cell somewhere on the opposite face. In all
the simulations reported here, we have taken the unit cell to
besquare, L, = L, =L, except for some initial tests to verify
that the equilibrium properties were independent of cell
shape. These “‘sliding brick” unit cells were first used in stud-
ies of the transport properties of dense gases (Lees and Ed-
wards 1972; Evans and Morriss 1984).

Itis important to stress that the boundaries of the cell play
no special role and that the model is independent of the loca-
tion chosen for the unit cell. Exactly the same sequence of
collisions would be obtained if the region called the unit cell
was translated by an arbitrary horizontal displacement.

¢) Constants of Motion

Letu =3 ,x,/N, w=3Y, (y; + 3Qx,)/N, where the
sum is over all the particles in the unit cell. Notice that z and
w are unchanged when particles cross the boundaries of the
unit cell. The velocities ¥ and w have many similarities to the
center-of-mass velocity of a system of particles (notice that
we use w rather than the true center-of-mass y velocity
v = 3, because v suffers a discontinuous jump when a parti-
cle crosses the edge of the unit cell). From equations (1), we
have

N N
i—20w=73 Y F;%

i=1j=1

1 N N
wt—-0u=3% 3 FyP, 4

2 i=1j=1

where F; is the force per unit mass on particle / due to parti-
clej. (In some cases, the particle will be interacting with an
image particle outside the unit cell, but this does not affect
the argument.) By Newton’s third law, the terms on the
right-hand side are zero and hence we may solve equations
4):

u =AY+ Be= " w=lide'™ — JiBe ~ 'Y, (5)

where 4 and B are complex constants.

A particularly simple case occurs when the initial condi-
tions are chosen such that the “center-of-mass” velocities u
and w both vanish at the initial time # = 0. Then4 =B =0
and both the average radial velocity # and the average tan-
gential velocity relative to the shear w are always zero. More-
over, we suffer no loss of generality if we consider only this
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case. To see this, let u, and w, be the values of ¥ and w at
t = 0. Then consider the transformation

x'=x+ 2w, cos i — 2o gin r — 2w, R
Q Q

4w, sin Qf + 3wyt + —2-52. (6)

p 2u,
=y——"Lcos Ot —
y =y Q

The interparticle forces are unchanged by this transforma-
tion since the relative coordinates of two particles are unaf-
fected. It is straightforward to show that x' and y’ satisfy
equations (1) and have ¥’ = w’ = 0. By using this transfor-
mation, the evolution of any unprimed system with u5£0,
w#0 can be determined from the evolution of the primed
system with u = w = 0.

In the light of these results, from now on we shall consider
only systems in which the “center-of-mass” motion u =
w = 0. We have used the conservation of these quantities as a
check on our numerical procedure; at the end of our simula-
tions |u/(QL)| and |w/(QL)| are typically <1012,

There are other constants of motion besides « and w. The
angular momentum H (Eq. (3)) of each particle is conserved
along its trajectory. Moreover, the total angular momentum
of two particles is conserved during a collision (write
H,+ H, = (y, + y,) + 2Q(x, + x,); since the collision is
instantaneous, x, and x, do not change, and since the total
momentum is conserved, y, + y, does not change). Thus the
only change in the total angular momentum of the particles
in the unit cell occurs from particles that enter or leave the
cell. When a particle leaves across a face normal to £ with
positive x velocity, it is replaced by a particle whose angular
momentum is smaller by JQ0L. However, the average number
of particles crossing this face in an interval At is NuAt /L;
thus in a system with # = 0 at all times the time-averaged
total angular momentum of the particles in the unit cell is
constant.

Another constant of motion is =¥_ £;, where

&= (x + 2ip, )™ 7

However, this constant will not be used or discussed in the
remainder of this paper.

d) Interparticle Forces

In this first application of our method, we concentrate on
the “standard” ring model, in which the particles are taken
to be smooth inelastic hard spheres, all of the same radius R,
and in which the detailed gravitational interactions between
particles are ignored. Thus, a collision between two particles
has negligible duration, and changes the radial and tangen-
tial relative-velocity components v, and v to

vl = —ev; v =y, (8)
where € is the coefficient of restitution (see, for example,
Goldreich and Tremaine 1978). The tangential velocity is
unchanged because the particles are taken to be smooth, i.e.,
there is no surface friction. Thus the particle spins are decou-
pled from the particle’s translational motion. This assump-
tion is made mainly so that our results can be compared with
theoretical analyses; the inclusion of surface friction in the
numerical model would be quite easy.

The neglect of gravitational interactions simplifies both
theoretical and numerical calculations, at the cost of dis-
carding an important effect. Gravitational scattering pro-
vides an efficient mechanism for converting relative orbital
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motion into random motion, particularly when there is a
distribution of particle sizes.

An additional effect of self-gravity is that the vertical
gravitational field of the ring material increases the vertical
frequency and compresses the ring, thereby enhancing the
collision rate. This effect has been modeled crudely by modi-
fying the third of equations (1) to read

a
P4+ Q2= — % , 9)
dz
where
0?2 = 0% 4 47Gp =g, (10)

and p is the mean density in the midplane of the ring. Equa-
tion (9) is only approximate because it assumes that the
density of ring material is uniform in z.

Until effects such as self-gravity, particle spin, and the
particle-size distribution are included, our model cannot
provide a realistic simulation of a planetary ring; however, it
provides an important check on the analytic kinetic theories
and it is appropriate to understand the behavior of this sim-
plified model before adding extra complications.

e) Optical Depth

As is customary in studies of the dynamical behavior of
planetary rings, we define the dynamical optical depth 7 to
be the sum of the projected areas of all the ring particles on
the equatorial plane, divided by the projected area of the
region they occupy. Note that 7 is not equivalent to the phys-
ical optical depth 7, defined such that exp( — 7, ) is the
probability that a randomly chosen skewer (x,y) = con-
stant will not intercept a particle (although 7~7, when
7«1, see Fig. 25). The dynamical optical depth 7 is a funda-
mental parameter of the simulation; the physical optical
depth 7, is a derived property that takes into account the
fact that some particles are obscured by other particles.

