
Unconstrained Ordination: Tutorial with R and

vegan

Jari Oksanen

January 23, 2012

Contents

1 Introduction 1

2 Simple Ordination 2
2.1 Nonmetric Multidimensional Scaling (NMDS) 2
2.2 Eigenvector Ordination . 4

2.2.1 Principal Components Analysis (PCA) 4
2.2.2 Correspondence Analysis (CA) 6

3 The Anatomy of an R plot 7
3.1 Congested Plots . 8
3.2 Alternative Plotting Functions 9

4 Fitting Environmental Variables 11
4.1 Display of Factors . 14
4.2 Fitting Surfaces . 15

1 Introduction

This tutorial leads you some typical paths of numerical analysis of community
data using R package vegan. The tutorial shows the commands and explains
some results, but usually you must repeat the commands to see the output.

The input text is shown in slanted typewriter font . Each line of input
is preceded by a prompt “R> ” followed by the command. You should not
type the prompt, but only the text following the prompt. In some cases the
command may be so long that it continues to the next row. In that case the
continuous prompt is “+ ” which should not be written. Possible output is
shown as upright typewriter font. An example will look something like
this:

R> This_is_a_line_with_an_input_command(and_a_long_line,

+ continuing_here)

1

Here is a line of output

Sometimes you can see a continuation prompt even when you do not expect
one. Normally this happens because you have opened a structure that is not
closed. Perhaps you had opened a quote with ", but you forgot to have the
closing quote. In that case you can bail out using ctrl-c key combination.

2 Simple Ordination

2.1 Nonmetric Multidimensional Scaling (NMDS)

First we need to load library vegan and take into use some data sets available
in this package:

R> library(vegan)

R> data(dune)

Running NMDS takes only one command:

R> m <- metaMDS(dune)

Run 0 stress 0.1192691

Run 1 stress 0.119268

... New best solution

... procrustes: rmse 0.0005436245 max resid 0.001677212

*** Solution reached

Function metaMDS is in the vegan library. The function calls internally a func-
tion that runs the actual NMDS. From vegan version 2.0-0 the default NMDS
engine is function monoMDS in the vegan package, but in older version metaMDS

uses isoMDS of the MASS package. Function metaMDS provides a simple wrap-
per to a one-shot NMDS ordination following the recommended procedures. The
steps taken are described in the help page of metaMDS which you can read with
command

R> help(metaMDS)

Read the help page and explain what are the steps taken in the command.
Sometimes the metaMDS does not find the same best solution twice, and in

that case you cannot be sure that the found best solution really is the global
optimum. If you are uncertain, you can continue the iterations from your current
solution by giving the name of your solution in the argument previous.best:

R> m <- metaMDS(dune, previous = m)

Starting from 2-dimensional configuration

Run 0 stress 0.119268

Run 1 stress 0.1192711

... procrustes: rmse 0.0009590402 max resid 0.002923063

*** Solution reached

2

We saved the results of the analysis in object called m. You can use any
decent name. Decent names do not have spaces, they do not begin with a
number, and they do not contain special characters that can be interpreted as
mathematical operators such as +-/:*$&!^. If you do not save the results, they
will be printed on the screen and will be lost once the screen scrolls out from
the sight. The symbol “<-” saves the results, but you can also use more familiar
“=”. If you type the name of your result object, the object will be printed on
the screen:

R> m

Call:

metaMDS(comm = dune, previous.best = m)

global Multidimensional Scaling using monoMDS

Data: dune

Distance: bray

Dimensions: 2

Stress: 0.119268

Stress type 1, weak ties

Two convergent solutions found after 2 tries

Scaling: centring, PC rotation, halfchange scaling

Species: expanded scores based on ‘dune’

However, this is only a printed presentation of the object, and the the result
object contains much more detailed information. For instance, the ordination
scores are not displayed, although they also are saved. You can see this by
plotting the object:

R> plot(m)

The default plot command used black circles for sample plots and red crosses
for species. You can see the names for both by defining argument type = "t"

for text:

