
Users’ Guide to CFMC-Toolbox

Enso Ikonen

November 30, 2007

Contents

1 CFMC 5
1.1 State evolution . 5
1.2 State estimation . 6
1.3 Controller design . 6

1.3.1 Optimal control . 6
1.3.2 Predictive control . 7

1.4 System analysis . 9
1.4.1 Simple cell mapping 9
1.4.2 Recurrent, absorbing and transient cells 10
1.4.3 Stability, basin-of-attraction and absorbtion time . . . 10

1.5 Learning in GCM . 11
1.5.1 Construction of transition probabilities 11
1.5.2 Identification . 12

2 CFMC Toolbox 14
2.1 Control design procedure . 14
2.2 Computational load and memory requirements 16
2.3 Example session . 16

2.3.1 System equations (Plant fields funf, funh, Ts, Xname,
Uname, Yname) . 17

2.3.2 System discretization (Plant fields Xref, Uref, Yref,
Wref) . 19

2.3.3 Model conversion (Plant fields f and h, with fields P,
L and Nsum) . 20

2.3.4 Control design . 22
2.3.5 System analysis (Sim fields WW and x0,y0,p x0, ...) 24

3 Reference guide 27
3.1 Application dependent files 27

3.1.1 Linear transfer function (LTI-DSS) 27
3.1.2 van der Vusse CSTR (nonlinear ode) 27

3.2 Structures . 28
3.3 Function reference . 30

3.3.1 fun* . 30
3.3.2 gcm allpnts int . 30
3.3.3 gcm automeq . 31

1

3.3.4 gcmbofa . 31
3.3.5 gcm bofa size . 33
3.3.6 gcmccp . 35
3.3.7 gcm chbase . 36
3.3.8 gcm check for grid . 36
3.3.9 gcmcla . 37
3.3.10 gcmclosed . 38
3.3.11 gcm comm . 39
3.3.12 gcmdisp . 41
3.3.13 gcm dispref . 43
3.3.14 gcm eig . 44
3.3.15 gcm eiganalysis . 45
3.3.16 gcm estimate x . 47
3.3.17 gcm estimate y . 48
3.3.18 gcm eucl norm . 49
3.3.19 gcm ff . 50
3.3.20 gcm free . 50
3.3.21 gcm freek . 52
3.3.22 gcm generate model 52
3.3.23 gcm get partitions . 56
3.3.24 gcm inigrid . 56
3.3.25 gcmoptipol . 56
3.3.26 gcm pinf . 57
3.3.27 gcm plotx . 59
3.3.28 gcm pplot . 59
3.3.29 gcmpred online . 60
3.3.30 gcmpredpol . 62
3.3.31 gcmpredpoldp . 63
3.3.32 gcm project . 64
3.3.33 gcm rmse . 65
3.3.34 gcmrun . 66
3.3.35 gcm sampleu . 67
3.3.36 gcm sec2time . 68
3.3.37 gcmsim . 68
3.3.38 gcm simp . 71
3.3.39 gcm sim plot . 71
3.3.40 gcm sim plot io . 72
3.3.41 gcm spsize . 72

2

3.3.42 gcm squeezep . 74
3.3.43 gcmstability . 74
3.3.44 gcm step . 76
3.3.45 gcm v2v . 77
3.3.46 gcm vodesolver . 78
3.3.47 gcm x2s . 79
3.3.48 unrav* . 80
3.3.49 vdv* . 80

4 Future to-do items 81

3

4

1 CFMC

Let the process under study be described by the following discrete-time
dynamic system and measurement equations

x (k) = f (x (k − 1) ,u (k − 1) ,w (k − 1)) (1)

y (k) = h (x (k) ,v (k)) (2)

where f : <nx × <nu × <nw → <nx and h : <nx × <nv → <ny are nonlinear
functions, wk ∈ <nw and vk ∈ <nv are i.i.d. random variables with pdf’s pw
and pv. The initial condition is known via pX (0).

Let the state space be discretized (partitioned) into a finite number of
sets called (state) cells, indexed by s ∈ S = {1, 2, ..., S}. The index s is
determined from

s = argmin
s∈S

°°°x− xrefs °°°
where xrefs are reference points (e.g., cell centers). Similarly, let the control
action and measurement spaces be discretized into cells indexed by a ∈ A =
{1, 2, ..., A} and m ∈M = {1, 2, ...,M}, respectively, and determined using
reference points urefa and yrefm . The discretization results in X = ∪Ss=1Xs,
U = ∪Aa=1Ua and Y = ∪Mm=1Ym. Optionally, a ’sink cell’, ssink can be defined,
where.the domain of a sink cell is the state space outside the domain of

interest. A state is categorized as a sink cell, e.g., if mins∈S
¯̄̄
xi − xrefs,i

¯̄̄
> xlimi

for any state dimension i.
The evolution of the system can now be approximated as a controlled

finite (state) Markov chain (CFMC) over the cell space. Using alternative
terminology, in simple cell mapping (SCM) one trajectory is computed for
each cell. Generalized cell mapping (GCM) considers multiple trajectories
starting from within each cell, and can be interpreted in a probabilistic sense.

1.1 State evolution

Let the state pdf be approximated as a S×1 cell probability vector pX (k) =
[pX,s (k)] where pX,s (k) is the cell probability mass. The evolution of cell
probability vectors is described by a Markov chain represented by a set of
linear equations

pX (k + 1) = P
a(k)pX (k)

5

or, equivalently,

pX,s0 (k + 1) =
X
s∈S

pas0,spX,s (k)

where Pa is the transition probability matrix under action a, Pa =
h
pas0,s

i
pas0,s =

Z
Xs
p (x (k + 1) ∈ Xs0 |x (k) ∈ Xs, u (k) ∈ Ua) dx.

1.2 State estimation

The likelihood of obtaining a measurement cell m, when the system state
cell is s, is given by the likelihood matrix L, L = [lm,s]

lm,s =

Z
Ym
p (y ∈ Ym|x ∈ Xs) dy

Let a row in the likelihood matrix be denoted as a likelihood vector
lm. Given the current likelihood vector and the previous posterior proba-
bility vector pX (k − 1), a Bayesian estimate of the cell probability can be
constructed,

pX (k) ∝ lm ⊗Pa(k)pX (k − 1) ,
where ⊗ is the Haddamard product (component multiplication).

1.3 Controller design

1.3.1 Optimal control

In optimal control, the control task is to find an appropriate mapping (op-
timal policy or control table) π from states (x) to control actions (u), given
the immediate costs r (x (k) ,u (k)). The infinite-horizon discounted model
attempts to minimize the geometrically discounted immediate costs

J (x) =
∞X
k=0

γkr (x (k) ,π (x (k)))

under initial conditions x (0) = x. The optimal control policy π∗ is the one
that minimizes J . The optimal cost-to-go is given by J∗ = minπ J .

6

Bellman’s principle of optimality states that

J∗ (x) = min
u
[r (x,u) + γJ∗ (f (x,u))]

i.e., the optimal solution (value) for state x is the sum of immediate costs
r and the optimal cost-to-go from the next state, J∗ (f (x,u)). Application
of the Bellman equation leads to methods of dynamic programming.

Value iteration In value iteration, the optimal value function is deter-
mined by a simple iterative algorithm derived directly from the Bellman
equation. Let the immediate costs be given in matrix R = [ra], with col-
umn vectors ra = [ras], and collect the values of the cost-to-go at iteration i
into a vector J∗ (i) = [J∗s (i)]. Given arbitrary initial values J∗s (0), the costs
are updated for i = 0, 1, 2, ...:

Qas (i) = ras + γ
X
s0∈S

pas0,sJ
∗
s0 (i)

J∗s (i+ 1) = min
a∈A

Qas (i)

∀s, a, until the values of J∗s (i) converge. Denote the converged values by
J∗s . The optimal policy is then obtained from

π∗s = argmin
a∈A

"
ras + γ

X
s0∈S

pas0,sJ
∗
s0

#
.

1.3.2 Predictive control

Given a system model and the associated costs, we can easily set up a
predictive control type of a problem. In predictive control, the costs are
minimized in an open loop in a fixed horizon

J (x (k) , ...,x (k +Hp) ,u (k) , ...,u (k +Hp)) =

HpX
h=0

r (x (k + h) ,u (k + h))

under initial conditions x. In practice it is useful to introduce a control
horizon, where it is assumed that the control action will remain fixed af-
ter a given number of steps, Hc. Often only one step is allowed and the

7

optimization problem reduces to the minimization of

J (x (k) , ...,x (k +Hp) ,u (k)) =

HpX
h=0

r (x (k + h) ,u (k))

Exhaustive search Under control action a, the costs are given by

Ja =

HpX
h=0

[ra]T pX (k + h) =

HpX
h=0

[ra]T [Pa]h pX (k)

where ra = [ras] is a column vector of immediate costs and pX (k) is current
state cell pdf. In order to solve the problem, it suffices to evaluate the costs
for all a ∈ A and select the one minimizing the costs. The prediction horizon
Hp is a useful tuning parameter; a long prediction horizon leads to mean
level type of control.

The control policy mapping π¦ can be obtained by solving the above
problem in each state s and tabulating the results:

π¦s = argmina Ja.

Control horizons greater than one For many practical cases, a good
controller design can be obtained using either the optimal control approach,
or the predictive control approach withHc = 1. Whereas the optimal control
tends to result in ”agressive” control actions in terms of the plant input (even
if optimal in terms of the cost function), the predictive control approach
provides a variety of responses as a function of the prediction horizon, Hp.
With a smallHp, an agressive control is obtained. A largeHp results in mean
level control where the closed loop shares the open loop plant dynamics.
In some cases, however, an engineer may be interested in extending the
controller design possibilities to larger control horizons. In principle, this
is straightforward to realize in the CFMC context: One simply creates A
different sequences of control actions, simulates the system accordingly, and
selects the sequence that minimizes the cost function.

With large Hc, the search space of the exhaustive search can become too
large for practical purposes, however. Luckily, in process engineering one is
commonly interested in control sequences which fulfill rate constraints, one
prefers to avoid jiggering, etc. With some simple rules, the set of appropriate

8

control sequences can be reduced to a manageable size. Notice, however,
that if sufficient information concerning the constraints is not contained
in the cost description (R), the optimal control policy (table) can not be
constructed off-line. If the optimal control action is solved on-line, one is free
to select the potential control sequencies based on any available information.

Example 1 Let us consider implementing a cost on ∆u (k), where the costs are
described by r (x (k) , u (k)). If a predictive controller is to be designed off-line, the state
x (k) must contain information about past control, u (k − 1), otherwise the function
r does not have sufficient information for computing ∆u (k). If, on the contrary, the
control action is designed on-line, one can omit control actions far from u (k − 1) from
the set of control actions to be examined. This implements a hard limit on ∆u (k).
Alternatively, one may change R at each sampling instant (on-line) so as to reflect its
relation to past u (k − 1).

1.4 System analysis

The generalized cell-to-cell mapping is a powerful tool for analysis of non-
linear systems. In what follows, it is assumed that the system map (Markov
chain) is described by transition probabilities P. This may correspond to the
process output under a fixed (open loop) control action a (P := Pa) or the
systems closed loop behavior obtained from the construction of transition

probabilities under u = π (x): Pπ =
h
pπs0,s

i
, where

pπs0,s =

Z
Xs
p (x (k + 1) ∈ Xs0 |x (k) ∈ Xs, u (k) = π∗s) dx.

1.4.1 Simple cell mapping

Before proceeding to analysis using the generalized cell map (GCM), it can
be enlightning to look at the case of simple cell mapping (SCM). A dominant
SCM can be constructed from a GCM by selecting the most likely image
cells and setting their probabilities to ones. Using the unravelling algorithm
(Hsu, 1987, Sec 8.2.2), one can quickly examine the dynamic behavior of the
dominant SCM (in hopes to grasp some of the essentials of the dynamics
of the GCM). In particular, using the unravelling algorithm we obtain the
persistent groups and their periods, as well as the step numbers for each of
the cells to converge to one of these groups. Grouping cells with same group
numbers gives the domain of attraction for a particular persistent group.

9

1.4.2 Recurrent, absorbing and transient cells

Recurrent cells can be located by studying the long term behavior of the
finite Markov chains (FMC). The steady state probability distribution sat-
isfies pX = PpX and, consequently, the distribution must be an eigenvector
of P. For the distribution to be a probability distribution, the eivenvalue
must be one. Therefore, the recurrent cells are found by searching for the
unit amplitude eigenvalues of P; the nonzero elements of the associated
eigenvectors pX point to the recurrent cells. The cells that are not recur-
rent, are transient. Cells which have a zero probability for entering other
cells, are absorbing.

Decomposing the probability vector into recurrent cells (ir ∈ Ir) and
transient cells (it ∈ It), the Markov chain can be written as follows:·

pr (k + 1)
pt (k + 1)

¸
=

·
Prr Prt
0 Ptt

¸ ·
pr (k)
pt (k)

¸
As k →∞, the recurrent cells are visited infinitely often, whereas the tran-
sient cells are visited only finitely often. Among the recurrent cells, we can
further classify the absorbing cells, (ia ∈ Ia):

Paa = I.

The absorbing states are never left, when visisted. The recurrent cells form
communicating classes, where the cells within each communicating class
communicate with each other, i.e., the probability of transition from one
state to the other is nonzero. Each absorbing state only communicates with
itself.

1.4.3 Stability, basin-of-attraction and absorbtion time

Analysis of stability and basin-of-attraction are based on the stationary
transition probability map P∞ = limk→∞Pk. For periodic processes, a
time average is used. The stationary distribution, starting from initial dis-
tribution p0, is obtained from p∞ = P∞p0.

Stability The sink cell is an absorbing cell that represents the entire region
outside the domain of interest. A nonzero probability to enter the sink cell
indicates unstability of the system (given the resolution of the model).

