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A B S T R A C T
IC 4214 is a weakly barred galaxy, the observed velocity field of which has been well modelled
by a dynamical simulation. We take the velocity field from this simulation as being
representative of that to be found in a class of barred spiral galaxies, and use it as input into
a galactic dynamo model. The strong non-circular velocities are found to play an important
role in determining the morphology of the magnetic field. The most conspicuous features are
marked magnetic ‘arms’, steady in the frame corotating with the bar, and trailing from near the
ends of the bar. They are generated by a mechanism associated with the corotation resonance.
Near the centre of the galaxy, the magnetic field is approximately axisymmetric. The
computed magnetic field structure has features similar to those of the fields observed in
barred galaxies.

Key words: magnetic fields – MHD – galaxies: individual: IC 4214 – galaxies: kinematics
and dynamics – galaxies: magnetic fields – galaxies: spiral.

1 I N T RO D U C T I O N

In the last decade or so, radio observations have revealed the gross
structure of the large-scale magnetic fields present in a number of
spiral galaxies (see, e.g., Beck et al. 1996 for a review and further
references). A more recent, and exciting, development is that high-
quality observations of barred spiral galaxies are now becoming
available (Frick et al. 1998).

So far, most theoretical attention has been directed to explaining
the magnetic fields present in ‘normal’ spiral galaxies. The crucial
ingredients are a knowledge of the rotation curve and, in the context
of mean-field dynamo theory, enough information about the proper-
ties of the ionized gas in order to be able to make an estimate of the
alpha effect. Barred spiral galaxies differ in that large non-circular
velocities (‘streaming motions’) are present. These are typically 50
km s¹1, or even larger, and will modify the magnetic field produced
by any conventional dynamo process. For example, the magnetic
Reynolds number Rm ¼ Ul=h , 50¹150 >> 1, if U ¼ 50 km s¹1,
l ¼ 0:3–1 kpc, and h ¼ 1026, where l is a length scale, U a typical
velocity and h the effective magnetic diffusivity. Thus, a priori,
good data for these non-circular motions are essential if magnetic
field structures in barred spiral galaxies are to be modelled realis-
tically. We note that streaming motions in non-barred grand-design
galaxies are thought to be about 10 km s¹1, maybe less. Although
ignored in conventional galactic dynamo models, Moss (1998)
showed that even such relatively slow motions may be significant
for the field structure.

In order to model dynamo processes and also to test the results,
high-quality determinations of both the magnetic and velocity fields
are needed. In particular, the global distribution of the velocity is
required, including that in the central regions. In order to have a

reasonably high degree of confidence in the results, probably more
than just the first couple of Fourier coefficients with respect to the
azimuthal angle f are needed. In general, observations do not
provide enough information to satisfy all these requirements.

For these and other reasons, the modelling of magnetic field
generation and structure in barred spiral galaxies has attracted
relatively little theoretical attention. Chiba & Lesch (1994) studied
the effect of non-circular gas motions on magnetic field generation
and evolution. Their quite simplified model, making use of a local
approximation to the induction equation, gives results that are hard
to assess and compare with those of later authors. Brandenburg &
Donner (in preparation) have investigated dynamo action in the
galaxy M83, using velocity fields derived from simple density-wave
theory considerations. Moss et al. (1998a) studied magnetic field
evolution in a generic, non-steady, barred spiral galaxy model.
Otmianowska-Mazur & Chiba (1995) have also investigated some
aspects of the problem, although they did not model a complete
dynamo process, and their fields thus could not be expected to be
maintained over time intervals of Gyr length. Otmianowska-Mazur
et al. (1997) used a velocity field derived from N-body simulations
of barred galaxies, but again did not include a dynamo term in their
induction equation, so their solutions also inevitably decay.

