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Abstract. We model the evolution of dynamo maintained mag-
netic fields in a barred spiral galaxy. The velocity fields are
taken from N-body dynamical simulations. The important fea-
ture is the presence of strong, unsteady non-circular gas motions,
driven by the central bar, The nonlinear dynamo calculations are
carried out with both two dimensional (thin disc approxima-
tion) and three dimensional codes. The resulting magnetic field
shows repeated episodes with approximately ring-like structure,
and structure with short spiral arms. These morphological fea-
tures appear robust, in that velocity data from distinct dynamical
simulations gives rise to similar structures.
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1. Introduction

Spiral galaxies appear usually to host magnetic fields on both
global and smaller scales, see e.g. the review by Beck et al.
(1996). The determination of the detailed morphology of the
large-scale fields is difficult (Beck et al. 1996), but it does ap-
pear that many possess approximately an axisymmetric struc-
ture, perhaps modified by features with azimuthal wave num-
ber m = 2 (i.e. an axisymmetric structure has m = 0). Others
have significantm = 1 structure (bisymmetric spiral: BSS), and
sometimes the picture may be more complicated. Note that cur-
rent observational techniques are only adequate to determine
the most prominent components of the field structure, and that
it is plausible that higher order azimuthal components are quite
generally present.

Basic dynamo theory (e.g Ruzmaikin, Sokoloff, Shukurov
1988, Eltsner et al. 1992, Moss & Brandenburg 1992) predicts
that m = 0 fields are the most readily excited, and they ap-
pear also to be stable in the nonlinear regime (see, e.g., Moss
et al. 1993a,b). A possible complication is that transients, re-
flecting the unknown initial conditions, may persist for several
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Gigayears, before the eventual stable configuration is achieved
(Moss & Tuominen 1989, Brandenburg et al. 1992, Moss et al.
1993a, Poezd et al. 1993).

Thus finding an explanation for the maintenance of nonax-
isymmetric magnetic features until the present epoch presents
an interesting challenge for dynamo theory. The problem of
explaining BSS has attracted considerable attention during the
last few years. Apart from the possibility that it is a long-lived
transient (Moss et al. 1993a), mechanisms investigated rely on
nonaxisymmetries in the galactic disc. This can appear directly
in the alpha-effect (Moss & Brandenburg 1992), perhaps involv-
ing parametric resonance or a related mechanism, or might arise
from large-scale streaming velocities driven by the density wave
associated with ‘grand design’ spiral arms (Chiba 1991, Mestel
& Subramanian 1991, Subramanian & Mestel 1993, Schmidt
& Rüdiger 1992, Moss 1995, Moss 1996a,b, Moss 1997, Bikov
et al. 1997, and others), or from essentially impulsive galaxy-
galaxy encounters (Moss et al. 1993a,b, Moss 1996b, 1997).

Barred spiral galaxies offer another example of a situation
where large-scale nonaxisymmetric streaming velocities occur.
Any dynamo generated field would be expected to be modified
significantly by such motions, and hence to possess substan-
tial nonaxisymmetric components. Chiba & Lesch (1994) pre-
sented a study of the effects of non-circular gas motions, of a
type that might be associated with barred galaxies, on magnetic
field generation and evolution. They used a quasi-local form of
the induction equation, and made some quite drastic assump-
tions about the form of the non-circular velocities. Their very
simplified model, together with the absence of any visualization
of the resulting global field, make it difficult to assess readily
their results, and to compare them with ours. In particular, it is
unclear whether their field structures can be maintained against
global decay in the absence of an α-effect.

Subsequently, Otmianowska-Mazur & Chiba (1995) also
studied the inductive effects of steady large-scale gas streaming
on galactic magnetic fields. Their velocities were generated by
a SPH simulation of the motion of gas under prescribed nonax-
isymmetric disturbances to a given potential. They also did not
include any α-effect, and their calculations were strictly linear.
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The boundary conditions are unclear, but this presumably im-
plies that their magnetic fields eventually decay. In most of the
models presented, the disc plane value of the magnetic diffusion
is very large (5× 1027 cm2 s−1). In these, and other, ways their
calculations differ from ours.