R> plot(m, type = "t")

The metaMDS function decided many things for you. For instance, you did
not need to define or calculate the dissimilarity index, but the function auto-
matically used Bray-Curtis which is a popular choice. However, you can use
any of the indices defined in function vegdist, or you can even define the name
of some other function to calculate the dissimilarities. For instance, you can
use the Euclidean distances which are commonly regarded as a poor choice for
community data:

R> m2 <- metaMDS(dune, dist = "euclid")

3

Run 0 stress 0.1174528

Run 1 stress 0.1177341

... procrustes: rmse 0.01700046 max resid 0.05472403

Run 2 stress 0.1174526

... New best solution

... procrustes: rmse 0.0002396761 max resid 0.0006149031

*** Solution reached

R> m2

Call:

metaMDS(comm = dune, distance = "euclid")

global Multidimensional Scaling using monoMDS

Data: dune

Distance: euclidean

Dimensions: 2

Stress: 0.1174526

Stress type 1, weak ties

Two convergent solutions found after 2 tries

Scaling: centring, PC rotation

Species: expanded scores based on ‘dune’

You can compare the shape of the nonlinear regression with these two method
using function stressplot:

R> stressplot(m)

R> stressplot(m2)

How do the stress plots differ from each other?
You can directly compare the similarity of the results using Procrustes ro-

tation (do so, and describe the differences):

R> plot(procrustes(m, m2))

2.2 Eigenvector Ordination

R has several functions for running Principal Components Analysis (PCA), and
many packages implementing variants of Correspondence Analysis (CA). Here
we only show how to use vegan functions rda and cca for these tasks.

2.2.1 Principal Components Analysis (PCA)

PCA can be run with command rda, or you can use standard R commands
prcomp or princomp. We shall later use rda for constrained ordination, and
therefore we use it also for PCA:

4

R> ord <- rda(dune)

R> ord

Call: rda(X = dune)

Inertia Rank

Total 84.12

Unconstrained 84.12 19

Inertia is variance

Eigenvalues for unconstrained axes:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

24.795 18.147 7.629 7.153 5.695 4.333 3.199 2.782

(Showed only 8 of all 19 unconstrained eigenvalues)

The results can be plotted with many alternative scaling systems for sites and
species. The scales are described in help(scores.cca), and discussed deeply
in vignette on Design Decisions which can be accessed using vegan command
vegandocs(). You can inspect the visual effects by scrolling through the alter-
natives:

R> plot(ord)

R> plot(ord, scal = 1)

R> plot(ord, scal = 3)

R> plot(ord, scal = -1)

R> plot(ord, scal = -2)

R> plot(ord, scal = 2)

Study these alternative plot scalings. In particular, you should understand what
happens with negative scaling values: see ?scores.cca for explanation.

In addition to standard plot function, you can also use biplot function
which uses arrows for species instead of points. Make clear to yourself why
arrows are used (see lectures). How should the expected abundances of species
be interpreted with arrows with different scales?

R> biplot(ord, scal = 2)

R> biplot(ord, scal = -2)

Negative scalings display species as scaled to unit sd (what does this mean?
– check in lectures), although the species are not analysed as scaled. To give
equal weights to all species, you should specify a new argument in the call:

R> sord <- rda(dune, scal = TRUE)

R> sord

Call: rda(X = dune, scale = TRUE)

Inertia Rank

5

Total 30

Unconstrained 30 19

Inertia is correlations

Eigenvalues for unconstrained axes:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

7.032 4.997 3.555 2.644 2.139 1.758 1.478 1.316

(Showed only 8 of all 19 unconstrained eigenvalues)

R> plot(sord)

R> biplot(sord)

How the results differ from unscaled PCA?
Eigenvector ordinations implement linear mapping of Euclidean distances

onto ordination (check lectures). Nonmetric Multidimensional Scaling (NMDS)
used nonlinear mapping of any distance or dissimilarity measure. You can study
the effect of both nonlinear mapping and non-Euclidean distances using Pro-
crustes rotation:

R> plot(procrustes(m, ord))