In this paper, we study the barred spiral galaxy IC 4214. This
galaxy is a reasonably typical weakly barred spiral galaxy, with a
well-determined velocity field (Buta et al. 1999). Simulations by
Salo et al. (1999) employ a rigidly rotating bar potential, derived
from a near-IR image (Buta et al. 1999). These reproduce the
observed velocity field very satisfactorily and, we thus assume,
provide a global determination of the velocity field (see Section 2).
The main assumption of Salo et al., namely that the bar structure
and pattern speed are steady over intervals of several Gyr, is
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supported by the presence of an outer ring, a structure with a
formation time of several Gyr (Combes 1996). We use the gas
velocity field from this simulation as input into a dynamo calcula-
tion, in a manner similar to that described by Moss et al. (1998a). As
mentioned above, that study differs in that that system did not settle
to even an approximately steady state (in a rotating frame), and the
velocity and so the magnetic fields were intrinsically unsteady.
Another difference is that the dynamical model used here was a
strong N-body bar. As in the majority of the calculations reported in
that paper, we use here a two-dimensional simulation of the velocity
field and a two-dimensional version of the dynamo code. These are
outlined in Sections 2 and 3 respectively.

Although we have taken a model of a specific galaxy, we believe
that the general features of the velocity field and associated
magnetic field are likely to be representative of those in at least a
subclass of barred spiral galaxies. We also note here that we assume
that the production of poloidal magnetic field from toroidal,
essential to maintain a large-scale magnetic field against decay, is
brought about by the mean-field alpha effect. Whilst recognizing
that this issue is the subject of some controversy (see, e.g., the
discussion in Beck et al. 1996), we believe that it is plausible that it,
or a similar process, operates (e.g. Parker 1992; Moss et al. 1998a,
1999). Nevertheless, the main point of this paper, the effects of the
non-circular velocities, is expected to be independent of the details
of the dynamo process.

2 T H E DY N A M I C A L S I M U L AT I O N

Ringed galaxies form a common subclass of barred galaxies. Their
general properties have been modelled by various gas dynamical
simulations using analytical or numerical potentials (Schwarz
1981; Combes & Gerin 1985; Byrd et al. 1994). These simulations
have shown that rings and pseudorings are related to bar-induced
resonances: outer rings to the outer Lindblad resonance, nuclear
rings to the inner Lindblad resonance and inner rings probably to the
inner 4/1 resonance. This interpretation is supported by observa-
tions (Buta 1995), and provides a powerful method for the deter-
mination of some basic parameters such as the bar pattern speed.

A step forward from these general studies is to model individual
galaxies, preferably both their morphology and their kinematics.
Many barred galaxies have been modelled (see e.g. Hunter et al.
1988; Lindblad, Lindblad & Athannasoula 1996) but few of those
are clearly ringed.

We have constructed a dynamical model of IC 4214 (Salo et al.
1999), a weakly barred galaxy possessing all three types of
resonance rings, by using the near-IR H-band image (Buta et al.
1999) to construct the potential. After removal of the bulge and
deprojection, the gravitational potential is calculated using the
Fourier components of the surface brightness distribution. The
axisymmetric part is obtained from the m ¼ 0 component and
the non-axisymmetric part (bar and spiral arms) from m ¼ 2, 4, 6,
8 and 10 components, each assumed to have the same pattern speed.
The effect of the disc thickness is taken into account by a gravita-
tional softening parameter, chosen so that the ratio of vertical to
exponential scalelengths is about 1/6.

The evolution of the gas component was simulated by using
20 000 inelastically colliding test particles (Salo 1991). To obtain
more velocity points, for determination of a smooth Eulerian
velocity field for the dynamo calculations, data from 11 time-
steps (corresponding to the same points in the rotating frame)
were combined. The self-gravitation of the gas component was
neglected.

The model parameters, e.g. bar amplitude and pattern speed,
were fine-tuned by comparing both the morphology and the velocity
fields with the observations. In this study we use two different
models, one that fits well with the observations of IC 4214 (model I)
and another that is quite different, for comparison (model II). Both
models use the same non-axisymmetric basic potential but assume
different pattern speeds. The pattern speed of model I is 37.3 km s¹1

kpc¹1 and it is 25 per cent higher in model II. Model II also lacks the
bulge of model I, which is modelled as a Plummer sphere with
scalelength of about 600 pc and mass 21.6 per cent of the disc mass.
The latter causes the main difference between the models: model I
has an inner Lindblad resonance while model II does not. In both
models the halo contribution to the rotation curve is equal to that of
the disc.