In this paper we study the behaviour of magnetic fields in the
presence of velocity fields derived from numerical simulations
of barred galaxies. We use the N-body code developed by Salo
(1991; see also Salo and Laurikainen 1993, which describes the
3D version of the code), which follows the evolution of a self-
gravitating galactic disc embedded in an analytically modelled
spherical halo. The simultaneous evolution of both ‘gas’ and
‘stars’ is included, the former being represented by dissipatively
colliding particles. Under suitable conditions a central bar can
form, with associated large-scale gas streaming. We have taken
the gas velocity fields from two such simulations in which the
velocities are restricted to be two dimensional, and included
them in both a 2D and a 3D galactic dynamo model, for times
of up to nearly 10 Gyr. Most of the calculations presented are
with the 2D version of the dynamo code, as shorter trial runs
suggest that the global magnetic field morphology calculated
with the 3D code is quite similar. The latter simulations are, of
course, much more time consuming. However, for inclusion of
velocity data from a 3D dynamical simulation, the 3D dynamo
code will be essential.

Of course, a dynamical simulation from different initial con-
ditions, and/or with other parameters changed would produce
different velocities. We do not claim to give a unique description
of magnetic field evolution during the formation and evolution
of a galactic bar, nor even to model processes occurring in any
particular galaxies. We do think that we can display some of the
morphological features of the magnetic fields that arise.

2. The dynamo model

We take a standard mean field dynamo equation

∂B
∂t

= ∇× (u × B + udia × B + αB− η∇× B) . (1)

As usual, η is the turbulent magnetic diffusivity andα represents
a conventional alpha-effect. u comprises the large-scale veloci-
ties (circular and non-circular), udia = − 1

2∇η, and represents the
turbulent diamagnetism (Vainshtein & Zeldovich 1972, Roberts
& Soward 1975). In general we allow α = α(r), η = η(r). We
solve eqn (1) as either a 2D or a 3D initial value problem. Initial
conditions were usually that the seed field be axisymmetric and
of low energy compared to the saturation value. For the 3D cal-
culations, it is also localized near the disc plane. However the
initial configurations are rapidly forgotten as the simulations
proceed. The 3D version of the code allows u, α and η to vary
also with z, the coordinate perpendicular to the disc plane. Note
that both the 2D code (implicitly) and 3D (explicitly) can only
consider fields of even (quadrupolar) parity with respect to to
disc plane z = 0. Given that the currently used velocity data is
two dimensional, and that theory and observation predict that
fields of quadrupolar parity are generally to be expected, we

feel that this is not a fundamental restriction at this time. Nev-
ertheless, we recognize the desirability of implementing a more
general code, especially if we wish to use truly 3D velocity data.
For computational convenience we put

u = Ω(r)rφ̂ + v, (2)

thus separating the circular and non-circular velocities. In gen-
eral we write α = α0α̃(r)/(1 + αBB(r)2/B2

0 ), η = η0η̃(r),
v = v0ṽ(r), with α0, η0 and v0 being typical values of α, η and
|v| respectively. ThusαB = 1 gives a basic form ofα-quenching
with field strengths limited at approximately B0. Plausibly B0

would be the field strength in equipartition with a typical value
of the kinetic energy of the turbulent velocities. Alternatively,
αB = 0 would yield a linear calculation. A more sophisticated
model might have B0 = B0(r), representing the change in the
magnetic field-gas equilibrium condition as the gas density and
turbulent velocity vary with position.

We make the conventional assumption that η ≈ 1
3utlt,

where ut and lt are typical values of the velocity and length
scale of the turbulence. In the Milky Way, near the disc plane,
ut ∼ 10 km s−1, lt ∼ 100 pc, gives an estimate for η of about
1026 cm2 s−1. However conditions in the sort of galaxies we are
considering may be rather different, and the above expression
for η is only an order of magnitude estimate, so the value of
η is rather uncertain. η0 is chosen to be equal to or slightly
greater than the maximum value of η, so that η̃ ≤ 1. We can de-
fine the corresponding magnetic Reynolds numbers Rα = α0L

η0
,

Rm = v0L
η0

, where L is a convenient length scale, either h (a
measure of the disc thickness) or R (the disc radius) – see be-
low. We define v0 = 1 km s−1, and choose α0 such that the
maximum value of α is approximately 1-5 km s−1, and η0 sat-
isfies 1026 <∼ η0

