
Particle Filtering for Open-Loop Process Control

A Users’ Guide for a MATLAB Toolbox

on Genealogical Decision Tree-Based Optimization

Enso Ikonen

February 24, 2006

Contents

Abstract i

Tiivistelmä ii

Resumé ii

1 Introduction 1

2 Particle filtering 3
2.1 Bayes’ rule . 3
2.2 Bayesian state estimation . 4
2.3 Particle filters . 6

2.3.1 Kalman filter . 7

3 Genealogical Decision Trees (GDT) 9
3.1 Problem formulation . 9
3.2 Optimization of the control sequence 10
3.3 Algorithm . 11

4 MGDT-Toolbox 13
4.1 Contents and variables . 13
4.2 Plant models . 15
4.3 Optimization algorithm . 16

4.3.1 Initializing parameter values 16
4.3.2 Running the simulation 17
4.3.3 Plotting the results . 18
4.3.4 Tuning algorithm parameters 21

4.4 Plant models given by ordinary differential equations 23

5 Case studies 25
5.1 ABC-plant . 26

5.1.1 Initial values . 26
5.1.2 Further simulations 27

5.2 RTP-plant . 31
5.2.1 Initial values . 31
5.2.2 Further simulations 31

5.3 van der Vusse CSTR plant . 34

1

5.3.1 Initial values . 36
5.3.2 Further simulations 37

5.4 FBC plant . 39
5.4.1 Initial values . 42
5.4.2 Further simulations 44

5.5 Two-joint robot manipulator 45
5.5.1 Initial values . 46
5.5.2 Further simulations 48

5.6 Conclusions . 50

6 Extensions and future directions 51
6.1 Other cost functions and distributions 51
6.2 Correlated and time-varying specifications 51
6.3 Feed-back control . 52
6.4 Computational efficiency . 52
6.5 Constraints . 53

References 55

Index 57

2

Abstract

E. Ikonen: Particle Filtering for Open-Loop Process Control — A Users’ Guide for a
MATLAB Toolbox on Genealogical Decision Tree-Based Optimization

Advances in population-based evolutionary algorithms have introduced new tools
for optimizing and controlling complex systems. This report considers a new algo-
rithm that falls within the area of mathematical population genetics and interacting
particle systems: the genealogical decision trees. These particle filter systems belong
to stochastic search models. Their robustness and flexibility make them particularly
attractive for applications to optimization and control of complex industrial processes.

The text is organized as follows. We start with a brief introduction to Bayesian
filters and particle filters. In Section 3, the Genealogical Decision Tree (GDT) algo-
rithm for open-loop control optimization is described. The Matlab MGDT-Toolbox
implementing the algorithm is presented in Section 4. A number of case studies with
different types of processes, models and trajectories are reported in Section 5, so as
to illustrate the performance and viability of the approach. To conclude, Section 6
discusses extensions of the algorithm and possible future directions.

Key words: automation, control engineering, control theory, evolutionary algo-
rithms, genetic algorithms, Matlab, optimization, open-loop control, particle filtering,
process engineering, programming, random search, stochastic processes, trajectory fol-
lowing

i

Tiivistelmä

E. Ikonen: Partikkelifiltterit prosessien avoimen piirin säädössä — Käyttäjän ohje
genealogisen päätöksentekopuu -perustaisen optimoinnin MATLAB-työkaluun

Kehitys populaatioperustaisissa evoluutioalgoritmeissa on tuonut uusia työkaluja moni-

mutkaisten systeemien optimointiin ja säätöön. Tässä raportissa käsitellään uutta algoritmia

joka sijoittuu matemaattisen populaatiogenetiikan ja vuorovaikutteisten partikkelisysteemien

alueelle. Nämä partikkelifiltterisysteemit kuuluvat stokastisiin hakumenetelmiin. Niiden ro-

bustisuus ja joustavuus tekee niistä erityisen houkuttelevia monimutkaisten teollisuusprosessien

säädön ja optimoinnin sovelluksiin.

Tämä raportti on jäsennelty seuraavasti. Aloitamme lyhyellä johdannolla Bayesin filtterei-

hin ja partikkelifilttereihin, Luku 2. Luvussa 3 kuvataan GDT algoritmi — Genealogical Decision

Tree, eli genealoginen (’sukuhistoriallinen’) päätöksentekopuu — avoimen piirin säätösekvenssin

optimoimista varten. Menetelmän implentoiva Matlabin MGDT-kirjasto esitellään luvussa 4.

Luvussa 5 esitellään lähestymistavan suorituskykyä ja soveltuvuutta lukuisalla määrällä esi-

merkkejä joissa käsitellään erityyppisiä prosesseja, malleja ja vasteita. Lopuksi pohditaan hie-

man menetelmän laajennuksia ja tulevaisuuden tutkimussuuntia.

Resumé

E. Ikonen: Méthodes particulaires pour la commande en boucle ouverte - Guide
d’utilisateurs pour une bôite à outils Matlab pour l’optimisation basée sur les arbres
de décision généalogiques.

Les algorithmes évolutionnaires basés sur l’évolution des populations biologiques représentent

des outils nouveaux pour l’optimisation et la commande des systèmes complexes. Ce rapport

considère un nouvel algorithme de commande basé sur des processus historiques et arbres

généalogiques pour la commande de systèmes complexes. Ces systèmes de filtre de particules

appartiennent aux modèles stochastiques de recherche. Leur robustesse et flexibilité les ren-

dent particulièrement attirants pour des applications à l’optimisation et à la commande des

processus industriels complexes.

Ce rapport est organisé comme suit. Nous commençons par une brève introduction aux

filtres Bayésiens et aux méthodes particulaires pour le filtrage, Section 2. Dans la troisième

Section, un algorithme de commande basé sur des processus historiques et arbres généalogiques

(Genealogical Decision Trees, GDT) pour la commande en boucle ouverte de systèmes com-

plexes est décrit. La MGDT-bôite à outils Matlab qui permet la mise en ouevre de cet

algorithme de commande est présentée dans la Section 4. Pour illustrer la faisabilité et la

performance de cet algorithme de commande pour la régulation et la poursuite de trajec-

toires, divers exemples sont présentés dans la Section 5. Enfin, la Section 6 traite des futures

directions de recherche.

ii

Preface

In autumn 2003, Professor K. Najim told me that he had interesting developments
together with Professor Del Moral, both in Toulouse at the time, related to genetic and
random search techniques. I browsed the first drafts of the method in winter 2003—
2004. My role in the co-operation was then to prepare some simulations. This report
summarizes the work conducted based on these ideas since then.

The first results were published in the IFAC AFNC (Workshop on Advanced Fuzzy
/ Neural Control) in Oulu (spring 2004). Since then a series of manuscripts and confer-
ence papers has been prepared, illustrating the power of the approach with models of
various industrial processes from process engineering, chemical engineering, energy con-
version and robotics. The method searches for an optimal open-loop contol sequence,
so as to follow a given trajectory. Extensions with additional feed-back control have
also been considered.

The main purpose of this report is to provide a users’ guide for the Matlab-
functions implementing the method, in order to popularize the approach. To enable
those less familar with the area of particle filters to grasp the essential, a short in-
troduction to particle filters (a.k.a. sequential Monte Carlo methods) is given. This
is followed by the application of the techniques to the optimization of a control se-
quence in trajectory following. The few functions needed for implementing the algo-
rithm are described in detail. Clear and easy-to-follow guidelines are suggested for
initial tuning of the algorithm parameters. These are evaluated in various types of
simulation examples. The source code (for Matlab 6 — R12) is publically available at
http://cc.oulu.fi/~iko/MGDT.htm.

Alltogether, a number of colleagues have participated to the reported research. All
merits about the basic algorithm (Sections 3.1—3.2) should be addressed to Professor
P. Del Moral (Nice, France) and Professor K. Najim (Toulouse, France). The role of
E. Ikonen is more visible in process control applications: formulation in Section 3.3,
introduction of incremental control, tuning rules, and feed-back control considerations.
The Matlab toolbox and all the simulations were prepared by E. Ikonen, with many
of the models proposed by Prof. K. Najim. Applications to robotics were conducted in
co-operation with Professor E. Gomez-Ramirez (Mexico D.F., Mexico).

Finally, I would like to address my thanks to Professor U. Kortela (Oulu, Finland)
for a long term support on this line of research. Financial support from the Academy
of Finland (projects 48545 and 203231) is gratefully acknowledged.

in Oulu, February 2006

Enso Ikonen
Docent (Adjunct Professor), Dr.

iii

1 Introduction

Advances in population-based evolutionary algorithms have introduced new tools for
optimizing and controlling complex systems. This report considers a new algorithm
that falls within the area of mathematical population genetics and interacting particle
systems (Del Moral 2004): the genealogical decision trees. These particle filter systems
(Doucet et al. 2001)(Arulampalam et al. 2002) belong to stochastic search models
(Najim et al. 2004). Their robustness and flexibility make them particularly attractive
for applications to optimization and control of complex industrial processes.

Using the MGDT Toolbox, optimization of an open-loop control sequence for
following a given trajectory for a given plant, consists of the following steps:

1. Create an M-function describing the plant, a process model :½
xn = fn (xn−1,un−1)

yn = hn (xn)
.

2. Specify the cost function:

JT (u0, ...,uT−1) =
T−1X
n=0

kunk2An
+
T−1X
n=0

°°yn − yrefn °°2Bn

by setting the trajectory to follow, covariances An and Bn, and the type of cost
function (penalties on magnitudes or increments of control).

3. Set algorithm tuning parameters: number of particles N (population size), and
sharpness of the distribution, β.

4. Run the optimization algorithm and validate the results.

5. Repeat simulations (Monte Carlo + tuning variations)

These steps, the background behind the approach, as well as an ample amount of case
studies will be explained in the remainder of this report.

The text is organized as follows. We start with a brief introduction to Bayesian
filters and particle filters. In Section 3, the Genealogical Decision Tree (GDT) algo-
rithm for open-loop control optimization is described. The Matlab MGDT-Toolbox
implementing the algorithm is presented in Section 4. A number of case studies with
different types of processes, models and trajectories are reported in Section 5, so as
to illustrate the performance and viability of the approach. To conclude, Section 6
discusses extensions of the algorithm and possible future directions.

1

.

2

2 Particle filtering

In this section we take a brief look at the backgound and essential ideas of particle
filtering. For a better coverage, see, e.g., (Stramer 2006)(Ye 2001)(Doucet et al.
2001)(Arulampalam et al. 2002).

2.1 Bayes’ rule

Let us start from the axiom of conditional probability. A conditional probability is a
”belief that A happens, when we assume that B is known”. Axiom:

p (A|B) = p (A,B)

p (B)
.

We have

p (A|B)× p (B) = p (A,B) ,
and due to symmetry, it also holds that

p (B|A)× p (A) = p (A,B) .
Consequently, we have

p (A|B)× p (B) = p (B|A)× p (A) .
This results in the famous Bayes’ rule:

p (A|B) = p (B|A)× P (A)
p (B)

The Bayes’ rule can be interpreted as an algorithm where our belief on hypothesis A is
updated with new evidence B:

• The posterior (after event) belief, p (A|B), is obtained by multiplying the a priori
(before event) belief, p (A), by the probability that B occurs if A is true, p (B|A).