The number of particles whose centers lie in the unit cell is
exactly constant in time and is denoted by V. In this study all
particles have the same radius R. Thus the dynamical optical
depth is

2
r=N7R" (11)
LL,

where L, X L, is the projected area of the unit cell.
f) Numerical Methods

Since the trajectories of the ring particles are given by the
explicit analytic expressions (2), the trajectory of a particle
is completely specified by the epicyclic parameters 4, B, C,
D, x,, and y,. A list of the epicyclic parameters of all the
particles completely specifies the state of the system and its
time evolution from one collision to the next; the simulation
proceeds directly from collision to collision. Thus, the pri-
mary task in the numerical simulation is the determination
of whether a collision between two particles will occur and, if
s0, at precisely what time.

Within a particular time interval under consideration,
collisions between two particles are first searched for by qua-
dratic extrapolation of the distance between the particlesasa
function of time. The positions and velocities of the particles
at the beginning of the interval are directly given by the epi-
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cyclic parameters; the accelerations are given by the equa-
tions of motion. If the quadratic extrapolation indicates that
a collision occurs within the interval under consideration,
the precise time of collision is found through repeated qua-
dratic extrapolation in a manner analogous to the repeated
linear extrapolations of Newton’s method. If a collision is
not detected, then it is still possible that a grazing collision
occurred, and that the quadratic extrapolation was not ade-
quate to detect it. To check for this possibility, the quadratic
extrapolation is checked for a minimum within the interval.
If a minimum is found, then the precise time of closest en-
counter is found, again by repeated quadratic extrapolation,
this time to successive minima. If a grazing collision is de-
tected, then the time of collision is found as before. In our
simulation, the distance between two particles is a contin-
uous function, but there are discontinuities in the time deriv-
ative. The discontinuity arises when the two particles move
far enough away from each other that different images of
these particles become closer together than the original two
particles. To account for the possibility that a discontinuity
may have occurred during the time interval under considera-
tion, collisions are also searched for by quadratic extrapola-
tion from the end of the interval backwards in time.

A “potential collision list” is used to manage the time
evolution of the system and the actual execution of the colli-
sions. Initially, all pairs of particles are examined to deter-
mine whether a collision will occur within a time At, which is
of the order of the estimated mean time between collisions. A
time-ordered list of the potential collisions is formed. Colli-
sions at the head of this list are then executed successively;
the epicyclic-state parameters for the two particles involved
in the collision are replaced by post-collision epicyclic pa-
rameters. After each collision is executed, all entries in the
collision list involving either of the two colliding particles
are removed, and all pairs of particles involving either of the
colliding particles are re-examined for impending collision.
All potential collisions are appropriately added to the time-
ordered collision list. In each case the time interval exam-
ined for collision is of length At. Since this time interval is
finite, it may happen that the system evolves to a time be-
yond which a particular pair has been examined for collision.
Thus it is necessary to keep a record of the time beyond
which the fate of each pair is unknown; when these times are
reached the appropriate pair must be re-examined. Colli-
sions are only executed when all particles have been consis-
tently advanced to the collision time. Likewise, statistics
(such as the vertical histogram or filling factor) are only
collected when the system has been consistently evolved to
the time at which statistics are to be collected.

For a simulation involving N particles, the computer time
required to update the collision list following a collision is
proportional to NV since the possibility of collision with all
other particles must be re-examined, whereas the time re-
quired to initially construct the collision list is proportional
to N 2, since all pairs must be examined. The time spent in re-
examining those particles for which the interval Az has ex-
pired is also proportional to N ? in the limit where the time
examined is very short, since all pairs will be continually in
need of re-examination. It is thus advantageous to have this
interval as long as possible. On the other hand, if At is too
long, many potential collisions will have been found that will
never occur and the computer time spent in finding them will
have been wasted. Thus At should be of the order of the mean
time between collisions.
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g) Sliding Phase

The dynamics of two colliding smooth inelastic particles is
surprisingly complicated in our model. It is possible for two
particles to collide and then rebound with velocities that lead
to recollision in a time much shorter than an orbit period. A
sequence of such collisions is possible that completely damps
the component of relative velocity perpendicular to the radi-
us vector joining the particles. The two particles come to rest
on each other and then slide around one another. This pro-
cess has been discussed by Petit and Hénon (1986), who
gave an analytic approximation for the motion during the
sliding phase. The sliding phase requires special considera-
tion in our simulation since an infinity of collisions occurs in
a finite time, and we are solving the system exactly, stepping
from collision to collision. It would be difficult to use an
analytic approximation for the sliding phase in our simula-
tion since other particles may collide with the particles un-
dergoing the sliding motion. Instead, we have allowed for
the sliding phase by providing a “cushion.” The collisions
are taken to be perfectly elastic once the relative radial veloc-
ities become less than a critical value. The subsequent mo-
tion is a sequence of small hops that effectively allow the
particles to slide past one another. Without viewing the mo-
tion under a microscope, it is essentially the same as the
sliding motion. We have taken this critical velocity to be
0.01QR, which is typically less than 1% of the random ve-
locities.

h) Initial Conditions

The initial x and y coordinates of the particles are chosen
at random, uniformly distributed across the unit cell. The
vertical distribution is also taken to be uniform up to a dis-
tance h above and below the equatorial plane. This initial
boxlike distribution is clearly not near equilibrium and was
chosen to avoid the possibility that any particular equilibri-
um was chosen by accident. The initial velocities are also
randomly chosen with a uniform distribution up to a given
maximum velocity in each of the Cartesian components (ar-
bitrarily taken to be £R), which is slightly lower than the
equilibrium random velocities). The positions of pairs of
particles are chosen symmetrically so that the center of mass
will be at the center of the unit cell; the velocities are chosen
independently, except for the last particle, which is given a
velocity so that the total momentum in the cell is zero. We
shall argue below that the ring rapidly reaches an equilibri-
um state that is independent of the initial conditions.

i) Angular-Momentum Transport

One of the most important properties of a differentially
rotating disk is the rate of radial angular-momentum trans-
port, which is closely related to the viscosity.