R> plot(procrustes(m2, ord))

2.2.2 Correspondence Analysis (CA)

CA analysis is similar to PCA, but uses command cca instead of rda:

R> mca = cca(dune)

R> mca

Call: cca(X = dune)

Inertia Rank

Total 2.115

Unconstrained 2.115 19

Inertia is mean squared contingency coefficient

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.53601 0.40014 0.25979 0.17598 0.14476 0.10791 0.09247 0.08091

(Showed only 8 of all 19 unconstrained eigenvalues)

Compare the output of cca to that of rda and find out how the differ (lecture
slides may be useful).

The plotting happens similarly as in PCA, and again there are several scal-
ing alternatives; their description can be found with help(scores.cca), and
inspected visually:

6

R> plot(mca)

R> plot(mca, scal = 1)

R> plot(mca, scal = 2)

R> plot(mca, scal = 3)

What are the main differences among these scores? This is mainly related to
the process of weighted averages (discussed in lectures).

3 The Anatomy of an R plot

We have already used standard plot function for ordination result. This is a
quick and dirty solution to give the first impression on the results. For clean or
publishable results we may need to exercise a closer control on the results, and
therefore we need to understand the inner workings of R plots.

The basic plot command does not only draw a graph, but most importantly
it sets the plotting area and plotting scales. After plot you can add several
new elements to the created plot. For instance, you add texts in margins, and
therefore the plot command reserves empty space in the margins:

R> plot(mca)

R> title(main = "Correspondence Analysis")

There is empty space in the margin in case you want to add some comments
there. Often you do not want to have anything there, and you can set narrower
margins to get a larger plotting area. There are many other graphical parameters
that can be set. Many of these are described in help(par). The margins are
set by parameter called mar which sets the margins as four numbers of margin
widths in lines (rows of text) in order bottom, left, top, right. The following
sets a bit narrower margins than the default:

R> par(mar = c(4, 4, 1, 1) + 0.1)

R> plot(mca)

You have only a limited control of basic plot. For instance, you can select
either type = "t" (text) or type = "p" (points), but you cannot use points
for plots and text for species, or you cannot select colours or sizes of symbols
separately. However, you can first draw an empty plot (type = "n", none), and
then use commands points or text that add items to an existing plot:

R> plot(mca, type = "n")

R> points(mca, display = "sites", col = "blue", pch = 16)

R> text(mca, col = "red", dis = "sp")

Both functions are configurable as you see in help(text) and help(points).
Plotting characters (pch) of points can be given either as numbers (described
in the help page), or as symbols (such as pch = "+"). For a quick survey of
choices you can use commands example(text) and example(points).

7

3.1 Congested Plots

Ordination plots are often crowded and messy: names are written over each
other and may be difficult to read. For publications you need cleaner plots.

One alternative is to use opaque labels for text with function ordilabel.
These will still cover each other, but at least the uppermost will be readable.
With argument priority you can select which labels are uppermost. The fol-
lowing draws an empty plot, adds sample plots as points, and then species names
on opaque labels giving higher priority to more abundant species (high column
sums):

R> plot(mca, type = "n")

R> points(mca, display = "sites")

R> abu <- colSums(dune)

R> ordilabel(mca, col = "red", dis = "sp", fill = "peachpuff",

+ priority = abu)

Another alternative is to use function orditorp which uses text only if this
does not cover previously added names, and points otherwise. The function also
knows the priority argument:

R> plot(mca, type = "n")

R> points(mca, display = "sites", pch = 23, col = "red", bg = "yellow")

R> orditorp(mca, dis = "sp", prio = abu, pch = "+", pcol = "gray")

Finally there is function ordipointlabel which uses both points and text to
label the points. The function tries to locate the text to minimize the overlap.
This is a slow numerical process, and will reach different results in most times,
but can sometimes give decent results automatically (there are data sets with
so many species or observations that it is impossible to label all neatly).

