
Figure suggestions + text fragments for the general discussion:

1 Steady-state properties of nongravitating rings

The local steady-state is governed by the balance between the collisional dissi-
pation and the viscous transfer of energy from the systematic orbital motion to
random motions. The main source of dissipation comes from the inelasticity of
impacts, measured by the εn, the normal coefficient of restitution. In addition,
kinetic energy may be lost via frictional forces, reducing the tangential relative
velocity between colliding particles; friction also transfers some of the energy
of random motions into particles spin motions. In the case of constant εn no
energy balance can be achieved if the impacts are too elastic, εn > εcr, as the
dissipation is then too weak to balance the viscous gain of energy due to local
viscosity, associated to angular momentum flow via particle’s radial excursions
between impacts; the system inevitably disperses via continuously growing ran-
dom velocities. The critical εcr increases with τ , since the reduced mean free
path between impacts limits the local viscous gain. Also, allowing for tangen-
tial friction, εt < 1, shifts εcr closer to unity, as the frictional loss adds to the
dissipation due to inelasticity. On the other hand if the constant εn < εcr, the
dissipation exceeds the local viscous gain, leading to reduced eccentricities and
inclinations. The eventual steady-state is then determined by the nonlocal vis-
cous gain (due to angular momentum transfer across particles in contact), and
corresponds to a flattened system where the geometric thickness is of the order
of few particle diameters, H ∼ R (in terms of random velocities c ∼ RΩ).

However, in the realistic case the coefficient of restitution can be expected to
depend on impact velocities. In particular, if εn decreases with impact velocity,
a stable steady-state may also be achieved with H >> R. The exact value
of steady-state velocity dispersion (corresponding to effective ε = εcr) is then
determined by the form of the εn(vimp) dependence, and at least in principle
can range from a thick multilayer of particles to a near monolayer ring. In the
latter case the steady-state is in practice indistinguishable from that in the case
of constant εn < εcr. There has been considerable effort put to measuring the
coefficient of restitution for icy particles, at the low temperature and pressure
appropriate for the planetary ring environment. The extensive laboratory mea-
surements by Bridges et al. (1984) and Hatzes et al. (1988), performed with
elaborate pendulum apparatus, have indicated that εn decreases monotonically
with vimp, as required for the thermal balance, and moreover that εn drops to
values significantly below unity already for impact velocities of the order of 1
cm/sec. However, the exact form of εn(vimp) relation depends sensitively on the
surface properties of ice -hardly known for the physical conditions of the rings
- as well as on the particle size, via the curvature of the impact point and the
effective mass of the impacting bodies.

Fig. ?? shows fits to two laboratory experiments (’frosty’ and ’smooth’ par-
ticles), illustrating the range of uncertainty due to unknown particle properties.
In particular, the Bridges et al. (1984)

εn(vn) = (v/vB)−0.24 < 1

where vB = 0.0077cm/sec, has been extensively used in numerical simulations.
In Bridges et al.’s experiments the particles had frost on their surfaces, con-
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densed during the cooling process of particles. Later measurements reported
in Hatzes et al. (1988) had a more accurate control on the surface properties,
making it possible to compare smooth frost-free particles, and those with a thin
frost layer, or a porous surface. In Fig. ??, their fit (vn expressed in cm/sec)
to the elasticity of 20cm compacted frost-covered particles is displayed

εn(v) = 0.90e−0.22vn + 0.01vn
−0.6

In general, for smooth particles the εn values were considerably closer to unity
than in Bridges et al.’s original measurement (see Fig.??).