From a microscopic viewpoint, there are two distinct con-
tributions to the angular-momentum transport. The first
arises from momentum carried across a surface by the phys-
ical motion of a particle actually crossing the surface. This
will be referred to as “local” transport (also sometimes
called “translational,” “kinetic,” or ‘‘streaming” trans-
port), since it is present even in a fluid of point particles in
which interparticle forces have zero range. The second arises
when two particles undergo a collision that straddles the
surface under consideration. This mechanism will be re-
ferred to as “nonlocal” transport (also called “collisional”
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or “potential” transport). In this case, the local transport of
momentum across the surface is through sound waves in the
particles themselves. Since in our model the particles only
interact through hard-sphere collisions that are instanta-
neous, there is no ambiguity about the moment of collision
or the separation of the local and nonlocal contributions to
the angular-momentum transport.

It would be highly inefficient to compute the rates of these
two transport mechanisms by considering the momentum
flux across a particular surface in the simulation. We have
emphasized above that all points in the unit cell are dynami-
cally equivalent. A more computationally efficient estimate
of the transport coefficients can be made by taking the aver-
age of the transport rates across a large number of surfaces in
the unit cell. It is a small step then to consider an infinity of
such surfaces, which implies that the most efficient estimates
of the transport rate are based on a time average over the
particle trajectories.

Let the angular-momentum flux ® be the outward flow
rate of angular momentum per unit length; thus ®L is the
rate of flow of H (Eq. (3)) across the surface S defined by
X = Xg, Yo<Vo + L, where x, and y, are arbitrary and the
flow is positive in the direction from x <x, to x> x,. The
local flux @, arises from particles whose centers cross S. We
may write

&, Ldt = z i + 1Qx0) — 2 i +30x,), (12)
out in
where “out” denotes a sum over all particles / that cross .S
with x; >0, while “in” denotes a sum over particles that
cross with x; <0. The location of the surface .S is arbitrary
and hence the probability that any particle / will cross .S
during dt is |x;|dt /L. Hence we may rewrite Eq. (12) as
S %P | Oxp
77 +2L2i;1x,. (13)
The second term in Eq. (13) is proportional to the mean
radial speed . We have shown that we can restrict ourselves
to the case u = 0 without loss of generality, and hence this
term will be dropped from now on.

The nonlocal flux & arises from collisions between two
particles whose centers are on opposite sides of the surface S.
Each such collision transports across .S an angular momen-
tum Ap_ equal to the change iny velocity of the particle with
x> x,. The probability that the two centers in a given colli-
sion span S'is (x, —x_)/L and hence

P, =

E('x> — X< )Ay>
P = L’dt

) (14)

where the sum is over all collisions occurring during the
interval dt.

J) Viscosity

For a fluid, the dynamic viscosity 7 is usually defined as
the proportionality factor that relates the force per unit area
to the shear rate:

du

£_p4 (15)

A dx
where u, is the mean flow velocity of the fluid. For a plan-
etary ring with nonuniform vertical structure, it is more use-
ful to speak of the “height-integrated” dynamic viscosity 7
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which is defined as the proportionality factor that relates the
total force transmitted across a given radius per unit length
to the shear rate:

F du

— =2, 16)
L i (
In a Keplerian potential, #, = — 3{x + const. The kine-

matic viscosity v is related to the dynamic viscosity by 7

= pv, where p is the bulk fluid density. Analogously, for a
planetary ring the “height-averaged” kinematic viscosity v is
related to the height-integrated dynamic viscosity by
7] = ov, where o is the surface density. We shall refer to the
height-averaged kinematic viscosity simply as the kinematic
viscosity or even just the viscosity.

In a steady state, the angular-momentum flux @ is simply
related to the viscosity. Since the mean radial speed is zero in
the steady state, the rate of flow of angular momentum per
unit mass across a surface of length L, ®L, is equal to F /.,
where F is given by Eq. (16) and ». is the particle mass.
Taking proper account of signs, we find

27D 2 ®
30’ 300

The surface density can be written in the form
0 = Nm/(L,L,), and with the use of Eq. (11) for the dy-
namical optical depth 7 we have

V=

7= (17)

18
307 (8
We can define local and nonlocal contributions to the vis-
cosity by replacing ® by ®; and ®; . From Eq. (13) the
local height-averaged kinematic viscosity is

— 2 ..
YL =3_ﬂ <xyr)p,t! (19)
where (), and (*), denote averages over the particles in the
unit cell and over time. The nonlocal viscosity is

L —————Z (x,

20
3Q NT 20)

—x )4y,

where the sum is over all collisions occurring during the time
interval T.

k) Velocity Ellipsoid

The orientation and magnitude of the principal axes of the
velocity-dispersion tensor define the velocity ellipsoid. The
components of the velocity-dispersion tensor are computed
as time averages over products of particular components of
the velocity dispersion, averaged over all the particles. Since
the analytic expressions for the particle trajectories are sim-
ple, the time averages for each particle are computed analyti-
cally from one collision to the next. Each contribution to the
average depends only on the epicyclic parameters and the
times at which the trajectory segment begins and ends. For
example, the contribution to the xy component of the veloc-
ity-dispersion tensor from particle p between collisions at ¢,
and ¢, is

(9]
— = {(B?
8(t, —t,) {3;

— 24, B, [sin(201,) — sin(207,)1}.