R> ordipointlabel(mca)

For a complete control of created plot you can use interactive command
orditkplot which also uses points and labels for the plots. The points are in
fixed positions, but their labels can be moved with mouse. The edited plots can
be saved in various graphical file formats or dumped back to the R session for
further manipulation and plotting with plot command. In its basic form, the
function only accepts one kind of scores, and the default is to plot species:

R> orditkplot(mca)

Edit this plot and save it as a pdf file for a manuscript, or as jpeg file for a web
page.

However, you can save the invisible result of ordipointlabel and further
edit the result. In this case you will automatically get both species and sites
into same editable graph with different plotting symbols and text colours:

R> pl <- ordipointlabel(mca)

R> orditkplot(pl)

8

3.2 Alternative Plotting Functions

In addition to standard plot and its associates (points, text, etc.), there are
some alternative plotting functions. One useful function for inspecting results
is ordirgl that allows spinning of 3D graphics:

R> ordirgl(mca, size = 3)

You can spin this graph around by pressing down left mouse button, or zoom
into plot using right button (the buttons will be different in Mac). You can
also add “spider plots” which connect sites to centroids of classes. The following
will connect each site with certain Management practice to its centroid, and
spinning this plot will help to see how these treatments differ in 3D:

R> data(dune.env)

R> attach(dune.env)

R> orglspider(mca, Management)

Finally, you can add species names to the graph:

R> orgltext(mca, dis = "sp", col = "yellow")

As a second example we examine a larger data set where a number of Dutch
ditches were poisoned with insecticide Pyrifos, and the effects of the impact and
recovery of animal plankton was followed. The sampling design is regular and
the environmental data are automatically generated with command example,
and the data set is described more thoroughly in help(pyrifos):

R> data(pyrifos)

R> example(pyrifos)

pyrifsR> data(pyrifos)

pyrifsR> ditch <- gl(12, 1, length=132)

pyrifsR> week <- gl(11, 12, labels=c(-4, -1, 0.1, 1, 2, 4, 8, 12, 15, 19, 24))

pyrifsR> dose <- factor(rep(c(0.1, 0, 0, 0.9, 0, 44, 6, 0.1, 44, 0.9, 0, 6), 11))

We use Detrended Correspondence Analysis (DCA) to demonstrate also that
method:

R> dca <- decorana(pyrifos)

R> dca

Call:

decorana(veg = pyrifos)

Detrended correspondence analysis with 26 segments.

Rescaling of axes with 4 iterations.

9

DCA1 DCA2 DCA3 DCA4

Eigenvalues 0.1347 0.08844 0.07767 0.06286

Decorana values 0.1399 0.09329 0.07542 0.06508

Axis lengths 1.5158 1.77170 1.37345 1.54007

Compare the display of this analysis to other methods. The following gives
ordinary CA for comparison:

R> cap <- cca(pyrifos)

R> cap

Call: cca(X = pyrifos)

Inertia Rank

Total 2.875

Unconstrained 2.875 131

Inertia is mean squared contingency coefficient

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.13994 0.09810 0.09026 0.08339 0.07720 0.07334 0.06953 0.06548

(Showed only 8 of all 131 unconstrained eigenvalues)

Compare the eigenvalues. Why should they differ? (Lectures may help here.)
Compare the results visually using Procrustes analysis.

R> plot(procrustes(cap, dca))

R> plot(procrustes(dca, cap, choices = 1:2))

The default number of extracted axes differs between decorana and cca results,
and therefore the first command rotates four DCA axes to two CA axes (and
projections of these four axes are shown in the graph). The latter command
explicitly chooses axes 1 to 2.

We can see if there is a visual sign of DCA artifacts (“lollypaper”, “lasagna”
effects) with 3D dynamic plot, where we also use different colours for Pyrifos
doses:

R> ordirgl(dca, size = 3, col = as.numeric(dose))

Spin this plot to get the shape of the cloud of points, and to see how the dose
influences the pattern. For a clearer pattern, we add lines connecting consecutive
observations within ditches:

R> orglsegments(dca, ditch)

Spinning is good for private use since it helps in understanding 3D structures,
but it is difficult for papers. An alternative plotting command used Lattice or
Trellis commands to produce panels of plots or alternative special plots. The

10

following produces separate panels for each level of Pyrifos, displays each ditch
with a different colour, and connects points within ditches by lines showing the
temporal succession.

