TRAJECTORY FOLLOWING AND REGULATION OF CHEMICAL BATCH REACTORS VIA GENEALOGICAL DECISION TREES

Enso Ikonen
Systems Engineering Laboratory
Department of Process and Environmental Engineering, University of Oulu, Finland

Eduardo Gomez-Ramirez
Universidad La Salle, Mexico City, Mexico

Kaddour Najim
Process Control Laboratory, E.N.S.I.A.C.E.T., Toulouse, France

Contents:
- Application of particle filtering to solving an optimal control problem

Outline:
- Background
- GDT algorithm and some properties
- Numerical illustrations
- Regulation using GDT
- Discussion
BACKGROUND

- **Optimal filtering**
 - Bayesian approach: Estimate the evolving posterior distribution recursively in time (prediction + updating)
 - Kalman filter (linear Gaussian)
 - **Particle filtering** aka **Sequential Monte Carlo** (non-linear non-Gaussian)

- **Importance Sampling & Resampling**

 Step 0. Initialization
 (Set initial particle positions)

 Step 1. Importance Sampling
 - **Predict** (using model)
 - **Evaluate** importance weights (using observation)

 Step 2. Resampling
 (Sample from weighted distribution)

- **Duality** between optimal filtering and regulation
PROBLEM FORMULATION

Model:
\[
X_n = F_n(X_{n-1}, U_n); \quad X_0
\]
\[
Y_n = h_n(X_n)
\]

Control objective:
\[
J_T(U_1, U_2, ..., U_T) = \sum_{n=1}^{T} \|U_n\|_A^n + \sum_{n=1}^{T} \|Y_n - Y_n^{ref}\|_B^n
\]

- \(T\): length of trajectory (horizon)
- \(A_n, B_n\): control and error costs (covariances)

Find the sequence of control actions that will minimize the control objective for open-loop control.
OPTIMIZATION OF THE CONTROL SEQUENCE

Idea: Associate Gaussian distributions to the norms of the control actions and tracking errors, and translate the cost function as the likelihood of a conditional probability

Algorithm:

Initialize recursions: \(\hat{X}_0^i = X_0, \quad i = 1, \overline{N}, \quad n = 1 \).

Generate iid controls: \(U_n^i \sim N(0, A_n) \).

Evaluate model: \(X_n^i = F_n(\hat{X}_{n-1}^i, U_n^i); \quad Y_n^i = h_n(X_n^i) \).

\[
\exp\left(-\frac{\beta}{2} \| Y_n^i - Y_n^{\text{ref}} \|_{B_n}^2 \right)
\]

Weight according to \(p_n^i = \frac{N}{\sum_{j=1}^{N} \exp\left(-\frac{\beta}{2} \| Y_n^j - Y_n^{\text{ref}} \|_{B_n}^2 \right)} \).

Resample controls from \(p_n(u) = \sum_{i=1}^{N} p_n^i \delta_{U_n^i} \) for each \(j = 1, \overline{N} \) which leads to:

\[
\hat{X}_n^j = F_n(\hat{X}_{n-1}^i, U_n^i); \quad Y_n^j = h_n(\hat{X}_n^j) \quad \text{for each } j \in \{1, N\}.
\]

Repeat for \(n = 2, T \).
GENEALOGICAL DECISION TREE

Interpretation as a genetic particle evolution model

Interpret state \hat{X}_{n-1}^j as the parent of individual \hat{X}_n^i:

- denote $\hat{X}_{n-1}^i = \hat{X}_{n-1}^j$, etc.

Ancestral lines:

$\hat{X}_{0,n}^i \leftarrow \ldots \leftarrow \hat{X}_{n-2}^i = \hat{X}_{n-2}^k$ \quad $\hat{U}_{1,n}^i \leftarrow \ldots \leftarrow \hat{U}_{n-2,n}^i = \hat{U}_{n-2}^k$

$\hat{X}_{n-1,n}^i = \hat{X}_{n-1}^j$ \quad $\hat{U}_{n-1,n}^i = \hat{U}_{n-1}^j$

$\hat{X}_{n,n}^i = \hat{X}_n^i$ \quad $\hat{U}_{n,n}^i = \hat{U}_n^i$

Solution at $n = T$:

$I = \arg \inf_{i=1}^{N} J_n(\hat{U}_1^i, \hat{U}_2^i, \ldots, \hat{U}_n^i)$
CONVERGENCE

Idea:
- Associate Gaussian distributions to the norms in the cost function
- Translate the cost function as the likelihood of a conditional probability
- Duality between control and filtering problems

Corresponding filtering problem:
\[X_n = F_n(X_{n-1}, W_n); \ Y_n = h_n(X_n) + V_n \]
where \(W \) and \(V \) are Gaussian random vectors with covariances \(A_n \) and \(B_n \).