— A2)[cos(2Q12,) — cos(20,)]
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1) Vertical Distribution, Filling Factor, and Optical Depth

Several quantities are estimated by sampling the simula-
tion many times per orbit, typically one hundred. These
quantities include the vertical distribution function, the fill-
ing factor, and the physical optical depth 7, . The sampling
begins after examination of the velocity dispersions indicates
that equilibrium has been reached, and extends to the end of
the run. The vertical distribution is determined by binning
|| of all particles at the sampling times. The filling factor at
the midplane (z = 0) is computed as the average fraction of
the area of the midplane of the unit cell that is inside any
particle. The physical optical depth is computed by shooting
one hundred skewers on a square lattice vertically through
the simulation at each sampling time. The physical optical
depth is defined so that exp( — 7, ) is the average fraction of
skewers that penetrate the ring without piercing any parti-
cles.

m) Number of Particles

We have found that reliable results can be obtained from
simulations with small numbers of particles. For example,
Fig. 1 shows the principal axes of the velocity ellipsoid as a
function of the number of particles NV (the parameters for this
run, in the notation of the following section, are 7 =1 and
case (i)). Each of these runs lasted 20 orbital periods, and the
error bars, which represent the standard deviation of the
mean, are determined by treating the average over each orbi-
tal period as an independent measurement. There is very
little systematic trend in the results with NV for N > Oin this or
any other quantity that we analyzed. Hence it should be pos-
sible to obtain accurate results with NV as small as 20, al-
though we typically used a larger and more conservative
value, N = 40. In general, we expect that simulations of this
kind should be reliable so long as N is sufficiently large that
the cell size L exceeds both the mean free path and the parti-
cle size. For example, for optical depth 7 = 1, particle radius

0.05 T T T T T
3 3
$ e, te
0.04 P} 3 3 i
3t
Q
Q
Z
g 0.03 - 8, ® , 0o o 0 20 B
o @ g ]
o 3
[} o 22 5 o oo
'L ?
0.02 - i
0.01 1 1 1 1 1

0 10.0 20.0 30.0 40.0 50.0 60.0
N
F1G. 1. Principal axes of the velocity ellipsoid as a function of the number of

particles &V, for model (i) with optical depth 7 = 1. In general, the middle-
size axis of the velocity ellipsoid is the z axis.
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R, and N =20, a square unit cell has sides of length
L =\N7R?/7~7.9R, which is a healthy margin larger
than both the particle size and the mean free path, which for
these parameters is of order R.

n) Establishment of Equilibrium

Goldreich and Tremaine (1978, hereafter referred to as
GT) emphasized that a velocity-dependent coefficient of
restitution was essential to establish equilibrium in a dilute
ring. The reason is that in a dilute ring the rate of increase of
random energy due to viscous dissipation is proportional to
the square of the velocity dispersion, o2, while the rate of
decrease of random energy due to inelastic collisions is pro-
portional to (1 — €?)o?. If the coefficient of restitution is
independent of velocity, these two rates are generally une-
qual, no matter what the dispersion may be. Hence the ring
either explodes, or collapses to a monolayer. On the other
hand, a velocity-dependent coefficient of restitution permits
the ring to establish a velocity dispersion at which the ener-
gy-input rate balances the energy-dissipation rate.

The €(7) relation defines the unique coefficient of restitu-
tion at which equilibrium is attained for a given optical
depth. If the coefficient of restitution is independent of ve-
locity, the €(7) relation may be viewed as a stability bound-
ary. For a given optical depth, if the coefficient of restitution
is larger than given by the €(7) relation, the ring thickness
will exponentially increase; if the coefficient of restitution is
smaller than that given by the e(r) relation, the ring col-
lapses to an approximate monolayer, in which the magni-
tude of the velocity dispersion is of the order of the shear
across a particle diameter (Brahic 1977). We have verified
that the e(7) relation does indeed provide a stability bound-
ary for our model, by investigating the stability of rings of
optical depth 7 = 1, for velocity-independent coefficients of
restitution equal to integral multiples of 0.1. The e(7) rela-
tion of GT implies a stability boundary €~0.82. Up to
€ = 0.8, the numerical model reaches equilibrium, with the
equilibrium velocity dispersion increasing with the coeffi-
cient of restitution. For € = 0.9, however, the velocity dis-
persions increase roughly exponentially with time, with an e-
folding time of about three or four orbit periods. We made no
attempt to further refine the stability boundary for the nu-
merical model, but our results are completely consistent
with the GT prediction.

Figure 2 shows the principal axes of the velocity-disper-
sion tensor as a function of time in a similar run but with
7 = 0.4. The particles were intially distributed uniformly in
z, with a thickness of 10R. The ring layer collapses to equilib-
rium over the first few orbit periods, as illustrated by the
velocity dispersions in Fig. 2. For higher optical depths, the
approach to equilibrium is more rapid. The simulation is
considered to have reached “equilibrium” when the princi-
pal axes of the velocity ellipsoid appeared to have reached
stationary values. In this case, equilibrium has apparently
been reached after about seven or eight orbit periods. All
estimates of equilibrium properties were based on time aver-
ages starting from that point at which the disk appeared to be
in equilibrium, and lasting until the end of the run.

IV. EQUILIBRIUM PROPERTIES

We have run extensive simulations for three different
models for the coefficient of restitution € and the self-gravity
enhancement factor g:

931
0.12 . ;
0.09 |- J
]
g 006} .
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FiG. 2. Principal axes of the velocity ellipsoid as a function of time, for
model (i) with 7 = 0.4. Equilibrium has apparently been established after
seven or eight orbit periods. At higher optical depth, the approach to equi-
librium is more rapid.

(i) velocity-dependent coefficient of restitution deter-
mined experimentally by Bridges et al. (1984), no self-gravi-
ty vertical frequency enhancement (g = 1), particle radius
R = 100cm, and angular speed 2 = 1.95X 10~ *radians™’,
appropriate for the center of Saturn’s B ring. Specifically, the
Bridges—Hatzes-Lin coefficient of restitution is e(v,)

=min [0.34(v,) ~°%%,1], withvincms™".

(ii) velocity-independent coefficient of restitution €

= 0.5, and no self-gravity vertical frequency enhancement

(iii) velocity-independent coefficient of restitution €

=0.5, and self-gravity vertical frequency enhancement
g = 3.6 (roughly correct for the center of Saturn’s B ring if
p=04gcm™3).

a) Comparison with Boltzmann Theory

We first compare results of our simulation with the analy-
tical model of GT. The GT model is an approximate solution
of the Boltzmann equation. The Boltzmann equation as-
sumes that the phase-space distribution function is ade-
quately represented by a product of single-particle distribu-
tion functions. The approximations used by GT to solve the
Boltzmann equation include (1) the neglect of third-order
velocity moments of the Boltzmann equation to close the
system, (2) the assumption of a triaxial Gaussian velocity
distribution to evaluate the collision integrals, (3) the ne-
glect of the finite particle size, which limits applicability to
small filling factors, and (4) the neglect of the self-gravity of
the particles. Approximation (1) leads to an error of order
(v/Qr), where v is a typical random velocity; since this ratio
is <107 in Saturn’s rings the approximation is very good.
Approximation (2) is unlikely to lead to substantial errors.
Approximation (3) leads to no additional error since the
Boltzmann equation is only valid for small filling factors in
any case. Approximation (4) is also made in our numerical
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FIG. 3. Histogram of the particle number density as a function of distance
from the midplane (z = 0), for model (i) with 7 = 0.2. The curve repre-
sents Eq. (21), with the velocity dispersion determined from the simula-
tion. This is an excellent approximation at low optical depths.

simulations and so does not affect the comparison of our
results to the GT model.