10

Basin-of-attraction Examination of the behavior of transient cells as
they enter the recurrent cells reveals the dynamics of the nonlinear system.
We have that

pr (k + 1) = Prrpr (k) +Prtpt (k)

= Prrpr (k) +PrtP
k
ttpt (0)

where PrtP
k
tt represents the conditional probability that a solution starting

from a transient cell will pass into an recurrent cell at time k + 1. The
probability that this will eventually happen, Pt2r, is given by

Pt2r =
∞X
k=0

PrtP
k
tt = Prt

∞X
k=0

Pktt = Prt (I−Ptt)−1

The basin-of-attraction of cell s0 is given by the set of cell indexes s, where
cells s have a nonzero probability of entering the cell s0, i.e. arg pt2r,s0,s > 0.
The size of the basin of attraction for a given recurrent state cell i is obtained
by taking a sum of the elements in the row of Pt2r associated with cell i,
plus the stationary distribution associated with the cell i.

Absorbtion time The expected absorbtion time from the i’th state to
the j’th state (i ∈ It, j ∈ Ir), E {k}, is obtained from:

E {k} = Prt
∞X
k=0

kPktt = Prt (I−Ptt)−2 .

1.5 Learning in GCM

Probabilistic transition maps are rarely available a priori for controlled pro-
cesses. Therefore learning probability transition maps is a central task in
CFMC’s.

1.5.1 Construction of transition probabilities

If an accurate model (f , h) of the system is available, the CFMC transition
matrix P can be constructed by sampling the model. An initial state vector,
xs, is sampled uniformly from the support of cell s (xs ∈ Xs), and the a’th
control action, urefa , is used as plant control input. The transition matrix is
then constructed by simulating the plant model xs0 = f

¡
xs,u

ref
a

¢
for each

11

s and a, and counting the number of observed transitions from state s to s0

(nas0,s):

pas0,s =
nas0,sPS

s00=1 n
a
s00,s

If the system state-action pairs are evaluated once (e = 1), a SCM map
is obtained, i.e., the P-matrix will be binary-valued. As the number of
exhaustive evaluations e increases, a more and more refined CFMC map
will be obtained. Note that there are multiple sources for ’uncertainty’:
discretization error (one initial state in a set Xs maps to state Xs0 , while
another may map to Xs00), noise {w} in states (in case of stochastic models),
or noise in state measurements (not explicitely considered above), etc.

A similar Monte Carlo approach can be performed to compute the likeli-
hood mass lm,s in the likelihood matrix L. I.e., the system state is uniformly
sampled from Xs and the plant output is constructed based on the measure-
ment equation h. The likelihood matrix is then costructed from

lm,s =
nm,sPM
m0 nm0,s

1.5.2 Identification

If a model is not available, the CFMC transition probability matrices Pa

can be learned from measured data, by counting the number of observed
transitions. For one update, all that is required are two successive state
vectors and a control: x (k) ,u (k) ,x (k + 1), for a given sampling time Ts.
Therefore, all past or on-line recorded data-triplets can be efficiently used.
For likelihood matrix L, a similar procedure can be applied.

Update of a large map may require an excessive number of samples,
however, and parts of the model space may never be visited in real life, due
to constraints in time and plant operation. This rises up the question of
efficient and practical identification procedures. Typically, local updating
procedures can be found and efficiently implemented. These are, however,
always based on some a priori knowledge on the plant characteristics, such as
smoothness or other structural information on f . Accompagned with careful
design of experiments (statistics, interpolation / approximation techniques,
focusing on control-relevant properties), the number of experiments required
on real plant can be greatly reduced.

12

In real applications, the system state may not be measurable, or the
measurement is severily corrupted by noise. If a system model (Pa’s, L)
is available, a state estimator can be constructed. In some cases it can be
more convenient to describe the system states based on delayed input—output
measurements, leading to CMC—ARX models. If system inputs and outputs
are measurable, the states of this type of models are always measurable.
However, the state may not be minimal, and if the measurements are noisy
a state estimator (an observer or a filter) may provide useful.

13

2 CFMC Toolbox

CFMC-toolbox is a MATLAB implementation of model conversion, con-
troller design and open/closed loop analysis operations. First, a sample
session illustrates the main functionalities of the CFMC-toolbox. This is
followed by reference guide of the toolbox functions, in the next chapter.

2.1 Control design procedure

To start with, let us assume the following control design problem: We have
a state-space model of the plant, and we have decided which input, state,
and output variables to use. These tasks are far from trivial, but since the
CFMC design can not help in this problem (albeit indirectly) we will assume
that this selection has been made.

We now wish to design a controller that runs the plant output between
given set points. A typical CFMC design procedure would involve the fol-
lowing (iterative) steps:

• Set model resolution by specifying discretization of plant inputs,
states, outputs and output set points; and sampling time.

— X , U , Y, and W; Ts in Plant.Xref, Plant.Uref, Plant.Yref
and Plant.Wref; Plant.Ts.

• Set control targets by specifying immediate costs:

— r (x,u) in Cost.R.

• Build a GCM plant model (by successive evaluations of the original
model, and counting the occurred state transitions).

— Pa’s and L in Plant.f(a).P and Plant.h.L

— Implemented in gcm generate model.

• Analyze the behavior of the GCM plant model.

— simulate step responses, i.e. response from a given initial state
using a fixed control action (implemented in gcm step)

14

— analyze plant map from plant input to plant output. Imple-
mented in:

∗ gcm eiganalysis, (examine absorbing/ recurrent/ transient
cells, probabilities of transition, expected times)

∗ gcm pinf (examine stationary distributions)
∗ gcmbofa (examine basins-of-attractions for recurrent states,
i.e. stationary analysis)

∗ gcm comm (examine communicating classes)

• Design an optimal or predictive controller, based on the CFMC plant
model presentation:

— solve for π∗ in Cost(q).Pi, where q referes to a set point

— Implemented in gcmoptipol or gcmpredpol.

— Examine different controller parameter settings (implemented in
gcmccp).

• Build a GCM closed-loop model of the closed-loop, formed by the
original model and the controller.

— build the closed-loop map

— implemented in gcmclosed.

• Analyze the behavior of the GCM closed-loop model:

— Simulate performance of designed controller using original plant
model. The reference and disturbances are defined in structure
Sim. (Implemented in gcmsim)

— Simulate set point control, i.e., a step in set point, from a given
initial state (implemented in gcm free)

— analyze closed-loop map (from setpoint to plant output) using:

∗ gcm eiganalysis
∗ gcm pinf (compute stationary map)
∗ gcm comm (sort cells into communicating classes)

15

2.2 Computational load and memory requirements

The steps involved in model building and controller design may be time
and memory intensive. The following list outlines the essential components
affecting computational load, time and memory requirements:

• The S × nx state reference points need to be stored in memory, as
well as S × A immediate costs. Assuming a grid-discretization, the
number of cells will be S =

Q
ni, where ni is the resolution (number

of discretizations) in the i’th dimension of the state.

• When building a GCM plant model, in general, all S×A discrete states
need to be visited. To have a 1%-unit precision for the distribution of
probability transfer, at least 100 evaluations of the original model are
required, for each state-action pair. Consequently, 100SA evaluations
would be required. The S×S×A elements of the probability transition
matrices need to be stored, as well as S ×A counter values.

• In optimal control, the Bellman equation needs to be solved, where
the matrix Q is of size S ×A. In solving predictive control problems,
cumulative cost matrices of size A×S need to be stored. The time re-
quired to solve predictive problems is directly related with the horizon
length, Hp.

It clear that the memory requirements are far from feasible. The remedy,
however, is in that the probability transition matrices are sparse. Noticing
that most of the elements in the probability transition matrices are zeros, the
memory requirements (as well as computational load) are greatly reduced.
With the help of MATLAB sparce matrix facilities, the computations can
be easily implemented using sparse matrices. Another central requirement
in MATLAB coding is the use of vectorization wherever possible.

2.3 Example session

In what follows, the main features needed for initializing and running the
CFMC toolbox are covered.

Example 2 (LTI-DSS) The script fun test.m provides an example of the code
functionalities. Typing fun test in the MATLAB command window shows a sample
example on how to build a CFMC model, design a optimal controller, and how to

16

analyse the system. The plant to be controlled is a linear time-invariant (LTI) discrete
time system.

Example 3 (nonlinear ode) If the original plant model is based on an ode-
description, the continuous time plant equations need to be solved Ts times ahead.
These can efficiently be solved using ode23 routines, and exploiting the batch for for
solving the equations. The script vdv5 test provides an example on predictive multi-
variable control based on plant ode-description of a nonlinear CSTR (continuous stirred
tank reactor) system governed by van der Vusse (vdv) equations.

2.3.1 System equations (Plant fields funf, funh, Ts, Xname, Uname,
Yname)

The system model is given in a discrete-time state space form in two m-files
provided by the user. They provide means for computing DSS-state and
measurement equations. Names of these files are stored as strings in the
Plant-structure, in fields funf and funh.

The basic syntax for the system equations (1)—(2) is

Xk1 = funf(Xk,Uk,<Ts>)

Yk = funh(Xk)

where the state, control and measurement are in the respective columns of
the variables; Ts is the sampling time (scalar) stored in a respective field in
the Plant structure.

Names of the state, control and output variables are stored in the Plant
structure, in respective fields: Xname, Uname and Yname.

Remarks

• The functions funf and funh should be implemented so that input
state can be given as a matrix (with N columns). The output argu-
ments should return the system state and measurement for each of the
N columns.

• If the original system model is an ode (i.e., continuous time), the funf
should perform the sampling (i.e., solve the ode Ts time units ahead
from the initial state).

• The functions are used for simulation purposes, and may include noise
sources.

17

• It is convenient to code initial / nominal info in (or via) funf and
funh (see sample files for syntax). This includes information on the
default sampling time, as well as nominal (typical) values, min—max
range, and names of the variables (state, control and measurement).
These functionalities can be used by automatic CFMC model set-up
procedures.

Example 4 (LTI-DSS) The system DSS equations are implemented in files funf.m
and funh.m. The plant set up procedure is illustrated in fun plant setup.m. which
reads the initial/nominal information from funf and funh.

Example 5 (nonlinear ode) The CSTR system DSS equations are used via
vdvf5.m and vdvh.m. These files accept as their input argument a column matrix of
initial states. The system equation M-function (vdvf5.m) runs a vectorized ode-solver
(gcm vodesolver), which then uses the ode described in vdvdv5.m . The parameters
of the CSTR are specified in a separate M-script, vdvparam.

The gcm vodesolver takes as its input argument a handle for the system ode-
equations, a column matrix of system states, the control input vector, and the sampling
time. It returns a column-matrix of states at the next sampling instant. The task of
the vectorized ode-solver is to solve the equations for the (presumable large amount
of) initial states in an efficient batch-wise manner. In order to do so, it uses Matlab’s
standard ode-solvers.

Therefore, the system equation ode need to be given in a standard odefile in format
xdot=odefile(t,x,u). However, the odefile must accept the system equations to be
solved simultaneously for multiple state vectors. Here’s the trick: The multiple input
vectors are given in the input argument x, which is constructed by catting state vectors
on top of each other. Consequently, the output argument xdot must also be a vector
of same size as x. In order for the above scheme to work, the odefile must understand
that the ’pseudo’-state x in fact contains multiple state vectors.

In general, the system equations remain more transparent if each row represents
a state, and the different state vectors are handled by each column. In the remaining
code, each column of x can then be handled as if it was a separate system state.
The function gcm v2v performs the necessary vector-to-matrix and matrix-to-vector
transitions.

This somewhat cumbersome procedure enables efficient vectorized solving of the
ode-equations, yet preserving the transparency in implementation of the ode’s. Recall
that spending too much time for solving the ode equations soon makes the CFMC
approach unfeasible (!)

The measurement equation m-file (vdvh.m) simply returns the second state as the
output measurement.

18

2.3.2 System discretization (Plant fields Xref, Uref, Yref, Wref)

A fundamental step in CFMC is discretization of the state, control and
measurement spaces. Information on these is stored in the Plant-structure,
in fields Xref, Uref, Yref and Wref.

State and measurement spaces The discretization of state space is
based on reference points. Each point in the continuous space is mapped to
a cell associated with the closest reference point. The discretization consists
of S reference points, given as column vectors in Xref of size nX × S. The
(output) measurement space is discretized in a similar manner, in Yref,
nY ×M .

• In what follows, a grid-based implementation is considered. Any set
of reference points can be used, but the computational complexity of
evaluating the mapping from a multidimensional point in real space
to an index in a discrete space (implemented in m-file gcm x2s) soon
makes other approaches infeasible. In a grid-based approach, the map-
ping will require unidimensional searches only.

• The existance of a sink cell is indicated by the presence of a reference
state with infinite components. A sink cell in the output measurement
spaceis defined in a similar fashion. Any point in the real space which
is outside of the region half the distance between two outermost dis-
cretizations, in any grid direction, will be considered to map into the
sink cell.

Action and reference spaces The action space is the set of possible
control inputs. Each is a column vector given in Uref, which consists of A
actions of size nU×A. The reference set Wref consists of a set of Q possible
targets (set points in optimal control), nY×Q. It can, but need not, be the
same as the measurement space.

Example 6 (LTI-DSS) A sample file fun plant setup illustrates how to generate
a grid-based discretization. Discretization is given for each dimension separately, and
gcm inigrid is used to create a multidimensional hypercube. The main m-script
fun test calls the fun plant setup m-file. After generating the discretizations, a
vector with infinite elements is added to both state and measurement reference matrices,
Xref and Yref, indicating the use of a sink cell.

19

Example 7 (nonlinear ode) The discretization of the five-state van der Vusse
CSTR is given in vdv5 plant setup.