<∼ 6 × 1026 cm2 s−1. Note (Sect. 6) that the
local value of η only approaches the largest of these values of
η0 in the 3D calculations high in the halo. In principle, Rm is
fixed exactly by the dynamo model parameters, but in practice
we explore the effects of modest changes in this parameter. We
always use the nominal value of the circular velocity Ωr, and
so the other conventional dynamo parameter, Rω = Ω0L

2/η, is
fixed by the dynamical model via eqn (2). Lengths are scaled
with R, the disc radius, and units of time are L2/η0 = T , say.

2.1. The 2D model

The 2D ‘no-z’ approximation is based on the idea of replacing
z-derivatives by terms∼ O(h−1), where h is the disc thickness
or scale height (e.g. Subramanian & Mestel 1993, Moss 1995),
and the code is in the form implemented in Moss (1996), solving
a modified version of Eq. (1) on 0 ≤ r ≤ R, 0 ≤ φ ≤ 2π, with
NI ×NJ grid points and uniform meshing.

We assume that η is uniform, i.e. η̃ = 1 and, for most of
the computations, α̃ = 1 also. The length scale L is taken as h.
Boundary conditions are that Br = Bφ = 0 at r = R. Results
were little affected for other plausible choices of boundary con-
dition, provided that R was large enough for the dynamo-active
region to be included within the computational domain.
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Fig. 1. Snapshots from the 2D model I calcula-
tion at time 2.2 Gyr. In the upper row, the left
and right hand panels give the density contours
of the stellar density distribution and the gas par-
ticle positions, respectively. The lower left panel
shows the gas velocity vectors in a coordinate
system that co-rotates with the bar, and on the
right the corresponding magnetic field vectors
are shown. The dashed outer circle in each frame
is drawn at a radius of 12 kpc, the outer boundary
of the MHD calculation.

2.2. The 3D model

The 3D code is described in Moss (1997), and comparisons are
there made with the 2D code. Eq. (1) is solved on a grid of
size NI × NJ × NK covering 0 ≤ r ≤ R, 0 ≤ φ ≤ 2π,
0 ≤ z ≤ zmax. The spacing is uniform in each of the coordinate
directions. We found that taking zmax = (0.4− 0.5)R produced
fields at this boundary that were small compared to their maxi-
mum values, and that results were insensitive to increasing zmax

further. Mostly we considered α̃ and η̃ only to vary with z, and
we took, slightly arbitrarily,

α̃ = z(z2
α − z2), z ≤ zα,

α̃ = 0, z > zα,
η̃ = η1 = constant, z < zη,
η̃ = 1, z > 2zη,

(3)

with η̃ varying smoothly between z = zη and 2zη . It is the z-
dependence of these quantities that effectively defines the disc.
Thus the disc plane value of η is η1η0. It is plausible that the
diffusivity is larger in the halo than in the disc (eg Sokoloff &
Shukurov 1990), and we thus take η1 < 1. We set L = R for the
scalings. We arbitrarily prescribed a decrease in the size of the
non-circular gas velocities as z approached zmax.

Our boundary conditions are that on z = zmax Br and Bφ

should be decreasing in magnitude at least as fast as for a general
dipolar field. Similar ‘open’ conditions are applied on r = R,
and the condition on the third field component is found by sat-
isfying ∇ · B = 0. As for the 2D calculations, we verified that

plausible variations in these boundary conditions, such as set-
ting some field components to zero at the boundary, did not alter
significantly our results.

The restriction to uniform mesh size in the z-direction does
mean that it is not possible to investigate discs of aspect ratio
as small as those of real spiral galaxies, with the computing
resources available. Practically, we are limited to λ

>∼ 0.1.
With the 2D velocity data this is probably not a real limi-
tation when investigating the generation of nonaxisymmetric
structure. However, we will obviously represent less well the
z-structure of the fields.