An additional assumption made for convenience is that
the velocity ellipsoid is independent of height above the ring
plane. Then the vertical density distribution is

n(z) = n(0)exp( — 3Q:2%/03), (2n

where o is the principal axis of the velocity-dispersion ten-
sor perpendicular to the orbit plane. Figure 3 illustrates that
at low optical depths this is an excellent approximation for
model (i). The curve represents Eq. (21) with the velocity
dispersion g5 = 0.0450 + 0.0007 cm/s, determined from the
simulation. The histogram is generated by sampling the
height of all the particles one hundred times per orbit period
after equilibrium has been reached and until the end of the
run, which in this case lasted 30 orbit periods. The number of
particles was 50. On the other hand, Fig. 4 illustrates that at
optical depths as low as 7 = 1 the approximation (21) begins
to break down as the particles pile up on one another; the
filling factor is no longer negligible. Here the velocity disper-
sion was measured to be o, = 0.0292 + 0.0003 cm s~ .
Next we consider the horizontal dynamics. The predicted
orientation of the velocity ellipsoid is compared to that ob-
served in the simulation in Fig. 5. Here § is the angle between
the % axis and the nearest principal axis of the velocity ellip-
soid. Surprisingly, there is excellent agreement at all optical
depths, despite the failure of Eq. (21) for the vertical equilib-
rium. (The increased scatter of the numerical results for 7>2
is a result of using fewer particles (30) for fewer orbit per-
iods (20) to save computer time.) The agreement with the
predicted principal-axis ratios is, however, not as good. Fig-
ure 6 shows the comparison. Only the general trend is repro-
duced. For the ratio o,/0, there is fair agreement at low
optical depth where the GT model should be valid. We
would say the same for the other ratio were it not for the one
point at 7 = 0.2; it may, however, be that the disagreement
here is just a statistical fluctuation, a conclusion consistent
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FIG. 4. Histogram of the particle number density as a function of distance
from the midplane (z=0), for model (i) with 7= 1.0. Approximation
(21) begins to break down as the particles pile up on one another and the
filling factor is no longer negligible .

with an extrapolation by eye down the data points. The di-
mensionless height-averaged viscosity is shown in Fig. 7. GT
only calculated the local contribution to the height-averaged
viscosity; the line marks their prediction. The data points
show both the local viscosity and the total (local plus nonlo-
cal) viscosity. At low optical depths, where the GT model
should apply, the local viscosity does indeed dominate the
viscosity and the agreement is satisfactory. However, at
higher 7 the nonlocal contribution is much more important,
and the GT prediction for the viscosity is clearly inadequate
for 7R 0.5.

0.6 T L

0.5

04} -

03} 4 i

& [radians)

02 4

0.1F -

0 1 1
0 1.0 2.0 3.0

T

FIG. 5. Orientation of the velocity ellipsoid as a function of optical depth, for
model (i). The line indicates the prediction of Goldreich and Tremaine
(1978). The agreement is surprisingly good.
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FIG. 6. Ratios of the principal axes of the velocity ellipsoid as a function of
optical depth, for model (i). The line indicates the prediction of GT.

b) Comparison with Enskog Theory

Araki and Tremaine (1986, hereafter referred to as AT)
generalized the kinetic theory of GT to the case where the
filling factor is not small by employing the Enskog theory of
dense hard-sphere gases. The Enskog theory differs from the
Boltzmann theory in the calculation of the collision integral.
The Enskog theory includes the “nonlocal” transport of mo-
mentum across particles during collisions, and the enhance-
ment of the collision frequency that occurs because the finite
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Fi1G. 7. Dimensionless height-averaged kinematic viscosity as a function
of optical depth, for model (i). Both local viscosity (diamonds) and total
(local plus nonlocal) viscosity (circles) are indicated. The line marks the
prediction of GT. At high optical depths the nonlocal contribution domi-
nates the viscosity.
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Fi1G. 8. Histogram of the particle number density as a function of distance
from the midplane (z = 0), for model (ii) with 7 = 1.0. The Gaussian pro-
file determined by the Araki and Tremaine (1986) model is shown as a
dashed line; the solid line shows Eq. (21). The AT profile is not bad, consid-
ering that the Gaussian has been insisted upon.

size of the particles reduces the free volume. In some of these
calculations the vertical distribution is again taken to be a
Gaussian for convenience, though Eq. (21) does not apply
since the root-mean-square (rms) thickness is not directly
proportional to the dispersion o5. Araki (1987) has pro-
vided calculations for model (ii), i.e., velocity-independent
coefficient of restitution € = 0.5, with no self-gravity en-
hancement factor g = 1, for comparison with our simula-
tions. In this case, the number of particles was 30 and each
run was continued for 30 orbit periods. The vertical distribu-
tions are compared in Fig. 8. The dashed line is the Gaussian
profile determined by the AT model; the solid line is the
profile determined by Eq. (21) and the velocity dispersion
determined from the simulation o5 = 0.0218 + 0.0003
cm s~ . The AT profile is quite good, considering that it has
been forced to be Gaussian. In Fig. 9 the vertical distribu-
tions for 7 = 2 are compared. The agreement with the AT
profile is still quite good, considering that the Gaussian pro-
file has been insisted upon. The profile predicted by Eq. (21)
is sorely inadequate; here o; = 0.01926 + 0.0002 cm s~ .
The AT prediction of the orientation of the velocity ellipsoid
(Fig. 10) isin excellent agreement at low optical depths, and
still satisfactory at higher 7. The ratios of the principal axes
of the velocity ellipsoid predicted by the Enskog theory are
in much better agreement with the results of the simulation
than were the predictions of the GT model (Fig. 11). For
reference, the magnitudes of the individual principal axes of
the velocity ellipsoid are shown in Fig. 12, again with the AT
predictions. The predictions clearly fall outside the estimat-
ed error of the simulation results; nevertheless, the qualita-
tive agreement is quite satisfactory at all 7.