The evolution of the models shows the importance of the inner
Lindblad resonance. Model I has a nuclear ring whereas Model II
does not. Although this ring is rather distant from the radius
predicted from the linear approximation (see e.g. Binney &
Tremaine 1987), it is related to this resonance (Salo et al. 1999).
Similarly the inner ring is related to the inner 4/1 resonance and the
outer pseudoring to the outer Lindblad resonance. Some randomly
chosen velocity vectors (in a coordinate system corotating with the
bar) superimposed on the density distribution are shown in Fig. 1.
The density distribution is represented on a logarithmic scale,
because of the large density contrast between the nuclear ring and
the outer disc.

The good fit of both the morphology and the velocity field (for
detailed figures see Salo et al. 1999) suggest that our simple model
is quite realistic. This also means that there is probably only one
pattern speed present, with the possible exception of a nuclear bar.

3 T H E DY N A M O C O D E

We take a standard mean-field dynamo equation,

∂B
∂t

¼ = × u × B þ udia × B þ aB ¹ h= × B
ÿ �

; ð1Þ

where, as usual, h is the turbulent magnetic diffusivity and a

represents a conventional alpha effect. u comprises the large-
scale velocities (circular and non-circular) and udia ¼ ¹ 1

2 =h, and
represents the turbulent diamagnetism (Vainshtein & Zeldovich
1972; Roberts & Soward 1975). In general we allow a ¼ aðrÞ,
h ¼ hðrÞ, although in most of the models considered h ¼ constant
(and so the diamagnetic term in equation 1 vanishes). Equation (1)
is solved as an initial-value problem. In the computations discussed
below, the initial conditions were usually that the initial (‘seed’)
field was a mixture of axisymmetric and bisymmetric parts, with an
energy significantly less than the equipartion value. However
solutions are relatively insensitive to the initial conditions after a
few rotation galactic periods (say 0.5 Gyr). We write h ¼ h0h̃ðrÞ,
v ¼ v0ṽðrÞ, with h0 and v0 being typical values of h and jvj

respectively. We introduce a basic alpha-quenching mechanism
by writing a ¼ a0ãðrÞf ðBÞ, where a0 is a typical value of a and

f ðBÞ ¼
1

ð1 þ aBBðrÞ2
=B2

0Þ
; ð2Þ

where B0 is the field strength in equipartition with the kinetic energy
of the turbulent gas motions. aB is a factor of order unity that will
depend on details (unknown) of the alpha-quenching mechanism.
Putting aB ¼ 0 thus gives a linear calculation, and aB Þ 0 gives a
non-linear calculation, with field strengths limited at about B0a

¹1=2
B ,

or somewhat larger, especially in the presence of strong velocity
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shear (cf. Moss et al. 1998b). We allow for the possibility of a spatial
variation in the magnetic field–gas equilibrium condition caused by
the the gas density and turbulent velocity varying with position, by
writing B0 ¼ B̃0bðrÞ, where B̃0 is a constant (see Sections 4 and 5.3).

If a sufficiently strong magnetic field affects the turbulent
motions so as to reduce the alpha effect, it is possible that it also
affects the turbulent resistivity h (‘h-quenching’). However it is
arguable that this effect is significantly smaller, as the alpha effect
depends on the vorticity of the turbulence, whereas the turbulent
diffusivity depends on its overall magnitude. Furthermore, there is
no generally agreed or employed parametrization of h-quenching
(but see Rüdiger & Kitchatinov 1993), and so its introduction would
lead to further uncertainities. Thus we neglect this effect in the
models described below.

We make the conventional assumption that h < 1
3 utlt, where ut

and lt are typical values of the velocity- and length-scales of the
turbulence. In the Milky Way, near the disc plane, ut , 10 km s¹1,
lt , 100 pc, giving an estimate for h of about 1026 cm2 s¹1.
However, conditions in barred galaxies such as IC 4214 may be
rather different, and the above expression for h can only be regarded

as an order-of-magnitude estimate. When h is a function of position,
we define h0 to be equal to or slightly greater than the maximum
value of h. However, in most of the calculations that we discuss, h is
a constant, equal to h0. We can define the corresponding magnetic
Reynolds numbers Ra ¼ a0L=h0, Rm ¼ v0L=h0, where L is a con-
venient length-scale: here we take L ¼ h, a measure of the disc
thickness. We define v0 ¼ 1 km s¹1, and choose a0 such that the
maximum value of a is approximately 1–5 km s¹1. Rm and the other
conventional dynamo number, Rq ¼ Q0L2