3. Summary of the dynamical calculations

The velocity fields for the dynamo program are generated by the
N-body simulation code described in Salo (1991) and Salo and
Laurikainen (1993). In the current simulations the gravitational
potential was determined on a 2-dimensional logarithmic polar
grid, with 108 azimuthal and 144 radial cells. The stellar com-
ponent consists of 200 000 self gravitating particles, initially
distributed in an exponential disc. The gravitational softening
parameter ε was 1

8 of the scale length, taken to be 3 kpc, and
the initial value for Toomre’s QT -parameter was 1.0. The gas
component is modelled by 40 000 inelastically colliding test
particles: in each impact the normal component of the relative
velocity of the colliding particles is reversed, and multiplied by
the coefficient of restitution, taken to be 0.2. The initial random
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Fig. 2. Snapshots of magnetic field for the case with R = 12 kpc, η0 = 2 × 1026 cm2 s−1, Rm = 0.25.at times 0.6, 1.2, 2.8, 4.0, 4.6, 6.0, 6.6,
8.4 Gyrs. The radii projecting beyond the circumscribing circle (the outer computational boundary at r = 12 kpc) indicate the current position
of the bar axis.

velocities of the gas particles were 5% of the circular veloc-
ity. The analytical halo is represented by an isothermal sphere
potential.

Two different models were used that differed only in their
disc-halo mass relation. In the first (Model I) the disc mass frac-
tion (measured within 4 exponential scale lengths = 12 kpc of
the centre) was 68%. This means that the disc dominates the
rotation curve and the initially axisymmetric simulation system
develops a strong bar that gives rise to strongly noncircular ve-
locities. This results in a high gas cloud collision frequency,
which leads to inflow and eventually leaves ‘holes’ in the gas
distribution. This is undesirable from the point of view of dy-
namo calculations (see Sect. 4) but perhaps corresponds to the

situation in many barred galaxies: the bar area is often relatively
deficient in neutral hydrogen – see, for example, NGC 1365
(Lindblad et al. 1996), NGC 1300 (Lindblad & Kristen 1996)
and NGC 1433 (Ryder et al. 1996). In addition to this inflow,
the gas component forms inner and outer rings which are related
to resonances (Schwarz 1981, Byrd et al. 1994), and are often
observed in barred galaxies (Buta 1995).

In the second model (Model II) the disc mass fraction was
reduced to 41% (again measured within 12 kpc). The amplitude
and the shape of the rotation curve are very similar to those of
the first model, but now the halo dominates the initial rotation
curve through most of the disc region except near the middle of
the disc. The effect of the bar on the overall dynamics is much
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Fig. 2. (continued)

smaller, and so the inflow of gas is not as strong as in model I.
There is an inner gas ring but globally the spiral structure re-
sembles a multiarmed galaxy. No outer gas ring is formed.

It is important to note that the magnetic induction is not di-
rectly affected by variations of the simulated gas density, but
depends only on the gas velocity field, the streaming motions
being determined by the strength of the bar. In Model I the gas
motions are essentially non-circular, while in Model II the de-
viations from the circular motion are of the order of 50%. The
latter figure is consistent with observed non-circular motions,
whereas the former model is perhaps only applicable to the
most extreme cases. In what follows we mostly concentrate on
model I: however, for reasons discussed below we have effec-
tively reduced the values of the non-circular velocities used in
our computations (see Sect. 5).

Numerical simulations indicate that the pattern speed of the
bar decreases due to angular momentum exchange between the
bar and the outer galaxy (this was already noticed by Sellwood
1981). In our present models this decrease is not high, only 17%
during the whole evolution of model I (excluding the initial bar
formation period). Similarly, the amplitude and shape of the
bar show only little evolution. However, if our halo, as well as
the disc, consisted of self gravitating particles, this would pro-
vide an additional interaction mechanism, and the slow-down
of bar would probably then be faster (Little and Carlberg 1991).
Including this effect would require a three-dimensional simu-
lation, and could also show other evolutionary phenomena that
are not seen in the present simulations.

An snapshot of the dynamical models is given in Fig. 1,
where the stellar and gas distributions in Model I are shown
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Fig. 3. Variation of energies in modes m = 0, 1, 2, 3 (respectively
continuous, long-dashed, medium-dashed, short-dashed curves) with
time for case in Fig. 2. The time unit is 0.21 Gyr.

about 2 Gyr after the MHD simulation was started. The gas
particle velocities are also shown (in a frame co-rotating with
the bar), and the magnetic field vectors at the same time, from
the simulation described in Sect. 5.1.