2.3.3 Model conversion (Plant fields f and h, with fields P, L and
Nsum)

Given the discretization and a plant model, a CFMC (GCM) map can be
constructed. The procedure consists of simulating the system equations from
a random initial point within each state cell. The simulations are conducted
for each control action. The resulting image states are observed. A counter
of transitions from each state cell—action pair to the next cell is updated
and stored in the memory. Repeating this a large number of times allows to
build a probability density map: the transition probability distribution.

The command for building a CFMC model (converting the model in
system equation -form to CFMC form) is as follows

Plant = gcm generate model(Plant)

This command updates the fields f and h in the Plant-structure.

Structure of Plant.f and Plant.h f is a vector where each element
contains information on a particular control action. f itself is a vector
structure with fields P (probability transition maps) and Nsum (count of
transitions from a cell). The element pas0,s of the probability transition map,
P, is obtained from

Plant.f(a).P(sdot, s)

Similarly, Plant.f(a).P(:,s) gives the probability distribution (in
a frequentist sence) of transitions from cell s under action a.
Plant.f(a).Nsum(s) gives the number of observed transitions from cell
s, under action a.

The field h contains similar information for the output measurement: in
fields Nsum (counts) and L (likelihoods). Hence

Plant.h.L(m, s)

gives the likelihood of observing measurement m when in state s,
Plant.h.L(:,s) gives the probability distribution for the output measure-
ment (again, in a frequentist sence), where s is the current state-cell.

20

Remarks

• Fields P, L and N are stored as sparse matrices. Using MATLAB-
command full converts from sparse to full.

• When gcm generate model is used for the first time (when there’s
no field f in Plant), the initial state for each cell will be the ref-
erence point Plant.Xref. For consequtive evaluations, a uniformly
distributed random point within the hypercube is used as an initial
point. Typically, tens of realizations should be averaged in order to
get a feasible probability transition map.

• Use gcm step to simulate trajectories of probability densities from a
given initial point, under a fixed control action.

Example 8 (LTI-DSS) The example fun test calls repeatedly for
gcm generate model. From time to time, a controller is redesigned and the
closed-loop performance is assessed, so as to determine when a sufficient number of
plant samples has been simulated.
We find the state corresponding to nominal state using gcm x2s:

[Ts,Xnom,Unom]=funf;

snom = gcm x2s(Xnom, Plant.Xref);

anom = gcm x2s(Unom, Plant.Uref);

Eigenvalue analysis provides us information on absorbing, recurrent and transient states,
as well as largest expected times of transitions:

[EA, P t2r, Et t2r, Et stat] = gcm eiganalysis(Plant, anom);

In EA, the fields ipa, ipr and ipt list cells that are absorbing, recurrent or transient.
EA.ipa always includes the sink cell. Et stat is a structure with a field maxEt, which
gives the maximum expected time of transition to each of the recurrent cells. A wealth
of other information is also provided. The relationships between the recurrent cells can
be analysed using

CClass = gcm comm(Plant, anom);

where CClass is an array where each element lists indexes to states that form a commu-
nicating class. A sink cell will always form one communicating class with one member
only.

21

The step response trajectories of the transition probabilities from a given state under
a given control action are simulated using gcm step. A plot of the step reseponse from
the nominal state under the nominal action is obtained using:

gcm step(Plant, snom, anom)

The size of basin-of-attraction can be examined using gcmbofa. It computes the size of
basin of attraction for each output state, for each step input (in steady state). Sizes of
basins-of-attraction can be further projected to a subset of all states. If the first state
is the plant output, then projecting towards the first state reveals size of the basin of
attraction for each plant output:

BofA = gcmbofa(Plant);

gcmbofa(BofA, [], 1, anom);

Example 9 (nonlinear ode) The sample script for updating the CSTR
model/controller is in vdv5 test.

2.3.4 Control design

Two types of control design are supported: optimal and predictive. In
both control designs, the control spesifications are given via immediate costs
(costs at each sampling instant). The overall cost, minimized in the proce-
dure, consists of minimization of the sum of future immediate costs, either
in an discounted infinite horizon, or a finite horizon. Assuming that the
plant state is unique, certain and known, both solutions can be presented
as a deterministic control policy. This policy can be tabulated as a function
of state cell s (and set point q). Control design consists then of

• a) setting the immediate costs,
• b) setting the parameters adjusting the future horizon, and
• c) solving the optimization problem.

Control specifications (Cost fields R and controllertype, and gam
or H p) The Cost structure contains the immediate costs for being in cell
s and taking action a, given a target reference q:

Cost(q).R(s, a)

22

Example 10 (LTI-DSS) For the example case, costs are defined in
fun control setup. The m-file sets field R (immediate costs) of the Cost

structure using squared error at the output. A high cost is set for the sink cell.

Example 11 (nonlinear ode) The same costs (squared deviation on plant output)
in fun control setup can be used in the CSTR-case, too.

Two types of controllers can be defined, specified in field
controllertype:

• An optimal controller uses value iteration to solve for the optimal
(set point) control policy. controllertype is set to ’optimal’. The
discount factor is given as an additional parameter Cost(q).gam. The
controller is solved using gcmoptipol.

• A predictive controller uses value exhaustive search to solve for the
optimal control policy. controllertype is set to ’predictive’. The
prediction horizon is given as an additiona parameter Cost(q).H p.
The controller is solved using gcmpredpol.

• For the time being, only control horizons of 1 are considered. M-file
gcmpredpoldp implements H c larger than one (not fully integrated to
toolbox, yet).

Solving for controllers (Cost fields Pi and Jstar) The numerical
solutions of the controllers are obtained by running either of the following
commands for each set point q: For optimal controller:

Cost = gcmoptipol(Plant, Cost)

For predictive controller

Cost = gcmpredpol(Plant, Cost)

The optimal control policies (tables) are stored in Cost(q).Pi(s), which
gives the optimal control action if the system is in cell s and the target
(cell) is q.

23

Remarks

• An approximate relation between γ and Hp is given by, Hp ≈
1/ (1− γ).

• gcmoptipol and gcmprepol can also be solved for one set point only,
by using q as a third argument.

• The solution routine for the optimal controller stores the optimal cost-
to-go in the Cost-structure field Jstar. For predictive control, the
expected cost in the prediction horizon is stored.

2.3.5 System analysis (Sim fields WW and x0,y0,p x0, ...)

A closed loop CFMC map is constructed using

Plant cl = gcmclosed(Plant, Cost)

The resulting CFMC map is a description of the closed loop system, consist-
ing of the plant (in Plant) and controller (Cost). The Plant cl-structure
is a copy of the Plant-structure, with the following exceptions:

Plant cl.f(q).P(s, sdot)

will describe the probability of evolution of the closed loop system from cell
s to cell s with the q’th set point controller. Also Uref is replaced by Wref,
as well as Uname by Wname, and Wname is set to ’closed-loop’.

Stability The stability of closed-loop mapping can be examined by looking
at the probabilities of entering the sink cell. The percentage of stable (p =
0), unstable (p = 1) and potentially unstable (0 < p < 1) cells are computed
and plotted for each set point q using

gcmstability(Plant cl)

Communicating classes and speed of response The cells of the
closed-loop mapping can be analyzed using gcm comm:

CClass = gcm comm(Plant cl)

24

which returns the list of indexes to cells that form communicating classes.
An overview to the associated points in real space can be obtained using
gcm dispref, e.g.

gcm dispref(CClass{1}, Plant.Xref)

A more detailed analysis of properties of communicating classes can be ob-
tained by using the probability transition matrix as the input argument. For
example, for a given set point q:

P cl = Plant cl.f(q).P;

[CClass, BofA cells, Et cells] = gcm comm(P cl)

returns also the cells that map to a particular communicating class with a
non-zero probability (BofA cells). These cells form the basin-of-attraction
of this communicating class. The expected time of absorbtion to the com-
municating class is returned as the third output argument (Et cells).

Example 12 (LTI-DSS) The fastest and slowest transition to the first communi-
cating class for the 1’st set point is found and plotted using the following commands.
First let us generate information on the communicating classes

q = 1

P cl = Plant cl.f(q).P;

[CClass, BofA cells, Et cells] = gcm comm(P cl)

Then we look for indexes to cells from where the fastest and slowest trajectories depart:

ia = find(Et cells{1} ==min (Et cells{1}))
sa = Bofa cells{1}(ia); sa = sa(1);
ib = find(Et cells{1} ==max (Et cells{1}))
sb = Bofa cells{1}(ib)

Finally, we plot these trajectories

T = 100;

figure(1); gcm step(Plant cl, sa, q, T);

figure(2); gcm step(Plant cl, sb, q, T);

25

Simulation Just as with the plant model, the closed-loop step response
(set point response) of the state pdf can be simulated and plotted using
gcm step

gcm step(Plant cl, s, w)

where s is the current system cell, and w is the reference cell index.
Closed-loop set point responses can also be plotted using the gcm free and
gcm freek commands:

gcm free(Plant, Cost, s, q, T);

gcm freek(Plant, Cost, s, q, T);

The former computes the trajectory using the CFMC model and plots the
response in terms of state pdf. The latter computes the trajectory using the
DSS model (funf), and shows a (sample) trajectory in real space.

Given the designed controller, ”true” plant model with initial conditions,
and a reference trajectory, the closed loop system can then be simulated,
using gcm sim. Simple plots of the plant behavior are produced in terms of
the evolution of states, outputs and system control actions for the specified
reference trajectory. The Sim-structure contains following fields: WW con-
tains the target trajectory, desired outputs for each value of k are given in
respective rows. Fields x0, y0 and p x0 are column vectors that define the
initial state for simulation.

Example 13 (LTI-DSS) An example of a simulation set-up is given in script
fun simulation setup. It generates a random step/ramp sequence based on nominal
info on the system.

Example 14 (nonlinear ode) The fun simulation setup can also be used for
initializing the Sim-structure in the CSTR-case.

26

3 Reference guide

This section provides a detailed function reference with examples. The M-
files can be categorized into two sets of M-functions (or M-scripts): appli-
cation dependent and general purpose functions.

3.1 Application dependent files

The toolbox comes with a set of descriptions for two example cases, the fun-
set and the vdv5-set. These file and structure names are examples provided
with the toolbox; in new applications these are to be replaced by descriptions
corresponding to the application in question. Notice, that file and structure
names can be changed, but names for fields in structures must be followed
exactly.

3.1.1 Linear transfer function (LTI-DSS)

fun test is a start-up script that runs the CFMC toolbox example for
controlling a linear system.

• fun plant setup is a sample model set-up.
• fun control setup is a sample control set-up.
• fun simulation setup is a sample simulation set-up.
• funf, funh is a discrete-time state-space DSS plant description for a
linear second order non-minimum phase system

Y (s)

U (s)
= k

βs+ 1

(τ1s+ 1) (τ2s+ 1)

with k = 2; β = −5, τ1 = 2 and τ2 = 10.

• funf1, is a discrete-time state-space DSS plant description for a first
order system Y (s)

U(s) =
k

τs+1 , where k = 2, τ = 5.

3.1.2 van der Vusse CSTR (nonlinear ode)

vdv5 test is a start-up script that runs the CFMC toolbox example for
controlling a nonlinear system.

27

• vdv5 plant setup is a sample model set-up.
• vdvf5, vdvh is a sampled van der Vusse plant description. Van der
Vusse plant is a CSTR (continuous stirred tank reactor) which is has
non-monotone havior and non-linear non-minimum phase dynamics.
The original model is in ode-form, in vdvdv5 and vdvparam.

3.2 Structures

The information on plant and controller is collected in structures. The Plant
and Cost structures are described in the following. Some of the analysis data
are also collected in structures, for details on these see function references
for gcmsim (Sim-structure), gcmbofa (BofA-structure), gcm comm (CClass-
structure), and gcm eiganalys (EA-structure).

Plant-structure The Plant-structure contains information on discretiza-
tion, the CFMC model, and sampling time, among other things. Discretiza-
tion information is presented as column vectors of reference points for plant
states, inputs, outputs and controller set points (control targets). In general,
points in continuous spaces map to the closest reference point in respective
discrete space. Also names for these variables are stored, to be used in
plots and alike. The Plant-structure stores the CFMC-model of the plant,
i.e., the transition probability matrices and counters of observed transitions.
The Plant-structure contains the following fields:

• f-vector structure of size A, with fields

— P, a sparse S × S transition probability matrix. The transition
probability from cell s to cell s0 (sdot) under action a is stored in

Plant.f(a).P(sdot, s)

— Nsum, a S-vector of counters of observed transitions from cell
s. The number of observed visits to cell s (under action a) is
obtained from Plant.f(a).Nsum(s).

• h. a structure with fields

28

— L, a sparse M × S likelihood probability matrix. The likelihood
of observing a measurement m when in cell s is stored in

Plant.h.L(m, s)

— Nsum, a S-vector of counters of observed measurements, when in
cell s.

• Ts, sampling time (scalar)
• Uname, an array containing string(s) for name(s) of the control vari-
ables. Uname{d} contains the string for the d’th variable.

• Uref, a nU × A matrix of column vectors of plant control inputs.
Plant.Uref(:,a) specifies the a’th control action.

• Wname, an array containing string(s) for name(s) of the target variables.
• Wref, a nY × Q matrix of column vectors of controller set points.
Plant.Wref(:,q) specifies the q’th set point.

• Xname, an array containing string(s) for name(s) of the state variables.
• Xref, a nX × S matrix of column vectors of state cell referenc. The
reference state associated with the s’th (state) cell is specified in

Plant.Xref(:, s)

• Yname, an array containing string(s) for name(s) of the output vari-
ables.

• Yref, a nY×M matrix of column vectors of state cell reference points.
Plant.Yref(:,m) specifies the reference measurement associated with
the m’th output cell.