The Bayes’ rule is useful when one wants to obtain p (A|B), and
1. it is difficult to obtain it directly, and

2. there is direct information on p (B|A).
Let us write the Bayes’ rule for updating a hypothesisH, when there’s new evidence

E and a context I:

p (H|E, I) = p (E|H, I)× p (H|I)
p (E|I)

where

3

• p (H|E, I): posterior probability, probability of hypothesis H, when evidence E
is examined in the context I.

• p (H|I): a priori probability, probability of hypothesis H in context I (before
new evidence E)

• p (E|H, I): likelihood , probability of evidence E when hypothesis H and context
I are assumed to hold.

• p (E|I): scaling factor.

2.2 Bayesian state estimation

Assume that we want to estimate the state variable x (n) of a dynamic system at
instant n, when all observations (measurements) y (n) up to and including instant
n are available. In the Bayesian framework, we want to determine the conditional
probability

p (x (n) |Y (n))
where Y (n) = {y (1) ,y (2) , ...,y (n)} is the entire set of observations. In a similar
way, let us define the state history X (n) = {x (1) ,x (2) , ...,x (n)}, when x (0) is the
a priori information on the system state (before any observations).

Let us use the Bayes rule, to obtain

p

 Hz }| {
x (n)|

E,Iz }| {
Y (n)

 =

p

 Ez }| {
y (n)|

Hz }| {
x (n),

Iz }| {
Y (n− 1)

× p
 Hz }| {
x (n)|

Iz }| {
Y (n− 1)


p

 Ez }| {
y (n)|

Iz }| {
Y (n− 1)


Make the following assumptions:

• y (n) are independent of each others:
p (y (j) ,y (i)) = p (y (i))× p (y (j)) ,

• y (n) is independent of the dynamic process:
p (y (n) |X (n)) = p (y (n) |x (n)) ,

• the system can be described as a Markov process:
p (x (n) |X (n− 1)) = p (x (n) |x (n− 1)) .

4

Now the Bayes’ rule is greatly simplified:

p (x (n) |Y (n))| {z }
new estimate

=
p (y (n) |x (n))× p (x (n) |Y (n− 1))

p (y (n))

= C (n)| {z }
scaling

× p (y (n) |x (n))| {z }
likelihood of the observation

× p (x (n) |Y (n− 1))| {z }
estimate before new observation

(1)

where

p (x (n) |Y (n− 1)) =
Z
p (x (n) |x (n− 1))| {z }

system dynamics

× p (x (n− 1) |Y (n− 1))| {z }
old estimate

dx (n− 1) .

(2)

This is a recursive procedure to update p (x (n) |Y (n)).
With the following initial information:

i) a model of the observation

p (y (n) |x (n)) , i.e., y (n) = hn (x (n) , e (n)) ,

ii) a model of the system

p (x (n) |x (n− 1)) , i.e., x (n) = fn−1 (x (n− 1) ,v (n)) ,

and

iii) a priori model

p (x (0)) ,i.e., x (0) ∼ p,

the desired probability can be determined in two stages:

prediction (2) and update (1).

In general, the three models i)—iii) are complex, perhaps non-analytic, so that the
calculations are not easy. However, in the case of Gaussian distributions (densities) and
linear models, the equations reduce to the well known Kalman filter. In a more general
context, an alternative for solving the equations is provided by the so called particle
filtering techniques.

5

2.3 Particle filters

The equations (1)—(2) can be solved using particle filters, where the posterior distribu-
tions (densities) p (x (n) |Y (n)) are described using a set of samples, a particle cloud.

Prediction: The particles evolve in the state-space according to the system model:

p (x (n) |x (n− 1))
=

Z
δ (x (n)− fn−1 (x (n− 1) ,v (n− 1)))| {z }

delta-function (a point)

p (v (n− 1)) dv (n− 1) .

When the state x (n− 1) of each particle is known and the noise v (n− 1) has real-
ized, we are left with a set of points (particles) which have evolved in the state-space
according to the statistical properties of the function fn−1 and noise v (n− 1). In a
practical algorithm, each particle xi (n− 1), i = 1, 2, ...,N , is put through a system
model:

xi (n) ∼ p ¡x (n) |xi (n− 1)¢ , i.e., xi (n) = fn−1 ¡xi (n− 1) ,vi (n− 1)¢
where vi (n− 1) are generated from the distribution assumed for the noise (system
model).

Update: When the observation (measurement) y (n) becomes available, the condi-
tional distribution p (y (n) |x (n)) can be evaluated according to the observation model:

p (y (n) |x (n)) =
Z

δ (y (n)− hn (x (n) , e (n)))| {z }
delta-function (a point)

p (e (n)) de (n) .

In a practical implementation, an output for the i’th particle can be generated based
on the state xi (n) and the observation model

yi (n) ∼ p ¡y (n) |xi (n)¢ , i.e., yi (n) = hn ¡xi (n) , ei (n)¢
where ei (n) are generated according to the observation model. What is of interest, is
the likelihood probability of the observation for the particle in question: p

¡
y (n) |xi (n)¢.

If the noise e (n) obeys a density pe(n) (e), then the following likelihood probability is
obtained

p
¡
y (n) |xi (n)¢ = pe(n) ¡y (n)− yi (n)¢ .

Let us use this as a weighing factor

wi (n) ∝ p ¡y (n) |xi (n)¢ , where NX
i=1

wi (n) = 1.

6

The particles xi (n− 1) represent the distribution at n − 1. The particle cloud is
resampled using the weighting wi (n) from the Bayes’ rule. In a practical mechanization
of the approach, we select N times from the set xi (n), i = {1, 2, ..., N}, so that the
probability for each i to be selected is wi (n). The selected particles make up the
particle cloud at the next sampling instant.

Let us summarize the steps at instant n for Bayesian state estimation based on
particle filtering:

Algorithm 1 Bayesian state estimation based on particle filtering:
1. For each particle (with state xi (n− 1)), the compute a prediction (xi (n)).
2. Observe y (n) from the system.
3. For each particle, evaluate the likelihood of the observation to occur, p

¡
y (n) |xi (n)¢.

4. Resample the cloud of particles using the normalized likelihood as a weighting
factor. Resampling results in a new set of particles xi (n), i = 1, 2,..., N .
5. Set n→ n+ 1 and return to step 1.

2.3.1 Kalman filter

In the Kalman filter, the probability models are assumed as follows:

iii) according to the a priori model, the state x (0) obeys normal distribution,

x (0) ∼ N (bx (0) ,P (0))
ii) the system is described as a linear (Markov) state-space model,

x (n+ 1) = A (n)x (n) +B (n)u (n) + v (n)

where the process noise is normally distributed (white zero-mean noise)

v (n) ∼ N (0,V (n))

Notice, that the system control B (n)u (n) is completely deterministic.

i) the measurement has the form:

y (n) = C (n)x (n) + e (n)

where the measurement noise is normally distributed (white zero-mean noise):

e (n) ∼ N (0,Y (n)) .

For the resulting algorithm, see, e.g., (Ikonen and Najim 2002).

7

.

8

3 Genealogical Decision Trees (GDT)

In the Genealogical Decision Tree (GDT) approach (Del Moral 2004) (Ikonen et al.
2004) (Najim et al. 2006), the open-loop control problem is solved using particle filtering
techniques, by interpreting the noise in the stochastic filtering problem as the control
input to a deterministic process, and the system observation as the reference trajectory.
The essential idea then consists of associating Gaussian distributions to both the norms
of the control actions and the tracking errors. The Bayesian prediction/evaluation steps
are solved by sampling/resampling point approximations of the associated distributions.
The resulting stochastic search model (optimization of an open loop control sequence for
a deterministic state space model) can be interpreted as a simple genetic (evolutionary)
particle population model, and has a natural birth and death interpretation. Converge
in probability can be shown (Najim et al. 2006).

In the following, the control problem is formulated, followed by a description of the
optimization and control algorithm under consideration.

3.1 Problem formulation

Consider any non-linear time-varying dynamic system, described by the following state-
space equations: ½

Xn = Fn (Xn−1,Un)
Yn = hn (Xn)

, (3)

where Xn = [Xn,1,Xn,2, ...,Xn,S]
T ∈ RS , Un = [Un,1, Un,2, ..., Un,P]

T ∈ RP , Yn

= [Yn,1, Yn,2, ...,Yn,Q]
T ∈ RQ. Index n = 1, 2, ..., T represents the sampling instant.

X0 represents the fixed initial state at instant n = 0. Let An and Bn be symmetric
and semi-definite positive covariance matrices. The control objective in a finite horizon
of length T is given by

JT (U1, ...,UT) =
TX
n=1

kUnk2An
+

TX
n=1

°°Yn −Yref
n

°°2
Bn

(4)

where Yref
n ∈ RQ represents the reference trajectory (desired target outputs), and

kUk2A = UTA−1U.
Our objective is to find the sequence of control actions that will minimize this

control objective for open-loop control. The essential idea is to associate Gaussian
distributions to the norms of the control actions and the tracking errors, i.e.,

kUnk2An
−→ 1√

2π
exp

µ
−β
2
kUnk2An

¶
(5)

°°Yn −Yref
n

°°2
Bn
−→ 1√

2π
exp

µ
−β
2

°°Yn −Yref
n

°°2
Bn

¶
. (6)

9

The parameter β is similar to the inverse temperature in simulated annealing optimiza-
tion algorithms. For small values a flat probability distribution results, for large values
of β the distribution will have the shape of a hair pin. Other than Gaussian distributions
can also be considered.

3.2 Optimization of the control sequence

Let us consider the following scheme. At instant n, generate N independent and
identically distributed normal vectors Ui

n ∼ N (0,An), i = 1, 2, ..., N :

U1
n,U

2
n, ...,U

N
n .

Using the model (Fn, hn) we evaluate that these control values lead to N outputs:(
Xi
n = Fn

³bXi
n−1,U

i
n

´
Yi
n = hn

¡
Xi
n

¢
for i = 1, 2, ..., N . At n = 1, the initial states bXi

0 are given by X0.
In order to simplify the notations, let us introduce the following term

pin =

exp

µ
−β
2

°°Yref
n −Yi

n

°°2
Bn

¶
NP
j=1

exp

µ
−β
2

°°°Yref
n −Yj

n

°°°2
Bn

¶ . (7)

We have
PN
i=1 p

i
n = 1, and pn can be interpreted as a probability measure. Let us then

generate N independent and identically distributed random vectors bU1
n, bU2

n, ..., bUN
n

according to the distribution

pn (u) =
NX
i=1

pinδUi
n
,

where δu is the Dirac measure at the control value u ∈ RP .
In other words, for each j = 1, 2, ..., N , each random control bUj

n takes the value
Ui
n with probability equal to p

i
n. This can be seen as a resampling procedure, where

the probability for the survival of Ui
n depends on the performance of the associated

Yi
n.
The implementation of these control actions leads to

bXj
n = Fn

³bXi
n−1,U

i
n

´
=⇒ bYj

n = hn

³bXj
n

´
for j = 1, 2, ..., N . The procedure is repeated for all n = 2, 3, ..., T .