The large uncertainty in the elastic properties of particles reflects directly
in the predicted steady-state properties, leading to qualitative differences in the
expected stability properties of the system. A system of fairly elastic particles,
dynamically hot at low τ , exhibits a large reduction of steady-state velocity
dispersion as optical depth increases, basically because the local viscous gain
becomes less effective as the mean free path between impacts is reduced. In the
left panel of Fig.?? this is illustrated in terms of effective geometric thickness:
for the model with ’smooth’ particles the thickness may drop even by a factor of
5 as τ increases from zero to above unity. On the other hand, the dynamically
cool ’frosty’ particle model has a nearly constant steady state velocity dispersion.
This difference in steady-state velocity dispersion reflects in the local and, to a
lesser degree, in the non-local contribution to viscosity (right panels). For a cool
system the dynamic viscosity, proportional to the product τν, is monotonically
increasing, because of the dominant role of νnonlocal, whereas for a hot system
it becomes a decreasing function for some range of τ ′s, if the reduction of νlocal

with τ is strong enough, due to aforementioned drop in velocity dispersion. A
negative d(τν)/dτ should lead to radial instability, whereas a strong enough
positive slope may indicate overstability. However, at very large τ ’s the steady-
state properties, including viscosity, are practically independent of elastic model.
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Figure 1: Theoretical thermal stability boundary εcr vs. τ , according to
Hämeen-Anttila (1978) and Goldreich and Tremaine (1978), who used differ-
ent approximations in the evaluation of collision integrals. For a constant
ε > εcr(τ) the viscous dissipation is too weak to balance the viscous gain of
energy, leading to rapid dispersal of the ring via increased random velocities.
Also shown are the effective steady-state values of εn in two series of simula-
tions, performed with velocity-dependent coefficient of restitution: upper points
corresponds to a ’hot’ simulation where the velocity dispersion c >> rΩ (this
’mass-point’ limit approximates the assumptions behind the theoretical curves),
while the lower points correspond to near monolayer simulations performed with
the Bridges elasticity formula. The effective εn in simulations is measured by
weighting each impact with the square of the normal component of impact ve-
locity, < εnvn

2 > / < vn
2 >. Redrawn from Salo (2001).
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Figure 2: Examples of elastic models applied in simulations. Solid line denotes
a fit to laboratory measurements with frosty ice particles (Bridges et al. 1984;
’frosty’), whereas the dashed lines corresponds to measurements where particles
had compacted surfaces (Hatzes et al. 1988, ’smooth’). Note that individual
measurements had a large scatter around these fitted functions
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Figure 3: The dependence of steady-state geometric thickness and viscosity on
optical depth τ , for the two elastic models displayed in Fig. 2. Left frame:
symbols show the geometric thickness H =

√
12z2 (H corresponds to the full

thickness of a uniform layer with the same dispersion as the actual distribution).
Also shown by dotted line is the thickness estimated from the vertical velocity
dispersion,

√
12cz/Ω; in the case of low filling factor these two measures are

identical. However, for flat systems the piling of particles eventually thickens
the system although cz stays almost constant with τ . Right frame: dynamic vis-
cosity τν; the contribution from local viscosity is shown separately with dashed
lines. Particle size R = 1 m and Saturnocentric distance a = 100 000 km are
assumed. Note that these plots do not include the effect of selfgravity. Adapted
from Salo (2001)
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Figure suggestions + text fragments for selfgravity:

1.1 Ring self-gravity

Above the local steady-state properties of planetary rings resulting from the
balance between the viscous heating and the collisional dissipation of random
energy have been discussed. The inclusion of particles’ mutual gravitational
forces modifies the local dynamics in several, partially competing ways, de-
pending on the density of the ring and the distance from the planet. In low
optical depths the collective self-gravity is negligible and the main effect stems
from gravitational heating via close binary encounters (Hämeen-Anttila 1984,
Ohtsuki XXXX). For larger densities, the mean vertical gravity can become
comparable to or even exceed the corresponding component of the central force,
implying both a strongly enhanced impact frequency and a reduced ring thick-
ness. However, the ring is then also susceptible to a gravitational instability in
planar directions, in practice manifesting as the formation of trailing selfgravity
wake structures, Toomre wakes. With increased distance from the planet, tidal
forces weaken and eventually the direct gravitational sticking of particles be-
comes possible, causing the particles in wakes to degrade into local aggregates;
similar clumping takes place also in low τ ′s via pairwise sticking of particles. In
general, inclusion of selfgravity leads to a strong enhancement of ring viscosity,
due to increased impact frequency, and most importantly, due to gravitational
torques exerted by the wakes, and by the collective motions associated with
them.