¢) Viscous Stability in Models without Self-Gravity

A principal conclusion of AT was that the 7v condition for
the viscous instability was not realized. Both components of
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Fi1G. 9. Histogram of the particle number density as a function of distance
from the midplane (z = 0), for model (ii) with 7 = 2.0. The Gaussian pro-
file determined by the Araki and Tremaine (1986) model is shown as a
dashed line; the solid line shows Eq. (21). The AT profile is still quite good,
considering that the Gaussian has been insisted upon.

the viscosity are computed in the AT model. Figure 13
shows the comparison with the simulation. Again, the quali-
tative agreement is good. The condition for the viscous insta-
bility is that there be an interval in 7 over which the product
of the viscosity and the optical depth (7v) have negative
slope. The quantity 7v is plotted versus 7 in Fig. 14. The
condition for the viscous instability is clearly not realized
under the assumptions of our numerical model. The corre-
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F1G. 10. Orientation of the velocity ellipsoid versus optical depth, for
model (ii). The prediction of AT is indicated by a dashed line. The agree-
ment is excellent at low optical depths, and still satisfactory at higher
optical depths.
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FIG. 11. Ratios of the principal axes of the velocity ellipsoid as a function
of optical depth, for model (ii). The lines indicate the predictions of AT.

sponding plot for model (i) with a velocity-dependent coef-
ficient of restitution is very similar, and likewise does not
give any indication for the viscous instability.

d) Filling Factor in Models without Self-Gravity

The computed filling factor or solid fraction at the mid-
point of the ring plane, FF(z = 0), for models (i) and (ii) is
shown in Fig. 15, together with the prediction of the AT
theory for model (ii). The filling factor for model (i) is low-
er than that for model (ii), especially at the larger 7. The
filling factor where a nonshearing gas of elastic hard spheres
undergoes a phase transition is near 0.48. For these two
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Fi1G. 12. Magnitudes of the principal axes of the velocity ellipsoid versus
optical depth, together with the predictions of AT, for model (ii).
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FIG. 13. Dimensionless height-averaged kinematic viscosity versus optical
depth for model (ii). The local viscosity (diamonds) and total viscosity
(circles) are compared to the predictions of AT. The qualitative agreement
is quite good.

models in which there is no self-gravity enhancement
(g = 1), this filling factor is only reached for optical depths
above 3. However, the computer time required to simulate
rings with 7> 3 is large, and simulations in this regime have
not been undertaken, for the following reason. When aver-
age self-gravity is included, high filling factors are reached at
much lower 7. Thus, making the model more realistic eases
the computing requirements.

e) Self-Gravity Model

The average effect of the self-gravity of the particles has
been modeled by a simple enhancement of the vertical re-
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F1G. 14. The quantity 77 versus optical depth, for model (ii). The curves
represent local and total viscosity. The condition for the viscous instability,
that the slope be negative over some interval of 7, is not satisfied.
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FiG. 15. The filling factor at the midplane (z = 0) versus optical depth,
for models (i) (circles) and (ii) (diamonds). The line indicates the pre-
diction of AT for model (ii).

storing force (Eq. (9)). This is strictly valid only for a disk of
uniform density. Thus, this simple model probably offers a
good representation of the interior of the ring, but is less
realistic for the vertical extremities. This simple enhance-
ment of the restoring force preserves the harmonic-oscillator
form of the vertical equations of motion. The solution re-
mains a simple harmonic oscillation (but with an enhanced
frequency), and the particle trajectories are still analytic.
We have taken in model (iii) a self-gravity vertical frequen-
cy enhancement factor of g = 3.6, which is a physically plau-
sible value for the middle of Saturn’s B ring. The coefficient
of restitution was taken to be independent of velocity with
value € = 0.5 as in model (ii). In these simulations we took
N = 40, and the simulations were run for 20 orbit periods.

The inclusion of self-gravity has a dramatic effect on the
equilibrium properties of the simulated ring. This is most
immediately noticed in the number of collisions per particle
per orbit. Figure 16 shows the common logarithm of the
number of collisions per particle per orbit for our three mod-
els. Particles in the self-gravity model suffer about two or-
ders of magnitude more collisions per unit time than parti-
cles in the models without self-gravity. The collision
frequency is very large compared to the orbital frequency.

The principal axes of the velocity ellipsoid are shown in
Fig. 17. The magnitudes of the velocity dispersions are com-
parable to the velocity dispersions in the two other models.
This reflects the fact that this velocity dispersion is main-
tained by the shearing of particles past one another. The
typical shear velocity between two particles separated by
two particle radii is 3Q2R; this determines the scale of the
velocity dispersions. The components of the velocity disper-
sion are more nearly equal in this model than in the two
other models; as a consequence of the high collision rate, the
ring behaves more like a fluid in this model.

The concept of mean free path in our model is complicated
by the curvature of the particle trajectories. For simplicity,
we simply define the mean free path A to be the product of
the mean time between collisions and the rms velocity, i.e.,
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FI1G. 16. The common logarithm of the number of collisions per particle
per orbit for all three models (model (i)-squares, model (ii)—circles,
model (iii)—diamonds), as a function of optical depth. Particles suffer
about two orders of magnitude more collisions per unit time in the self-
gravity model than in models without self-gravity.

the square root of the sums of the squares of the principal
axes of the velocity ellipsoid. The logarithm of the mean free
path is shown in Fig. 18. This plot emphasizes that the mean
free path is generally smaller than the particle size, and in the
self-gravity model much smaller than the particle size.
Once again, there is no evidence for the viscous instability
in the plot of 7v. Figure 19 shows a monotonic increase of 7v
with 7. The magnitude of the viscosity, which is almost en-
tirely the nonlocal viscosity, is about a factor of 5 larger in
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FIG. 17. Principal axes of the velocity ellipsoid versus optical depth for the
self-gravity model (iii). The velocity dispersions are more nearly equal in
this model than in the other models; as a consequence of the high collision
rate, the ring behaves more like a fluid in this model.
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FiG. 18. Common logarithm of the mean free path versus optical depth for
the three models (model (i)—squares, model (ii)—circles, model (iii)—
diamonds). The mean free path is generally much smaller than the particle
size in model (iii).

the self-gravity model than in the other models.