We have not tested how the details of the velocity field would
change if different methods (Smoothed Particle Hydrodynami-
cal or a fluid dynamical treatment) were used. However, as sim-
ilar morphological features (resonance rings, shock regions) are
typically obtained in simulations with various methods (com-
pare for example Schwarz 1981, Friedli and Benz 1993, Lind-
blad et al. 1996), there is no reason to assume that the accompa-
nying velocity fields would be drastically different. Also, taking
into account our current poor knowledge of the behaviour of
ISM, none of the three methods can be preferred over the other
two (Sellwood and Wilkinson, 1993).

4. Reduction of velocity data

The raw velocity data from the dynamical model is Lagrangian,
with pairs of (x, y) and (vx, vy) being associated at each time
with each gas ‘particle’. The dynamical simulation described in
Sect. 3 results in strong streaming and thus localization of the
gas, and there are regions, especially at small radii, where gas
velocity data (vx, vy) are sparse or absent. Also there is a sig-
nificant dispersion in these velocities (although less than for the
‘star’ particles). These facts mean that some care is needed to
produce an accurate and well-behaved representation of the ve-
locities for incorporation into the dynamo codes. We do not use
velocity data from the initial transient period of the dynamical
calculations, when the bar is forming.

We made considerable experimentation before choosing the
procedure described immediately below as Method 1 for the

Fig. 4. As Fig. 3, but for a calculation with R = 7.5 kpc.

main calculations described below. It certainly is not unique.
However we feel that it is reasonably robust in that a rather
different procedure, Method 2, gives a quite similar dataset.
Also, the gross features of the derived velocity fields, such as
mean rotation curves, seem to be satisfactorily reproduced.

The accuracy of our interpolation is improved by storing
data values with respect to the current position of the bar, and
using the position angle of the bar as an additional datum when
reconstructing the velocity field in the inertial frame.

We also outline a rather less sophisticated treatment of the
velocity data as Method 3, and discuss simulations using this
algorithm briefly in Sect. 5.

All the processes described here involve substantial smooth-
ing of the data. This is not only necessary to produce velocity
fields that are sufficiently smooth for the dynamo codes to op-
erate satisfactorily, but is also consistent with the principles of
mean field theory.

4.1. Method 1

We choose the radiusR within which we will make the dynamo
calculation (typically 7.5 or 12 kpc, see Sect. 2), and ignore all
data from outside this radius. We then choose a uniform radial
and azimuthal meshing, of sizenr×np say, and determine mean
values, vr, vφ of the radial and azimuthal velocity components
in each of the ‘boxes’ defined by this mesh.

Typically there are a number of ‘holes’, i.e. boxes with no
data, mainly in the inner part of the disc. We minimize the prob-
lem, and also reduce the noise, by choosing relatively small
values of nr and np; nr = 21, np = 41 were found to be rea-
sonable values when R = 7.5 kpc, and nr = 33 was used when
R = 12 kpc. We then ‘patch’ the holes by giving them velocity
values that are naive averages of those of neighbouring boxes.
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Fig. 5a and b. Snapshots of field structure at time 1.2 Gyr, Rα = 1 for a Rm = 0.4, η0 = 2× 1026 cm2 s−1;b Rm = 0.2, η0 = 4× 1026 cm2 s−1;

The next step is to Fourier analyse these values of vr and
vφ for each radial ring. This produces complex Fourier coeffi-
cients, vrm(r), vφm(r) for 0 ≤ r ≤ R, 0 ≤ m ≤ M . Finally we
perform a three-point radial smoothing on all the vrm and vφm.
The Fourier analysis thus serves two purposes. It gives an ef-
fective azimuthal smoothing, and it reduces the quantity of data
needed for input to the dynamo code to a manageable quantity.

The data is stored at each time point (45 points cover 10 Gyr),
and the dynamo code interpolates on the Fourier components
in space and time and then reconstructs the two dimensional
velocity field.