R> ordixyplot(dca, form = DCA2 ~ DCA1 | dose, group = ditch,

+ type = "b")

The form says that draw axis DCA2 against DCA1 making panel for each dose,
and use lines and points (type = "b" or“both” lines and points) for each ditch.
Please note that the sign before dose is not a slash but a vertical bar (|). Explain
with this graph how the natural annual succession and the impact of Pyrifos
can be seen. You can identify the species for both variables by looking at the
ordinary plot of species scores:

R> plot(dca, dis = "sp")

If this is crowded, you can use tricks for congested plots to produce a more
readable version.

4 Fitting Environmental Variables

The basic command to fit vectors or factor levels of environmental variables is
envfit. The following example uses the two alternative result of NMDS:

R> data(dune.env)

R> envfit(m, dune.env)

***VECTORS

NMDS1 NMDS2 r2 Pr(>r)

A1 0.98993 0.14152 0.3797 0.017 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

P values based on 999 permutations.

***FACTORS:

Centroids:

NMDS1 NMDS2

Moisture1 -0.5123 -0.0431

Moisture2 -0.3906 0.0105

Moisture4 0.2786 -0.3879

Moisture5 0.6559 0.1479

ManagementBF -0.4472 -0.0196

ManagementHF -0.2687 -0.1258

ManagementNM 0.2971 0.5800

ManagementSF 0.1504 -0.4654

11

UseHayfield -0.1699 0.3550

UseHaypastu -0.0408 -0.3352

UsePasture 0.3031 0.0392

Manure0 0.2971 0.5800

Manure1 -0.2428 -0.0257

Manure2 -0.3104 -0.1847

Manure3 0.3049 -0.2469

Manure4 -0.3440 -0.5589

Goodness of fit:

r2 Pr(>r)

Moisture 0.5002 0.001 ***

Management 0.4133 0.007 **

Use 0.2026 0.103

Manure 0.4241 0.019 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

P values based on 999 permutations.

R> ef <- envfit(m, dune.env, perm = 1000)

R> ef

***VECTORS

NMDS1 NMDS2 r2 Pr(>r)

A1 0.98993 0.14152 0.3797 0.01299 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

P values based on 1000 permutations.

***FACTORS:

Centroids:

NMDS1 NMDS2

Moisture1 -0.5123 -0.0431

Moisture2 -0.3906 0.0105

Moisture4 0.2786 -0.3879

Moisture5 0.6559 0.1479

ManagementBF -0.4472 -0.0196

ManagementHF -0.2687 -0.1258

ManagementNM 0.2971 0.5800

ManagementSF 0.1504 -0.4654

UseHayfield -0.1699 0.3550

UseHaypastu -0.0408 -0.3352

UsePasture 0.3031 0.0392

Manure0 0.2971 0.5800

12

Manure1 -0.2428 -0.0257

Manure2 -0.3104 -0.1847

Manure3 0.3049 -0.2469

Manure4 -0.3440 -0.5589

Goodness of fit:

r2 Pr(>r)

Moisture 0.5002 0.001998 **

Management 0.4133 0.007992 **

Use 0.2026 0.086913 .

Manure 0.4241 0.015984 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

P values based on 1000 permutations.

R> ef2 <- envfit(m2, dune.env, perm = 1000)

R> ef2

***VECTORS

NMDS1 NMDS2 r2 Pr(>r)

A1 0.97528 0.22095 0.201 0.1499

P values based on 1000 permutations.