10

3.3 Algorithm

The algorithm can be now stated as a modification of the nonlinear filtering algorithm
(compare with Algorithm 1):

Algorithm 2 Optimization of open-loop control sequence.
1. For each particle (with state xi (n− 1) and control ui (n− 1)), compute a pre-
diction (xi (n)).
2. ’Observe’ yref (n) for the system.
3. For each particle, evaluate the likelihood of the reference target to occur.
4. Resample the cloud of particles using the normalized likelihood as a weighting
factor. Resampling results in a new set of particles xi (n) i = 1, 2,..., N .
5. Set n→ n+ 1 and return to step 1.

A mechanization of the procedure for optimizing the open-loop control sequence is
given in what follows.

Let us assume that the plant model is given by½
xn+1 = f (xn,un)
yn = h (xn)

. (8)

with initial condition x0. Note that the system equation is given by xn+1 = f (xn,un),
instead of xn = f (xn−1,un). This formulation is far more common in process mod-
elling, as it ensures causality (the control at n can only have an effect on state at instant
n + 1. This formulation makes it easier to use ’standard’ process models available in
the literature. For simplicity, a time-invariant system is assumed. The associated cost
function is given by

JT (u0, ...,uT−1) =
T−1X
n=0

kunk2An
+
T−1X
n=0

°°yn − yrefn °°2Bn
(9)

In this formulation, y0 is determined by the plant initial state x0, and only the first
term on the right hand side depends on the control actions. For n = 1, 2, ..., T − 1,
both terms depend on the control sequence. Note that the reference targets are now
set for n = 0, 1, ..., T − 1.

11

The following pseudo-code implements the algorithm:

for n = 1 : T

for i = 1 : N

if n == 1, Initialize xi = x0, y
i = h (x0) and J

i
T = 0; end

Generate random ui ∼ N (0,An).

Store action to a list vin = u
i.

Evaluate JY =
°°yrefn − yi°°2Bn

, JU =
°°ui°°2

An
and J iT = J

i
T + JY + JU .

Set weight piun = exp
³
−β
2 JY

´
.

end

For all i = 1 : N : Compute resampling probabilities: pi = piun/
PN
i=1 p

i
un. end

Resample: For all i = 1 : N : Select bIi = k such that Pr (k = j) = pj . end
For all i ∈ bI: Compute model for next n: xi = f ¡xi,ui¢ ; yi = h ¡xi¢. end
Death and birth. For all j = 1 : N : Replace xj , yj , vjn and J

j
T by x

bIj , ybIj , vbIjn
and J

bIj
T . end

end

Find i∗ = argmini J iT . The solution for the optimal control sequence is v
i∗ .

The code proceeds one sample at a time from the beginning to the end of the
trajectory, n = 1, 2,... , T 1. At instant n, a random input ui is generated for each
particle at the population. Each particle i is evaluated based on its performance at n
(deviation of yi from output trajectory yrefn), and a corresponding resampling weight is
set. The particle population is resampled, and the particles that survived are simulated
one sample forward. The loop is then continued at n→ n+ 1.

The scalars J iT collect cumulatively the cost (4) associated with each particle, so
that at n = T these correspond to JT in equation (4). The postponing of the model
evaluations after resampling can significantly reduce the computational load of the
algorithm (here advantage is taken of the fact that control at n will affect the plant
output at n+ 1 the earliest.)

1InMatlab the vector indexes run starting from 1, therefore n is shifted by one in the
code. Indexes n = 1 : T correspond to n = 0, 1, ..., T − 1 in (9).

12

4 MGDT-Toolbox

This section explains how to use the algorithm package, and how to get started in
solving a particular problem. The next section (Section 5) reports an extensive list of
case studies. To make it short, the following steps are required:

1. Create an M-function describing the plant, a process model. It has to return the
next output and state, given the current state and control (two output arguments,
two input arguments).

2. Specify the cost function: set covariances An and Bn, and select type of cost
function (penalties on magnitudes or increments of control)

3. Set algorithm tuning parameters: number of particles N , and sharpness of the
distribution β.

4. Run the optimization and validate the results.

5. Repeat simulations (Monte Carlo + tuning variations)

The MGDT-Toolbox was written using Matlab 6 (Release 12) on a Windows
XP platform.

4.1 Contents and variables

The Matlab MGDT Toolbox contains the following files:

• GDTopt.m — contains essential parts of the algorithm
• GDTsort.m — extracts optimal solution from the GDT-structure

• GDTplot.m — plots information about the algorithm and its results
• GDTODESampler.m — sampling interface for ODE plant descritions
• Urand.m — generates a random vector distributed according to a given covariance
• UGener.m — an alternative resampling procedure (not used)

These M-files can be downloaded from http://cc.oulu.fi/~iko/MGDT.htm, along
with a few sample files:

• typicalplant.m and typicalrun.m provide an example of a simple optimiza-
tion problem.

• typicaldiff.m, typicaldiffsampled.m and typicaldiffrun.m provide an
example using an ODE plant description.

13

To install the MGDT-Toolbox, create a new directory (e.g., ’c:\MGDT’), copy the
above files to this directory, and add the diretory to Matlab’s current search, .e.g., with
the command path(path,’c:\MGDT’).

The GDTopt-file implements the essential parts of the algorithm. The GDTopt
M-function needs the following input-arguments:

• Yref — a T ×Q matrix containing the desired output trajectory
• A n, B n — covariance matrices An and Bn (matrices of size P ×P and Q×Q)
• N, bet — number of particles N and tuning factor β (scalars)

• plantfunstr — name of the M-file that simulates the plant under optimization
• X0, Y0 — initial state and output of the plant (column vectors of length S and
Q)

• DELTAU — a flag indicating optimization of a sequence of control increments
(DELTAU=1), or absolute controls (DELTAU=0)

• P1, P2, P3, ..., P6 — additional arguments to be passed to plantfunstr
The plant models (defined by plantfunstr, P1, P2, P3, ..., P6) are discussed in

the next subsection.
As a result of the optimization, the M-file GDTopt returns a GDT-structure. This

is a vector-structure, where each particle has its own structure, i.e., GDT(1) describes
the first particle, GDT(2) the second, etc., up to GDT(N). GDT(i) is the structure for
the i’th particle, with the following fields:

• U hist — past plant control sequence, a matrix of size T × P . Note, that
for incremental control (DELTAU=1) this contains the control increments, the
absolute control values can be obtained by cumsum(U hist)+U0, where U0 would
define an initial value for control (zero by default).

• X hist — past plant state sequence, a matrix of size T × S
• Y hist — past plant output sequence, a matrix of size T ×Q
• J hist — past cost history, a matrix of size T × 3. The first column stores the
total costs (cumulative), the second and third columsn store the deviation and
control costs (instant).

• parent hist — past indexes to parent particles, a T -vector
• survived — number of different resampled particles (number of particles that
survived in selection at iteration n), a T -vector

• X — current plant state, S-vector
• Y — current plant output, Q-vector

14

• J T — current total cost, a scalar
• Jy — current deviation cost, a scalar
• Ju — current control cost, a scalar
• parent — parent of current particle, a scalar
• p un — unnormalized resampling weight of particle, a scalar
• Yref, A n, B n, bet, N, plantfunstr, X0, Y0, and DELTAU, as described already.

4.2 Plant models

The system model (8) is coded in an M-function whos name is indicated by plantfunstr.
This M-file must have the following syntax:

[Yn1, Xn1] = fun(Xn, Un, P1, P2, P3, ...)

where

• Xn denotes the system state at instant n, xn;

• Un denotes the system input at instant n, un

— Note, that if DELTAU=1, then un =
P
∆un will be automatically generated

when evaluating the plantfunstr, while the sequence of ∆un (n = 0,
1,..., T − 1) is optimized.

• Yn1 denotes the system output at instant n+ 1, yn+1;
• Xn1 denotes the system state at instant n+ 1, xn+1;
The arguments P1, P2, P3, ... are optional, and not used anywhere else in

the GDTopt M-file (except as arguments for plantfunstr). These may define a sam-
pling time, a measurement matrix, an initial/nominal control value in optimization of
controls, etc., to make it more convenient to examine different values/optimization
settings.

Example 3 A typical plantfunstr M-file would look as follows.

function [yn1,xn1] = typicalplant(xn,un,Ts,u0)

% TYPICALPLANT

% [yn1,xn1] = typicalplant(xn,un,Ts,u0)

% define a TITO system

sysc = tf({2,[-10 1];0,1},{[10 1],[100 20 1];1,[2 1]}); % plant
sysd = c2d(sysc,Ts); % sampled system

15

[A,B,C,D]=ssdata(sysd) %sampled state-space system

un = un+u0; % add controls to initial/nominal controls

xn1=A*xn+B*un; % state equations

yn1=C*xn1; % measurement equations

This M-file implements a 2 × 2 linear system, but there are no constraints to
use any other type of models, as long as the model is of form (8). The additional
inputs (P1, P2) to this model are the sampling time Ts and initial control u0.

The plantfunstr M-file is typically evaluated very many times during optimiza-
tion, so that efforts towards fast implementation will most likely pay off.

As a matter of coding style, it can be useful to attach reasonable initial values for
all parameters into the plant description. The following code (if added in plantfunstr
after the lines for function definition and help descriptions) gives an example.

Example 4 Code for initial values for plant and arguments
% Default arguments:

% proper initial values

if nargin==0, yn1 = zeros(2,1); xn1 = zeros(4,1); return; end

% reasonable additional argument values

if nargin<4, Ts = 1; u0 = zeros(2,1);
elseif nargin<3, Ts = 1;
end

When no input arguments are given to the M-file, initial values are returned.
When third or fourth input arguments are missing, default values are used.

4.3 Optimization algorithm

This subsection explains how to run the algorithm and examine the results. Guidelines
for initializing and tuning the algorithm parameters are also discussed.

4.3.1 Initializing parameter values

The search algorithm has five parameters to be specified: DELTAU, An, Bn, N and β.
DELTAU is a fundamental parameter:

• With DELTAU=0 a sequence of control actions is searched for. This sequence
attempts to minimize the cost function (9) consisting of weighted sums of squared
deviations from desired trajectory and the weighted sums of squared magnitudes
of the control actions required.

• With DELTAU=1 a sequence of increments of control actions is searched for.
The sequence should minimize the cost function (9) where the costs consists of
deviations from desired trajectory and magnitudes of changes in control actions
required.

16

• In Example 3, an initial/nominal control was defined. With this type of coding
an initial control value can be given for an incremental control sequence, or the
zero-level of an ”absolute” control sequence can be justified. In both cases,
the control sequence can be optimized around a predetermined operating point.
Notice, that this has a great influence in the minimization of the costs.

The parameters A n and B n (An and Bn) specify the cost function to be mini-
mized. There’s no unique way to define these parameters, unless the cost function fully
includes all the control design specifications. As this is rarely the case in practice, a
tentative scheme to find reasonable initial values/tuning is suggested in what follows:

• Select A n as a diagonal matrix, where the elements at the diagonal are squares
of a largest ’tolerable’ output error for the output variable in question.