The filling factor at the midplane FF(z = 0) reaches large
values at quite low optical depths. Figure 20 shows that
FF(0) undergoes an oscillation with optical depth. Already,
by optical depth 7 = 0.7 the filling factor is above the value
0.48 at which a stationary hard-sphere gas undergoes a phase
transition. For 7> 0.7 the filling factor oscillates with 7. The
first peak in FF(0) occurs at 7=0.9 and has the value
FF(0) = 0.531. The first minimum then occurs at 7= 1.3
with magnitude FF(0) = 0.486. The next maximum occurs
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FIG. 19. The quantity 7¥ versus optical depth, for the self-gravity model
(iii). The curves represent local and total viscosity. The 7¥ condition for the
viscous instability is not satisfied.
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FiG. 20. Filling factor at the midplane (z = 0) versus optical depth, for
model (iii). The filling factor reaches large values at quite low optical
depths.

in the neighborhood of 7=2.2 with magnitude FF(0)
= 0.624.

These interesting oscillations are directly associated with
an unexpected behavior of the vertical distribution function
(Figs. 21-24). Figure 21 shows that at the low optical depth
7 = 0.4 the distribution (17) is an adequate representation
of the vertical profile. Note that the ring with average self-
gravity is significantly flatter than the rings without self-
gravity. Since the velocity dispersions are comparable, the
factor by which the vertical scale is flattened is roughly just
the self-gravity enhancement factor g (see Eq. (17)). As the
optical depth is increased, the vertical distribution again be-
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FI1G. 21. Histogram of the particle number density as a function of dis-

tance from the midplane (z = 0), for the self-gravity model (iii) with
7= 0.4. The solid line shows Eq. (21).
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FI1G. 22. Histogram of the particle number density as a function of dis-
tance from the midplane (z =0), for the self-gravity model (iii) with
7=0.9. The solid line shows Eq. (21). A minimum is developing at the
midplane.

gins to deviate from the Gaussian profile; initially by becom-
ing more “square.” At not much larger optical depths, the
vertical distribution begins to show a minimum at the mid-
plane, z = 0! This is illustrated in Fig. 22 for optical depth
7=0.9, at which FF(0) had its first maximum. The mini-
mum at the midplane becomes deeper with increasing opti-
cal depth until 7 = 1.3, where the first minimum in FF(0)
occurs. The vertical distribution for 7 = 1.3 is shown in Fig.
23. Thus the “standard” model with self-gravity factor
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Fi1G. 23. Histogram of the particle number density as a function of dis-
tance from the midplane (z=0), for the self-gravity model (iii) with
7= 1.3. The solid line shows Eq. (21). The minimum at the midplane is
fully developed. The standard ring model with self-gravity factor g = 3.6
develops vertically stratified layers or sheets.
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FI1G. 24. Histogram of the particle number density as a function of dis-
tance from the midplane (z = 0), for the self-gravity model (iii) with
7= 1.9. The solid line shows Eq. (21). At 7 = 1.9, the equilibrium config-
uration of the standard ring model with self-gravity is three well-defined
sheets lying on top of one another.

g = 3.6 forms vertically stratified layers or sheets above an
optical depth of about unity. As the optical depth is further
increased the minimum at z = 0 begins to fill, but as it does
S0 a new minimum appears near z~ R. Figure 24 shows the
vertical distribution for 7 = 1.9. At 7 = 1.9, the equilibrium
configuration of the standard ring model is three well-de-
fined sheets lying on top of one another. It is perhaps not
surprising now that as the optical depth is further increased
more and more layers are formed; we have seen up to six
well-defined layers by 7 = 3.

We have verified that the formation of these layers is not
an artifact of a commensurability between the particle size
and the unit-cell size by performing simulations for optical
depth 7 = 1.3 with different numbers of particles and thus
different sizes for the unit cell. The original simulation used
N = 40; the two auxiliary simulations used N = 10 and
N =20. All three vertical distributions are in excellent
agreement. This is a further illustration that N = 40 was a
conservative choice.

Similar layers were found by Campbell and Bren-
nan(1985) in a numerical simulation of two-dimensional
Couette flow of rough inelastic disks.

‘While the formation of layers is not an artifact of the simu-
lation, it is clear that the layers are likely to be related to the
assumption that all particles have the same size, since the
spacing of the layers is of order twice the particle radius.
With a more realistic distribution of particle sizes, the well-
defined layers will most likely disappear. There may, how-
ever, be some remnant of this phenomenon. For example, it
may be that particles in one layer do not often switch to the
other layer, i.e., there may not be vertical mixing. This effect
could persist with a distribution of particle sizes.

While it is beyond the realm of physical applicability, it is
nevertheless interesting to push the optical depth to higher
values to see if there is anything similar to the phase transi-
tion suggested by AT. It turns out that a phase transition of
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sorts does occur in our case (iii) simulation for optical depth
7=2.9. The vertical distribution function shows seven
maxima. Closer examination reveals that in this case layers
are not formed, but instead the particles projected on the xz
plane form a regular lattice, with alternately four particles
across the ring vertically, then three particles, then four, etc.
There has been a limited “crystallization.” The particles still
maintain the mean shear flow. This is accomplished by the
particles streaming in the y direction along the crystal-lattice
positions in the xz plane. While amusing, this phenomenon is
probably artificial, since the regular lattice could not fit into
our periodic cell unless the cell size was commensurate with
the lattice.

f) Comparison with Haff’s Theory

Haff (1983) has discussed an approximate theory for
granular flow, which has been applied to planetary rings by
Borderies et al. (1985, hereafter referred to as BGT). Haff’s
theory treats the ring material as incompressible, with thick-
ness 24. The mean density p is assumed to be independent of
height and related to the particle density p, by p = FFp,,
when FF is the filling factor. The mean free path is assumed
to be much less than the particle radius (cf. Fig. 18), and the
nonlocal momentum transport is assumed to be much larger
than local transport (cf. Fig. 13).