***FACTORS:

Centroids:

NMDS1 NMDS2

Moisture1 -4.5154 0.7532

Moisture2 -1.8181 -1.7175

Moisture4 2.8797 -4.2408

Moisture5 4.7316 1.4399

ManagementBF -4.8243 0.0543

ManagementHF -3.2532 -0.5178

ManagementNM 2.8520 4.3435

ManagementSF 2.2712 -3.9392

UseHayfield -0.6529 2.4069

UseHaypastu -0.6005 -2.7737

UsePasture 1.8748 1.0682

Manure0 2.8520 4.3435

Manure1 -2.9572 0.0224

Manure2 -3.6626 -1.3042

Manure3 2.6557 -1.8722

Manure4 -1.4043 -4.4741

Goodness of fit:

13

r2 Pr(>r)

Moisture 0.5061 0.001998 **

Management 0.5249 0.000999 ***

Use 0.1680 0.165834

Manure 0.4567 0.012987 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

P values based on 1000 permutations.

Which environmental variables are most important? Which of these alternative
ordinations seems to be better related to the environment?

We can add the fitted variables to the model as vectors and centroids of
factor levels. The vectors will be automatically scaled for the graph area. The
following shows only the variables that were regarded as statistically significant
at level P ≤ 0.05:

R> plot(m)

R> plot(ef, add = T, p. = 0.05)

R> plot(m2)

R> plot(ef2, add = T, p. = 0.05)

The basic command fits vectors and factors for all variables in the environ-
mental data frame. If we use formula interface, we can select only some of the
variables from the data:

R> plot(m)

R> plot(envfit(m ~ Management, data = dune.env), add = TRUE)

4.1 Display of Factors

The plots of factor fitting will only show the class centroids. We may be inter-
ested in seeing the variation or scatter of class members. Some commands add
graphical descriptions of the items into an existing plot:

R> attach(dune.env)

R> ordispider(m, Management, col = "skyblue")

R> ordihull(m, Management, col = "pink")

R> ordiellipse(m, Management)

R> ordiellipse(m, Management, kind = "se", conf = 0.95, col = "red")

Function ordispider connects class members to their centroid with lines, or-
dihull draws a convex hull enclosing all points, and ordiellipse draws (in
this case) 95 % confidence ellipses around class centroids. If these confidence
ellipses do no overlap, the classes probably are significantly different at level
P ≤ 0.05.

14

4.2 Fitting Surfaces

Vector fitting implies a linear trend surface. Check in lecture slides what this
mean, and how vectors should be interpreted. In the following graph, you can
estimate the the relative thickness of A1 horizon in different plots:

R> data(dune.env)

R> plot(m, dis = "sites", type = "t")

R> ef <- envfit(m ~ A1, dune.env)

R> plot(ef, add = TRUE)

R> attach(dune.env)

The following object(s) are masked from 'dune.env (position 3)':

A1, Management, Manure, Moisture, Use

R> sf <- ordisurf(m, A1, add = TRUE)

Function ordisurf fits a flexible surface, and it automatically estimates how
linear or nonlinear the trend surface will be. The function uses thinplate splines
with generalized cross-validation to assess the number of degrees of freedom for
these surfaces. If the linear trend surface implied by the model is adequate, the
isocline values of the trend surface will be equally spaced lines perpendicular to
the fitted vector. Sometimes this is true, but not always.

You can force the function to fit a linear trend surface by specifying the argu-
ments knots to value 1. You can display the observed values by using argument
bubble that draws a circle with a diameter proportional to the observed value
of the parameter. The value of bubble gives the maximum size of the circle:

R> plot(m, dis = "sites", type = "n")

R> sf <- ordisurf(m, A1, add = TRUE, knots = 1, bubble = 4)

We saved the result returned by ordisurf. This is a gam result object (package
mgcv), and we can use all gam methods with this object. In addition, vegan
function calibrate can be used to find the fitted values:

R> calibrate(sf)

1 2 3 4 5 6 7 8

3.658701 5.555612 4.446381 7.059908 3.703535 2.865289 5.375945 3.491501

9 10 11 12 13 14 15 16

3.327093 6.828931 3.785558 4.247092 4.951765 4.607423 4.545355 7.014750

17 18 19 20

7.143605 5.006383 5.693355 3.691818

R> plot(A1, calibrate(sf))

R> abline(0, 1)

15