Cost-structure The Cost-structure contains information on control spec-
ifications, controller parameters, and control policy. Control specifications
are given as immediate costs for each state cell-action pair. Controller pa-
rameters depend on controller type (optimal, predictive). Control policy is
a table of control action to apply in each state cell. The Cost-structure is a
vector structure, where Cost(q) contains information on the q’th set point
controller. Each controller is specified by the following fields:

29

• gam, a scalar discount factor (in optimal control)
• H c, a scalar control horizon (in predictive control with gcmpredpoldp)
• H p, a scalar prediction horizon (in predictive control)
• Jstar, a S-vector of expected discounted costs(optimal control), or
expected costs in the prediction horizon (predictive control).

• Pi, the control policy. For the q’th set point controller, the control
action a to apply when in state cell s is obtained from Cost(q).Pi(s).
The real-valued control u to be applied to the plant is obtained using

a = Cost(q).Pi(s)

u = Plant.Uref(:, a)

• R, a S×A matrix of immediate costs. For the q’th set point controller,
with its set point at Plant.Yref(:,q), the immediate costs for being
in state s and applying an action a are obtained from Cost(q).R(s, a).

3.3 Function reference

3.3.1 fun*

Sample files for the fun-example, see Section 3.1.

3.3.2 gcm allpnts int

Create indexes to all elements in a hypercube where each dimesion contains
a given number of elements

COORD = gcm allpnts int(HC)

• HC is a m-vector of the number of elements in each dimension
• COORD a list of all different combinations of vector elements,
prod(HC)×m. Each row lists the indexes to one combination.

This function is used for creating points in a grid of a given size. It is
implemented as recurrent function.

30

Example 15 Indexes to all elements in a two-dimensional square, with two elements
in one direction and three elements in the second direction are obtained as follows:

gcm allpnts int([2 3])

which returns a 6x2 matrix 
1 1
1 2
1 3
2 1
2 2
2 3


Uses: gcm allpnts int

3.3.3 gcm automeq

Take a random element e from a list v

e = gcm automeq(v)

where each element of the vector v has an equal probability to be selected.

Example 16 To select randomly one element from list [1,4,17,22] use the following
command: gcm automeq([1 4 17 22]), returns, e.g., 22.

3.3.4 gcmbofa

Analyse basins-of-attraction. The command

BofA = gcmbofa(Plant, Cost)

computes a vector structure BofA and plots the results. Its i’th element
BofA(i) has the following fields

• BOFA(q,:) is a vector of the sizes of the basins-of-attraction for set-
point q, projected to the i’th dimension of the state.

• S(q) is the sum of sizes of basins-of-attractions

• In is the discretization of the i’th dimension.

31

The function works as follows: The function first computes a closed-
loop Plant-structure (using gcmclosed). An existing closed-loop structure
can be used with the syntax BofA = gcmbofa(Plant cl). It then generates
lists of projections and setpoints to consider (default: all dimensions and
all setpoints). The set of dimensions to consider can be limited by listing
them as a third argument: BofA = gcmbofa(Plant, Cost, ixlist, iqlist),
where ixlist is a vector of indexes to desired dimensions. The set of
setpoints to consider can be limited in a similar manner, by specifying
it as a fourth argument, iqlist. Each setpoint is then handled sepa-
rately by computing eigenanalysis information for associated the closed-loop
map (using gcm eiganalysis) and computing sizes of basins-of-attraction
(gcm bofa size) for the desired projection dimensions. Results are stored
in the BofA-structure.

A plot of the results is produced by using the BofA-vector structure as
the first argument:

gcmbofa(BofA)

The plot consists of a number of subplots, one for each projected state
dimension. Each subplot shows a set of bars indicating the sizes of basins-
of-attraction in percentage (y-axis) for a value of the state (x-axis). Different
colors for the bars indicate different setpoints. For a state associated with
the controlled output one would expect a peak at the desired value, for an
uncontrolled state a flat distribution might be expected. The commands for
plotting are implemented as a subfunction within gcmbofa (gcm bofa plot).

Example 17 To plot the steady-state distribution of the second state for all set
points under CFMC control, use the following commands:

load vdvdata10

BofA=gcmbofa(Plant,Cost);

gcmbofa(BofA,[],2);

This results in the plot in figure 1

Uses: gcm bofa size, gcmclosed

32

0.6 0.7 0.76 0.8 0.84 0.88 0.92 0.96 1 1.04 1.08 1.12 1.2 1.3

0

10

20

30

40

50

60

70

80

90

100

cB

b-

of
-a

 (%
)

Σ 34273

1
2
3
4

set point

Figure 1: gcmbofa

3.3.5 gcm bofa size

Estimate the sizes of basins-of-attraction for the recurrent cells of system
described by transition probability matrix P:

BofA size = gcm bofa size(P)

• BofA size is a lipr- row vector containing estimated sizes of basins-
of-attraction for each recurrent cell (lipr is the number of recurrent
cells).

The function first looks for recurrent and transient cells (using
gcm eiganalysis), computes the stationary mapping (using gcm pinf),

33

and finally computes the sum of stationary probabilities for entering a
particular recurrent state. With additional input arguments BofA size
= gcm bofa size(P, EA, P t2r), results from a previos eigenanalysis can be
used.

The sizes of basins-of-attraction can be further projected towards a given
state dimension using

[BofA size, P rr inf, BofA proj, In] = gcm bofa size(P, Xref proj)

where Xref proj is an S-dimensional row vector of values towards which
the results are projected, i.e., information on the s’th cell is cumulatively
projected to value Xref proj(s). BofA proj returns a sum of sizes of basins-
of-attraction for all cells with the same value. In is a list of different values
in Xref proj. With no output arguments, a bar plot is produced (In vs.
BofA proj). With additional input arguments, results from a provious eige-
nanalysis can be used: gcm bofa size(P,EA,P t2r,Xref proj).

Example 18 Let that the second state be associated with the plant output (y = x2
is the controlled variable) and the reference states be given in Plant.Xref. The sizes
of the basins-of-attraction of the plant outputs can be obtained as follows:

load vdvdata10 % load Plant and Cost structures

Plant cl = gcmclosed(Plant,Cost) % create closed-loop maps

P2 = Plant cl.f(2).P; % closed-loop FMC for q=2

% solve eigenvalues and static map from transient to recurrent

cells:

[EA,P t2r]=gcm eiganalysis(P2);

% sizes of b-of-a, projected towards output:

[BofA size,P rr inf,BofA proj] = gcm bofa size(P, EA, P t2r,

Plant.Xref(2,:));

The BofA size-vector will have 152 elements (as many as there are recurrent
cells in the system, EA.ipr). For example, BofA size(26) is 396.46, which means
that the sum of probability cell masses of initial cells which converge to cell nro 26
is about 396. This is about 1.2% of the total cell mass (S = 34273). The value is
a real number, since it is obtained by summing up the transition probabilities, and a
trajectory from a given cell may converge to several final cells (with some probability).
For recurrent cells within a communicating class, the static distribution is used.

34

The projected sizes of the b-of-a are obtained from BofA proj. It contains
14 elements as there are 14 different values in Plant.Xref(2,:). For example,
BofA proj(8)is 33682.08 which means that more than 98% of the total cell mass
converges to this projected value. This corresponding value of the output is obtained
from In(8), and is 0.96. This is the closest discretized value of x2 for set point q = 2,
w = 0.95.

The plot contains raw information of the plot produced by gcmbofa (unscaled,
only for set point 2):

gcm bofa size(P, EA, P t2r, Plant.Xref(2,:)); % without output

args, a plot is produced

Uses: gcm pinf, gcm get partitions, gcm eiganalysis

3.3.6 gcmccp

Change controller parameters:

Cost = gcmccp(Cost,gamma)

Cost = gcmccp(Cost,H p)

Changes the Cost-structure so that an optimal controller with infinite dis-
counted horizon with decay-parameter gamma, or so that a predictive con-
troller with control horizon H p, respectively, is defined for all set point
controllers.

With an additional input argument, a list of indexes to set point con-
trollers can be provided, for which the changes are to appear.

Example 19 The vdvdata10 contains an optimal controller, designed using
λ = 0.98 (discount factor):

load vdvdata10

gcmdisp(Cost);

Let us change the discount factor to 0.95 and recompute the controller for the
1’st set point:
Cost = gcmccp(Cost,0.95)

Cost = gcmoptipol(Plant,Cost,1);

Let us then examine the predictive control design, by setting the prediction
horizon to 5:

35

Cost = gcmccp(Cost,5)

Cost = gcmpredpol(Plant,Cost,1);

Uses: gcmdisp

3.3.7 gcm chbase

Change base to and from a 10-number system

idx = gcm chbase(v, vmax)

v = gcm chbase(idx, vmax)

where

• vmax is a row vector that specifies the number of elements in each basis
direction

• v is a matrix where each row vector specifies a vector in the basis vmax
• idx is a matrix where each row vector specifies a vector in the basis
of 10 (i.e., corresponds to vmax = [10 10 10 ...]

Indexes are counted from 1 upwards.

Example 20 Let the basis be given by vmax = [3 3 2] (e.g., a 3 × 3 × 2 dimen-
sional cube). Then gcm chbase(1,vmax) gives [1 1 1], gcm chbase(2,vmax) gives
[1 1 2], gcm chbase(3,vmax) gives [1 2 1], ..., gcm chbase(17,vmax) gives [3 3
1], and gcm chbase(18,vmax) gives [3 3 2]. Upper limit is not implemented, so
gcm chbase(19,vmax) will give [4 1 1].

The inverse mapping is obtained when length of v and vmax is the same, e.g.,
gcm chbase([3 3 1],vmax) gives 17

3.3.8 gcm check for grid

Check if the input matrix seems to be built using a regular grid. This
function performs a couple of tests to see if it contains all the elements that
would exist in a discretized hypercube. Syntax:

[YN, In] = gcm check for grid(Xref)

returns

36

• YN=1 if tests are passed ok (if Xref seems to be from a grid), or YN=0
if not.

• In is an array containing different values that are found for each of
the dimensions.

This function is vital, e.g., in searching closest match of an input vector
and reference vectors, as one-dimensional searches are sufficient for a regular
grid. In current implementation, two tests are performed:

• Let ni denote the number of different elements in the i’th dimension
(n(i)=length(In{i})). If product of ni equals the number of columns
in Xref, then test 1 is passed.

• If the matrix Xref does not contain two similar column vectors next
to each other, then test 2 is passed.

It is possible that a matrix passes the above tests, and yet is not built
using points from a regular grid (more tests should/can be implemented).
If the Xref contains infinite elements, its last column is omitted from the
checks.

Example 21 For the vdv-example, the following commands

load vdvdata10

[YN,In]=gcm check for grid(Plant.Xref);

show that the data comes from a grid (YN is 1). The discretization for, say,
the third dimension is obtained using In{3}, which contains a vector [90 100 105 110
115 125].

Uses: gcm get partitions

3.3.9 gcmcla

Run a set of closed-loop analysis tools:

[Sink,BOFA,Sim]=gcmcla(Plant,Cost,Sim)

This collection of analysis tools does the following:

37

• builds a closed-loop CFMC for all set point controllers (using
gcmclosed)

• examines stability of the closed-loop systems (using gcmstability,
see for Sink)

• examines sizes of basins-of-attraction (using gcmbofa, see for BOFA)
• runs a test simulation (using gcmsim, see for Sim)
• plots general info (using gcmdisp)

Uses: gcmclosed. gcnstability, gcmbofa, gcmsim, gcmdisp

3.3.10 gcmclosed

Generate a CFMC model for a closed loop system:

Plant cl = gcm closed(Plant,Cost)

where Plant and Cost specify the plant and controllers to be used, Plant cl
contains the closed-loop model. In particular, the policy in Cost(q).Pi(s)
is used at each state cell s. Plant cl.f(q).P contains the closed-loop FMC
model for the q’th set point.

The Plant cl will be a copy of the Plant-structure with exeptions in
the replacement of the following fields:

• Uref and Uname are copied from Wref and Wname (in Plant)

• Wname is set to ’closed-loop system’
• for all q and s, f(q).P(:,s) is replaced by Plant.f(a).P(:,s) with
a=Cost(q).Pi(s). Hence, a closed-loop map is obtained where. the
open loop system in Plant is controlled by the policy in Cost:

cqs0,s := p
πq(s)
s0,s

where cqs0,s is the transition probability from cell s to s0 of the closed-
loop system under set point controller q; πq is the control policy for
set point q, and pas0,s is the open-loop plant transition probability from
cell s to s0 under action a. The closed-loop CFMC-model will contain
the transition probabilities c.

38

• for all q and s, f(q).Nsum(s) is replaced by Plant.f(a),Nsum(s)
with a=Cost(q).Pi(s)

If an additional input argument q is given, the function returns the
CFMC map for the q’th set point only.

Example 22 A closed-loop map for all set points is generated as follows:

load vdvdata10

Plant cl = gcmclosed(Plant,Cost);

The structure Plant cl contains four closed-loop FMC models, one for each
set point. For the q’th set point, the probability transition matrix for the controlled
system is obtained from Plant cl.f(q).P.

3.3.11 gcm comm

Look for communicating classes among the cells in a system described by
the probability transition matrix:

CClass = gcm comm(P)

where P is a probability transition matrix.

• CClass is an array of C vectors, where C is the number of communi-
cating classes: Each vector in the array contains a list of indexes to
recurrent cells that communicate with each other. The communicat-
ing classes are ordered such that the largest classes appear first, and
smallest classes last.

