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Introduction

. model vs. data

- coherence
« Vvalidates the
model
(mechanisms,
parameters, ...)

— mismatch
. inadequate model
« INnaccurate
measurements
« unmeasured
disturbances
during tests

fault diagnosis
« errors, residuals
« banks of models
bayesian

reasoning
. Stochastic
framework

. model calibration . state estimation

& PE - SE for PE
- effective values of parameters
h | belong to the
physica (unknown)
parameters system state
— tuning: . reason the proper
« Measurements, value of the state
physical based on a
understanding system model &
. engineering sense ][neas_E[Jrements
- parameter values romit _
gtheir ~ Kalman filter with
uncertainties exteqsm_)ns
- identification, - monioring,

cnntrnl (NDC)

A large amount of 1110(1L11111"’ work has and 1s being conducted at the industry and
academia to model various industrial processes. Often, the bottleneck i1s not in the lack
of models but in how to make maximal use of the ones that already exist. The research
work reported in this paper aims at extracting more out of the modelling investments, via
improved understanding of the plant (model analysis), improved design (model tuning)
and improved on-line control (design of on-line process state estimation).



Dynamic tests

. dynamic models

- becoming commonly
used in the industry Fuel reactivty test
— exeCUtion Of dynamiC _ Primary air test Primary/secondary air ratio tests
tests is time-consuming & £ -
expensive 5 SSEORGRTAETORE | I
. examination of test & o
outcomes i
— tools for assessment
« model vs measurements
. measurements vs model Tine
— hypOtheSIS evaluation ——Fuel feed ——Primary air feed —— Secondary air feed
: Sfaﬁfoﬁifg'rm;“on - CFB test series.
A . In addition: closed loop
— automatic control

steps, ramps, ...




CFB boilers

« Circulating fluidized bed boilers
- mixed in inert material, fluidized
by air
- closed circle via cyclone
—- heat transfer in furnace & from
flue gases
- multifuel capabilities
- oxyfuel options
- once-through designs
. Control
— fuel & air flows
— stoichiometric conditions,
fluidization, temperatures, load
changes
emissions, corrosion,.

. Unmeasured states

FW’'s CFB with INTREX.
hot-loop model

-~ fuel inventory, inert mass & « semi-physical
distribution, . furnace, separator, Intrex
- fuel characteristics (heat value, « NO Steam-side

fuel mix, particle size distribution), _ validated with real plants
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HOPE-project

HOPE = HOt-loop « considered variables:
Parameter Estimation - char affinity

allow originally constant - heat transfer coefficients
parameters to vary with cwingiwal

time, O,.. . furnace wall

..in order to match - fuel moisture
simulations with . data from reactivity
measurements tests

search for optimal 8, - Minimize squared
assess feasibility of deviation in

estimated 6 O, & Tpeq
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Initial studies (fixed)

o Simulate with fixed 0 11l
— nominal value at 1 1.05|

— simulate with &N )
{0.8,0.9,1,1.1, 1.2} 055
— Static gains 0.9
0.85 : : : : :
0 50 100 150 200 250 300
OQ l-Tbed .I—roof Tsxz’f samples
fke -0.001 -0.268 -0.198 -0.197
fHTC1 0 -34.158 -40.77 -44.006 9
fHTC? 0 -2.885 -5.744 -4.760
fHTC3 0 -117.020 -131.180 -135.530
fH20 2.459  -64.161 -60.625 -58.721

TABLE 1. Static gains. Rows: parameter 6%, columns: output y°.

The table shows the gain Ay?/A#P around the nominal value 8 = 1. (

0 50 100 150 200 250 300
samples



Initial studies (intervals)

global optimization

117

- simple gradient search 1,05
— 0/1%t order hold N 4l
simulations follow " oss)
measurements well os|
- with feasible parameter 085 o a0
change amplitudes samples
speed & # evaluations, 00

accuracy, robustness

potential directions:
. advanced gradient
methods,
. random search,
. parameterized
trajectories, 00 50 100 150 200 250 300
« sequential methods samples




Seqguential search

View PE as a state Particle filtering

estimation problem « Describe unknown pdf

Solye prqblem sequentially with N particles
. 'natural’ when new data

becomes available in time = approximation,.N—wo
— propagate particles
Monte Carlo using model
B e - update population with
sa?r/wpling measurements

(death/survival)

« No linear/Gaussian
limitations, can handle

complex dynamics

« computationally heavy
« requires 'cheap’ computing
power + memory

Bayesian reasoning
- Kalman filter, EKF
- Particle filter, UKF,...
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Particle filtering (markovian)

A dynamic model describes how the state vector evolves with time, a measurement
equation relates the received measurement to the state vector:

Xpe1 = fr (Xp, W) (2)
Vi = hg(Xg, Vi) (3)
where

e [ 1s the sampling instant (¢ = kT, where T 1s the sampling interval and ¢ is the real
time);

e X is the state vector to be estimated, the pdf of X, 1s assumed to be known;

e f and h are known (possibly non-linear) functions;

e W is a white noise sequence (the process noise), the pdf of w is assumed to be known;

e vy is the vector of received measurements;

e Vv is a white noise sequence (the measurement noise), the pdf of v is assumed to be
known and independent of w.