• Select B n as a diagonal matrix, where the elements at the diagonal are squares of
a largest ’tolerable’ control action for the manipulated variable in question (with
DELTAU=0). In incremental control, (DELTAU=1), specify a largest ’tolerable’
control increment instead.

• Select bet=1 (β) and N=100 (N). This is a purely heuristic choice, supported
by the arguments discussed in the next subsection.

Non-diagonal An and Bn are discussed in Section 6.

4.3.2 Running the simulation

The GDT optimization (simulation) is invoked by the following command:

GDT = GDTopt(Yref, A n, B n, N, bet, plantfunstr, X0, Y0, deltaU)

This will run the optimization routine (generation of random controls, evaluations
of system model, sampling of promising solutions, etc.) for n = 0, 1, ..., T − 1. Any
additional arguments (P1, P2, ...) to be passed to plantfunstr are added to the end
of input argument list:

GDT = GDTopt(Yref, A n, B n, N, bet, plantfunstr, X0, Y0, deltaU, P1, P2, ...)

After each iteration n (or each three seconds if single iterations are faster) a plot
of the state of the optimization is shown (see GDTplot below). The results of the
optimization are returned in the output argument GDT (see Section 4.1).

Example 5 A typical simulation run would look as follows.

% Define plant M-file name

plantfunstr = ’typicalplant’

17

% reference trajectory is consequtive steps in both varibles

Yref = [0*ones(10,1) 0*ones(10,1);...

0*ones(10,1) ones(10,1);...

ones(10,1) ones(10,1)];

% algorithm parameters

A n = [0.5^2 0;0 0.1^2];

B n = [0.1^2 0;0 0.5^2];

N = 500;

bet = 1;

deltaU=1;

% initial values

[Y0,X0] = typicalplant;

% start optimization

GDT = GDTopt(Yref,A n,B n,N,bet,plantfunstr,X0,Y0,deltaU);

In the above, we take that in the first output variable an error of 0.1 is ’tolerable’,
in the second output a much larger error can be accepted (0.5),

Bn =

·
0.01 0
0 0.25

¸
.

These are to be in relation with the ’tolerable’ control increments, judeged to be around
0.5 for the first control variable, while smoother manipulations are desired for the second
input (0.1),

An =

·
0.25 0
0 0.01

¸
.

4.3.3 Plotting the results

The outcomes of the simulation can be examined using the M-file GDTplot.m. It plots
the trajectories related to the best particle (out of the N particles), i.e., the one which
minimizes the total costs JT , eq. (9). The syntax is

GDTplot(GDT)

where GDT is the structure obtained as an output argument from GDTopt. The figure
window title indicates the name of the plantfunstr. When invoked during optimiza-
tion (from within GDTopt), it also gives an estimate of the time left for completion of
simulations. The figure contains the following information for the optimal solution, i.e.,
the one among all N solutions that minimizes Jn:

• The leftmost column plots the system state trajectories xn, as a function of
samples, from 0 to n− 1. The first state is shown at the top, the other states
follow consequtively. The x-axis label of the bottom plot indicates the value of
n.

18

• The second column shows the control trajectories un (from 0 to n − 1). The
first input is shown at the top, the x-axis label shows the corresponding diagonal
element of An. The other inputs are shown below. In the case of incremental
optimization, un are shown (

Pn−1
i=0 ∆ui). Note, however, that any possible

initial/nominal values passed to plantfunstr are not shown.

• The third column shows the desired (dotted line) and simulated output trajec-
tories for each of the plant outputs. The complete reference trajectory is shown
(yref0 , y

ref
1 , ..., y

ref
T−1), the simulated trajectory is shown up to n. The x-axis

labels show the corresponding diagonal elements of Bn.

• The upper plot in the rightmost column shows the evolution of costs. The total
costs Jn are composed of the deviation term

P
JY (red dotted line) and control

term
P
JU (blue). The title text shows Jn (∆U) for optimization of incremental

costs, J (U) otherwise; the total costs up to n are shown.

• The lower plot in the right column gives information on the population. The plot
shows the survival percentage (upper, blue curve), and the number of different
solutions in the population backwards in time (lower, red curve). If the GDT
structure contains only one particle, the second curve is not shown. The y-axis
scale is logarithmic, the y-axis is scaled such that the lower value corresponds to
one sample (100N %), the upper to all samples (100%). The title text shows the
average survival percentage, indicated by n+1/n. The x-axis label shows the N
and β parameters.

An example of the plot produced for the typicalrun-example follows.

Example 6 Figure 1 illustrates the simulation, as plotted by the command GDTplot(GDT),
where GDT is obtained as in Example 5. Out of the four states (leftmost column), the
first and fourth correspond to scaled output measurements (third column), according
to the linear plant description in typicalplant.m. The target trajectories are shown
together with plant outputs. In the design specifications, Bn, a tight control for the
first output was desired, while much larger deviations from the desired trajectory were
accepted for the second output. This can be clearly observed from the output tra-
jectories (the first output follows the trajectory much closer than the second). For
the magnitudes in control increments, the specifications in An insisted on a relatively
smooth control for the second input, while larger increments were allowed for the first.
Again, this is clearly the case in the illustrated simulation. The diagonal components
of An and Bn are shown in the plot labels, as well as other parameters N and β. The
DELTAU=1 can be deduced from the cost title: Jn(∆U). The optimal control sequences
are shown in the second column.

The rightmost row (Fig. 1) illustrates the development of the total costs. Since
the plant did not achieve its trajectory at T , and the control actions are not constants
(zero increments), the costs do not seem to tend towards a fixed value. The lower
plot in the righmost column shows the number of different solutions in the current

19

0 20
0

20

40

60

80

100 Jn

ΣJY

Jn(∆U)=99.1944

ΣJU

0 20

100

101

102

n+1/n 29.6267%

N=500, β=1

0 20
-5

0

5

Xn

0 20
-50

0

50

0 20
-50

0

50

0 20
-2

0

2

n=29

0 20
-0.5

0

0.5

1

1.5

2

Un

An(1,1)=0.25

0 20
-0.5

0

0.5

1

1.5

An(2,2)=0.01

0 20
-0.5

0

0.5

1

1.5

Yn

Bn(1,1)=0.01

0 20
-0.5

0

0.5

1

1.5

Bn(2,2)=0.25

Figure 1: GDTplot shows the state of the optimization.

20

population, backwards in time. Notice, that the y-axis scale is logarithmic. We can see,
for example, that the control sequences in the current population contains apprx. 30%
different control sequences. However, if we examine the control sequences from first
to 22’nd, only 0.2% of the sequences are different (i.e., each particle in the population
contains the same sequence u0, ...,u12). Most of the differences within the sequences
in the population are at the later stages, in particular at instants 24 − 29, as can be
expected.

4.3.4 Tuning algorithm parameters

Finding a proper set of GDT algorithm parameters can be tedious. However, if the
guidelines given above can be followed, a good starting point is often obtained. Recall
also that the search is stochastic, so that some kind of Monte-Carlo approach is usually
recommendable (unless N is large).

Selecting β = 1 is a reasonable starting point since the initial tuning, suggested
above, results in that the weighted norm on yn − yrefn , (6), takes values less than one
for all ’tolerable’ deviations from the desired trajectory. The probability density of the
surviving particles will have the shape shown in Fig. 2 as a function of the weighted

norm
°°yn − yrefn °°2Bn

. For β = 1 (bold curve in Fig. 2) the resampling (selection)
probability distribution will tend to focus on tolerable deviations, as roughly two out
of three (67%) of the solutions will be within the range [−1, 1] (indicated by dotted
vertical lines in Fig. 2). However, the selectioning is based on the deviation at instant

n only, cf.
°°yrefn − yin°°2Bn

in equation (7). It may well be that a particular particle at
instant n would be competitive in the long run, even if at instant n the deviation is
large. Therefore it is reasonable to keep also some of these less appealing solutions in
the population. If they turn out to be poor consistently, they will eventually die out.

Increasing β will narrow the resampling distribution, and the number of different
solutions surviving in selection is diminished. The sharper the distribution, the likelier
it is that only solutions with output deviations close to zero will survive. Therefore, if
it appears that the solution is ’rough’ (the output does not follow closely the target
trajectory), increasing β may help. On the other hand, it may happen that the algorithm
seems to fix a particular control in time too quickly because it runs out of alternatives
in the population. This can be expected if plant dynamics have slow modes, or if
the trajectory to follow is complex. Then decreasing β will increase the variety of
alternatives sequences available for selection.

Increasing the number of particles will improve the quality of the solution (recall
that with N approaching infinity, we are guaranteed to find the optimal solution..).
In practice, available computing resources (memory/time) dictate the upper limit for
N . In most cases, a major fraction of computing time is spent in evaluating the plant
model. With a trajectory of length T and with N particles in the population, the
maximum number of plant evaluations required is TN . Since the samples that die out
(samples that are not selected in the resampling) need not be evaluated, the number
of evaluations is typically much less than TN .

21

-1 0 1

0

0.5

1

1.5

2

β=0.25
β=0.50

β=1.00

β=2.00

β=4.00

β=32.00

Figure 2: Normalized weight distribution exp
³
−β
2 x
´
.

22

If, however, each evaluation requires an iterative solution (such as a set of ODE,
discussed in the next subsection), the underlying plant model will need to be evaluated
many more times. The memory requirements are also mainly dictated by N and T ,
as well as by the system dimensions. Each particle stores its complete history (input,
state and output trajectories), in addition to parameter values, costs, etc. With a
standard office PC, a typical upper limit for reasonable population sizes, as set by
memory requrements, is around some tens of thousands of particles. The time needed
to solve the equations depends solely on the type of plant model. A 3×3 MIMO
system described by seven ODE, with T ≈ 100 and N ≈ 10000, may require overnight
computations, while the typicalplant is optimized in a few minutes.

To solve a problem, typically some tens of optimizations are needed (to find a
proper set of parameters, to examine the effect of randomness in the solution, etc.). In
Monte Carlo simulations, the syntax

GDT new = GDTopt(GDT, P1, P2, ...)

may be handy. It takes the algorithm parameters from a result of a previous optimization
(structure GDT), and repeats the experiments with a new random seed.

4.4 Plant models given by ordinary differential equations

It is very common that dynamic plant descriptions are given by a set of ordinary dif-
ferential equations (ODE). ODE can easily be used as plant models in the MGDT
Toolbox. This requires, however, that an appropriate interface is built which simulates
the equations in time (using zero order hold for control inputs at t, andMatlab ode23,
for example), and returns only the values of the state and output (sampled at t+ Ts).
An example follows.

Example 7 The differential equations of the system are given in typicaldiff.m.

function xdot = typicaldiff(t,x,u)

b u = 1000;c 1 = 1.1e-10;c 2 = 0.8;c 3 = 1.5e-9;T A = 20;

T F = x(1); T P = x(2);

T Fdot = b u*u - c 1*(T F^4-T P^4) - c 2*(T F-T A);

T Pdot = c 3*(T F^4-T P^4);

xdot = [T Fdot;T Pdot];

These equations describe the dynamics of a rapid thermal processing plant, x0 =
f (x), see Section 5.2. The manipulated variable is u. The controlled variable is the
second component in x.