A convenient parameter characterizing the importance of selfgravity versus
disrupting tidal force is the ratio of the mutual Hill-radius for a pair of identical
particles, compared to the sum of their physical radii (e.g. Daisaka et al 2001):

rh =
RHill

2r0

Inserting RHill = (2m0/3Mplan)1/3a, where m0 = (4πρ/3) r3
0 is the mass of the

particle, rh can be expressed in terms of physical parameters as

rh =
( ρ

12ρplan

)1/3( a

rplan

)
= 0.82

( Mplan

5.69 · 1026 kg

)−1/3( ρ

900 kgm−3

)1/3( a

100 000 km

)
where rplan and ρplan denote the radius and density of planet. With these
formulas the results for a given hr can be scaled to other distances and internal
densities of particles. Assuming solid ice density, the main rings of Saturn
correspond to rh = 0.6 − 1.1, from inner C ring to outer A ring, respectively.
Similarly, Uranian rings lay between 0.65−0.8 if made of ice. Note that instead
of rh its inverse rp is also often employed to parametrize the gravity (e.g. Ohtsuki
1993, Salo 1995); the advantage of using rh is that larger values correspond to
stronger gravity; also the limit rh = 0 corresponds to non-gravitating particles.

Gravitational encounters: For low τ the main effect of gravity comes
from close binary encounters, which act like totally elastic impacts: the kinetic
energy of the encountering pair is conserved, while the deflection of mutual
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orbits transfers energy from the systematic velocity field to random motions.
This extra heating is efficient if cx < vesc, where vesc =

√
2Gmo/ro is the

mutual escape velocity of particles, but becomes inefficient for cx > vesc. Thus,
encounters, if acting alone, would establish a state with c ∼ vesc (Cuzzi et
al. 1979). However, if the physical impacts are able to maintain c > vesc,
then the effect of encounters is negligible. The condition for the importance
of encounters can be written in terms terms of an upper limit for the vertical
thickness, H < Henc, where the effective thickness defined by H =

√
12z2

denotes a full thickness of a uniform layer with the same dispersion as a Gaussian
distribution. Since for low optical depths

√
z2 ≈ cz/Ω, and cz/cx ∼ 0.6, we have

H ≈ 2cx/Ω. Writing vesc =
√

24rh
1.5rΩ implies

H

r0
≈ 10rh

1.5 (1)

In the case of constant coefficient of restitution εn ≤ 0.5, the impacts alone
maintain H/r0 ≈ 5, which implies that gravitational encounters dominate over
physical impacts for rh > 0.7.

Vertical selfgravity: For larger optical depths the collective effects of self-
gravity become increasingly important. First of all, the vertical component of
self-gravity, Fz, may exceed the corresponding component of the central force,
Fc = −Ω2z. For simplicity, assume an infinite homogeneous layer of identi-
cal particles with an effective geometric thickness H. Inside the layer, Poisson
equation gives for the vertical selfgravity

Fz(z) = −2πG

∫ z

−z

ρ(z′)dz′ = −4πΣz

H
(2)

implying
Fz

Fc
=

4πGΣ
HΩ2

= 48τ rh
3 ro

H
(3)

Including a Gaussian vertical distribution, the vertical self-gravity near the equa-
torial plane is a factor

√
6/π larger. Analogous to Henc we may define Hfz as a

thickness of the system for which Fz ∼ Fc,

Hfz

r0
≈ 65 τrh

3 (4)

For typical values of Saturn’s B-ring, rh ∼ 0.8, τ ∼ 1.5, the vertical self-gravity
exceeds the central component, unless H/r0 > 50. As shown in simulations
(Wisdom and Tremaine 1988, Salo 1991) the extra vertical force tends to re-
duce H quite markedly, both due to increased vertical frequency itself and also
indirectly via the enhanced dissipation (see Fig. 4. This implies a strongly
enhanced viscosity for a given τ . However, there are other effects of selfgravity
which will lead to even more dramatic enhancement of viscosity.