Equation (2) defines a Markov process. An equivalent probabilistic description of the
state evolution is p (Xgy1|Xk), the transition density. An equivalent probabilistic model
for (3) 1s p(yi|xx). With initial conditions p(Xg) the specification is complete.
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Particle filtering (bayesian)

In the Bayesian approach, one attempts to construct the posterior pdf of the state
vector: p(Xi|Yy), where Y, denotes the set of all measurements recieved up to and
including instant &, Yi = {y1,¥2,...,Vr}. The initial condition is given by p(xg|Yy)
where Y is the empty set. The formal Bayesian filter consists of prediction and update
operations. The prediction operation propagates the posterior pdf at instant £ — 1 to a

prior at k:

-

p [XI;|Y.I;—11: /P(XA=|Xk—1)JEJ(XL-—1|YI;—1)dXI;—1

T " T T
prior at k dynamics posterior from k—1

The prior pdf may be updated with the new measurement yy.:

p(x|Yr) =p(ys

p ixip Gl Y t) / p 3l Y

T
posterior likelihood prior normalization

where p (vi|Yr_1) = f-p[}’k Xk) P (Xk|Yi_1) dXr. The measurement likelihood p (yi
1s regarded as a function of X given y.

X_;;)




1. Suppose that a set of N random samples from the posterior pdf p(x;_1|Y_;) are
avallable. Denote thes particles by

. YN
{X::—l }1:=1

i.e. a set cuf N Particles indexed With 7 from 1 to .

3. T]:le update phase consists of ca.lcu]atmn of a weight for each partlcle nﬂrma,llzatlon of
weights, and resampling according to normalized weights. A weight @j}, is calculated
for each particle, based on the measurement likelihood (density function) evaluated

at the value of the prior sample (and measurement):

@, = p (&%) - (4)

The weights are then normalized so that they sum to unity: wi = ENL"_; The prior
i=1%k
particles are resampled (with replacement) according to the normalized weights to
produce a new set of particles
{X}'ﬁ}ﬂi such that Pr {Kk = XJ} fcur all 7 and 1

4. The new set of particles are samples of the pﬂstermr pdf at k. The cycle of the
algorithm is complete, and we continue from Step 2 with this new set

i 1N
{XiJiy
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Particle filtering
(Interpretations)

The measurement likelihood (4) can be intepreted as an indicator of those regions of
the state-space that are plausible explanations of the observed measurement value [19]:
e If the value of the likelihood function 1s high, these state values are well supported
by the measurement
e If the likelihood 1s low, these state values are unlikely
e If the likelihood is zero, these state values are incompatible with the measurement

model

As with the Kalman filtering algorithm, we can add a deterministic system input uz_;
(plant control manipulations) to Step 2:

X = fi (1o W1, W) -

The rest of the algorithm remains mntact.



I Simulations (hot-loop model)

. discrete-time state- el
space form e
- hot-loop states (660) o) I
- past inputs (20) S e
. interpolation =
- unknown parameters STy
(5—2)
« random walk model, @
N(0, 0.012) f
e <0, <2 Xkr1 = f (Xk, Up, Wi)
— outputs (108—2) Vi = h(Xg, Vi)
« Measurement noise _ _
(gaussian) . 1l-step-ahead simulations
« O,: N(0O, 0.22) %-vol — sequence length x # particles (=lots of..)
e Tiog: N(O, 52) °C ~ assuming initially in steady state

o« N=500 # particles)
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Simulations (algorithm)

Algorithm 1 HOPE PF parameter estimation algorithm

Initialize algorithm parameters (N, £, ¥,) and particle states x{, > prior knowledge

for k=1...K do > for each sample
Read measurement data: u; and yj.q
for:=1...N do > for each particle
Read particle state Xi, and extract Xi‘?"? ur_1 and 9;;—1
Generate w}, ~ N (0, Xy) > exploration
Compute 8}, = 0], + Wi

Ensure parameter bﬂunds Bmm < 91 < 0 ax
Simulate hot-loop model XH] = f[X? g, Ug1, QL, e 1) > simulation’

Append and store particle state x;.,

Simulate hot-loop model measurement equations yj 41 = h(x bt 1)

Weigh particle by evaluating @}, ; = N (Vre1 — Vi, 2y > measurement
end for
Normalize particle weights wj
Resample particle population with replacement > SIR
Compute on-line statistics of interest. > application
end for

Compute statistics of interest. > application

'Hot-loop model simulation uses 1st order interpolated inputs.
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Simulations (PF)
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Simulations (smoothing)
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Simulations (filtering)

fH,O
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filter distributions k|k
using data up to (but not exceeding) k
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Simulations (UKF)

UKE (unscented Kalman filter) SIR (particle filter)
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I Discussion & Conclusions

. Bayesian state estimation for
model calibration / experiment

test assessment

- both model & measurements
are efficiently used, the role of
the two can be transparently
Interpreted

- theoretically solid

~ estimates/predictions are not
limited to samples,
expectations, or prior
distributions

- simple to implement for any
simulation model
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Discussion & Conclusions Ii

. For more info, see: . Future directions
— user feedback from

lkonen, E., J. Kovacs & J. Ritvanen : _
engineers => further

(2013) Circulating fluidized bed hot-

loop analysis, tuning, and state- devel0p_ments |
estimation using particle filtering. - smoothing UKF algorithms?
International Journal of Innovative _ how to illustrate/use

Computing, Information and Control, 9
(8), pp 3357 — 3376.

Thank you!

SYTE / Department of Process and
Environmental Engineering
http://www.oulu. fi/pyosys
Enso.Ikonen@oulu. fi
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Simulations (smoothing)
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Simulations (smoothing)
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Simulations (smoothing)
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