Alternatively a Plant-matrix is can be used as an input argument, from
where the P-matrix corresponding to a map under the a’th control action is
used in further analysis. If the Plant-matrix corresponds to a closed-loop
system, then the q’th set point is considered:

CClass = gcm comm(Plant,a)

CClass = gcm comm(Plant cl,q)

39

With additional output arguments, the basins of attraction associated
with the communicating classes and the expected times of entering the class
are extracted:

[CClass,BofA cells,Et cells] = gcm comm(P,plim)

where

• BofA cells is an array of C vectors. The c’th vector contains indexes
to cells that map to the c’th class with probability larger than plim.
(default plim = 0.001).

• Et cells is an array of C vectors. The c’th vector contains ex-
pected times of entering the c’th class. The expected time in
Et cells{c}{i} corresponds to the expected time from the initial cell
BofA cells{c}(i) to the c’th communicating class.

The gcm comm works as follows. First, eigenanalysis is performed (using
gcm eiganalysis), in order to find the recurrent cells. The algorithm starts
from the first recurrent cell, looks for cells which have a nonzero probability
of entering this cell, and adds them to a list. It then checks the cells that
have a nonzero probability of entering any of the cells in the list, and updates
the list until no new cells are found. All the cells in the list then form a
communicating class. The algorithm then proceeds in a similar fashion with
the remaining recurrent cells, until all cells are examined. Classes are then
ordered such that the largest class is the first, etc.

If additional output arguments are given, the algorithm looks for the
elements in the basin-of-attraction of each communicating class. Class by
class, the algorithm examines the static map from transient to recurrent
cells (from gcm eiganalysis), and looks for cells with nonzero probability
of entering the particular class. The basin-of-attraction consists of these
transient cells plus the recurrent cells contained in the particular class. The
expected times of transition are computed using expected times of transition
from transient to recurrent cells (from gcm eiganalysis), and weighing
them with the probability of entering a particular recurrent cell (recall that a
trajectory from a transient cell may have a nonzero probability of converging
to several communicating classes).

40

Example 23 Define P as follows:

P =


1 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0


i.e., the first cell is a recurrent (absorbing) cell, the second cell is a transient cell which
maps to the first in one step; the third and fourth cells are recurrent cells which map
to each others in one step; the fifth cell maps to the second in one step.

Applying gcm comm(P)

[CClass,BofA cells,Et cells]=gcm comm(P)

the following results are obtained: The first communicating class contains cells
3 and 4 (CClass{1}); the second communicating class contains the first cell
(CClass{2}). The basin-of-attraction to the first communicating class contains cells
3 and 4 (BofA cells{1}); the b-of-a for the second class contains cells 1, 2 and 5
(BofA cells{2}). The expected times of transition are 0 for both cells in the first
class (Et cells{1}), 0, 1.0 and 2.0 for cells in the second class (BofA cells{2}),
as the first cell is already in the communicating class, the second cell maps to the
communicating class in one step, the fifth cell maps to the first in two steps - via the
second cell.

Uses: gcm dispref, gcm eiganalysis

3.3.12 gcmdisp

Display info on plant discretization to command window

gcmdisp(Plant)

gcmdisp(Cost)

• With Plant-structure as input argument, information on original
model M-file names, sampling time, discretization and number of plant
model evaluations is provided.

• With Cost-structure as input argument information on size of the
system, control design method and parameters, as well as ranges of
immediate costs and expected costs is provided.

41

Example 24 load vdvdata10; gcmdisp(Plant) gives the following info on the
plant model:

== MODEL INFO ==

- state equations: ’vdvf5’

- measurement equations: ’vdvh’

== DISCRETIZATION ==

Sampling time: 0.00555556

References w: Q=4

w(1): {0.8, 0.95, 1.05, 1.09} (4)
Outputs y: M=15

y(1): {0.6, 0.7, ..., 1.2, 1.3} (14)
States x (grid): S = 34273 incl. sink cell

x(1): [0.85, 3.55], {1, 1.3, ..., 3.1, 3.4} (17)
x(2): [0.55, 1.35], {0.6, 0.7, ..., 1.2, 1.3} (14)
x(3): [85, 130], {90, 100, ..., 115, 125} (6)
x(4): [85, 130], {90, 100, ..., 115, 125} (6)
x(5): [97.5, 117.5], {100, 105, 110, 115} (4)
Controls u: A=60

u(1): {3, 6, ..., 30, 35} (12)
u(2): {-9000, -3000, -1113.5, -800, 0} (5)
==

N=10 evaluations on all state-action pairs.

==

For each variable, the discretized values are shown as {x1,x2,...,xn} (n), where
n is the number of discretizations. If the state cell reference contains a sink cell, the
domain inside region of interest is shown as [xmin,xmax].

gcmdisp(Cost) gives the following info on the controller

==== CONTROLLER INFO ==================================

A DSS control system with:

34273 states

60 actions

4 set points

optimal control design, gamma=0.98 (H=50)

===

Immediate costs in R: min mean max

q = 1: 0.00000 < 0.19171 < 10.00000

q = 2: 0.01000 < 0.15743 < 10.00000

q = 3: 0.01000 < 0.17886 < 10.00000

q = 4: 0.01000 < 0.19743 < 10.00000

42

===

Expected costs in J*: min mean max

q = 1: 0.00000 < 0.81711 < 499.99584

q = 2: 0.49998 < 0.99485 < 499.97637

q = 3: 0.49998 < 1.22111 < 499.97637

q = 4: 0.49997 < 1.40221 < 499.97278

===

The H is an approximate ’equivalent prediction horizon’, H = 1
1−λ .

Uses: gcm check for grid, gcm get partitions

3.3.13 gcm dispref

Display values from a set of reference points. The command:

gcm dispref(Xref)

gives textual info on the values in Xref. Xref is a matrix of column vectors,
where each vector contains a reference point. For each dimension of the
vectors, a list of different values is produced, the most frequent being marked
by an asterisk. The full command

Xml=gcm dispref(ss,Xref)

enables to specify separately the columns ss of Xref to consider, i.e., the
same as gcm dispref(Xref(:,ss)). If the output argument Xml is given,
no textual output is produced, but the function returns a single reference
point (the ’most frequent’ one).

Example 25 load vdvdata10; gcm dispref(Plant.Xref(:,1:6)) displays the
following info:

A set of 6 states:

x(1) = { 1* }
x(2) = { 0.6* }
x(3) = { 90* }
x(4) = { 90*, 100 }
x(5) = { 100*, 105*, 110 , 115 }

which indicates that all size column vectors have 1 as their first element, 0.6
as their second element, and 90 as their third element. Fourth element is either

43

90 (most often) or 100. The fifth element is either 100 or 105 (most often), 110 or 115.

A most likely element in the set is obtained by calling the function with an
output argument: Xml=gcm dispref(Plant.Xref(:,1:6)). The obtained Xml is [1
0.6 90 90 100].

Uses: gcm get partitions

3.3.14 gcm eig

Find indexes to recurrent, transient and absorbing states of a system de-
scribed by a sparse probability transition matrix P, using eigenvector de-
composition:

[ipr, ipt, ipa] = gcm eig(P, K, Sigma)

where ipr, ipt and ipa are lists of indexes to recurrent, transient and
absorbing states, respectively.

gcm eig uses Matlab’s eigs to perform the computations, except for
very small matrices. By default, the following parameters are used: K =
100, Sigma = 1 + ε (see eigs). The resulting eigenvectors and eigenvalues
are rounded to the third digit. Recurrent cells are found by looking for
eigenvectors of length 1, when the associated nonzero eigenvalues point to
recurrent cells. Absorbing cells are found by looking for unity probabilities
at the main diagonal of P. They are also included in the recurrent cell index
list.

Example 26 Define P as follows (see example on gcm comm):

P =


1 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0


The command [ipr,ipt,ipa]=gcm eig(P) results in ipr = [1 3 4]T, ipt = [2 5]T

and ipa = 1, i.e., cells 1, 3 and 4 are recurrent and cells 2 and 5 are transient. Cell 1
is also an absorbing cell.

44

3.3.15 gcm eiganalysis

Compute eigenvalues and perform basic analysis of a system specified by a
probability transition matrix transition. The basic syntax is

EA = gcm eiganalalysis(P)

where P is a probability transition matrix. EA is a structure with the follow-
ing fields:

• ipa are indexes to absorbing states pi,i = 1, if i ∈ ipa
• ipr are indexes to recurrent states (including absorbing states). These
cells are entered infinitely often.

• ipt are indexes to transient states. These cells are entered only finitely
often.

Alternatively a Plant-matrix can be used as an input argument, from
where the P-matrix corresponding to a map under the a’th control action is
used in further analysis. If the Plant-matrix corresponds to a closed-loop
system, then the q’th set point is considered:

EA = gcm eiganalalysis(Plant,a)

EA = gcm eiganalalysis(Plant cl,q)

First, the eigenvectors and eigenvalues of P are computed and cells
are classified into absorbing, recurrent and transient based on eigen-
analysis (using gcm eig). Since gcm eig uses the Matlab’s function for
sparse matrices eigs (with parameter K for the number of eigenvalues
to find), the computations are repeated for the cells judged as transient,
as long as no new recurrent states appear (i.e., at least twice). One
pass of gcm eig/eigs can be forced by setting PRECISION FLAG to zero:
gcm eiganalalysis(P,[],K,PRECISION FLAG).

If a second output argument is specified, the stationary transition prob-
ability matrix from transient to recurrent states is computed: [EA,P t2r] =
gcm eiganalalysis(P). This can be a computing power and memory con-
suming task. The code functions as follows: theP-matrix is decomposed into
Prr and Prt, and the direct inversion is attempted: (I−Ptt + εI)−1, where
ε is a very small number. If this fails (which is common with large P) a sec-
ond strategy is adopted. Recall that Pt2r = Prt (I−Ptt) = Prt

P∞
k=0P

k
tt,

45

so the inverse can be approximated recursively. This is slow, but monitoring
the memory consumed by of the sparse cumulative product Pktt and remov-
ing small elements (using gcm squeezep) makes it possible to compute an
approximation of the inverse. The iterations terminate when the approxi-
mation error is less than 1%, or more than 200 transition steps have been
computed.

The expected transition time is computed for a third output argument,
as well as some handy statistics on transition times (average meanEt and
worst case maxEt) returned in the fourth structure:

[EA, P t2r, Et t2r, Et stat] = gcm eiganalalysis(P)

Example 27 Consider the following P matrix (see example on gcm comm):

P =


1 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0


Running the command [EA, P t2r, Et t2r, Et stat] = gcm eiganalalysis(P) dis-
plays following info on the P-matrix analysed, the analysis results, and on computation
of inverse:

GCM EIGANALYSIS...

Computing eigenvectors & eigenvalues of P of size 5x5.. ok.

1 absorbing / 3 recurrent states / 2 transient states

Computing probabilities of transition to recurrent states...

P t2r: Computing inverse... ok.

... (0) ok.

The following results are returned in the output arguments:
· EA contains fields ipa (1), ipr ([1 3 4]T) and ipt ([2 5]T) indicating absorbing,
recurrent and transient cells.
· P t2r is a sparse matrix

Pt2r =

 1 1
0 0
0 0


indicating that the two cells in the list of transient cells (2 and 5) both map to the first
cell in the list of recurrent cells (cell 1), with probability 1.

46

· Et t2r is a sparse matrix structured in the same way as P t2r, indicating the expected
times of transition

E {tt2r} =
 1 2
0 0
0 0


· Et stat gives information on the transition time from transient to recurrent cells:
mean 1.5 and maximum 2 for the first cell.

Uses: gcm eig, gcm squeezep

3.3.16 gcm estimate x

Construct an estimate of the plant cell distribution. The command

[s,xdk,p x est,x e] = gcm estimate x([],Plant,ymk,a,p x)

first estimates the index m for the discretized plant output
Plant.Yref(:,m) (using gcm estimate y), and then computes a Bayesian
estimate for the system cell distribution

pX (k) ∝ lm ⊗Pa(k)pX (k − 1)

• p x est refers to pX (k) , computed by

Plant.h.L(m, :)0. ∗ (Plant.f(a).P ∗ p x)

• x e is the average of reference points (weighted by corresponding cell
mass probabilities). ML or median state can be obtained by suitable
flagging in the M-file.

• s is the index to the closest matching reference cell, i.e., s =
gcm x2s(x mean, Plant.Xref)

• xdk is the corresponding discrete reference point, xdk =

Plant.Xref(:,s).

• ymk is the output measurement
• a is the control action a (k)

47

• p x (input argument) corresponds to the past cell distribution
(pX (k − 1)).

If the Bayesian inference fails (measurement is ’not possible’), the mea-
surement is trusted and a warning is produced.

When evoked using only the first two input arguments:

s = gcm estimate x(xmk, Plant)

a measured state vector xmk (the state measurement) is assumed to be avail-
able. The cell index is s obtained by looking for the closest reference cell
(using gcm x2s).

Example 28 Following examples illustrate the command when the full state is
measured:

load vdvdata10

s = gcm estimate x(Plant.Xref(:,1114),Plant)

results in s = 1114.

[s,xdk,p x est]=gcm estimate x(1.01*Plant.Xref(:,1114),Plant)

results in s = 1114, xdk = Plant.Xref(:,14) and p x est a sparse matrix with
1114’th element equal to 1, zero elsewhere.

If only the plant output is measured, a ML estimate is constructed. Let the
current state cell estimate be 1114, the control action a be 1, and the measured
output be 0.95 and 0.94:

e=sparse(34273); e(1114)=1;

[s1,xdk1,p x est1]=gcm estimate x([],Plant,0.95,1,e)

[s2,xdk2,p x est2]=gcm estimate x([],Plant,0.94,1,e)

In first case the estimated state cell is 1114, in the second it is 946.

Uses: gcm x2s, gcm estimate y

3.3.17 gcm estimate y

Construct an estimate for the plant output. The command

[m,ydk]=gcm estimate y(ymk,Plant)

48

finds the index m to the closest match among output reference points. ydk is
the associated output vector in the reference set, ydk = Plant.Yref(:,m).