Gravitational wakes: Intuitively, the planar components of self-gravity
might be expected to have less importance than the vertical component, due
to partial cancellation of forces. However, as shown in Toomre (1964), a self-
gravitating differentially rotating particle disk would be locally unstable against
the growth of axisymmetric disturbances, if its radial velocity dispersion falls
below the critical value

ccr =
3.36GΣ

κ
(5)
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This critical value offers a very convenient measure for the closeness of the sys-
tem to the instability threshold: the Toomre parameter defined as Q = cx/ccr.
Writing Q in terms of the corresponding geometric thickness gives (again as-
suming identical particles and using relations valid for low τ)

HQ

r0
≈ 25Qτrh

3, (6)

so that a comparison to Eq. (4) indicates that whenever the vertical selfgravity
is important, the system is also near the threshold of collective planar instability:
Fz/Fc > 1 corresponds to Q < 2.

How does this gravitational near-instability manifest? The gravitational
collapse is opposed by the particles’ random velocities, washing out small scale
condensations, and by the differential rotation, dissolving large condensations.
As long as Q exceeds at least a few times unity, the collective instability is
completely avoided, and the system remains practically uniform: the main effect
of gravity comes via pairwise encounters as described above. However, if the
optical depth and thus Σ increases, or if a ring location further away from the
planet is inspected, Q could fall below about 2 − 3. In this case, the collective
gravity together with differential rotation leads to the formation of shearing
tilted wake structures, with individual wakes forming and dissolving in a time
scale ∼ orbital period. The prominence of these structures stems from the swing
amplification process (Goldreich and Lynden-Bell 1965, Toomre 1981) which
significantly enhances the tiny kinematic wakes triggered by each individual
particle. These Toomre wakes are analogous to the transient wakes produced by
orbiting mass enhancements in a stellar disk (Julian and Toomre 1966, Toomre
and Kalnajs 1991), except that in the rings, the dissipation in impacts is able to
oppose the gravitational heating induced by the wakes themselves. This allows
a statistical steady-state with Q ∼ 1 − 2, characterized with a continuous re-
generation of new wakes. Spatial auto-correlation analysis of simulated wakes
(Salo 1995, Salo et al. 2004) confirms the close correspondence to Julian-Toomre
stellar wakes.

For Saturn’s rings, the approximative condition for the formation of wakes,
Q < 2 corresponds to (see Salo et al. 2004)

τ > τmin ≈ 0.2
( a

108m

)−3
(

ρ

900 kg m−3

)−1

, (7)

or about 0.3−0.1, from the inner C ring to the outer A ring, respectively, if the
internal density of solid ice is assumed. This gives a conservative lower limit,
since Eq. 7 is based on the assumption of fairly dissipative identical particles
that in the absence of self-gravity would concentrate in a very thin ring, just
a few particle diameters thick. This is the expected behavior of particles if
they follow the Bridges formula for the coefficient of restitution. In regions with
τ > τmin, wakes may form, depending on the actual particle elasticity, with more
elastic impacts implying an increased τmin: see Fig. xx, comparing the ’frosty’
and ’smooth’ impact models. The formation of wakes is also affected by the
particle size distribution: in principle, the presence of large particles provides
seeds for strong wakes. This is counteracted, however, by the fact that small
particles achieve a larger velocity dispersion than larger particles, which acts as
a stabilizing factor. Also, note that τ > τmin is no a strict boundary for the
wake formation: weak wakes are always present regardless of Q.

8



The average tilt angle of wakes with respect to tangential direction is deter-
mined by the gradient of the systematic velocity field, corresponding to about
200 for the Keplerian case; the typical radial spacing between wakes in simula-
tions is close to Toomre’s critical wavelength (Toomre 1964)

λcr = 4π2GΣ/κ2, (8)

where the epicyclic frequency κ equals Ω for the Keplerian case. For Saturn’s
A-ring the expected λcr ∼ 50− 100 meters.