=h0, are fixed exactly by
the dynamo model parameters. [If QðrÞ is measured in units of km
s¹1 kpc¹1, then Q0 ¼ 1 km s¹1 kpc¹1.] Lengths are scaled with R,
the disc radius, and the unit of time is T ¼ L2

=h0. In relation (2), we
set aB ¼ 1 and B̃0 ¼ 1, so we are effectively scaling the field
strength in units of B̃0a

¹1=2
B .

We note that for mean field theory to be valid, the scale of
variation of the mean field should be greater than that of the small-
scale field, which is approximately that of the turbulent motions.
The interstellar turbulence is believed to have a typical scale of
about 100 pc, so that provided the computed field has a scale of a
few hundred pc or more, the treatment will be valid.
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Figure 1. Gas velocity vectors for model I, superimposed on the density distribution, in the corotating frame. The scale vector in the lower left corner has a length
of 150 km s¹1. The density is on a logarithmic scale, with the darkest shades showing the areas of highest density. The figure represents a region 30 × 30 kpc2.



We use the two-dimensional ‘no-z’ (NZ) approximation, which is
based on the idea of replacing z-derivatives by terms ,Oðh¹1Þ,
where h is the disc thickness or scaleheight (e.g. Subramanian &
Mestel 1993; Moss 1995), and the code is in the form implemented
in Moss et al. (1998a, see also Moss 1995), solving a modified
version of equation (1) on 0 # r # R, 0 # f # 2p, with NI × NJ
grid points and uniform meshing. For most of the computations we
took NI ¼ NJ ¼ 101. Some were repeated with NI ¼ NJ ¼ 201,
with little change. Note that Moss et al. (1998a) showed that the
gross field structure obtained with a three-dimensional code, when
projected on to the plane z ¼ 0, was quite similar to that found with
the NZ approximation.

With this approximation, magnetic fields are restricted to be of
even (quadrupolar) parity with respect to the disc plane. Given that
both theory and observation seem to predict that such fields are
generally to be expected, we feel this is not a fundamental restric-
tion at this stage of development of the theory.

In the majority of the work described here, we take h to be
uniform, i.e. h̃ ¼ 1 and, for most of the computations, ã ¼ 1 also.
Boundary conditions are that Br ¼ Bf ¼ 0 at r ¼ R. Results were

little affected for other plausible choices of boundary condition,
provided that R was large enough for the dynamo-active region to be
included well within the computational domain. R ¼ 15 kpc was
found to be a satisfactory choice. We take h ¼ 300 pc (roughly
equal to the vertical scalelength in the dynamical model), but
previous experience (e.g. Moss et al. 1998a) suggests that results
are insensitive to this choice.

4 R E D U C T I O N O F V E L O C I T Y A N D D E N S I T Y
DATA

Velocity data is supplied by the dynamical simulation of Section 2
as ðvx; vyÞ pairs at Oð105Þ points ðx; yÞ. These points correspond to
the position of the fluid ‘particles’, and are correspondingly
extremely non-uniformly distributed. The data was reduced as
described as ‘Method 1’ in section 4.1 of Moss et al. (1998a).
This technique of generating extra (Lagrangian) data points by
combining velocity data from several equivalent times substantially
reduces problems caused by ‘holes’ in the data, encountered in
Moss et al. (1998a).
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Figure 2. Magnetic field vectors for the standard dynamo calculation, using Model I, superimposed on the gas density distribution (logarithmic grey-scale). The
figure has dimensions 30 × 30 kpc2.



We also analysed the dynamical simulation data to produce a
rotating density field rðr;qPt ¹ fÞ, where qP is the pattern speed.
The density was naively estimated by counting the number of gas
‘particles’ per unit volume. In order to avoid very large fluctuations,
caused partly by the patchiness inherent in the Lagrangian nature of
the data,, we arbitrarily introduced a lower limit on the density of
r0 ¼ 0:01rmax, where rmax is the largest value found.

