Gain scheduling control with Markov transition models

Enso Ikonen

University of Oulu (Finland) Department of Process and Environmental Engineering Systems Engineering Laboratory

Outline:

- 1. Introduction & Adaptive CFMC control
- 2. Controlled Finite Markov Chains MDP, Matlab-toolbox
- 3. Use of Kullback–Leibler distance in adaptive CFMC control
- 4. Numerical examples
- 5. Discussion and Conclusions

THE SEVENTH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION

December 9 - II, 2009, Christchurch, New Zealand

Introduction

- Model-based control
 - Non-linearities
 - Uncertainties
 - Learning
 - Optimality
- Applications in process engineering **Rough models** _ available, Experimention is expensive, On-site tuning required, ...

• In this paper:

- New adaptive control technique
 - Multiple models and **CFMC** design
- New simulation results
 - Feasible domain of applications
- Promote discussion
 - CFMC techniques in process control

Univ. Oulu / Enso 2009 p. 2 of 15

Adaptive CFMC control

 "Adaptive systems use local (in time and data spaces) approximations around behaviour realizations" (Kárný et al.)

Adaptation backed-up by

- Physico-chemical arguments
- Prior information
- Avoid (many of the) problems in structure selection and parameter estimation

- Adaptive control based on multiple models:
 - Bank of models
 - A priori defined models
 - Physical arguments
 - Off-line control design
 - Model-based design
 - Control specifications
 - On-line selection
 - Choose model/controller to use
 - Based on measured information

Bank of models

- Models based on physical arguments
 - e.g., ordinary differential equations (ode)

$$\frac{d\mathbf{x}}{dt} = f(\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t))$$

- Bank of models
 based on unknowns
 - parameter values, reaction paths, etc.

- Conversion to
 discrete-time format
 - discretization (in time)

 $\mathbf{x}(k) = f(\mathbf{x}(k-1), \mathbf{u}(k-1), \mathbf{w}(k-1))$ $\mathbf{y}(k) = h(\mathbf{x}(k), \mathbf{v}(k))$

- states x
- actions u
- disturbances w, v

Controlled Finite Markov Chains (CFMC)

- Discrete-time dynamic system
- Finite state model – Discretization in space

$$\mathbf{p}_{\mathrm{X}}(k+1) = \mathbf{P}^{a(k)}\mathbf{p}_{\mathrm{X}}(k)$$

$$\mathbf{x} \in X_{s}, s = 1, 2, ..., S \qquad X = \bigcup_{s=1}^{S} X_{s}, X_{i} \cap X_{j} \neq 0$$

$$\mathbf{u} \in U_{a}, a = 1, 2, ..., A \qquad "'$$

$$\mathbf{y} \in Y_{m}, m = 1, 2, ..., M \qquad "'$$

 $p_{s',s} = \int_{X_{s'}} p(\mathbf{x}(k) \in X_{s'} | \mathbf{x}(k-1) \in X_s, u(k-1) \in U_a) d\mathbf{x}$ where $\mathbf{P}^{a(k)} = [p_{s',s}^a]$ is a transition probability matrix

State estimator

$$\mathbf{p}_{\mathrm{X}}^{est}(k) \propto \mathbf{l}_{m} * \mathbf{P}^{a(k)} \mathbf{p}_{\mathrm{X}}(k-1)$$

$$l_{m,s} = \int_{Y_m} p(\mathbf{y}(k) \in Y_{s'} | \mathbf{x}(k) \in X_s) d\mathbf{y}$$

where $\mathbf{L} = [l_{m,s}]$ is a likelihood matrix

Univ. Oulu / Enso 2009 p. 5 of 15

Markov Decision Process (MDP)

 Infinite-horizon discounted model

$$\boldsymbol{J}_{s(0)} = \sum_{k=0}^{\infty} \boldsymbol{g}^{k} r_{s(k)}^{\boldsymbol{p}_{s(k)}}$$

Bellman's optimality

$$J_{s}^{*} = \min\left[r_{s}^{a} + \boldsymbol{g}_{\sum_{s' \in S}} p_{s',s}^{a} J_{s'}^{*}\right]$$

- Dynamic programming
- Value iteration
- Optimal policy

 $r_s^a = r(s(k), a(k))$ immediate cost **g** discount factor

$$\boldsymbol{p}_{s}^{*} = \arg\min_{a} \left[r_{s}^{a} + \boldsymbol{g}_{\sum_{s' \in S}} p_{s',s}^{a} \boldsymbol{J}_{s'}^{*} \right]$$

Univ. Oulu / Enso 2009 p. 6 of 15

MATLAB Toolbox

cc.oulu.fi/~iko/MGCM

- Comp. load
 - Memory requirements
 - $S = \prod n_i$ cells
 - SSA transition probabilities
 - SA immediate costs
 - Model evaluations SA times precision
 - Value iteration SA size of Q-matrices
- P^a is sparse + vectorization

CFMC control design procedure

- **1. Set model resolution** X_s, U_a, Y_m , sampling time, ...
- 2. Set control targets r_s^a, g
- 3. Build & analyse plant model (via simulation)
- 4. Solve controller (value iteration)
- 5. Build & analyse closed-loop (stability, comm.classes, basins-ofattraction, transition times, ...)