4.2. Method 2

This used a relatively high spatial resolution (nr = np = 80),
in contrast to that described above. The effect of the holes was
reduced by employing a weighted mean filtering procedure, in
the radial direction. The velocity components at the mesh point
(i, j) were determined by the algorithm

< vi,j >= wi,jvi,j + (1− wi,j)
vi+a,j + vi−a,j

2
(4)

The weights wi,j = ni,j/Nmax, where ni,j is the number of data
points present in the box (i, j), Nmax the maximum number of
datapoints present in any box, vi,j is the raw mean velocity com-
ponent at (i, j) and vi+a,j , vi−a,j are the first non-zero values
of the raw mean after/before (i, j). In addition to reducing the
effect of the holes, this also gives an effective radial smoothing.
A standard FFT algorithm was then applied azimuthally, and
proved to be quite effective in smoothing the noise in the data

4.3. Method 3

Using nr = 21, np = 41 with R = 7.5 kpc, we calculated aver-
age values in the grid boxes, as for Method 1. The only further
process was to apply the smoothing

< vi,j >=
(
vi−1,j + vi+1,j + vi,j−1 + vi,j+1 + 4vi,j

)
/8 (5)

twice in succesion. There was thus no Fourier analysis, and the
dynamo code performed spatial interpolation in two dimensions
on the stored values. Our motivation for this procedure was
to preserve more accurately the marked streaming evident in
the dynamical calculations, especially by making the azimuthal
smoothing rather more local.

5. Two dimensional calculations

Most of these simulations were performed with a grid defined by
NI = NJ = 101, but some were repeated at higher resolution to
verify that these values were large enough. We adopted standard
galactic parameters ofR = 12 kpc (4 exponential scale lengths),
h = 375 pc (equal to the gravity softening parameter in the
dynamical calculations), so the disc aspect ratio is λ = h/R =
0.03125. Thus with canonical values of η = η0 = 1026 cm2 s−1,
α0 = v0 = 105 cm s−1, we obtain Rm = Rα = 1.1.

5.1. The main calculations

We used as standard velocity data that from the first calculation
described in Sect. 3 (Model I), reduced by Method 1, including
azimuthal Fourier components m = 0 − 5. We did verify that
the results were not radically changed by taking M (Sect. 4) to
be 3.

We attempted firstly to complete a simulation over 10 Gyrs
with η = 1026 cm2 s−1, Rm = Rα = 1, i.e. approximately the
values quoted above. We encountered several situations, at in-
tervals of 1-2 Gyr, when the interpolated non-circular velocities,
in particular the radial component, became especially large at
smaller radii. This resulted in the magnetic field being swept
rapidly to the centre of the disc, and the numerical scheme even-
tually became unstable. (The problem can be somewhat allevi-
ated by using a finer spatial mesh, but it appears that higher
than practical spatial and temporal resolution would be needed
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Fig. 6. Variation of energies in modes m = 0, 1, 2, 3 for 3D calculation
described in Sect. 6. The unit of time is 28 Gyr.

to remove it altogether.) We thus adopted two methods to cir-
cumvent this problem, which probably is connected with the
spatial sparsity of the raw velocity data (see Sect. 4. Either we
arbitrarily reduced the magnitude of the non-circular velocities
slightly, by reducing Rm to 50 or 80% of its nominal value, or
we increased the diffusion coefficient, to η0 = 2×1026, and, for
comparison, also to 4×1026 cm s−1. Of course, we can also use
a combination of these two changes. When we increase η0, we
keep Rα = 1, ie we increase the value of α0, in order to ensure
that a dynamo is still excited. We found that the gross features
of the field evolution were very similar in all cases. Increasing
the diffusion means (unsurprisingly) that the field features are
somewhat broader. Both of these changes mean that the field
concentration to the centre is reduced during episodes of strong
radial velocities. Also, we note that, during intervals when the
code does run satisfactorily with the canonical parameter values,
then the results are again quite similar to those obtained with
these modified values. As it may be that the local sparsity of the
raw velocity data causes the interpolation process somewhat to
exaggerate the radial velocities (Sect. 4), we consider either of
these proceedures to be reasonable. We also verified that, when
Rα was set to zero, the magnetic fields did decay; that is there is
no ‘false’ dynamo effect arising from our representation of the
imposed nonaxisymmetric velocities or boundary conditions.