Gravitational accretion At large distances gravitational accretion of par-
ticles is observed. The condition that the attraction between two radially
aligned, synchronously rotating identical particles in contact exceeds the tidal
force due to planet is (see e.g. Weidenschilling et al. 1984)

(a/rplan)3 > 12(ρplan/ρ), (9)

whereas in the case of two very different sized particles the factor 12 is replaced
by 3. In terms of rh these conditions correspond to rh > 1 and rh > 0.79; for icy
particles around Saturn this would imply a > 126 000 and 80 000 km, respec-
tively. However, in actual rings the non-zero velocity dispersion makes accretion
more difficult (Ohtsuki 1993, Salo 1992, 1995), and the limiting distances for the
formation of aggregates are shifted outward. According to simulations in Kar-
jalainen and Salo (2004), permanent aggregates are able to form for rh > 1.1−1.2
The shapes of the forming aggregates are well described with Roche ellipsoids,
approaching spherical shapes as the distance increases (Karjalainen and Salo
2004, Porco et al. 2006).
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Figure 4: Comparison between vertical and full selfgravity. In the left, only the
physical collisions are taking into account, for a simulation system with εn = 0.5,
τ = 0.75, rh = 0.82 (corresponds to a = 100 000 km for a solid ice particle
density of 900 kg/m3, or to a = 126 000 if ρ = 450 kg/m3 ). In the middle, the
vertical selfgravity is included, calculated in a self-consistent manner from the
vertical density distribution, with the method described in Salo(1991). Near
the central plane Fz/Fc ≈ 8.8, corresponding to Ωz/Ω =

√
1 + Fz/Fc ≈ 3.1: a

very similar result would be obtained by the method of Wisdom and Tremaine
(1988), who used a constant enhancement factor Ωz/Ω = 3.6 to describe the
vertical gravity. In the right, all components of selfgravity are included. In
comparison to nongravitating case, the inclusion of vertical gravity reduces the
ring thickness from H/r0 = 5.3 → 3.3, and increases the ωc by about a factor of
8, resulting in two-fold viscosity. However, when full selfgravity is included the
viscosity is even 30 times larger than in the nongravitating case. A snapshot
from a comoving local simulation region is displayed: x-axis points away from
the planet, y axis to the direction of orbital velocity. Note that the size of
the simulation system here corresponds to 2λcr × 2λcr, implying that the wake
structure is somewhat suppressed in comparison to what would be obtained
with larger calculation regions. From Salo (2001).
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Figure 5: The dependence of simulated selfgravity wakes on the assumed elas-
ticity. In the left Bridges formula ’frosty’) is used, while in the right ’smooth’
particles are assumed. In the case of elastic particles the influence of self-gravity
is strongly reduced. Identical particles with εn = 0.5, τ = 0.5 and rh = 0.85 are
simulated, using 4λcr × 4λcr region. For more details of the effect of elasticity
on the wake structure, see Fig. 11 in Salo (1995).
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Figure 6: The dependence of selfgravity wakes on the optical depth τ , and
the strength of gravity vs tidal force, measured by the rh parameter. Also
indicated are the values of Saturnocentric distance to which rh corresponds,
in case of solid ice internal density. The size of each region corresponds to
4λcr × 4λcr. Simulations are performed with the force-method of Salo (1995),
and use identical particles with εn = 0.5
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Figure 7: Schematic presentation of the (rh, τ) plane, indicating where differ-
ent factors govern the local ring dynamics. The boundaries between physical
impact-, pairwise gravity- and collective gravity- dominated regions are based
on a simple estimate of which ingredient alone would maintain the largest ve-
locity dispersion (cx = 2rΩ, cx = vesc, or Q = 2, respectively; see the eqs.
XX in Salo (1995) and YY in Ohtsuki and Emori (2000)). The contours mark
the expected geometric thickness in terms of particle radii. Also indicated is
the region of where overstability occurs in simulations, and the boundary be-
yond which particles clump into local aggregates (rh ≈ 1.2, see Salo (1995) and
Karjalainen and Salo (2004).
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Figure 8: Schematic presentation of wakes and azimuthal brightness asymmetry.
From Salo at al (2004).
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