The M-file GDTODESampler implements the simulation/sampling procedure. Ba-
sically, it solves the system ordinary differential equations from time t to t + Ts and
returns the values of the state x and output y = Cx at t+Ts. The syntax is as follows:

[Yk1, Xk1] = GDTODESampler(Xk, Uk, diffeqstr, Ts, C)

23

where diffeqstr is the name of the M-file containing differential equations, Ts is the
sampling time, and C is the measurement matrix. The diffeqstr-file should have the
form: xdot = fun(t,x,u), see help ode23 for more details. The essential idea is
that a new M-file can be specified and used as the planfunstr. An example illustrates
this.

Example 8 In the previous example, we have defined the ode-file typicaldiff.m.
We now define a new M-file which simulates and samples the ODE, and has the input-
output arguments as required by any plantfunstr-file.

function [Yk1,Xk1]=typicaldiffsampled(Xk,Uk,Ts,U0,diffeqstr,C)

% TYPICALDIFFSAMPLED A pseudo-plant file

Uk = Uk+U0;

[Yk1,Xk1] = GDTODESampler(Xk,Uk,diffeqstr,Ts,C);

This provides the simulation/sampling interface for the ode-descrition. It can be
seen as a plantfunstr with four additional arguments: Ts,U0,diffeqstr and C. These
can be passed as P1, P2, P3 and P4 in the GDTopt command.

The script for optimizing the control sequence for the system (plant) described by
ordinary differential equations the would look something like this

% plant
plantfunstr = ’typicaldiffsampling’

diffeqstr = ’typicaldiff’

Ts = 1.2/60; U0 = 0.22; C = [0 1]

% reference trajectory

Yref = [300*ones(50,1); [300:3:600]’; 600*ones(150,1)];

% algorithm parameters

A n = 0.03^2; B n = 20^2;

N = 500; bet = 1;

deltaU=1;

% initial values

X0 = [300 300]; Y0 = X0(2);

% start optimization

GDT = GDTopt(Yref,A n,B n,N,bet,plantfunstr,X0,Y0,deltaU,...

Ts,U0,diffeqstr,C);

If the system contains delays, it may be difficult to specify them using ode. For
linear systems, Pade-approximation is often useful, perhaps this can be extended also
for nonlinear systems. In the case of discrete-time sampled systems, delays are easier
to handle, by expanding system state.

24

5 Case studies

In this section a number of case studies are reported, so as to illustrate the performance
and viability of the approach. Many of the problems have been considered in earlier
publications, including:

• a linear dynamic plant with nonlinear control manipulation, by Ikonen, Del Moral
& Najim in IFAC AFNC Workshop 2004, Oulu, Finland (Ikonen et al. 2004);

• a RTP plant, by Ikonen, Najim & Del Moral in IFAC World Congress 2005,
Prague, Czech (Ikonen et al. 2005);

• a single link manipulator by Ikonen, Najim & Del Moral in IFAC World Congress
2005, Prague, Czech (Ikonen et al. 2005);

• a 3×3 MIMO FBC plant with two SISO-PI feedback loops by Ikonen & Kovacs,
to appear in Artificial Intelligence in Energy and Renewable Energy Systems,
Edited by Kalogirou (Ikonen and Kovacs 2006);

• a 3×3 MIMO FBC plant described by seven ODE by Najim, Ikonen & Del Moral,
to appear in Neural Computing & Applications (Najim et al. 2006);

• a two joint robot arm by Gomez-Ramirez, Najim & Ikonen, a submitted manus-
cipt.

In this report, two new additional examples are covered:

• a three-component batch CSTR (ABC-plant), and
• a continuous CSTR plant with van der Vusse reactions.

25

5.1 ABC-plant

Optimal operation of batch processes commonly involves following a pre-optimized
batch trajectory, such as the temperature control in an exothermic batch reactor
(Sjöberg and Agarwal 2002), or following a part temperature trajectory in wafer pro-
duction (Gorinevsky 2002).

A simple batch CSTR (Continuos Stirred Tank Reactor) reactor with consecutive
reactions

A
k1→ B

k2→ C

can be simulated using mass balance equations (Sjöberg and Agarwal 2002)

dcA
dt

= −k1 (T) c2A
dcB
dt

= k1 (T) c
2
A − k2 (T) cB

dT

dt
= γ1k1 (T) c

2
A + γ2k1 (T) cB

+(a1 + a2T) + (b1 + b2T)u

where cA and cB denote concentrations of components A and B, T is the reaction
temperature. The control variable u represents a dimensionless scaling of two physical
manipulated variables. The rate constants k1 and k2 follow the Arrhenius temperature
dependence, ki (T) = Ai exp

¡− Ei
RT

¢
, i = 1, 2.

The plant model equations were implemented as ordinary differential equations
in an m-file dx=abcdiff(t,x,u). The model parameters used in the simulations
were the same as those used in (Sjöberg and Agarwal 2002): A1 = A2 = 0.003;
E1
R = 0.1; E2R = 0.005; γ1 = 3.33; γ2 = 66.7; a1 = 0.01; a2 = −0.02; b1 = 1;
b2 = −0.03; initial conditions cA (0) = 20; cB (0) = 0; unit sampling time, as well as
the desired output trajectory for temperature:

T ref (t) = 20 exp (−0.02t) .
A sampled model (abcdiffsampled.m) was coded using the GDTODESampler:

Example 9 Matlab function abcdiffsampled describes the ode in form (3)
function [Yk1,Xk1] = abcdiffsampled(Xk,Uk,Ts,U0,diffeqstr)

Uk = Uk+U0; C=[0 0 1];

[Yk1,Xk1] = GDTODESampler(Xk,Uk,diffeqstr,Ts,C);

5.1.1 Initial values

First, a decision is needed weather a choice of incremental or absolute controls in the
cost function would better reflect our specifications. Let us assume that absolute mag-
nitude of the control manipulations (position of a mixing valve) has no particular cost

26

(e.g., input ingrediences have the same cost). Instead, we want to avoid large changes in
control manipulations (to avoid wearing of equipment). Therefore, incremental control
is chosen, DELTAU=1.

Next, ’tolerable’ ranges for output and control variables are needed, so as to set
initial values for An and Bn. For the deviation in plant output (reactor temperature)
a tight control is desired. Let us specify a range [−0.2, 0.2] for a ’tolerable’ deviation,
T ref−T , cf. Fig. 2 at x-axis [−1, 1]. Since design of a sequence of control increments
was chosen, let us specify that a ’tolerable’ ∆u would be in the range [−2, 2] .

According to the tuning rules, we set initially N = 100 and β = 1.
We are now ready to implement the first test simulation (abcrun0.m) as aMatlab

script file.

Example 10 Matlab script abcrun0 sets the GDT optimization parameters and runs
a simulation.
X0 = [20 0 5]’; Y0 = X0(3);

U0 = 0; Ts = 1;

t=[1:30]’; Yref = 20*exp(-0.02*t);

DELTAU=1;

A n = 2^2; B n = 0.2^2;

N = 100; bet = 1;

plantfunstr = ’abcdiffsampled’

diffeqstr = ’abcdiff’

GDT = GDTopt(Yref,A n,B n,N,bet,plantfunstr,X0,Y0,DELTAU,...

Ts,U0,diffeqstr);

Figure 3 illustrates results from a typical simulation with N = 100. Initially, the
reactor temperature is at T = 5. During the first samples, the GDT scheme finds a
sequence of control increments that bring the temperature close to the desired trajectory
(starting from T = 20). After the first 10 samples, the temperature follows the desired
trajectory. We observe that the control increments in the beginning of the sequence
are large and then remain within the range ±2. These can be compared with the
’tolerable’ range set to ±2. Similarly, the output deviations are large in the beginning.
After the first 10 samples the standard deviation of the error between plant output and
the desired trajectory is 0.34, to be compared with ’tolerable’ range set to ±0.2. The
resulting control sequence bears resemblence to the simulations reported in (Sjöberg
and Agarwal 2002) obtained using a neural linearization-based scheme.

5.1.2 Further simulations

In a sequence of consequtive runs, four parameter setting were examined: N = 100,
N = 500, N = 2500 (all with β = 1), and N = 2500, β = 0.5. These are run by
scripts abcrun0, abcrun1, abcrun2 and abcrun3. The mean costs, standard deviation
of the costs and the smallest cost among 165 test runs were observed as shown in the

27

0 50 100
0

2000

4000

6000

8000

10000
JnΣJY

Jn(∆U)=8978.55

ΣJU

0 50 100
100

101

102

n+1/n 6.07%

N=100, β=1

0 50 100
5

10

15

20

Xn

0 50 100
0

5

10

15

0 50 100
0

10

20

30

n=100
0 50 100

-8

-6

-4

-2

0

2

4

6

8

10

Un

An(1,1)=4
0 50 100

0

5

10

15

20

25

Yn

Bn(1,1)=0.04

Figure 3: Simulation abcrun0.

28

following table.

test sample mean sample std minimum cost comment
N = 100 10252 3661 7058 163/165
N = 500 9932 8954 6785 164/165
N = 2500 8091 1788 6405 165/165
N = 2500, β = 0.5 7333 692 6703 165/165

From the results, it is clear that the sample mean within the test sets decreases as N
increases. For the standard deviations, similar conclusions can be drawn: the deviation
decreases as the population size increases.

Remark 11 Some comments are needed to explain interpretation of sample stan-
dard deviations (third column). The rightmost column ’comment’ shows the num-
ber of simulations used for the statistic. With N = 100, two simulations were
removed from the statistic (final costs were 4.75× 1018 and 1.29× 106). Similarly,
for N = 500, one simulation was removed (JT = 7.55× 1013). These removals were
due to failure of the algorithm to find a proper control sequence, due to an unre-
coverable drift of the algorithm (at a particular instant all solutions were poor, the
distributions became flat, and future steps were not able to recover the situation).
Consequently, the sample std can be very sensitive, and results on 165 simulations
may not be statistically significant. This may explain the large std in the case of
N = 500.

The Monte Carlo simulations confirm the expectation that as the number of par-
ticles increases, the randomness in the solution gradually disappears. However, the
optimization execution time increases linearily as a function of N .

For the largest population, decreasing β from 1 to 0.5 improved the sample mean.
This can be explained by the ”dynamic” aspects of the optimization (poorer solutions in
the past may turn out to be useful in the long run). With a larger number of particles, a
greater variety in the population can be tolerated. Fig. 4 illustrates a typical simultion
with N = 2500 and β = 0.5. The control in the beginning of the sequence is aggressive
and drives the plant output close to the desired trajctory in few samples.

29

0 50 100
0

2000

4000

6000

8000
JnΣJY

Jn(∆U)=7046.75

ΣJU

0 50 100

100

101

102

n+1/n 9.532%

N=2500, β=0.5

0 50 100
5

10

15

20

Xn

0 50 100
0

5

10

15

0 50 100
0

5

10

15

20

n=100
0 50 100

-4

-2

0

2

4

6

8

Un

An(1,1)=4
0 50 100

2

4

6

8

10

12

14

16

18

20

Yn

Bn(1,1)=0.04

Figure 4: Simulation abcrun4.

