Scheduling and disturbance control of a water distribution network

Enso IKONEN and Jozsef BENE

Systems Engineering Laboratory
Department of Process and Environmental Engineering
University of Oulu, Finland

Outline:
• OPUS project
• MDP +/-
• Sopron-case

• Simulations
• Discussion, Conclusions, Future
The OPUS Project
Optimization of Pump Scheduling with Dynamic Probabilistic Methods (SA #138349, CIMO TM-10-6890)

- 2011-2014
 - Academy of Finland (80%)
 - Univ. Oulu (20%)

- SYTE/Oulu
 - in cooperation with Dept. Hydrodynamic Systems/ Budapest

- Background
 - PhD on neutral GA (I. Selek)
 - preliminary studies with CFMC [incl. this paper]

- Methods
 - dynamic & stochastic models
 - random search & population based approaches
 - problem formulation

- Water distribution networks
 - stochastic problems
 - medium-to-large problems
 - on-line optimization
Pump Scheduling Problem
The full Sopron problem

- Primary objective for control: satisfy water demands of the residential and industrial consumers
- Building elements:
 - wells (scenarios), W
 - pump groups (n-ary pump groups), Q
 - power stations (a hourly changing energy price, total power limit)
 - reservoirs (storage limits), R
 - water demands (scenarios), D
Pump Scheduling Problem
Simplified Sopron case

- Regional water network
 - sub-problem of full Sopron:
 - 3 water reservoirs
 - 2 pump groups:
 - \{off, small pump on, large pump on\}
 - one common power station
 - well flow and demands from a prob. scenario
 - optimization of next 24h

mass balance equations:
\[
R_1 (t + 1) = R_1 (t) + T_s [Q_1 (t) - Q_2 (t) - D_1 (t)]
\]
\[
R_2 (t + 1) = R_2 (t) + T_s [Q_2 (t) - D_2 (t)]
\]
\[
R_3 (t + 1) = R_3 (t) + T_s [W (t) - Q_1 (t)]
\]
costs of operation:
\[
J = \sum_{t=1...24} \sum_{j=1,2} T_s P_j (t) C (t)
\]

where \(P_j \) = power consumed by pump group \(j \)
\(C \) = hourly price of electricity
Markov Decision Processes
CFMC + DP

- System propagation modelled as markovian transitions
- State-space formulation
 - reservoir volumes
 - time of day
 (demands & el.price)
- Discretization of states & controls
 - 4D grid (resolution vs comp/memory)
 - on/off pumps (groups)
- Target
 - minimize short term costs due to energy consumption
 • with a given hourly price & demands
 • under constraints (reservoir levels, pump station limits, initial/final state)

- MDP pros/cons
 + suitable for uncertain, nonlinear, discont., dynamic systems
 + straightforward modeling
 + systems analysis
 + ’optimal’ control
 - Curses of dimensionality/modelling
 • poor scalability
 - What is sufficient resolution? Accumulation of errors in prediction
Simulations with Stochastic Consumer Demands

- Discretization into 19 reservoir volumes, 30min time step
 - ~330,000 cells
 - 9 actions

- Mass balance with stochastic realizations was used when building the plant model

- Truncated Gaussians
 - mean from scenario
 - variance 10% from mean
 - real data ~10%

- Inf. horizon controller
 - DP, value iteration

Enso Ikonen
SYTE 2011
1-day simulation
MDP with stochastic models

Main observations

(i) Controllers designed for a particular noise scenario provided the most robust controller

(ii) Quality of solution improved with denser resolution

(iii-1) Controllers designed under milder noise assumptions performed poorly with higher noises.

(iii-2) Converse was not true (robustness), however the economical performance deteriorated.
2-day simulations
25% decrease in pump-2 efficiency at 24h

A complete control policy $\pi(x)$ exists, no re-computing needed.

However, since model is incorrect (25% decrease) the result is far from ok.
2-day simulation
25% decrease in pump-2 efficiency – setpoints for local PI

Alternative to recomputing $\pi(\mathbf{x})$: Convert optimal actions to set points, using plant model.

Use local controllers to keep set points
- PI-implementation requires variable speed pumps..
- Other local solutions(?)
Discussion

- hydraulic considerations
- strong effect on efficiency
 - variable speed pumps
 - to be included in optimization
Conclusions & Future work

• Conclusions
 – MDP ok for small Sopron
 – MDP needs problem specific tuning for full Sopron problems
 • computation speed
 • accuracy
 – specialized approaches
• Comments/suggestions?
 – lessons to be learned from multireservoir optimization (hydropower etc.)

• OPUS
 – 2011: Deterministic problems
 • using DP, ADP, discretization, problem re-formulation...
 • feasible, efficient techniques
 – 2012: Stochastic problems
 • stochastic demands
 • deterministic tech. + MC
 • probabilistic set-ups
 – 2013-: Control strategies
 • practical experiences
Conclusions & Future work

- Conclusions
 - MDP ok for small Sopron
 - MDP needs problem specific tuning for full Sopron problems
 - specialized approaches

- Comments/suggestions?
 - lessons to be learned from multireservoir optimization (hydropower etc.)

- OPUS
 - 2011: Deterministic problems
 - using DP, ADP, discretization, problem re-formulation...
 - 2012: Stochastic problems
 - stochastic demands
 - deterministic tech. + MC
 - probabilistic set-ups
 - 2013-: Control strategies
 - practical experiences

THANK YOU