There are some obstacles to comparing Haff’s theory with
our numerical results. First, we might expect that Haff’s the-
ory would apply whenever the dominant transport mecha-
nism was nonlocal, or when the number of collisions per
orbit was, say, R 10. For model (ii), these conditions are
satisfied for 7R 1 (Figs. 13 and 16). However, for 7 = 1 the
filling factor is only 0.2 (Fig. 15), and FF(0) 0.4 by 7 = 3.
Haff’s theory cannot predict the filling factor, which is need-
ed to relate his theoretical parameters p and 4 to the input
parameter 7. Thus, either we must use the results of the sim-
ulation to determine the filling factor, or we must accept an
uncertainty of a factor of 2 or more in the relation between
optical depth and density or ring thickness. A second obsta-
cle is that the theory contains at least three undetermined
coefficients of order unity, which weakens its predictive
powers substantially. A third obstacle is that Haff’s theory
cannot describe layered flows of the kind seen in model (iii)
at high optical depths.

Nevertheless, the limited comparisons available to us sug-
gest that Haff’s theory captures much of the physics of dense
Keplerian granular flow. Haff’s theory predicts that the rms
velocity of the ring particles is

v=c,QR, (22)

where R is the particle radius and ¢, is a dimensionless con-
stant of order unity. Figure 12 shows that at high optical
depth the principal axes of the velocity ellipsoid approach
constant values in the range 0.9-1.3QR, suggesting that ¢, is
nearly unity. The rms velocity is very similar in model (iii)
(Fig. 17), confirming Haff’s prediction that ¢, is indepen-
dent of the enhancement factor g.

The height-averaged kinematic viscosity in Haff’s theory
takes the form

7= QR2CET
FF?

(23)

Thus the ratio of the viscosity at 7 = 1 in model (iii) to the
viscosity in model (ii) at the same optical depth should equal
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Fi1G. 25. Physical optical depth versus dynamical optical depth, for the
three models (model (i)—squares, model (ii)—circles, model (iii)—dia-
monds).

the ratio of (g/FF)? in the two models. The simulations
show that both ratios are ~3, in good agreement with the
prediction. The theory also predicts that % « 72. Fitting the
results of model (ii) over the range 2 < 7 < 3, we find v « 77,
with @ = 1.2, which is too low. Part of the discrepancy is
removed if we account for the increase in filling factor
between 7 = 2 and 7 = 3, thereby raising the best-fit expo-
nent to 1.7, which is in adequate agreement.

g) Optical Depth

The relationship between the physical optical depth 7,
and the dynamical optical depth 7 has been determined by
shooting skewers through the simulation. The physical opti-
cal depth is defined so that exp( — 7, ) is the average frac-
tion of skewers that penetrate the ring without piercing any
particles. The results of the simulations for all three models
are shown in Fig. 25. At very low optical depths, the two
optical depths are very nearly the same for all models, but at
higher optical depths the physical optical depth is larger
than the dynamical optical depth.

V.CONCLUSIONS

We have described a novel numerical technique for study-
ing the dynamics of differentially rotating particle disks. Our
technique is closely related to the methods of non-equilibri-
um molecular dynamics (Evans and Morriss 1984) and is
based on the examination of the dynamics of particles in a
small patch of the ring and the use of shearing periodic
boundary conditions.

We have concentrated on the behavior of the standard
model of particulate disks, in which all particles are smooth,

939

inelastic spheres of a single radius and detailed gravitational
interactions between the particles are ignored.

We have compared our numerical results with two kinetic
theories of the standard model. Goldreich and Tremaine
(1978) determined the equilibrium properties of a dilute
(low filling factor) particle disk using the Boltzmann equa-
tion, and Araki and Tremaine (1986) generalized the Gold-
reich and Tremaine results to dense rings using the Enskog
approximation.

We find that:

(1) The Goldreich-Tremaine theory correctly predicts
the critical coefficient of restitution as a function of optical
depth. Rings containing particles that are more elastic than
this critical coefficient are unstable and their thickness in-
creases exponentially. Rings with a small coefficient of resti-
tution collapse until either the coefficient of restitution in-
creases due to the lower impact velocities or the filling factor
is no longer small.

(2) In the cases we examined, the Goldreich-Tremaine
model predicts the orientation of the velocity ellipsoid well
(up to 7% 3); it predicts the axis ratios of the velocity ellip-
soid less well (errors of up to 20% by 7 = 3), and does not
adequately predict the viscosity for 7 R 0.3, mainly because it
neglects nonlocal viscous effects.

(3) The Araki-Tremaine model provides improved pre-
dictions for the axis ratios of the velocity ellipsoid and far
better predictions for the viscosity than the Goldreich-Tre-
maine model (see Fig. 13).

(4) There is no evidence for a viscous instability in any
model that we have examined.

(5) When the midplane filling factor FF(0) exceeds ~0.5
(the freezing point of a static fluid of elastic hard spheres),
the disk particles organize themselves into two or more hori-
zontal layers or sheets. Thus each particle tends to remain on
one side of the midplane, in contrast to dilute rings, in which
the particles spend half of their time on each side of the
midplane.

The standard model is a grossly oversimplified model of
planetary rings. Effects such as tangential friction, particle-
size distribution, and gravitational interactions between par-
ticles are all likely to be present in real rings and may have an
important influence on the equilibrium dynamics. All of
these effects can be incorporated in our numerical simula-
tion, although at increased computational cost.

So far, our simulations show no evidence of a liquid—solid
phase transition, nor do they provide any clues to the origin
of the fine-scale structure in the B ring. It will be interesting
to extend our calculations to examine the behavior of a ring
with a broad particle-size distribution, since the formation of
layered sheets at high optical depth is more difficult in this
situation.
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