30

5.2 RTP-plant

In order to achieve uniform processing and a high level of reproducibility of phenomena,
the wafer temperature has to track a pre-specified temperature trajectory. A simple
nonlinear continuous time model (Gorinevsky 2002) for such thermal processing has
two states: furnace temperature TF and part temperature TP:

·
T F = buu− c1

¡
T 4F − T 4P

¢− c2 (TF − TA)
·
TP = c3

¡
T 4F − T 4P

¢
,

where u ≥ 0 is the heating intensity (control input), TP is the part temperature (the
system output to be controlled), and TA is the ambient temperature. The parameter
values were taken from (Gorinevsky 2002): bu = 1000, c1 = 1.1 · 10−10, c2 = 0.8 and
c3 = 1.5 · 10−9, TA = 20 ◦C.

The plant model equations were implemented as ordinary differential equations
in an M-file dx=rtpdiff(t,x,u). The requirement that u ≥ 0 was implemented
as a line u=max(0,u) within the rtpdiff.m. The plant was sampled using Ts =
1.2
60 , implemented with GDTODESampler (rtpdiffsampled.m). The desired trajectory
consisted of constant and ramp phases from 300◦C to 600◦C, to 900◦C and back to
600◦C. The steady-state initial conditions corresponding to part temperature 300◦C
were solved from the differential equations, giving TF = 300

◦C and u = 0.2240.

5.2.1 Initial values

Let us now suppose that small control actions (heating intensity) are desired, i.e.,
DELTAU=0. We then specify that ’tolerable’ controls reside within ±1 from the nominal
value (u = 0.224), and that we want to follow the trajectory very closely, at ±1◦C. We
set An = 1, Bn = 1. An optimal balance between these contradicting requirements is
obtained from the minimization of the cost function (9): The input to the RTP plant
(u in plant ODE) is given by Un + u.

We set initially β = 1 and N = 100, and simulate (rtprun0) to see what happens.
Figure 5 illustrates a typical simulation.We observe that the results are very nice,

even with such a small number of particles: the output trajectory is closely followed
(largest deviations from the desired trajectory are around 10◦C), and the control actions
rarely pass over 3 in magnitude.

5.2.2 Further simulations

In order to further focus on energy savings, more weight can be put on control costs. Let
us consider ’tolerable’ actions only within ±0.5 around the nominal value, An = 0.25.
Simulating with N = 100 resulted in a failure. Increasing N to 1000, however, gave
excellent results (rtprun1.m). It appears that withN = 100 not enough good potential

31

0 500
0

500

1000

1500

2000

2500

Jn

ΣJY

Jn(U)=2051.53

ΣJU

0 500
100

101

102

n+1/n 35.325%

N=100, β=1
0 500

-4

-3

-2

-1

0

1

2

3

4

Un

An(1,1)=1
0 500

200

300

400

500

600

700

800

900

1000

Yn

Bn(1,1)=1

0 500
200

400

600

800

1000

Xn

0 500
200

400

600

800

1000

n=803

Figure 5: Simulation rtprun0.

32

0 500
0

2000

4000

6000

8000
Jn

ΣJY

Jn(U)=7341.97

ΣJU

0 500

100

101

102

n+1/n 32.7516%

N=1000, β=1
0 500

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Un

An(1,1)=0.25
0 500

200

300

400

500

600

700

800

900

1000

Yn

Bn(1,1)=1

0 500
200

400

600

800

1000

Xn

0 500
200

400

600

800

1000

n=803

Figure 6: Simulation rtprun1.m.

candidates for u were generated, and setting N = 1000 fixes this problem. Recall that
the generating distrubution for u is N (0, An), and any ability to follow the output
trajectory (RTP part temperature) requires control actions (heating intensities) at the
tails of this distribution. With a sufficiently large N , some samples are generated also
at the ends of the distribution. Visual inspection (see Fig. 6) suggests that the control
specifications are fulfilled, with significantly smaller control actions. It is worth noticing,
however, that the deviation part of the costs is much larger than in rtprun0. This
indicates that the improvement in control manipulations was obtained at the cost of
output error.

Finally, recall that proper validation of the algorithm propertes would require ex-
tensive Monte Carlo simulations and examination of data statistics.

33

Figure 7: Behavior of the CSTR with van der Vusse reactions.

5.3 van der Vusse CSTR plant

A CSTR where van der Vusse reactions take place is a commonly used test plant
for problems of nonlinear control (Chen et al. 1995). The plant is not only strongly
nonlinear (non-monotonic, with maximum at u = 14.8), but its dynamic behaviour
changes according to the operating point (in the vincinity of operating points with
u < 14.8, non-minimum phase dynamics are observed). Figure 7 illustrates the behavior
of the plant. Left plots illustrate the step responses of the plant for steps of size u from
an initial state cA = 2.14 [mol/l], cB = 1.09 [mol/l], v = 114.2, [

◦C] and vK = 112.9
[◦C]. The top right plot shows the steady-state curve for the plant output cB as a
function of control u. The plots at the lower right corner show the responses of cB and
cA to a series of steps in u, as a function of time.

34

The plant equations are given by (Chen et al. 1995)

d

dt
cA =

V 0

VR

¡
c0A − cA

¢− k1cA − k3c2A
d

dt
cB = −V

0

VR
cB + k1cA − k2cB

d

dt
v =

V 0

VR

¡
v0 − v¢− 1

ρCp

¡
k1cA∆HRAB + k2cB∆HRBC + k3c

2
A∆HRAD

¢
− kwAR
ρCpVR

v − vK
1000

d

dt
vK =

1

mKCPK
(Q0K + kwAR (v − vK))

The reaction velocities are given by the Arrhenius equation: ki = k0ie
Ei

v+273.15 . The
manipulated variable is u = V 0

VR
. The values for the parameters used were the following

(Chen et al. 1995):

• collision factors k01 = 1.287×1012 [1h], k02 = 1.287×1012 [1h], k03 = 9.043×109
[1
mol h];

• activation energies E1 = −9758.3, E2 = −9758.3, E3 = −8560 [K];
• enthalpies ∆HRAB = 4.2, ∆HRBC = −11.0, ∆HRAD = −41.85 [kJmol];
• density ρ = 0.9342 [kgl];
• heat capacity Cp = 3.01 [kJkgK];

• heat transfer coefficient for cooling jacket kw = 4032 [kJ
hm2K];

• cooling jacket surface AR = 0.215 [m2];
• reactor volume VR = 0.01 [m3] ;
• coolant mass mK = 5.0 [kg];

• heat capacity of coolant CPK = 2.0 [kJkgK];
• input concentration c0A = 5.10 [moll];
• feed temperature v0 = 104.9 [C];
• feed flow V 0 = 14.19VR [m3h];
• heat removal Q0K = −1113.5 [kJh].
The plant ode are invoked by vdvdiff.m, and the sampled interface is built in

vdvdiffsampled.m. A sampling rate of 20 seconds is used.

35

0 50 100
0

100

200

300

400 Jn

ΣJY

Jn(∆U)=376.001

ΣJU

0 50 100
100

101

102

n+1/n 38%

N=100, β=1
0 50 100

-2

0

2

4

6

8

10

12

Un

An(1,1)=1
0 50 100

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Yn

Bn(1,1)=0.0001

0 50 100
2.5

3

3.5

Xn

0 50 100
0.8

1

1.2

0 50 100
112

114

116

0 50 100
111

112

113

n=120

Figure 8: Simulation vdvrun0.

5.3.1 Initial values

For this plant, we consider incremental control (input u is related to flow, i.e., valve
position, so that minimizing variability is of interest), DELTAU=1. We consider a SISO
system, so that matrices An and Bn reduce to scalar constants. Based on ’tolerable’
input increments and output deviations, set An = 1, Bn = 0.0001. As initial values,
set β = 1 and N = 100. As output trajectory, an artificial sequence defined in terms
of the plant intial state is considered, consisting of a 90% step downwards and back,
from the initial steady state.

Let the initial steady state be at u = 20 (minimum phase dynamics). Figure 8
illustrates a typical simulation. Recall that the Un shown in the plot is deviation from
the nominal value (u = 20.) Results appear to follow the specifications.

A considerably more difficult optimization problem is the examination of a similar
trajectory from u = 5 (in this operation region the plant exhibits strongly non-minimum
phase dynamics). Figure 9 shows a typical simulation run with the initial values N =

36

0 50 100
0

500

1000

1500 Jn
ΣJY

Jn(∆U)=1451.12

ΣJU

0 50 100
100

101

102

n+1/n 38.5083%

N=100, β=1
0 50 100

-5

0

5

10

15

20

25

30

35

40
Un

An(1,1)=1
0 50 100

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96
Yn

Bn(1,1)=0.0001

0 50 100
0

2

4
Xn

0 50 100
0.8

0.9

1

0 50 100
110

112

114

0 50 100
108

110

112

n=120

Figure 9: Simulation vdvrun2.m.

100 and β = 1. We observe that the solution is found by taking the process into the
minimum phase region.

5.3.2 Further simulations

For the sequence from u = 20, a tighter control can be obtained by allowing larger con-
trol increments An = 4, and decreasing the tolerated deviation from output trajectory
to 0.001 Bn = 0.000001 (vdvrun1.m).

For the sequence from u = 5 (non-minimum phase dynamics), in few simulations
the following parameters were found to provide better results: An = 0.1

2, Bn = 0.01
2,

N = 5000, β = 0.1. With this ’extended search space’ and smoother actions, solutions
were found which keep the plant in the non-minimum phase region throughout the
sequence of steps, and result in significantly smaller a cost than with the initial tuning.
Figure 10 illustrates a typical simulation.

37

0 50 100
0

100

200

300

400

500

600

Jn

ΣJY

Jn(∆U)=524.201

ΣJU

0 50 100

100

101

102

n+1/n 45.4633%

N=5000, β=0.1
0 50 100

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Un

An(1,1)=0.01
0 50 100

0.82

0.84

0.86

0.88

0.9

0.92

0.94
Yn

Bn(1,1)=0.0001

0 50 100
1

1.2

1.4
Xn

0 50 100
0.8

0.9

1

0 50 100
109

110

111

0 50 100
106

108

110

n=120

Figure 10: Simulation vdvrun3.m.

38

5.4 FBC plant

A simplified model for a FBC power plant can be formulated based on mass and energy
balances. The model divides the furnace into two parts: the bed and the freeboard. The
control inputs of the system are the fuel feed QC [

kg
s], and the primary and secondary

air flows F1 and F2 [
Nm3

s]. Measurable system outputs are the flue gas O2 content CF

[Nm
3

Nm3], the bed and the freeboard temperatures TB and TF [K], and the power output
P [MW].