5 R E S U LT S

5.1 The basic model

We took as standard a model with uniform resistivity h ¼ 2 × 1026

cm2 s¹1, uniform alpha coefficient a < 1 km s¹1, and uniform
equipartition field strength B0 [i.e. bðrÞ ¼ 1, Section 3]. The initial
field is a combination of parts with azimuthal dependence
expðimfÞ, with m ¼ 0 and 1, varying on radial scale R. Using the
velocity field of Model I (Section 2), we found that after several
rotation periods the field structure is almost steady in a reference
frame rotating with the pattern speed. In Fig. 2 we give a plot of the
magnetic field vectors, superimposed on the density distribution,
and in Fig. 3 we show the evolution with time of the energies in
azimuthal Fourier modes m ¼ 0; 1; 2; 3.

In this model corotation occurs at a radius about 10 per cent
greater than the semi-major axis of the bar, i.e. at fractional radius
xc ¼ r=R < 0:4. This is close to, but a little outside of, the radius at
which the distinct magnetic arms emerge from the central regions.

As is apparent from the magnetic field plot of Fig. 2, large field
gradients are present. This means that significant energy is present
in the Fourier modes with larger m values. We show in Fig. 4 the
azimuthal variation of selected field components at a typical time.

Limited experimentation showed that our results are insensitive
to choice of initial field configuration. The exception is that the
presence of an initial m ¼ 1 field component gives a significant
m ¼ 1 component of magnetic field that persists for one or two Gyr
(e.g. Fig. 3), plausibly supported by a parametric resonance
mechanism of the sort described by Moss (1996). However, the
energy in the m ¼ 1 part of the field is always less that that in the
m ¼ 2 component, and the overall appearance of the field is little
altered by the presence or absence of this contribution.

5.2 The role of the corotation radius

We also performed several numerical experiments in which the
pattern speed of the frame in which the velocities were steady was
artificially altered. These experiments were performed solely to
determine the effects on the magnetic field structure of changing the
corotation radius – it is not suggested that the resulting velocity
fields are consistent dynamically, nor that they provide a good
model for IC 4214. We show in Fig. 5 the resulting, almost steady,
magnetic field pattern corotating with a pattern speed decreased by
25 per cent from the standard value of 37.3 km s¹1 kpc¹1 to 28 km
s¹1 kpc¹1. It is apparent from comparison of Fig. 5 with Fig. 2 that
the radius at which the magnetic arms emerge has moved outwards,
and this is typical of the several experiments performed. Eventually,
as rc approaches and then exceeds R, there is no marked steady
corotating field pattern, and the non-axisymmetric field com-
ponents (especially modes m ¼ 1; 3; . . .) decline steadily. In
Table 1 we list the pattern speed, corotation radius and an esti-
mate of the radius at which the magnetic arms begin for these
experiments.

The significance of the corotation radius is discussed in Section 6.
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Figure 3. Evolution with time of energies in the azimuthal modes
m ¼ 0; 1; 2; 3 (respectively continuous, long-, medium- and short-dashed
curves) for the calculation shown in Figs 1 and 2. The unit of time is
3:6 × 108 yr and the energy units are arbitrary.

Figure 4. Variation with azimuthal angle f of Br , Bf, at fractional radius
r=R ¼ 0:5, and of Bf at r=R ¼ 0:1 and 0.9 (respectively the solid, long-,
medium- and short-dashed curves), for the model shown in Figs 1–3 (time
about 1 Gyr from the start of the calculation).

Table 1. Summary of results when the
pattern speed is artificially altered. qP

is the pattern speed in km s¹1 kpc¹1,
rc and rA are the corotation radius and
an estimate of the radius at which the
arms begin, in kpc. The second entry,
for qP ¼ 37:3 km s¹1 kpc¹1, is for the
basic model. The entry * indicates
that there are no well-defined mag-
netic arms of the kind discussed in the
text.

qP rc rA

56.0 4.4 2.6
37.3 6.0 4.8
28.0 7.5 6.4
18.6 10.0 7.4
9.3 15.3 *



5.3 Variations on the basic model

We experimented further by allowing the equipartition field
strength B0 to vary with position, B2

0 ~ rv2
t , where vt is the turbulent

velocity. As we have no information about vt, we assumed it to be
constant, but allowed r to vary as described in Section 4. A little
surprisingly perhaps, the overall results appeared little affected. On
reflection, this is probably because the strongest variation in r

occurs in the central regions, where the non-axisymmetric field
structure is relatively weak.