We can show the following (see works with P. Del Moral):
1. To find control actions which minimize the control objective, it is equivalent to look for most likely \(W \).
2. The conditional probability mass of \(W \) is concentrated around the optimal control sequence:
\[
\Pr\left\{ (W_1, \ldots, W_n) \in d(w_1, \ldots, w_n) \mid Y_1 = Y_{1 \text{ref}}, \ldots, Y_n = Y_{n \text{ref}} \right\} \\
= \frac{1}{Z_n} \exp\left(-\frac{\beta}{2} \left(\sum_{k=1}^{n} \|w_k\|_{A_k}^2 + \sum_{k=1}^{n} \|Y_k^{\text{ref}} - h_k(X_k)\|_{B_k}^2 \right) \right) \, dw_1 \ldots dw_n \\
= \frac{1}{Z_n} \exp\left(-\frac{\beta}{2} J_n(w_1, \ldots, w_n) \right) \, dw_1 \ldots dw_n
\]
3. Convergence of actions to optimal actions (as \(N \to \infty \)).
NUMERICAL EXAMPLES (1) ‘ABC’-batch plant

Plant
nonlinear equations:
\[
dc_A = -k_1(T)c_A^2 \\
dc_B = k_1(T)c_A^2 - k_2(T)c_B \\
dT = \gamma_1(T)c_A^2 + \gamma_2(T)c_B + (a_1 + a_2 T) + (h_1 + h_2 T)u
\]
temperature target trajectory:
\[T_{\text{ref}} = 20 \exp(-0.02t)\]

GDT
optimize sequence of \(\Delta u \)'s
\[A = 2^2 \text{ (tolerated dev. on input)}\]
\[B = 0.2^2 \text{ (tolerated dev. on output)}\]
\[\beta = 1, \quad N = 2500 \text{ (# particles)}\]

Results
design specs fulfilled
randomness apparent

Graphs
- Temperature (output)
- Temperature reference (target)
- Dimensionless scaling (input)
NUMERICAL EXAMPLES (2) RTP-repetitive plant

Plant
nonlinear equations:
\[
\frac{dT_F}{dt} = b_x u - c_1 (T_F^1 - T_p^1) - c_2 (T_F - T_d)
\]
\[
\frac{dT_p}{dt} = c_3 (T_F^1 - T_p^1)
\]

temperature target trajectory consisting of ramp and constant phases

GDT
optimize sequence of u’s
\[A = 1 \text{ (‘tolerated dev. on input’)} \]
\[B = 1 \text{ (tolerated dev. on output’)} \]
\[\beta = 1, \]
\[N = 500 \text{ (# particles)} \]

Results
design specs fulfilled randomness apparent

More examples available:
3x3 power plant, 2-joint robot arm,
GDT-BASED REGULATION

Feedback:
1. Add (SISO linear) feedback based on output deviation (PI, for example)
 - suitable, e.g., for partially measured output/state trajectories
2. Receding-horizon MPC
 - solve optimization problem from current (disturbed) state
 - computationally heavy => discretized approximation with precomputed solutions

‘Assumptions’:
- **Accuracy** can be increased by making the discretization more dense (for non-chaotic plants)
- Given a minimal finite horizon $T_{\text{min}} < T$, each sequence contains a number of optimal sub-sequences
- **Regulation** problems (=setpoint trajectory) + time-invariant plants make the approach feasible

Algorithm

off-line:
1. Solve optimal trajectories of length T from K initial states x_0
2. Store all sequences.

on-line:
3. a) if measurement of x is available:
 - Compare state x with $K^* (T-T_{\text{min}}+1)$ states in memory and find the closest match x^*.
 - Set next and future controls equal to controls in the selected solution from point x^* forward.
 b) if no new measurements:
 - Select next control from the sequence.
4. Apply control to plant.
5. Return to Step 3.
NUMERICAL EXAMPLE (3): van der Vusse-regulation

van der Vusse CSTR:
A → B → C
non-monotone ss-gain
non-minimum phase dyn.

Simulations (dbase):
isothermal simulations
T = 100 (traj. length)
controlled: \(c_B \)
manipulated: \(V'/V_R \)

GDT parameters:
\(A = 0.5^2, B = 0.01^2 \)
\(\beta = 1, N = 2000 \)
\(\Delta u \) optimized

GDT-regulation:
\(K = 300 \) random init. states:
\(c_A(0) = 2.126 \pm 10\% \)
\(c_B(0) = 1.09 \pm 10\% \)
\(J_T < 700, T_{\text{min}} = 60 \)
\(\Rightarrow \) finite state dbase of
5760 state entries

Simulations (regulation):
impulse disturb. in states

Open-loop GDT vs. state disturbances
GDT regulation vs state disturbances

MDP-based optimal control
GDT-based regulation
with input constraints
DISCUSSION

Why (..do we need the approach)?

- An optimization technique suitable for solving (potentially) difficult problems
 - nonlinear, discontinuous, sequential open loop trajectory problems
- Main drawback: a noiseless state-space model is required/assumed

(How to use GDT in..) feedback control ?

- Linear feedback for disturbances
 - e.g., GDT + PI
- Receding-horizon model predictive control
 - approximate on-line solutions to open loop problems
 - requires state measurements and/or state estimators

(Selection of) GDT-algorithm parameters ?

- Not always simple (trial and error)
- Future directions: non-gaussian non-diagonal distributions in A and B

(Large) number of particles N needed ?

- Computations are realizable on office PC (at least for small dimensional problems)

(Theoretical..) properties ?

Duality btw. optimal control and optimal filtering => ...

(How to assess potential..) usefulness of GDT ?

- What to compare with?
- MDP (finite state MC + Bellman equation)
 - What else would be fair / interesting?
- Real industrial applications?
TRAJECTORY FOLLOWING AND REGULATION
OF CHEMICAL BATCH REACTORS VIA
GENEALOGICAL DECISION TREES

Enso Ikonen
Systems Engineering Laboratory
Department of Process and Environmental Engineering, University of Oulu, Finland

Eduardo Gomez-Ramirez
Universidad La Salle, Mexico City, Mexico

Kaddour Najim
Process Control Laboratory, E.N.S.I.A.C.E.T., Toulouse, France

Thank you

For more info, see:

http://cc.oulu.fi/~iko/MGDT.htm

- MATLAB-code
- a users’ guide with examples