A ML based estimate of the plant output is constructed using

[m,ydk]=gcm estimate y(ymk,Plant,p x)

where p x is the state cell mass distribution, and the output distribution is
obtained from p y = Plant.h.L*p x.

Uses: gcm x2s

3.3.18 gcm eucl norm

Compute Euclidean norm between two matrices. For two matrices given in
variables U and V, consisting of column vectors of size I×S1 and I×S2, the
Euclidean norm is computed by

E=gcm eucl norm(U,V,W)

where W is a diagonal weighing matrix (W = I by default). en is a S1 × S2
matrix:

Es,r =

vuut IX
i=1

[Wi,i (Ui,s −Vi,r)]2

This function is used, e.g., to generate immediate costs based on devia-
tion between set point and output vectors.

Example 29 Define matrices U and V as follows:

U =

 1 0 0
0 1 0
0 0 1

 ,V =

 1 0 0
0 2 0
0 0 3


The following commands compute Euclidean norms between two vectors, a vector and
a three column vectors, and between all combinations of the three column vectors

gcm eucl norm(U(:,1),V(:,2))

returns E = 2.24.

E=gcm eucl norm(U(:,1),V)

returns a vector:

E = [0 2.24 3.16]

49

E=gcm eucl norm(U,V)

returns a matrix:

E =

 0 2.24 3.16
1.41 1 3.16
1.41 2.24 2


3.3.19 gcm ff

Update figure plot. gcm ff is a shorthand command for figure(gcf);
drawnow

3.3.20 gcm free

Simulate and plot a discrete (closed-loop) systems’ free trajectory from a
given initial state:

gcm free(Plant cl,s0,q)

gcm free(Plant,Cost,s0,q)

where the closed loop system is defined either by the CFMCmodel Plant cl,
or the plant Plant and controller Cost. The initial state is given in s0 as
the cell index s (a scalar integer). Alternatively a probability distribution
vector (a S-dimensional vector) can be specified as the initial state. q is the
index to the set point controller to be considered.

An additional argument T can be given to control the time scale of the
simulation. If T is a scalar, it is the end-time of the simulation (in real
time, vs. sampling time given in the Plant cl or Plant-structure). If T
contains two elements, the first is the start time, the second is the end-time
of simulation. If T is a vector, the corresponding points in time are returned
(sampling time should be the same as in the model).

A further additional argument ilist can be given to specify the states
for which the trajectory is to be plotted (default is all states).

The function can also be used for generating open-loop step responses.
However, for step responses it is more straightforward to use gcm step di-
rectly.

Example 30 Plots of free responses of the closed-loop system (for q = 3) from a
given initial state (s = 1114) are obtained as follows:

50

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

t (T
s
=0.00555556)

c A

0 0.8889
1

1.5
1.7
1.9
2.1
2.3
2.5
2.9

3.4

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

t (T
s
=0.00555556)

c B

0 0.8889
0.6

0.76
0.84
0.92

1
1.08

1.2

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

t (T
s
=0.00555556)

v

0 0.8889

90

100
105
110
115

125

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

t (T
s
=0.00555556)

v K

0 0.8889

90

100
105
110
115

125

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

t (T
s
=0.00555556)

v 0

0 0.8889

100

105

110

115

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

t (T
s
=0.00555556)

c B

0 0.0278 0.0556 0.0833
0.6

0.88

1.08

Figure 2: gcmfree

load vdvdata10

gcm free(Plant,Cost,1114,3);

subplot(3,2,6);

gcm free(Plant,Cost,1114,3,[0 0.1],2);

colormap(gray);

The resulting plot is shown in Figure 2. The plots illustrate the trajectories of
the probability distributions for each state. The colors indicate the probability mass
(colorbar shown at the left of each figure). The time scale is obtained from sampling
time in Plant.Ts (0.0056 sec). The bottom right plot is a ’zoom’ of the plant output
from time 0 to 0.1. By default, the colormap is set to colorcube.

Uses gcm step (gcm simp) to generate the state trajectories.

51

3.3.21 gcm freek

Simulate and plot the original (closed-loop) systems’ free trajectory from a
given initial state:

gcm freek(Plant cl,s0,q)

gcm freek(Plant,Cost,s0,q)

The closed loop system is defined either by the CFMC model Plant cl, or
the plant Plant and controller Cost. The initial cell is given in s0 as the
cell index (a scalar integer). This means that the state Plant.Xref(:,s0)
is used as the initial state in simulation. Alternatively, any state vector of
appropriate size can be given as the input argument. The controller for the
q’th set point is used in simulations.

With the latter form, gcm freek has the same syntax as gcm free. In-
stead of Plant.P, it uses the original model specified in Plant.funf to sim-
ulate the plant. If a previously unobserved transition is observed, a warning
is produced.

If an output argument is given, the state trajectories are returned and
no plot is produced. A second output argument is returns a Sim-structure
for an equivalent simulation (to be used by gcmsim).

The function can also be used for generating open-loop step responses
using the original plant model (in Plant.funf):

gcm freek(Plant,s0,a)

Example 31 The resulting plot is similar to that from gcm free, but in real state
space:

load vdvdata10

gcm freek(Plant,Cost,1114,3)

gcm freek(Plant,Cost,1114,3,[0 0.1],2);

results in a plot of Figure 3.

Uses: gcm check for grid

3.3.22 gcm generate model

Generate a CFMC map by sampling an original plant DSS model:

Plant = gcm generate model(Plant)

52

0 0.2 0.4 0.6 0.8
1

1.3
1.51.61.71.81.92
2.12.22.32.42.5
2.7
2.9
3.1
3.4

c A

t (T
s
=0.005556)

0 0.2 0.4 0.6 0.8

0.6
0.70.760.80.840.880.920.961

1.041.081.12
1.2
1.3

c B

t (T
s
=0.005556)

0 0.2 0.4 0.6 0.8
90

100
105
110
115

125

v

t (Ts=0.005556)
0 0.2 0.4 0.6 0.8

90

100
105
110
115

125

v K

t (Ts=0.005556)

0 0.2 0.4 0.6 0.8
100

105

110

115

v 0

t (Ts=0.005556)
0 0.02 0.04 0.06 0.08 0.1

0.6
0.70.760.80.840.880.920.961

1.041.081.12
1.2
1.3

c B

t (Ts=0.005556)

Figure 3: gcmfreek

The Plant structure must have the following information:

• discretization information in fields Xref,Yref,Uref
• information of names of original DSS model in fields funf, funh
• plant sampling time Ts
The following fields in Plant structure will be updated :

• f, a vector structure with fields P and Nsum
• h, a structure with fields L and Nsum

The function works as follows: First, information on Plant-model struc-
ture is displayed. If the model is evaluated for the first time, probability

53

transition matrices etc. are initialized (see code line 40). The code then
checks a) if a sink cell exists (if the set Xref contains any infinite elements,
it is assumed that the S’th cell is a sink cell), b) if the points in Xref seem to
make a grid (a grid is very important from efficiency point of view, non-grid
systems are doable but slow). For each control action, the following steps
are performed:

• Initial states are generated. For the first evaluation, Xref-points are
used. For consequtive evaluations, initial points are generated from a
uniform distribution within the support of each cell. See gcm sampleu.

• State equations are solved, starting from initial states. For efficiency it
is assumed that the funf and funh accept multiple initial values, i.e.,
the syntax for funf is XX1 = feval(funf,XX,U,Ts) where XX and XX1
are matrices consisting of initial and one-step ahead states in column
vectors; the control action U is a vector (same for all initial states).

• Simulation results are examined to find the image cells (cells corre-
sponding to XX1).

• State cell transition probabilities are updated:

pas0,s (k + 1) =
npas0,s (k) + 1

n+ 1

where n is the number of previous evaluations of the state equation
from cell s. Initially, p (0) = 0. The n’s are increased by one. Sink cell
(if exists) is always the S’th cell, with paS,S = 1.

• Cell likelihoods are updated (the state measurement equation funh is
evaluated for each state XX, the corresponding discrete measurement
cells are located, and the transition probabilities are updated in a
similar way as state cell transitions. Sink cell always maps to the
M ’th measurement cell, lM,S = 1.

Some information on model structure, execution phase, observed and
estimated update times, and model stochasticity is displayed along the way.

Example 32 The model stored in vdvdata10 is based on ten evaluations at each
cell. The model can be updated once using

54

Plant = vdv plant setup;

Plant = gcm generate model(Plant);

The CFMC transition probabilities are updated one-by-one for each control ac-
tion (a = 1, 2, ...). During the evaluation for a = 1, statistics of elapsed times and
estimates of remaining times are displayed:

GCM GENERATE MODEL: Initializing 60 sparse 34273x34273 matrices

with 205638 nonzeros...ok

GCM GENERATE MODEL: generating 1st CFMC model

17x14x6x6x4 grid structure assumed for Xref (S=34272).

Simulating plant model vdvf5, vdvh..

-Setting xfrom...(0) ok.

-Evaluating xto...(1:25) ok.

-Counting state transitions...(0) ok.

-Updating state transition probabilities...(6) ok.

-Updating measurement likelihoods...(0) ok.

60 map updates ready in 1:30:28: a=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30

,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45

,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60

N = [1,1], off-diags 0.93 (1:27:04). ok

The first two and the fourth row are displayed only at the first evaluation round, the
evaluation round is indicated at the third row. The remaining info indicates that:
· DSS model M-files are vdvf5 and vdvh
· generation of plant inputs (random points within cell hypercube) took 0 seconds
· evaluation of DSS equations (for the 34273 cells) took 1 min 25 seconds
· observing cell transitions took 0 seconds
· update of cell transition probabilities took 6 seconds, and
· updating measurement likelihoods to zero seconds.
· an estimate of the remaining time (for the 59 other actions) is then given (one and a
half hours).

At the end of update, the following info is displayed
· the number of state evaluations is in the range [1,1],
· averaged over all P, 93% of mappings are off-diagonal (map to some other cell)

Uses: gcmdisp, gcm check for grid, gcm sampleu, gcm sec2time,
gcm get partitions, gcm x2s

55

3.3.23 gcm get partitions

Find and sort all different elements in a vector

pvect = gcm get partitions(vect)

where vect is a vector with any elements, pvect is a list of different finite
elements in vect ordered from smallest to largest.

This function is used extensively throughout the toolbox. Any changes
to it should be done with care.

Example 33 gcm get partitions([-1 -1 2.5 2.5 3]) returns [-1 2.5 3].
Also gcm get partitions([2.5 -1 -1 2.5 3 Inf]) returns [-1 2.5 3].

3.3.24 gcm inigrid

Initialize a grid structure

Xref=gcm inigrid(In1,In2,...,InX)

where In1, In2, ... are lists of elements in corresponding dimensions of the
grid. Xref is a matrix containing all combinations of the elements (i.e., a
full grid). This command is useful when initializing reference points.

An additional output argument will return a vector of input dimensions.

Example 34 The command [Xref,ns] = gcm inigrid([1 2],[3 3.5 4])

returns

Xref =

·
1 1 1 2 2 2
3 3.5 4 3 3.5 4

¸
and ns = [2, 3].

Uses: gcm allpnts int

3.3.25 gcmoptipol

Solve for the optimal control policy using value iteration:

Cost = gcmoptipol(Plant,Cost)

where the Plant-structure speficies the plant to be controlled, the Cost-
structure contains plant controller specifications.

The following fields in Cost(q)’s are required (for each set point q):

56

• R, S ×A matrix of immediate costs rs,a
• gam, discount factor γ

The following fields the Cost(q) structures are updated:

• Jstar, optimal costs-to-go
• Pi, optimal policy πs
See also gcmccp.

The function works as follows. For each set point at a time, a loop is con-
structed where the Q-factors for each state and control action are updated,
the optimal policy cost-to-go and policy are obtained, and a termination cri-
terion is cheked. If the termination criterion is not passed, a new iteration
of the Q-factors is started.

Example 35 The command

load vdvdata10;

Cost = gcmoptipol(Plant,Cost,1)

solves the optimal policy for the first set point controller (stored in Cost(1)).
The following information is displayed

GCMOPTIPOL: Solving a 34273x60 Bellman eq. (q=1).

Value iteration: until max | [J*(k)-J*(k-1)]/mean(J(k-1))] | < 1%:

0.958% ok.

This indicates that the criterion for exiting value iteration was 1% , and that
the criterion at exit was 0.958%. Re-running the function, the value iteration is always
performed at least once, so that repeating the command will give an exit condition of
0.931%.

Uses: gcm automeq

3.3.26 gcm pinf

Compute mapping to the stationary distribution

P inf = gcm pinf(P)

57

• P inf is a S × S mapping to a stationary distribution

The function computes the mapping P∞ to a stationary distribution π∞

given an initial state p0:

p∞ = P∞p0.

P∞ is a symmetric matrix with nonzeros only at rows/columns correspond-
ing to absorbing/recurrent cells. It is computed by

P∞ =
1

n

1000+nX
k=1000

P (k)

where n is chosen such that the largest absolute change in any element of
P∞ between updates n− 1 and n will be less than 0.0001.

The above approach fails for large P, due to memory problems. In
such a case, a second strategy is automatically adopted. It consists of han-
dling separately the mapping between recurrent cells and the mapping from
transient to recurrent cells. Recurrent cells are handled by computing a
time average far in the future (as above, n = 100). The mappings from
transient to recurrent cells are included only if larger than a given toler-
ance. The second strategy uses gcm eiganalysis. Results from a previ-
ous eigenanalysis can be included using additional input arguments P inf
= gcm pinf(P, EA, P t2r).