We also ran a calculation with a variable diffusion coefficient,
h ¼ hðrÞ. Here we were motivated by the theoretical and observa-
tional evidence that vt is larger in spiral arms than in the interarm
regions (e.g. Roberts & Hausmann 1984; Rohlfs & Kreitschmann
1987; Garciá-Burillo, Combes & Gerin 1993). If lt, the turbulent
length-scale, does not decrease, this implies an increase in h , vtlt.
In order to investigate very crudely the importance of this effect, we
took h ~ 1 þ eh

���������
r=r0

p
, where r0 is the reference density defined in

Section 4. In this expression, r only appears as a proxy to indicate
the position of gaseous structures, and thus for increased values of
vt, and so h. With eh chosen to give a ratio of maximum to minimum
values of h of between 2 and 4, there was little overall change to the

results presented above for the basic model. In particular, the
conspicuous magnetic arms were present. The main effect was
that the non-axisymmetric field was stronger relative to the axisym-
metric one near to the galactic centre, but the field was still
predominantly axisymmetric in this region. We did not attempt to
disentangle the competing effects of turbulent diamagnetism and
the locally enhanced diffusion in this case. Naively, the advection of
field by the term udia ¼ ¹ 1

2 =h might be expected to concentrate the
field in the arms, in opposition to the effects of the larger value of h,
but almost certainly this interpretation is too simple.

5.4 A model with no inner Linblad resonance

As discussed in Section 2, the basic model (I) has an inner Linblad
resonance, giving rise to the inner gas ring (see Fig. 1), situated within
the bar region. In order to assess the importance of this feature, we ran
a dynamo calculation with the velocity field determined by a quite
similar dynamical simulation that did not possess this inner Linblad
resonance (Model II, Section 2). The corotation radius for this model
was at fractional radius r=R < 0:3. Here, as in the model of Section
5.1, a and h are uniform, with h ¼ 2 × 1026 cm2 s¹1. The resulting
magnetic field structure is shown in Fig. 6.
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Figure 5. Magnetic field vectors for the model with reduced pattern speed, qP ¼ 28 km s¹1 kpc¹1.



6 D I S C U S S I O N

Moss (1998) examined an idealized model of a galactic dynamo in
which streaming occurred along spiral arms. This discussion was
set in the context of a grand-design spiral galaxy, without a central
bar, where streaming velocities of up to about 10 km s¹1 might be
expected. He showed that these motions could maintain significant
non-axisymmetric magnetic fields over times greater than 10 or 20
mean galactic rotation periods by a mechanism connected with the
location of the corotation radius, where the pattern speed and
angular velocity of the gas coincide.

In these models, the underlying galactic dynamo produces an
axisymmetric magnetic field. This is sheared by the non-circular
velocities, to produce a non-axisymmetric field component. It is the
radial shear that is significant here. Normally the non-axisymmetric
part of the field is rapidly wound up by the differential rotation,
resulting in a marked reduction of radial length-scales, and sub-
sequent reconnection and dissipation. (This is essentially why non-
axisymmetric fields are usually harder to excite than axisymmetric

ones, in a differentially rotating system.) However, when the
streaming velocities rotate with the pattern speed, near the corota-
tion radius, the winding up of field lines is much reduced and the
non-axisymmetric field can continue to grow. The regions on the
arms near corotation can act as a source of non-axisymmetric field,
which is sheared azimuthally as it is advected, resulting in a large-
scale spiral pattern. In contrast, experiments show that the same
streaming velocities, if stationary in the inertial frame, produce a
very much smaller non-axisymmetric magnetic field component,
and a tightly wound field.