Kullback – Leibler distance

Comparison of distributions
 – K–L distance

$$D(R||S) = \sum_{s \in S} R(s) \log \frac{R(s)}{S(s)}$$

 K–L distance between conditional distributions

$$\overline{D}(R||S_q) = \sum_{(s,a)\in S\times A} R(s,a) D(R^{sa}||S_q^{sa})$$

 $S(s) = \Pr(s) \mod l$ $R(s) = \frac{N(s)}{k} \operatorname{data}$ $N(s) \operatorname{count of occurances}$ $k \operatorname{data length}$ pmf's:

$$S_{q}^{sa} = S_{q}(s'|s,a) \text{ model } q$$
$$R^{sa} = R(s'|s,a) \text{ data}$$
$$R(s,a) = \frac{N(s,a)}{k}$$

Univ. Oulu / Enso 2009 p. 8 of 15

Model selection

• Empirical distribution (R) – Count from a sequence of plant operating data $R^{sa}(s') = \frac{N(s'|s,a)}{k}$

- Model-based distribution (S)
 - Corresponding prediction using model *q*

$$S_{\boldsymbol{q}}^{sa}(s') = p_{s',s}^{a} \mod \boldsymbol{q}$$

$$\boldsymbol{q}^* = \arg\min_{\boldsymbol{q}} \sum_{(s,a)} D(R^{sa} \| S_{\boldsymbol{q}}^{sa})$$

Univ. Oulu / Enso 2009 p. 9 of 15

Adaptive control algorithm

• Procedure

 Select plant descriptions
 Build CFMC maps
 Set up and solve control problems
 Select model / controller to use

- Design problems:
 how to select...
 - ...plant descriptions? (use prior info)
 - ...discretization?
 - ...tuning parameters?
 - ...when to switch?

Numerical examples van der Vusse CSTR

- Continuos stirred tank
 reactor
- Convert substance A to product B $A \to B \to C$

$$\dot{c}_{A} = \frac{\dot{V}}{V_{R}} (c_{A0} - c_{A}) - k_{1}c_{A} - k_{3}c_{A}^{2}$$

$$\dot{V}$$

$$\dot{c}_B = -\frac{v}{V_{\rm R}}c_B + k_1c_A - k_2c_B$$

• Nonlinear, nonminimum phase

- B. GS of ideal CSTR
- C. GS of non-ideal CSTR

Control of CSTR using MTM/MDP

- discretization
 - 861+1 state cells, $c_A \times c_B$
 - 17 actions, V/V_R
- model building
 - 100 evaluations / cellaction pair
 - ~2h on PC
- control design
 - for five temperatures 105,107.5,110,112.5,115 ℃
 - 5 set points $c_{\rm B}^{\rm ref}$ each
 - Table I for 110°C
 - # communicating classes
 - size of basin-of-attraction

$$c_{\rm A} = \{1.00, 1.05, \dots, 3.00\} (41)$$

$$c_{\rm B} = \{0.50, 0.55, \dots, 1.50\} (21)$$

$$\frac{\dot{V}}{V_{\rm R}} = \begin{cases} 2, 6, 10, 11, \\ 12, 12.5, 13.0, \dots, 16, \\ 17, 18, 20, 26 \end{cases} (17)$$

TABLE I

ANALYSIS OF CLOSED-LOOP PERFORMANCE FOR PLANT IN 110C.

c ^{sp}	incl: #cc	#ba	only: #cc	#ba	τ_{auc}	Tmax
<u> </u>	1	515.4	0	0	15.6	35.9
1.0	2	861	2	861	43.0	75.0
1.05	5	861	5	861	159.5	317.4
1.1	2	861	2	861	25.6	70.7
1.15	1	858.5	0	0	19.4	63.2

Gain scheduling of an ideal CSTR

- five models
 - for five temperatures 105,107.5,110,112.5,115 ℃
- K–L distance to select between models
 - empirical distribution R from a moving window of w samples (w=20)

Gain scheduling of non-ideal CSTR

- two separate CSTR in different temperatures
- one measurement

 random stream
 (model of channeling)
- 15 models:
 - 100% models (5)
 105,107.5,110,112.5,115 ℃
 50% 50% models (10)
 105+107.5 107.5+110 110+112.5 112.5+115

105+110107.5+112.5110+115105+112.5107.5+115105+115

Univ. Oulu / Enso 2009 p. 14 of 15

Discussion & conclusions

- Aims:
 - Examine possibilities of MTM/MDP in control of industrial processes
 - Emphasis on physical models => adaptive control based on multiple models

Results

- K-L distance for comparing cond. distributions
- Future
 - State estimation
 - Adaptation of MTM's (machine learning)
 vs. approximate DP (e.g., smooth models)
 vs. prior models
 (process identification)

Discussion & conclusions

- Aims:

 Examine possibilities of MTM/MDP in
 Aims
- Results

 K-L distance for comparing cond.

-11JJKKOU

adaptive control based on multiple models Adaptation of MTM's (machine learning)
 vs. approximate DP (e.g., smooth models)
 vs. prior models
 (process identification)