We now discuss in more detail a simulation with η0 =
2 × 1026 cm2 s−1, Rm = 0.25, Rα = 1.0 (i.e. a reduction of
Rm to 50% of its nominal value). Projections of the magnetic
field vectors on to the disc plane at successive times are shown
in Fig. 2. The position of the axis of the bar is shown by the
radii projecting beyond the circle representing the computa-
tional boundary. Ring and spiral-like structures appear and dis-
appear, and at certain epochs (e.g. near time 4.6 Gyr), the field

is concentrated near the centre of the disc. Fig. 1 shows the re-
lation of the streaming velocities to the bar at a typical instant,
and also shows the relation between the vectors of the magnetic
field and streaming velocities. This is typical of our solutions.

Fig. 3 shows plots of the energies in azimuthal modes
m = 0, 1, 2, 3 against time. In these plots, the m = 0 mode
is clearly dominant. This might appear a little surprising given
the nature of the field plots in Fig. 2. However, there are large
parts of the disc where the field is predominantly axisymmet-
ric, and the rather more striking nonaxisymmetric features are
quite localized. This is more clearly seen in a short trial run with
R = 7.5 kpc, with a slightly different velocity field to that used
for the calculations described above. This excludes much of the
region where the field is approximately axisymmetric, and ac-
cordingly gives larger relative energies in modes m > 0 – see
Fig. 4. (Note that here the scale for the energies differs from that
of Fig. 2.) In general, the global magnetic energy in the mode
m = 1 is rather less than in m = 2, and that these contributions
fluctuate quite strongly, see Fig. 3.

For comparison, in Fig. 5 we show field configurations
at time 1.2 Gyr for simulations with parameters Rm = 0.4,
η0 = 2 × 1026 cm2 s−1 (Fig. 5a), and Rm = 0.20, η0 =
4×1026 cm2 s−1 (Fig. 5b), both withRα = 1. Thus in Fig. 5a, the
value of the noncircular velocities is closer to the ‘raw’ value,
to be compared with the smaller values of the standard case
(Fig. 2). In Fig. 5b the velocities again are nearer to their raw
values, but η0 is increased (remember that Rm ∝ η−1

0 ).
It is clear that the larger value of η0 adopted for Fig. 5b tends

to give rather broader magnetic features and increasing the value
ofRm for fixed η0 has the opposite effect. Note that, although in
the case illustrated in Fig. 5b we have increased α0 in keeping
Rα = 1, this has little effect on the field geometry.

5.2. Test with Method 3 velocities

We performed a limited comparison between results obtained
using velocity data obtained by use of procedures 1 and 3. For
this we took a time independent velocity field, corresponding
to an early epoch of the simulation, and followed the evolution
of the magnetic field for about 2 Gyr. The magnetic structures
obtained showed strong similarities, but for the same parameter
values those obtained with the Method 3 velocities were spa-
tially narrower and generally (and not unexpectedly) exhibited
rather more shearing.

5.3. Results using data from the Model II dynamical simulation

We also investigated magnetic field evolution, using data from
the second simulation described in Sect. 3. We used the same
procedure as for the two dimensional calculation described in
Sect. 5.1. Clearly, the detailed results were different. However
we found that the same general features of magnetic field mor-
phology appeared, namely ring-like and short armed structures,
with vectors of magnetic field and non-circular velocities well
aligned.
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Fig. 7. Snapshots of field structure projected on to plane z = constant for 3D
calculation of Fig. 6 with R = 7.5 kpc at t=1.2 Gyr, for z ≈ 0, 100, 200 pc.

6. Three dimensional calculations

In this section we discuss only results obtained using the Model I
velocities. We attempted to compare the results described in
Sect. 5.1, obtained by using the 2D code, with those from a
comparable calculation, for the same velocity data, using the
3D code. After some experimentation we adopted parameter
values zη = 0.15R, zm = 0.4R, zα = 0.2R, η1 = 0.333,
η0 = 6 × 1026 cm2 s−1, R = 7.5 kpc for the simulations de-
scribed below. Thus the value of η in z ≤ zη is 2×1026 cm2 s−1.
It is plausible that the halo values of η may be rather larger than
6 × 1026 cm2 s−1, but we chose the above value for computa-
tional convenience (smaller values of η1 require a finer z-mesh).
However our results are not very sensitive to the precise values
of these parameters. We set Rm = 2.75, close to, but a little
reduced from, the nominal value, of 3.75 and Rα = 500 corre-

sponds to a maximum value of α of 1.5 km s−1 at z ≈ 0.12R.
The integration grid had NI = NJ = 101, NK = 41.