The former effect is what appears to be occurring in the current
model for IC 4214. Here the m ¼ 0 and m ¼ 2 field components
become very nearly steady, whereas the other Fourier components
are much smaller and decrease in magnitude. The streaming
velocities in these models are considerably larger than those
assumed in Moss (1998). On the other hand the velocity field is
not so ‘clean’ as the analytic form assumed there, but overall the
effects seem stronger. The well-defined magnetic arms terminate
at a relatively small distance inside the corotation radius. The
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Figure 6. Magnetic field vectors for the calculation (model II) without an inner Linblad resonance, superimposed on the gas density distribution (logarithmic
grey-scale). The figure has dimensions 30 × 30 kpc.2



importance of this radius can be demonstrated by artificially
changing the pattern speed input to the dynamo calculation. The
radius at which the distinct arms terminate moves inwards and
outwards with the corotation radius (see Table 1). Whilst this
appears to provide a plausible explanation for the existence of
long-lived magnetic arms, we agree that the coherence of the non-
axisymmetric field structures over a relatively large extent in radius
is perhaps a little surprising.

This mechanism can also be related to the parametric resonance
associated with velocity streaming, discussed briefly in Moss
(1996), especially when a m ¼ 1 component is present in the initial
field. However, the large magnitude of the non-circular velocities
means that the field cannot be considered as a modification of any
combination of basic non-axisymmetric modes calculated for an
axisymmetric disc, but is clearly determined by the flow.

In Figs 2, 5 and 6 we have presented the magnetic fields resulting
from velocity fields that differ in certain key properties (pattern
speed, presence or absence of inner Linblad resonance). The overall
magnetic patterns are quite similar, the most significant difference
being the radius at which the magnetic arms emerge from the bar-
dominated central region, which varies by the order of 0:1R,
i.e. 1¹2 kpc. Only if radio observations are of correspondingly
high spatial resolution would these patterns be distinguishable
observationally.

Moss (1996) discussed how ‘contrast structures’ – very steep
azimuthal gradients of magnetic field – could arise in the presence
of large-scale gas streaming. Fig. 4 suggests that this effect occurs
here. Moreover, we find that if the computations are continued for
times longer than about a couple of Gyr at our standard spatial
resolution, a slow progression in the field gradients occurs, which
eventually causes an instability in the numerical algorithm used to
solve equation (1). (The associated change in the field structure is
almost indiscernable.) The onset of this instability can be deferred
by increasing the azimuthal resolution of the finite-difference grid,
but for any given resolution it occurs eventually. This is very similar
to the behaviour described in Moss (1996).

7 C O N C L U S I O N S

In this paper we believe that we have, for the first time, modelled a
dynamo in a specific barred spiral galaxy, with a good representa-
tion of the large-scale velocity field, in particular the non-circular
motions. In this galaxy, there does not appear to be a shock present
in the bar (at least not to the resolution of the observed velocity
field), and this feature has simplified the modelling somewhat. We
note that such shocks are commonly present in these barred
galaxies, and have important effects on both the magnetic and
velocity fields (e.g. Frick et al. 1998). Nevertheless, in NGC 6946,
another weakly barred system, studied by Frick et al., the observed
large-scale field is approximately axisymmetric near the galactic
centre (within the bar region), whereas non-axisymmetric field
structures (‘magnetic spiral arms’) emerge from near the ends of
the bar and extend to larger radii. These features are quite similar to
those present in our magnetic field models.

Several papers have previously addressed some aspects of the
general problem of the magnetic field structure present in barred
spiral galaxies. As discussed in the Introduction, none of these
addresses simultaneously all the factors that we have included. We
have adopted the simplest mean field dynamo model to represent
the effects of small-scale (turbulent) gas motions. The most striking
feature of our results is the existence of coherent, long-lived
magnetic arms, rotating with the pattern speed defined by the bar.

There is no evidence from our calculations that these structures will
decay, given our assumption that the velocity field is unchanging.
Aside from the particular interest of these results for our specific
model, we feel that they are rather more general in nature. Given
any galactic dynamo that preferentially produces an axisymmetric
magnetic field in the absence of non-circular motions (the situation
with many dynamo models), gas streaming that rotates with the
pattern speed will excite a large-scale non-axisymmetric field
structure, if the corotation radius is not close to the centre or outside
of the galaxy. This condition seems likely to be satisfied in many
barred spiral galaxies, where the corotation radius is near to the end
of the bar. Thus, even if the crucial mechanism that converts
toroidal magnetic field to poloidal in equation (1) is not the
mean-field alpha effect, the salient points of our discussion, and
the main result, will remain.
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