Example 36 Consider the P matrix below (see example on gcm comm). The com-
mand P inf = gcm pinf(P) will produce the mapping P∞ to the stationary distribu-
tion:

P =


1 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

 ,P∞ =

1 1 0 0 1
0 0 0 0 0
0 0 0.5 0.5 0
0 0 0.5 0.5 0
0 0 0 0 0


For example, for an initial state cell distribution e = [0, 0, 1, 0, 0]T,the stationary distri-
bution is obtained from P∞e, and is [0, 0, 0.5, 0.5, 0]T.

Uses: gcm eiganalysis, gcm spsize, gcm squeezep

58

3.3.27 gcm plotx

Plot one, two or three vectors of sampled values showing discretization at
y-axis:

gcm plotx(Ts,Yref,Y)

gcm plotx(Ts,Yref,Y,Y2)

gcm plotx(Ts,Yref,Y,Y2,Y3)

where Ts is the sampling time, Yref is a row vector containing the dis-
cretization, and Y (Y2, Y3) is the data column vector.

Example 37 The following example plots the measured plant output and the set
point trajectory. The discretization for plant output in the CFMC model is shown as
y-axis ticks (emphasized by the grid-command):

load vdvdata10;

gcm plotx(Plant.Ts,Plant.Yref,Sim.YY m,Sim.WW);

set(gca,’ygrid’,’on’); xlabel(’time’); legend({’w’,’y’});

The resulting plot is shown in Fig. 4.

Uses: gcm get partitions

3.3.28 gcm pplot

Plot a trajectory of cell probabilities:

gcm pplot(pp)

where pp is a S × N matrix of state cell probabilities (S is the number of
cells, N is the number of steps in the trajectory). gcm pplot produces an
image where the probability of each cell at a given time step is illustrated
by a colored rectilinear patch. The colorbar is shown in the image.

Example 38 The following command simulates the closed-loop cell trajectory from
initial cell 1114 using the 3’rd action, projects the results to the first dimension, and
plots the result:

load vdvdata10;

pp = gcm step(gcmclosed(Plant,Cost),1114,3);

clf;

59

0 0.5 1 1.5 2

0.6

0.92

1.3

time

w
y

Figure 4: gcm plotx

gcm pplot(gcm project(pp,Plant.Xref,1));

The resulting plot is shown in Figure 5.

3.3.29 gcmpred online

Compute online the output of a predictive controller

a=gcmpred online(p x,Plant,Cost,q)

where the following information is required

• p x, the (estimated) distribution of the state cell probabilities
• Plant.f(a).P for all a, the plant probability transition matrices for
each control action

• Cost(q) with fields H p and R, the controller control horizon and im-
mediate costs

60

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

k

p

1 161

1

6

11

16

Figure 5: gcm pplot

• q, the set point to be considered

The control action a is returned, i.e. the plant controller output should
be set to Plant.Uref(:,a).

The control horizon is assumed to be 1.

The function works as follows: The plant probability trajectories (in a
prediction horizon from 0 to Hp) are solved for each control action a. The
sums of immediate costs in the horizon are computed, weigted according to
state cell probabilities. The action (a) resulting to a smallest cost is the
controller output.

The code is adopted from gcmpredpol. See gcmpredpol for details.
Uses: gcn squeezep, gcm sec2time

61

3.3.30 gcmpredpol

Compute optimal policy using predictive control

Cost = gcmpredpol(Plant,Cost)

where the following information is required

• Plant.f(a).P for all a, the S×S plant probability transition matrices
for each control action

• Cost(q), for all q with fields H p and R, the controller control horizon
and S ×A matrix of immediate costs

The following fields in Cost(q) vector structure are updated (for all set
points q):

• Pi, the control policy, πqs
• Jstar, the optimal cost-to-go (in the prediction horizon)

If an additional input argument q is given, the only the q’th set point
controller is computed.

The control horizon is assumed to be 1.
See also gcmccp.

The function is based on computing predictions for all initial states in
one batch, i.e, predictions are computed for all possible ’certain’ cells, but
not for uncertain cells (for uncertainty in state cells, see gcmpred online):
For each control action a = 1, 2, ..., A, state probability matrix is initially
set to unity matrix (certain states). For each step in the prediction hori-
zon from zero to Hp, do the following: For each set point q = 1, 2, ..., Q,
compute immediate costs weighted by the state cell probabilities, and sum
it with costs from previous horizons. If size of the state probability predic-
tion matrix is large, set small probabilities to zero. Using CFMC model,
predict the state probability matrix for the next sampling instant. When
the horizon is covered, take the next control action and repeat the process.
Information on code execution progress is displayed along the way. Finally,
optimal actions are found and fields Pi and Jstar are set.

62

Example 39 The commands

load vdvdata10;

Cost = gcmcpp(Cost,5);

Cost = gcmpredpol(Plant,Cost,1)

solve the predictive control policy for the first set point controller (stored in
Cost(1)), using a prediction horizon 5. The following information is displayed:

GCM PREDPOL: Evaluating set points q=1 for H p = 5

xx2%xx3%xx5%xxxxxxxx12%xxxxxx17%xxxxxx
22%xxxxxx27%xxxxxx32%xxxxxx37%xxxxxx
42%xxxxxx47%xxxxxx52%xxxxxx57%xxxxxx62%xxxxxx
67%xxxxxx72%xxxxx77%xxxxxxxx83%xxxxx92%xxxxx
100% 100% (5:36) ok.

The percentages show the progress in computing step predictions for the A
control actions. The ’x’-marks indicate that the size of the prediction matrix was
decreased (using gcm squeezep) when computing the predictions. In the example
case it took 5 min 36 seconds to solve the predictive control policy.

Uses: gcm squeezep, gcm spsize, gcm sec2time

3.3.31 gcmpredpoldp

Compute optimal policy using predictive control using dynamic program-
ming (with control horizon as a tuning parameter):

Cost = gcmpredpoldp(Plant,Cost)

where the following information is required

• Plant.f(a).P for all a, the plant probability transition matrices for
each control action

• Cost(q), with the following fields for all q

— H p, the prediction horizon

— H c, the control horizon (by default H c = 1)

— R, the immediate costs

63

The following fields in Cost(q) vector structure are updated (for all set
points q):

• Pi, the control policy, πqs
• Jstar, the optimal cost-to-go (in the prediction horizon)
If an additional input argument q is given, the only the q’the set point

controller is computed.

The code uses dynamic programming, and solves the policy backwards
(from last decisions to first decisions).

The code works as follows: Each set point q is considered separately. At
stage Hc − 1, predict future state probability trajectories for all S possible
certain states, for all A constant control actions, and evaluate the costs
by summing the immediate costs weighted by the state cell probabilities.
For stages Hc − 2 to 0, evaluate costs using action a (immediate costs plus
the cost to go at the next stage, weighted by the transition probabilities),
starting at stage Hc − 2. The optimal action at a stage is the one that
minimizes the costs. The optimal policy, returned at Cost(q).Pi, is the
policy at stage zero.

3.3.32 gcm project

Project simulated state cell trajectory towards a given dimension:

[ppp, In] = gcm project(pp, Xref, ip)

where pp is a S × N matrix of state cell probabilities (S is the number of
cells, N is the number of steps in the trajectory), Xref is a nX × S matrix
of reference cells, and ip is the projection direction (ip∈ {1, 2, ..., nX}. ppp
will have as N columns and as many rows as there are distinct values in the
ip’th row of Xref.

Example 40 Let pp and Xref be 5× 3 and 2× 5 matrices (S = 5, N = 3) given by

pp =


1 0 0
0 0.5 0
0 0 0
0 0.5 1
0 0 0

 , Xref =
·
1 2 3 4 5
6 6 6 7 7

¸

64

Projection to 1’st dimension of Xref:
[ppp1,In1]=gcm project(pp,Xref,1)

results in ppp1 equal to pp (since all elements in the first row of Xref, corresponding
to values in In1 = [1, 2, 3, 4, 5], are distinct).

Projection towards the 2’nd dimension of Xref
[ppp2,In2]=gcm project(pp,Xref,2)

gives a 2×N vector:

ppp2 =

·
1 0.5 0
0 0.5 1

¸
corresponding to values in In2 = [6, 7].

Uses: gcm get partitions

3.3.33 gcm rmse

Compute root-mean-squared-error and mean error between two vectors

[r,m] = gcm rmse(Yhat,Y)

where Yhat and Y are column vectors of same size. The first output argument
is the rmse, the second is the mean error:

r =

sPK
k=1 [by (k)− y (k)]2

K
,m =

PK
k=1 [by (k)− y (k)]

K

• If Yhat is a matrix and Y is a vector, each column is compared with
the vector.

• If Yhat and Y are matrices of same size, vectors at the same columns
are compared with each other.

Example 41 Define matrices U and V as follows (compare with gcm eucl norm):

U =

 1 0 0
0 1 0
0 0 1

 ,V =

 1 0 0
0 2 0
0 0 3


The following commands compute RMSE between two vectors, a vector and a three
column vectors, and between respective columns of the three column vectors

65

gcm eucl norm(V(:,2),U(:,1))

returns R = 1.29.

E=gcm eucl norm(V,U(:,1))

returns a vector:

R = [0 1.29 1.83]

E=gcm eucl norm(V,U)

returns a vector:

R = [0 0.58 1.15]

3.3.34 gcmrun

Run successive model updates with occassional controller updates

gcmrun

Assumes that a properly initialized Plant structure (named as Plant) exists
in the MATLAB workspace. For required info, see gcm generate model. In
subsequent updates, the Plant structure (named as Plant) is updated to
the workspace. The maximum number of plant evaluations is determined
from variable EVA in workspace (by default EVA is set to 500). After each
update, the results are stored in a file named as gcmrun.mat.

If a Cost structure (named as Cost) exists in the workspace, an optimal
or predictive controller for the plant is designed at evaluations 1,2,3,10,50
and after every 100’th evaluation, and the Cost-structure is updated. Sim-
ilarly, if a Sim-structure exists (named as Sim), a simulation of the closed
loop system is performed and the Sim structure is updated.

Example 42 The following command continues the updating of the existing CFMC
model:

load vdvdata10

gcmrun

Note that from vdvdata10, the CFMC model exist in the MATLAB workspace
in a structure named as Plant. Since structures Cost and Sim also exist in
vdvdata10, the plant controller is recomputed and the closed-loop system is simu-
lations are performed every now and then. Between successive model updates, the

66

following info is displayed:

=== 28-Nov-2007 12:16:03 === EVA = 11 of 500: ===============

showing the date, clock and the values of current and maximum number of
plant evaluations (here: 11 of 500).

Uses: gcm generate model, gcmoptipol, gcmpredpol, gcmsim

3.3.35 gcm sampleu

Generate random samples from a uniform distribution within a supporting
hypercube:

Xrnd = gcm sampleu(Xref,In)

Xref is a matrix of S column vectors. An optional input argument In
can be given, which is a cell array whos elements are row vectors describ-
ing the partitioning for the respective dimension. This presupposes that
Xref is obtained from a grid. If In is not given, it is obtained using
gcm get partitions.

• Xrnd returns one random sample from the support of each vector in
Xref. The supports of the elements at the edges are assumed to be
symmetric.

Example 43 Let us define a partitioning of using four reference points:
In{1}=[1,2,3,4]. We can now generate random samples for 1’st and 3’rd el-
ements as follows

gcm sampleu([1,3],In)

which results in a vector [0.6782 3.0894] (1’st ∈ [0.5, 1.5] , 3’rd∈ [2.5, 3.5]).

Example 44 Let us generate random samples from the hypercube associated with
cell 1114:

load vdvdata10;

[YN,In]=gcm check for grid(Plant.Xref);

Xrnd = gcm sampleu(Plant.Xref(:,1114),In)

Uses: gcm get partitions

67

3.3.36 gcm sec2time

Convert seconds to a time notation string. The commands

str = sec2time(sec)

str = sec2time(sec,t0)

produce a string str in the format hh:mm:ss dd/mm/yyyy. A second input
argument is a date vector to which sec seconds is added. An additional
output argument returns the date vector corresponding to the string str.

The function does not work over month boundaries.

Example 45 The following table illustrates the command
command result
gcm sec2time(70) 1:10

gcm sec2time(3600) 1:00:00

gcm sec2time(0,clock) 12:19:34 20/11/2007

gcm sec2time(70,clock) 12:20:44 20/11/2007

3.3.37 gcmsim

Run a simulation:

Sim = gcmsim(Plant,Cost,Sim)

where the Plant-structure speficies the plant to be controlled, the Cost-
structure specifies the plant controller, and the Sim-structure specifies the
simulation details. Simulation results are stored in the Sim-structure output
argument.

The Sim-structure contains information for making a sample simulation,
and results of a simulation. In order to start a simulation (using gcmsim)
additional information on plant initial state and state estimator are needed,
as well as a desired target trajectory. As results of the simulation, the plant
input — output trajectories are stored, various state trajectories (real, mea-
sured, discretized), as well as some statistical information (rmse on output,
etc.).

The following fields are required in Sim:

• WW is a K x ny matrix of the target set points, each set point as a row
vector

68

• x0 is a column vector of plant’s initial state (simulated plant)
• y0 is a column vector of plant’s initial output (simulated plant)
• p x0 is the initial state distribution (plant model), S × 1

The following fields are created/updated:

• UU is the K x nu matrix containing the control sequence, where each
row speficies the control action applied at each sampling instant.

• XX s, XX m, XX d are state sequences for simulated (noiseless), mea-
sured and discrete (estimated) state sequences.

• YY s, YY m and YY d are the corresponding measurement sequences.
• PDFX is a matrix of state distributions, K × S
• QMSA is a matrix with the following rows [q,m,s,a] corresponding to set
point, measurement, state and control action indexes at each sampling
instant.

• rmse rd is a K×2 matrix with RMSE on measured (first column) and
RMSE on discrete output (vs. target set points).

