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Introduction 

 model vs. data 
 coherence 

 validates the 
model 
(mechanisms, 
parameters, ...) 

 mismatch 
 inadequate model 
 inaccurate 

measurements 
 unmeasured 

disturbances 
during tests 

 fault diagnosis 
 errors, residuals 
 banks of models 

 bayesian 
reasoning 

 stochastic 
framework 

 model calibration 
& PE 
 effective values of 

physical 
parameters 

 tuning:  
 measurements,  
 physical 

understanding 
 engineering sense 

 parameter values 
& their 
uncertainties 

 identification, 
numerical 
optimization, 
adaptive control 

 state estimation 
 SE for PE 

 parameters 
belong to the 
(unknown) 
system state 

 reason the proper 
value of the state 
based on a 
system model & 
measurements 
from it 

 Kalman filter with 
extensions 

 monitoring, 
control (MPC), 
optimization 

 smoothing, 
filtering, prediction 
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Dynamic tests 

 dynamic models  
 becoming commonly 

used in the industry 
 execution of dynamic 

tests is time-consuming & 
expensive 

 examination of test 
outcomes 
 tools for assessment 

 model vs measurements 
 measurements vs model 

 hypothesis evaluation 

 state estimation 
 monitoring,  
 automatic control 

 CFB test series.  
 In addition: closed loop 

steps, ramps, ... 
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CFB boilers 

 Circulating fluidized bed boilers 
 mixed in inert material, fluidized 

by air 
 closed circle via cyclone 
 heat transfer in furnace & from 

flue gases 
 multifuel capabilities 
 oxyfuel options 
 once-through designs 

 Control 
 fuel & air flows 
 stoichiometric conditions, 

fluidization, temperatures, load 
changes 

 emissions, corrosion,.. 

 Unmeasured states 
 fuel inventory, inert mass & 

distribution,  
 fuel characteristics (heat value, 

fuel mix, particle size distribution), 
... 

 FW’s CFB with INTREX. 
 hot-loop model 

 semi-physical 
 furnace, separator, Intrex 
 no steam-side 

 validated with real plants 
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hot-loop model 

 furnace, separator, Intrex, return 
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HOPE-project 

 HOPE = HOt-loop 
Parameter Estimation 

 allow originally constant 
parameters to vary with 
time, θk.. 

 ..in order to match 
simulations with 
measurements 

 search for optimal θk 

 assess feasibility of 
estimated θ 
 

 

 considered variables: 
 char affinity 
 heat transfer coefficients 

 wing wall 
 roof 
 furnace wall 

 fuel moisture 

 data from reactivity 
tests 

 minimize squared 
deviation in 
O2 & Tbed 
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Initial studies (fixed) 

 Simulate with fixed θ 
 nominal value at 1 
 simulate with  

{0.8, 0.9, 1, 1.1, 1.2} 
 static gains 
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Initial studies (intervals) 

 global optimization 
 simple gradient search 
 0/1st order hold 

 simulations follow 
measurements well 
 with feasible parameter 

change amplitudes 

 speed & # evaluations, 
accuracy, robustness 

 potential directions:  
 advanced gradient 

methods,  
 random search, 
 parameterized 

trajectories,  
 sequential methods 
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Sequential search 

 View PE as a state 
estimation problem 

 Solve problem sequentially 
 ’natural’ when new data 

becomes available in time 

 
 Monte Carlo 

 rely on random 
sampling 

 Bayesian reasoning 
 Kalman filter, EKF 
 Particle filter, UKF,... 

Particle filtering 
 Describe unknown pdf 

with N particles 
 approximation, N→∞ 
 propagate particles 

using model  
 update population with 

measurements 
(death/survival) 

 no linear/Gaussian 
limitations, can handle 
complex dynamics 

 computationally heavy 
 requires ’cheap’ computing 

power + memory 
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Particle filtering (markovian) 
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Particle filtering (bayesian) 
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Particle filtering (SIR) 
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Particle filtering 
(interpretations) 
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Simulations (hot-loop model) 

 discrete-time state-
space form 
 hot-loop states (660) 
 past inputs (20)  

 interpolation 

 unknown parameters 
(5→2) 

 random walk model,  
N(0, 0.012) 

 ½ < θk < 2 

 outputs (108→2) 
 measurement noise 

(gaussian) 
 O2: N(0, 0.22) %-vol 
 Tbed: N(0, 52) oC 

 

 
 1-step-ahead simulations  

 sequence length x # particles (=lots of..) 

 assuming initially in steady state 

 N=500 (# particles) 
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Simulations (algorithm) 



Simulations (PF) 

• estimated 

moisture & 

heat transfer 

coefficients 

• predicted  

O2 & Tbed 

• measured 

O2 & Tbed 

• quantiles in 

MC 

• a random 

trajectory 

• a trajectory 

• a random 

trajectory 



Simulations (smoothing) 

• estimated 

moisture & 

heat transfer 

coefficients 

• predicted  

O2 & Tbed 

• measured 

O2 & Tbed 

• quantiles in 

MC 

• a random 

trajectory 

• a trajectory 

• a random 

trajectory 



Simulations (filtering) 

filter distributions k|k 

using data up to (but not exceeding) k 



Simulations (UKF) 

PF – 500 particles (500 simulations in parallel) 

UKF – 5 sigma-points (5 model simulations in parallel) 

SIR (particle filter) UKF (unscented Kalman filter) 
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Discussion & Conclusions 

 Bayesian state estimation for 
model calibration / experiment 
test assessment 
 both model & measurements 

are efficiently used, the role of 
the two can be transparently 
interpreted 

 theoretically solid 
 estimates/predictions are not 

limited to samples, 
expectations, or prior 
distributions 

 simple to implement for any 
simulation model 
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Discussion & Conclusions ii 

 For more info, see: 
 
Ikonen, E., J. Kovacs & J. Ritvanen 
(2013) Circulating fluidized bed hot-
loop analysis, tuning, and state-
estimation using particle filtering. 
International Journal of Innovative 
Computing, Information and Control, 9 
(8), pp 3357 – 3376. 
 

 Hultgren, M., J. Kovacs & E. Ikonen 
(2013) Input and State Estimation Tool 
for Dynamic CFB Models. 18th Nordic 
Process Control Workshop 22-23 Aug 
2013, Oulu, Finland. 

 

 Future directions 
 user feedback from 

engineers => further 
developments 

 smoothing UKF algorithms? 
 how to illustrate/use 

sequences of 
multidimensional 
distributions? Thank you! 

SYTE / Department of Process and 

Environmental Engineering 
http://www.oulu.fi/pyosys 

Enso.Ikonen@oulu.fi 
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