The model is described by the following differential equations. For the fuel inventory
WC [kg], oxygen concentration CB [Nm

3/Nm3] and temperature TB [K] in bed:

dWC (t)

dt
= (1− V)QC (t)−QB (t)

dCB (t)

dt
=

1

VB
[C1F1 (t)−XCQB (t)− CB (t)F1 (t)]

dTB (t)

dt
=

1

cIWI
{HCQB (t)− aBtABt [TB (t)− TBt]

+c1F1 (t)T1 − cFF1 (t)TB (t)}
Similarly, the freeboard dynamics are given by:

dWV (t)

dt
= V QC (t)−QF (t)−QT (t)

dCF (t)

dt
=

1

VF
{CB (t)F1 (t) + C2F2 (t)

−XVQF (t)− CF (t) [F1 (t) + F2 (t)]}
dTF (t)

dt
=

1

cFVFTFτ
{HVQF (t)− aFtAFt [TF (t)− TFt]

+cFF1 (t)TB (t) + c2F2 (t)T2 (t) + c1 [F1 (t) + F2 (t)]TF (t)}
The plant superheated steam power dynamics can be approximated by

dP (t)

dt
=

1

τmix
[PT (t)− P (t)]

The combustion rates can be approximated by

QB (t) =
WC (t)

tC

CB (t)

C1
and QF (t) =

WV (t)

tV

CF (t)

C2
,

where tC and tV refer to the mean particle combustion time; QT (t) =
WV(t)
tT(t)

, tT (t) =
VF

F1(t)+F2(t)
. The heat transfer is given by

PT (t) = aBtABt [TB (t)− TBt] + aFtAFt [TF (t)− TFt] + cF (F1 + F2) (TF − Tstack) .

The parameter values were given by:

39

• cI = 800; Bed material specific heat [J / kgK]
WI = 15000; Bed inert material [kg]
VB = 26.2; Bed volume [m

3]
aBt = 210; Heat transfer coefficient in bed [W / m2K]
ABt = 65; Heat exchange surface in freeboard [m

2]
TBt = 273 + 300; Cooling water temperature [K]

• VF = 128; Freeboard volume [m3]
aFt = 210; Heat transfer coefficient in freeboard [W / m2K]
AFt = 317; Heat exchange surface in freeboard [m

2]
TFt = 273 + 300; Cooling water temperature [K]
TFτ = 50; Freeboard temperature time constant [s]

• C1 = 0.21; Primary air O2 [Nm3/Nm3]
c1 = 1305; Primary air specific heat [J / m

3K]
T1 = 273 + 55; Primary air temperature [K]
C2 = 0.21; Secondary air O2 [Nm

3/Nm3]
c2 = 1305; Secondary air specific heat [J / m

3K]
T2 = 273 + 55; Secondary air temperature [K]
cF = 1305; Flue gas specific heat [J / m

3K]

• XC = 0.42× 1.866; O2 consumed in combustion of char [Nm3/kg]
HC = 0.27× 30× 106; heat value of char [J/kg]
tC = 50; Mean combustion rate of char [1/s]

• V = 0.75; Fraction of volatiles [kg/kg]
XV = 0.42× 1.866; O2 consumed in combustion of volatiles [Nm3/kg]
HV = 50× 106; Heat value of volatiles [J/kg]
tV = tC/1000; Mean combustion rate of volatiles [1/s]

• Tstack = 273 + 55; Stack gas temperature [K]
Tmix = 15; Time constant [s]

The model was implemented on Matlab. The ODE are invoked by the command
xdot=fbcdiff(t,x,u). The function [Yk1,Xk1] = fbcdiffsampled(Xk, Uk, Ts,
U0, diffeqstr, C) provides the sampled interface for the FBC plant model, where
the additional parameters are the sampling time Ts (15 s), nominal control U0, name
of the differential equation file (diffeqstr = ’fbcdiff’) and a measurement matrix
C. The system states consisted of the three inputs (states 1—3) and the seven variables
given by the ODE (states 4—10). All states were all constrained to be non-negative.

Figure 11 illustrates a simulation using the above model, tuned for a 25MW district
heating power plant. The simulated values are compared with measurements from a
real 25 MW district heating plant.

40

0 1 2 3 4 5
0

1

2

3

Q
C

 [k
g/

s]

0 1 2 3 4 5
0

5

10

F 1, F
2 [N

m
3 /s

]

0 1 2 3 4 5
0

200

400

600

W
C

, W
V
 [k

g]

t [h]

0 1 2 3 4 5
0

0.05

0.1
C

B
, C

F [N
m

3/
N

m
3]

0 1 2 3 4 5
400

600

800

1000

T B
, T

F [C
]

0 1 2 3 4 5
10

15

20

25

30

P
[M

W
]

t [h]

Figure 11: Comparison of the FBC plant model with data measured from a
25MW power plant.

41

5.4.1 Initial values

Let us consider a three-input three-output problem, with a trajectory consisting of an
artificial step change (forth and back) between two steady states:

U =
h
2.6 kg

s 3.7 Nm3

s 8.4 Nm3

s

i
and

U =
h
3.1 kg

s 3.7 Nm3

s 11 Nm3

s

i
.

The flue gas oxygen, bed temperatures, and superheated steam power are the controlled
variables, controlled using manipulations in the fuel feed rate, the primary flow and the
secondary air flow.

Optimization of the sequence of control actions is considered, so as to minimize

fuel/air flows, DELTAU=0. The nominal control was set toU =
h
2 kg

s 3 Nm3

s 6 Nm3

s

i
,

slightly below the initial state. The cost function is further specified by setting the ’tol-
erable’ deviations to 1% in oxygen content, 100K in bed temperatures and 0.5MW in
superheated steam power:

An =

 0.012 0 0
0 1002 0
0 0 0.52

 .
The ’tolerable’ control actions (costs on magnitudes) were specified as ’reasonable’,
such that the trajectory targets could be attained by a reasonable amount of the gen-
erated controls:

Bn =

 22 0 0
0 22 0
0 0 42

 .
This setting will result in that the sequence Un is optimized, where the actual plant
input vector (QC, F1 and F2 in the ODE) is given by U+Un.

As always, set initiallyN = 100 and β = 1. Figure 12 illustrates a typical simulation
of an optimization run (fbcrun0.m). The optimization results in a rough control
sequence. The power trajectory (third column, bottom row) is somehow followed, even
if with a large variance. The oxygen concentration (top row) is far beyond the design
specifications, values above 10% are observed. For bed temperatures (middle row), the
design specifications were very loose, and they are largely fulfilled.

It is obvious that a larger particle population is needed to properly solve this 3× 3
problem.

42

0 50 100
0
5

10

Xn

0 50 100
0
5

10

0 50 100
0

10
20

0 50 100
0

100
200

0 50 100
0

0.1
0.2

0 50 100
0

0.1
0.2

0 50 100
960
980

1000

0 50 100
800
900

1000

0 50 100
10
20
30

0 50 100
-50

0
50

n=140

0 50 100
-5

0

5

10

Un

An(1,1)=4

0 50 100
-5

0

5

10

An(2,2)=4

0 50 100
-10

0

10

20

An(3,3)=16

0 50 100
0

0.05

0.1

0.15

0.2

Yn

Bn(1,1)=0.0001

0 50 100
950

1000

1050

1100

Bn(2,2)=10000

0 50 100
15

20

25

30

Bn(3,3)=0.25

0 50 100
0

1000

2000

3000

4000
Jn
ΣJY

Jn(U)=3582.33

ΣJU

0 50 100
100

101

102

n+1/n 2.72857%

N=100, β=1

Figure 12: Simulation fbcrun0.m.

43

5.4.2 Further simulations

From tuning point of view, it is interesting to note that the percentage of survivors
is very low (see Fig. 12). Very few particles in the population survive to the next
generation. This suggests to loosen the specifications (increse An and/or Bn) and/or
to widen the distributions by the tuning factor β (decrease β). The first thing to try,
however, is to increase N . Increasing the number of particles results in a significantly
smaller cost. However, the sequences tend to remain rough as the cost function was
specified using magnitudes of control actions.

44

1u
2u

1l

2l1m
2m

1θ

2θ

Figure 13: Rigid two-link robot.

5.5 Two-joint robot manipulator

Robotic systems are typical examples of complex systems for which accurate models
can be derived. Therefore, they are particularily potential for model-based approches
such as the genealogical decision trees. A frictionless double pendulum (rigid two-link
robot manipulator) is depicted in Figure 13.

A TITO (two-input two-output) system is considered. The system outputs are
given by the angular positions of the two links, the control manipulations are the
control torques applied at the joints.

Let us assume that the links are massless, and denote the control torques by u1
and u2. The Euler—Lagrange equations lead to

A (θ)
··
θ +B

µ
θ,
·
θ

¶
+C (θ)−U = 0 (10)

where

··
θ =

 d2θ1
dt2
d2θ2
dt2

 ,U =

·
u1
u2

¸
,

45

and

A (θ) =

 m1l
2
1 +

2P
i=1
m2l

2
i + 2m2l1l2 cos θ2 m2l

2
2 +m2l1l2 cos θ2

m2l
2
2 +m2l1l2 cos θ2 m2l

2
2



B

µ
θ,
·
θ

¶
=

 −m2l1l2 (sin θ2)
·
θ2

µ
2
·
θ1 +

·
θ2

¶
m2l1l2 (sin θ2)

µ ·
θ1

¶2


C (θ) =

·
m1gl1 sin θ1 +m2gl1 sin θ1 +m2gl2 sin (θ1 + θ2)

m2gl2 sin (θ1 + θ2)

¸
.

For l1 = l2 = 0.4 [m], m1 = 3.0 [kg], m2 = 2.0 [kg], g = 9.825 [ms2], we obtain the
following ’coefficients’

A (θ) =

·
1.12 + 0.64 cos θ2 0.32 + 0.32 cos θ2
0.32 + 0.32 cos θ2 0.32

¸

B

µ
θ,
·
θ

¶
=

 −0.32 (sin θ2)
·
θ2

µ
2
·
θ1 +

·
θ2

¶
0.32 (sin θ2)

µ ·
θ1

¶2


C (θ) =

·
11.79 sin θ1 + 7.86 sin θ1 + 7.86 sin (θ1 + θ2)

7.86 sin (θ1 + θ2)

¸
.

The equations were coded in Matlab (ODE invoked from robdiff.m and sam-
pled plant interface in robodiffsampled.m). The M-function robo plot produces an
animated plot of the robot movements.

Figure 14 illustrates the movement of the pendulum from an initial position (marked
by ’o’). It is easy to observe that the end of the second link shows chaotic behavior.

5.5.1 Initial values

The target was to drive the robot arm from down position (0, 0) to an upright po-
sition (π,−2π), and remain there for 30 samples. The sampling frequency was set
to 40 Hz (Ts = 0.025 s). The cost function was specified as DELTAU=0, Bn =

diag
³h ¡

π
32

¢2 ¡
π
32

¢2 i´, An = diag
¡£
102 102

¤¢
. This corresponds to a ’toler-

able’ output deviation of apprx. ±6◦, while large control actions were tolerated. The
algorithm parameters were set to N = 100, β = 1. Figure 15 illustrates a typical
robot trajectory in the (x,y)-space with this parameter setting (roborun0.m). The op-
timization was not succesful, as typically the arm followed the trajectory to the upright
position but continued its angular movement (recall that the joints are frictionless).