• mctg is the mean cost to go

The gcmsim function works as follows: First, the state and measure-
ment of the simulated plant are set according to Sim.x0 and Sim.y0. The
system state and measurement are estimated using gcm estimate x and
gcm estimate y (assumed to be measurable, see code for alternatives). The
next set point is obtained from Sim.WW, and the corresponding controller is
chosen. Based on a maximum likelihood state estimate, a control action is
chosen from the control policy in Cost.Pi (see code of gcmsim for an on-line
predictive controller based on a state distribution estimate). The action is
applied to the simulated plant, and the plant is simulated one step ahead.
The Sim-fields are updated and the simulated trajectories are plotted. The
program flow then retunrs to state estimation, until the end of the setpoint
trajectory is reached.

69

0 0.5 1 1.5 2
1 2.1 3.4

c A

0 0.5 1 1.5 2
0.6

 0.92
1.3

c B

0 0.5 1 1.5 2
90

100
105
110
115
125

v

0 0.5 1 1.5 2

90
100105
110
115
125

v K

0 0.5 1 1.5 2
100

105

110

115

v 0

time

0 0.5 1 1.5 2
0.6

 0.92

1.3

c B

0 0.5 1 1.5 2
3

 14

35

V
/V

R

0 0.5 1 1.5 2
-9000

-3000

-1113.5-800
0

Q
do

tK

time

Figure 6: gcmsim (gcm sim plot)

Example 46 The following command updates the Sim-structure with simulation
information:

load vdvdata10;

Sim = gcmsim(Plant,Cost,Sim)

A plot of simulation results is also produced, see Fig. 6 (see also gcm sim plot).

Uses: gcm sim plot, gcm estimate x, gcm estimate y, gcm x2s, gcm-
pred online

70

3.3.38 gcm simp

Simulate a probability transition model

pp = gcm simp(P,p0)

where P is the S×S probability transition matrix and p0 is the initial state
distribution, S × 1, or a scalar index s to a sure state. pp is a S × (kf + 1)
matrix containing the state cell probabilities in each column, where kf is
the simulation length. kf is determined automatically, or can be given as an
additional input argument:

pp = gcm simp(P,p0,kf)

If the output argument is not given, a plot of the state probabilities is
constructed.

Example 47 Consider the P matrix and initial state p0 below

P =


1 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

 ,p0 =

0
0
1
0
0


The simulation of the system using

pp = gcm simp(P,p0);

results in a sparse matrix where the k’th column indicates the cell probabilities
at the k’th time step (initial state is k = 1):

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0


Uses: gcm ff.

3.3.39 gcm sim plot

Plot results of a simulation (x,u,y):

gcm sim plot(Plant,Cost,Sim)

71

This command produces a plot of the simulation, as stored in the Sim-
structure. The state trajectories are plotted to the left of the plot, the
outputs to the top right corner and the control inputs at the bottom right
corner. The trajectory of each variable is shown in its own plot.

The plots generated by the commands

load vdvdata10;

gcm sim plot(Plant,Cost,Sim);

is illustrated in Figure 6.
Uses: gcm plotx, gcm ff

3.3.40 gcm sim plot io

Plot results of a simulation (u,y):

gcm sim plot(Plant,Cost,Sim)

This command produces a plot of the simulation, as stored in the Sim-
structure. The plant outputs are shown in the top and the control inputs
at the bottom. The trajectory of each variable is shown in its own plot.

Example 48 The plots generated by the commands

load vdvdata10;

gcm sim plot io(Plant,Cost,Sim);

is illustrated in Figure 7

Uses: gcm plotx, gcm ff

3.3.41 gcm spsize

Get information of the size of a sparse variable:

[nz,n,m]=spsize(M)

where M is a n×m sparse matrix of size, nz is an approximate estimate of
the number of nonzeros.

The estimate is based on examation of the bytes-information from the

command whos:nz =max
³
bytes−64

12 , 20
´
. It is useful in cases when a direct

72

0 0.5 1 1.5 2
0.6

 0.92

1.3

y

0 0.5 1 1.5 2
3

 14

35

u 1

0 0.5 1 1.5 2
-9000

-3000

-1113.5-800
0

u 2

time

Figure 7: gcm sim plot io

evaluation (e.g., counting nonzero elements) produces an out-of-memory er-
ror.

Example 49 The estimate is a rough upper bound estimate, as shown by the
following test-script:

load vdvdata10;

for i=1:100,

S=342*i

[spsize(Plant.f(1).P(1:S,1:S)), sum(sum(P(1:S,1:S)~=0))]

end

which produces the results shown in the table below

73

S true nz estimated nz
324 946 1280
3420 13073 14829
34200 157652 168958

3.3.42 gcm squeezep

Set small elements in a sparse matrix to zero, ensuring preservation of prob-
ability measure

pp out = gcm squeezep(pp,sqlimit)

pp out = gcm squeezep(pp,LIM)

where pp is a S × N column matrix of N probability distributions. If the
second input argument (sqlimit) is less than 1, all probabilities less than
sqlimit are set to zero. The remaining probabilities are normalized so that
the probability measure is preserved. A maximum value for sqlimit is 0.1.

If the second input argument is greater than 1 (LIM), an sqlimit is solved
such that the pp out will contain no more than LIM nonzeros. If only one
input argument is given, sqlimit is set to 1

S .
This code is needed for reducing the size of large sparse matrices (to

avoid out-of-memory problems). For the same reason, the code is written in
batches. The use of LIM is very approximative..

Example 50 Let a matrix P be given as follows:

P =


0.6273 0.4952 0.3353
0.0539 0.1741 0.1496
0.2020 0.2124 0.2378
0.1168 0.1183 0.2773

 ,Q =


0.6630 0.4952 0.3353
0 0.1741 0.1496

0.2135 0.2124 0.2378
0.1235 0.1183 0.2773


where Q is obtained from applying the command Q=squeezep(P,0.07).

3.3.43 gcmstability

Analyse stability of a (closed-loop) system

[Sink,Stat] = gcm stability(Plant cl)

[Sink,Stat] = gcm stability(Plant,Cost)

where Plant cl is the closed loop Plant-structure, containing the closed
loop CFMC model. A cell c is considered to be stable if the static probability
of entering the sink cell, given an initial cell c, is zero.

74

With two input arguments, a closed-loop map is computed from plant
and controller descriptions. The function returns two output arguments:

• Sink, is a Q× S matrix giving the stationary probability of entering
the sink cell, when initially in cell s and when under set point control
q.

• Stat is a vector structure, where Stat(q) has two fields: P inf, the
stationary closed loop map, and EA, a structure whos fields contain
indexes to recurrent and transient cells (see gcm eiganalysis).

If no output arguments are given, a bar plot of the state distributions is
produced, one plot for each set point q. Each bar shows the percentage of
stable initial cells (among all state cells). This plot can also be evoked by
using the Sink matrix as an input argument:

gcm stability(Sink)

With additional input arguments, gcm stability(Sink, [], ss), the plot re-
stricts to only cells in the list ss.

Example 51 The stability of the closed-loop system can be examined by first
computing the Sink-matrix, and then plotting the results:

load vdvdata10;

[Sink,Stat] = gcmstability(Plant,Cost);

gcmstability(Sink);

The generated plot is shown in Figure 8. It can be observed that the system is
stable in almost initial cells. There are 1+24 cells from which the probability of
entering is nonzero (probability between 0 and 0.5). The one unstable state (with
p = 1) is the sink-cell itself.

Further examination of the Sink matrix reveals that with all setpoints, the
possibly unstable initial states are the same (ius = find(Sink(1,:)>0)). Using
gcm dispref(ius,Plant.Xref), gives

A set of 26 states:

x(1) = { 3.1 , 3.4*, Inf }
x(2) = { 1.2 , 1.3*, Inf }
x(3) = { 125*, Inf }
x(4) = { 90 , 100 , 105 , 110 , 115 , 125*, Inf }
x(5) = { 100 , 105 , 110 , 115*, Inf }

75

stable unstable

0

10

20

30

40

50

60

70

80

90

100

1 1 1 1 24 24 24 24 0 0 0 0 0 0 0 0 1 1 1 1
p=0 0<p<=0.02 0.02<p=<0.5 0.5<p<=0.98 0.98<p<1 p=1

Probability for entering a sink cell

Σ = 34273

ce

lls
 (%

)
1
2
3
4

set point q

Figure 8: gcmstability

and we conclude that the unstabilities are associated with high values for states
x1 − x3 (high concentrations and temperature of the vdv process).

Uses: gcmclosed, gcm pinf, gcm ff

3.3.44 gcm step

Simulate and plot a discete state trajectory from a given initial state

gcm step(Plant,s,a)

gcm step(Plant,p0,a)

where Plant is a sturcture containing the system CFMC model, s (p0) is the
initial state cell (distribution), and a is the constant control action applied
to the plant.

76

An additional argument T can be given to control the time scale of the
simulation: gcm step(Plant,s,a,T). If T is a scalar, it is the end-time of
the simulation (in real time, vs. sampling time given in the Plant cl or
Plant-structure). If T contains two elements, the first is the start time, the
second is the end-time of simulation. If T is a vector, the corresponding
points in time are returned (sampling time should be the same as in the
model). By default, simulation is continued until a steady state is observed
(or 1000 steps are exeeded). The generated plot is a function of samples
(not real time).

A further additional argument ilist can be given to specify the states
for which the trajectory is to be plotted: gcm step(Plant,s,a,T,ilist).
Default is all states (ilist = [1:size(Plant.Xref,1)]).

If an output argument is given, a matrix of state probability transitions
for all states is returned.

gcm step uses gcm simp to simulate transitions of probability distribu-
tions.

Example 52 In the following example, gcm step is used to generate a plot of the
propagation of the state cell probabilities, projected towards the second state:

load vdvdata10

Plant cl = gcmclosed(Plant,Cost);

gcm step(Plant cl,1114,3,[],2);

Resulting plot is shown in Figure 9.

Uses: gcm project, gcm pplot, gcm get partitions, gcm ff.

3.3.45 gcm v2v

Convert from vector to matrix and vice versa:

V = gcm v2v(M)

M = gcm v2v(V,r)

where M is a r × c matrix and V is a rc× 1 vector.

Example 53 Define M =

·
1 2
3 4

¸
. Then V=gcm v2v(M) and N=gcm v2v(V,2)

result in V = [1 2 3 4]T and N =M.

77

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

t (T
s
=0.00555556)

c B

0 0.0556 0.1111 0.1667

0.6

0.88

1.08

Figure 9: gcm step

3.3.46 gcm vodesolver

One step ahead solver for ode in a vectorized form. The syntax of the
command is

Xk1B = gcm vodesolver(function handle,XkB,Uk,Ts)

where function handle is the handle to the ode M-file, XkB is a column
matrix of input state vectors (at time t), Uk is a control vector (constant
between t and t+Ts), Ts is the sampling time. Xk1B is matrix of states at
the next time instant (t+Ts). The ode are solved using ode23t.

The point of the function is in that it solves the equations in small
batches, as it seems to be the most efficient way.

Example 54 The following command solves the vdv-ode-equations one step ahead
starting from state cell 1114’s reference point:

78

load vdvdata10;

s = 1114; q = 3;
a = Cost(q).Pi(s)
X next = gcm vodesolver(@vdvdv5,Plant.Xref(:,s),Plant.Uref(:,a),Plant.Ts);

Note, that the @vdvdv5 provides a handle to the ode-model (not the DSS
model).

Uses: gcm v2v

3.3.47 gcm x2s

Find the closest cell corresponding to a state:

ss = gcm x2s(XX,Xref)

where XX is a nx × N column matrix of state vectors and Xref is a nx ×
S column matrix of reference vectors. For each column vector in XX, the
function finds the index to a reference vector which is closest to the vector.
The indexes are returned in the S-row vector ss.

If an additional input argument is given:

ss = gcm x2s(XX,Xref,In)

a grid structure is assumed. This results in much faster computations. In is
an array structure, where each element In{i} specifies a vector of discretized
values for the i’th dimension (see gcm check for grid)

With two additional output arguments (lb and ub) the lower and upper
bounds for each dimension are returned (useful if Xref contains a sink cell).

If any of the elements in Xref is not finite, it is assumed that the last
cell is a sink cell.

This function is used throughout the toolbox files, so all modifications
to it should be done with care.

Example 55 Define the reference set by

Xref =

·
1 2 3 4 5
6 6 6 7 7

¸
,x =

·
2.3
6.1

¸
Index to the closest matching vector in the reference set is obtained with the command

s=gcm x2s(x,Xref);

which gives s = 2.

79

Uses: gcm chbase

3.3.48 unrav*

Unravelling algorithm, adopted from the book by C.S.Hsu (1987) ”Cell-to-
cell mapping” pp. 148-151.

• unravel % unravelling algorithm: find group, pediodicty and step
numbers, etc., plot results

— unrav ng handle periodic motion

— unrav og handle previously known cases

— unravel disp plot results of the unravelling algorithm

3.3.49 vdv*

Sample files for the vdv5-example, see Section 3.1.

80

4 Future to-do items

The purpose of this report was to write out the current state of the software.
A number of future enhancements can be considered. From coding point of
view, a grafical user interface (GUI) would be very useful. A convenient
way to deal with delays could also be sorted out (now all delays need to be
included as additional states). Of course, interpretation of model and closed-
loop analysis could be improved, in terms of powerfulness and ease-of-use.
Items such as required model size (discretization) vs. computation time /
memory requirements; required accuracy of open-loop map / # iterations;
effect of constraints on reaching the optimal set point, etc. should be coded
into the software. From research point of view, a number of interesting
directions exist, including: handling of model uncertainty and accuracy;
handling of noise/unmodelled dynamics (output error dynamics, integral
errors (random walk), load disturbances); and learning and adaptation. Just
to mention a few...

81