The code was run for approximately 2 Gyr using the Method
1 reduction of the raw velocity data. For these calculations we
used the velocity field mentioned in Sect. 5.1 in connection with
Fig. 3, that is a slightly modified form of that used for the ma-
jority of the calculations using the 2D dynamo code. The evo-
lution of the global energies in the azimuthal modes is shown
in Fig. 6, (the normalization cannot be directly compared with
that of the two dimensional calculations), and Fig. 7 gives pro-
jections of the magnetic field vectors onto planes z = constant
for several heights above the disc plane at time 1.2 Gyr. (Note
that the length of the arrows representing the magnetic field
vectors have been normalized to the maximum field strength
present in each plot, and so the figures cannot be used directly
to compare field strengths at different values of z.) A 2D calcula-
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Fig. 8. Snapshot of field structure for 2D run with parameters approx-
imating those of Fig. 7, at t=1.2 Gyr.

tion with broadly similar parameters (R = 7.5 kpc), except that
η0 = 1026 cm2 s−1, can be used for comparison. The evolution
of the modal energies is shown in Fig. 4, and can be compared
with those shown in Fig. 6, and the field structure for this run
at 1.2 Gyr, given in Fig. 8, can be compared with the various
panels of Fig. 7. Although clearly the field structure in the 3D
case does depend on z, and the diffusion is larger in that case,
the plots in Figs. 4 and 6, and those in Figs. 7 and 8 possess
sufficient similarities to suggest that little additional informa-
tion on the r, φ structure of the fields is being revealed by the
3D simulation. Thus we did not pursue these 3D calculations
further.

7. Discussion and conclusions

An inherent problem with 2D dynamical simulations of the type
described in Sect. 3 is that the dissipation is rather too large,
and this may result in overestimation of the radial velocities.
This appears to be one, at least, of the reasons why we found it
necessary to reduce the value of Rm from its canonical value.
Nevertheless, we are encouraged by the general robustness of
our results. The main features of the magnetic field structure
displayed in Fig. 2 persist when both the dynamo parameters
and the velocity data reduction method are altered. Moreover,
the same general (but not particular) features appear in the mag-
netic field structure when we use velocities from a dynamically
distinct simulation (Sect. 5.3). Moreover our 2D dynamo model
appears to capture the essential features of a more general, 3D,
calculation, at least with the 2D velocity data. This has enabled
an exploration of parameter space at reasonable computational
cost. Nevertheless, the 3D code will certainly be needed when
we use data from a 3D dynamical simulation.

We have chosen the simplest possible representation of the
α-effect – that α is a scalar that does not vary with r and φ.

More plausibly, α ∝ Ω(r), or even is proportional to the local
vorticity (e.g. Brandenburg and Donner 1997). Test calcula-
tions with α proportional to the vorticity show that the overall
changes introduced in the field structure are small. These and
other experiments support the idea that in our simulations the
magnetic field structure is almost completely determined by the
recent history of the gas velocity field – see Fig. 1. Field lines
closely follow streamlines. In this, our results are consistent with
those of Otmianowska-Mazur & Chiba (1995). An α-effect is
essential to prevent overall field decay, but relatively small field
variations caused by changes in the form of α are masked by
advection by the strong noncircular velocities.

Whilst our model does not purport to represent any ‘real’
spiral galaxy, we believe that it possesses some generic features,
and that the general features of the magnetic field structure –
appearance and disappearance of rings and short arms, a mixture
of m = 1 and m = 2 nonaxisymmetric structure, etc – may be
widely valid. This view is supported by the overall similarity
between the dynamo calculations described in Sects. 5.1 and 5.3.
An interesting and important step would be to model a barred
galaxy for which both good quality velocity and magnetic data
are available.
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