46

0 2 4 6 8
-30

-20

-10

0

10

20

30
an

gl
e

ve
lo

ci
tie

s

0 2 4 6 8
-10

-5

0

5

10

an
gl

es

θ
1

θ
2

Figure 14: Behavior of the two-joint robot arm.

Figure 15: (x,y)-plot of robot trajectory (roborun0.m).

47

0 50
-10

0

10

Xn

0 50
-20

0

20

0 50
0

2

4

0 50
-10

-5

0

n=64

0 50
-20

-10

0

10

20

Un

An(1,1)=25

0 50
-30

-20

-10

0

10

An(2,2)=25

0 50
0

1

2

3

4

Yn

Bn(1,1)=0.0385531

0 50
-8

-6

-4

-2

0

Bn(2,2)=0.0385531

0 50
0

50

100

150
Jn

ΣJY

Jn(∆U)=139.084

ΣJU

0 50

100

101

102

n+1/n 31.1797%

N=1000, β=1

Figure 16: Simulation roborun1.m.

5.5.2 Further simulations

After a few test runs, the control increments were slightly reducedAn = diag([5
2, 52]),

and the population size N increased (N = 1000). A simulation is illustrated in Fig.
16, an (x,y)-plot is shown in Fig. 17. We observe that the two-link robot is driven
succesfully to an upright position, and remains there.

48

Figure 17: (x,y)-plot of robot trajectory (roborun1.m).

49

5.6 Conclusions

In this Section, a number of different types of processes, models and trajectories in GDT-
based optimization of open-loop control sequences were examined. The first example
considered a batch CSTR (with the A → B → C) reaction taking place. A sequence
of control increments was optimized so as to follow an exponential batch trajectory.
The second example considered a repetitive RTP plant where the wafer temperature
trajectory was to be followed, by optimizing the plant input control sequence around a
nominal value. The control design for batch plants is problematic because in the absence
of a well-determined operating point a linearization approach around an equilibrium
point cannot be used. Therefore non-linear plant descriptions are needed. The GDT
algorithm can easily deal with nonlinearities, such as in the ’ABC’ and RTP batch
plants. This was clearly illustrated by the successful simulations. We also showed that
the tuning rules for both initial and fine-tuning resulted in control sequences with good
performance.

The third example studied the van der Vusse CSTR. This plant is strongly nonlin-
ear, with diffult non-minimum phase dynamics. These pose a particular challenge for
’dynamic’ optimization algorithms, such as the GDT. We illustrated that the algorithm
was able to overcome these difficulties, and produced reasonable results in all oper-
ating regions. The FBC plant provided an example of a nonlinear MIMO plant, as a
three-input three-output optimization problem was considered. Again, we found that
the initial tuning rules provided a good starting point for the optimization. In the final
example, a frictionless two joint robot arm was considered. This TITO plant exhibits
chaotic dynamics. The algorithm was able to drive the robot (model) in an upright
position.

Full descriptions (ODE) were provided for all plants, as well as complete sets of
model parameters.

50

6 Extensions and future directions

For reasons of both practical applications and academic challenge, many extensions
of the genealogical decision tree approach can be considered. In this Section, some
possible directions are briefly drafted.

6.1 Other cost functions and distributions

The duality between cost/performance functions and probability measures can be ex-
tended to more general situations. For instance, for SISO bang/bang control problems
the cost function is rather given by an expression of the form

JT (U1, ..., UT) =
TX
n=1

αnUn +
TX
n=1

°°Yn − Y refn

°°2
Bn

with control sequences U1, ..., UT taking values in {0, 1}, and for some strictly positive
sequence of parameter αn. In this context the duality is given as above by replacing
the Gaussian distribution in (5) by the distribution of a random variable Un which takes
the value 0 with probability

pn =
1

1 + exp (αn)

and 1 with probability 1− pn. In other words, the Gaussian distribution is replaced by
Pr (Un = 0) = 1− Pr (Un = 1) = pn.

6.2 Correlated and time-varying specifications

In the examples in Section 5, diagonal matrices Bn and An were specified. In some
cases, off-diagonal elements can be useful. An example illustrates this.

Example 12 In the FBC plant the control inputs were chosen as fuel feed, primary air
and secondary air. In practice it is common that a minimum level for the primary air is
set, based on the fuel feed rate. For safety reasons, and to ensure beneficial combustion
conditions, proper stoichiometric conditions are to be maintained in the bed. Based on
simple chemical and physical information, a linear relation can be established between
the primary air and the fuel feed rate, F1 = CQC , where C is a coefficient. This
suggests the use of off-diagonal elements C in An , e.g.,

An =

 an (1, 1) C 0
C an (2, 2) 0
0 0 an (3, 3)


This has the practical consequence that the generating distribution for particle control
actions will produce correlated random vectors. The use of off-diagonal elements is
supported by the Urand.m in the MGDT-Toolbox

51

Also time-varying models/parameters/specifications may be handy. These are not
supported by the MGDT-Toolbox, but it should be simple to include this feature if so
desired.

Example 13 In the case of the two-link robot, the target trajectory consisted of two
different stages. The first task was to drive the arm to an upright position; the second
task was to keep the two poles balanced at this position. It can be expected that
different parameters for these two tasks would make it easier to find proper solutions.
In the case of ’abc’-plant, it is clear that the system gain increases as the batch proceeds.
Given that we always have only a finite number of particles in our population, a more
efficient search would use time-varying parameters, for example in An.

6.3 Feed-back control

In real applications, feed-back control is required to diminish the effect of disturbances
acting on the process. A straightforward way to use the genealogical decision tree
approach is to pre-optimize a control sequence using a plant model (off-line), and add
feed-back controllers to compensate for the disturbances (on-line). The output signal
from the feed-back controller(s) is simply summed with the current value of the the
pre-optimized sequence.

In many cases, nonlinear MIMO open-loop optimization (such as the GDT) is
able to take care of the essential plant nonlinearities. The remaining deviations and
small disturbances can then be dealt with linear SISO feedback. In general, SISO
loops are simple to tune, robust, and easy to implement. Alternatives for model-based
tuning include the Ziegler—Nichols rules, the SIMC rules (Skogestad’s Internal Model
Control), pole-placement, etc. Linear models can often be derived from the models
required by the GDT via linearization (analytically or by numerical approximation). It
seems completely plausable to apply adaptive control (gain scheduling, for example) if
disturbances act in a severily nonlinear fashion. Similarly, the application of the RGA-
method or decoupling techniques for severely interacting multivariable disturbances
would seem to be straightforward.

In (Ikonen and Kovacs 2006), feed-back control of a 3×3 GDT-optimized FBC was
considered using 2 SISO PI-controllers, tuned using the SIMC rules. The third output
was not measurable, but was controlled in open-loop via the GDT and the plant model.

6.4 Computational efficiency

The GDT method is computationally intensive. This is particularily true for complex
systems. However, for such systems few other optimization techniques are available,
if any. The straightforward Matlab implementation of the MGDT Toolbox can
easily be improved by proper vectorization. For example, solving several sets of ODE
simultaneously (in parallel) has been found to greatly increase the speed of iterations.
This presupposes, however, that both the ODE and the GDTopt function are adjusted

52

appropriately. It is obvious that any possibilities for truly parallel computing can be
very advantageous.

6.5 Constraints

In general, a major advantage of random search techniques is the easiness to deal with
nonlinearities, incontinuities, etc. This includes handling of constraints (whether input,
output, rate, etc.). From this point of view, the genealogical decision tree approach
should not make a difference. The investigation of the many types of constraints of
significance in the industrial practice is a potential future direction to take.

53

54

References

Arulampalam, M S, S Maskell, N Gordon and T Clapp (2002). A tutorial on particle
filters for Online Nonlinear/Non-Gaussian Bayesian tracking. IEEE Transactions
on Signal Processing 50(2), 174—188.

Chen, H, A Kremling and F Allgöwer (1995). Nonlinear predictive control of a bench-
mark CSTR. In: Proceedings of the European Control Conference, Rome, Italy.
pp. 3247—3252.

Del Moral, P (2004). Feynman-Kac Formulae - Genealogical and Interacting Particle
Systems with Applications. Springer Verlag. Berlin.

Doucet, A, N Freitas and N Gordon (2001). Sequential Monte Carlo Methods in Prac-
tice. Springer.

Gorinevsky, D (2002). Loop-shaping for iterative control of batch processes. IEEE Con-
trol Systems Magazine 22(6), 55—65.

Ikonen, E and J Kovacs (2006). Artificial intelligence in energy and renewable energy
systems. Chap. Learning control of fluidized bed combustion processes for power
plants. Nova Publishers.

Ikonen, E and K Najim (2002). Advanced Process Identification and Control. Marcel
Dekker Inc. New York.

Ikonen, E, K Najim and P Del Moral (2005). Application of genealogical decision trees
for open-loop tracking control. In: 16th IFAC World Congress, Prague, Czech.

Ikonen, E, P Del Moral and K Najim (2004). A genealogical decision tree solution to
optimal control problems. In: IFAC Workshop AFNC’04. Oulu, Finland.

Najim, K, E Ikonen and D Ait-Kadi (2004). Stochastic Processes: Estimation, Opti-
mization and Analysis. Kogan Page Science. New York.

Najim, K, E Ikonen and P Del Moral (2006). Open-loop regulation and tracking control
based on a genealogical decision tree. Neural Computing and Applications.

Sjöberg, J and M Agarwal (2002). Trajectory tracking in batch processes using neural
controllers. Engineering Applications of Artificial Intelligence 15, 41—51.

Stramer, O (2006). Probability and statistics for engineering and physical sciences.
Technical report.

Ye, M (2001). Aerial point target detection and tracking - a motion-based Bayesian
approach. Technical report. ISL.

55

56

Index

batch process, 26
Bayes rule, 3
Bayesian state estimation, 7

chaotic dynamics, 46
computing time, 21
conditional probability, 3
continuous time models, 23
cost function, 9, 12, 16, 31, 51

incremental control, 16
covariance matrix, 9, 51
CSTR, 26, 34

delays, 24
download, 13

FBC, 39
feed-back control, 52
fluidized bed combustion, 39

GDT
algorithm, 12
execution, 17
plotting, 18
tuning rules, 17, 21

GDTODESampler, 23, 26
GDTopt, 17, 23
GDTplot, 18

installation, 14
internet, 13

Kalman filter, 7

likelihood, 4, 6

Markov process, 4
memory requirements, 23
MGDT

download, 13
installation, 14

multivariable system, 42, 45

nominal control, 31
non-minimum phase dynamics, 34
norm, 9

ODE, 23
ode23, 23
ordinary differential equations, 23

particle filter
prediction, 6
update, 6

plantfunstr, 15
power plant, 39

rapid thermal processing, 31
reference trajectory, 9
repetitive process, 31
resampling, 10
robot arm, 45

sampling, 23
state-space model, 9, 11, 15

sampled ODE, 23

tuning rules, 17, 21
two-link robot, 45

van der Vusse reactions, 34

www, 13

57

