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Abstract

The Diffie-Hellman key exchange scheme is one of the earliest and most
widely used public-key primitives. Its underlying algebraic structure is a
cyclic group and its security is based on the discrete logarithm problem
(DLP). The DLP can be solved in polynomial time for any cyclic group in
the quantum computation model. Therefore, new key exchange schemes
have been sought to prepare for the time when quantum computing be-
comes a reality. Algebraically, these schemes need to provide some sort
of commutativity to enable Alice and Bob to derive a common key on
a public channel while keeping it computationally difficult for the adver-
sary to deduce the derived key. We present a brief survey on the algebraic
properties of existing key exchange schemes and identify the source of
commutativity and the family of underlying algebraic structures for each
scheme. We also present a universal algebraic view on the Diffie-Hellman
protocol and formulate an algebraically generalized Diffie-Hellman scheme
(AGDH) that, in general, enables the application of any algebra as the
platform. We also formulate the underlying computational problems in
the framework of average-case complexity. The scheme is secure if the
problem of computing images under an unknown homomorphism is in-
feasible. Finally, we show that a symmetric encryption scheme possessing
homomorphic properties over some algebraic operation can be turned into
a public-key primitive with the AGDH provided that the operation is com-
plex enough.

Keywords: cryptography, key exchange, homomorphic image problem, uni-
versal algebra
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1 Introduction

Cryptographic key exchange is an essential part of modern communication. Such
schemes enable two parties to derive a common secret key using a public channel.
The Diffie-Hellman key exchange scheme [24], conceptualized by Merkle [55], is
one of the most utilized public-key protocols and an integral part of many com-
munication standards. Its underlying mathematical structure is a cyclic group
G = 〈g〉, where g is a known generator. Alice and Bob choose secret elements
a, b ∈ {1, 2, . . . , |G|}, exchange ga, gb and establish a common group element
gab = (ga)b = (gb)a. The scheme works because exponentiation commutes and
it is hard to compute the common element gab from ga and gb.

The original Diffie-Hellman scheme applies the multiplicative group of inte-
gers modulo p, where p is a prime. However, the discrete logarithm problem
(DLP) on this group can be solved in sub-exponential time in the standard
model [18]. Therefore, alternative versions of the original scheme were sought
by replacing the cyclic group with another. In particular, the group E(Fq) of
rational points on an elliptic curve E defined over a finite field Fq turned out
to yield instantiations with of an order of magnitude greater security [56, 47].
However, all discrete logarithm based schemes can be broken in polynomial
time in the quantum computation model using Shor’s algorithm [71]. This
means that in order to achieve quantum secure key exchange, it is necessary to
consider other algebraic structures. A step towards this direction was taken,
for example, in the supersingular isogeny Diffie–Hellman key exchange (SIDH)
scheme [41] where exponentiation is combined with the application isogenies of
the curve.

Our paper is an exploration of the idea that the less richness we need for the
underlying algebraic structure, the harder the computational problems become.
For example, elliptic curve isogenies can be constructed in sub-exponential time
in the quantum computation model for ordinary elliptic curves. However, the
non-commutativity of the endomorphism ring for the supersingular case foils
these algorithms and the isogeny reconstruction problem remains exponential
time. Therefore, it makes sense to study the algebraic properties of the Diffie-
Hellman and other key exchange protocols suggested in the literature and to
find the most general, applicable structures in order to minimize the number of
tools available for the breaking of the underlying problems.

In this paper, we formulate an algebraically generalized Diffie-Hellman scheme
(AGDH) that permits any type of algebra as its platform structure. We also for-
mulate the computational problems associated to its security in the framework
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Foundation, Tauno Tönning Foundation, Walter Ahsltröm Foundation and The Finnish Foun-
dation for Economic and Technology Sciences – KAUTE are gratefully acknowledged for the
financial support. Work related to this manuscript has first appeared in the author’s doctoral
thesis [62].
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of average-case complexity. We start by presenting a brief survey on the alge-
braic properties of existing cryptographic key exchange schemes. Our emphasis
is on the commutativity that results in the common key (for Diffie-Hellman it
is the commutativity of exponentiation (ga)b = (gb)a), as well as on the most
general algebraic platform structures possible for the scheme. We also give a
characterization of the Diffie-Hellman scheme in the framework of universal al-
gebra. Typically, the scheme is viewed as symmetric for Alice and Bob. Both
compute an exponentiation map g 7→ gx, for some x ∈ {1, 2, . . . , |G|}. However,
such an exponentiation map is both an endomorphism of G and a term function
of the algebra. By introducing an asymmetry into the scheme by considering
Alice to compute endomorphisms and Bob to compute term functions, we are
able to freely choose the underlying algebraic structure provided that a sufficient
amount of endomorphisms and term functions are found.

The AGDH is based on computing homomorphic images. To study its secu-
rity, we define a homomorphic image problem (HIP) that asks to compute the
image of a given element under an unknown homomorphism as an analogue to
the Diffie-Hellman problem (DHP). Similarly to the DHP, we formulate both
computational and decision versions of this problem and the common established
element is indistinguishable from a random element of the algebra if the decision
version is infeasible. Finally, we consider the homomorphic image problem in-
duced by decryption functions of a homomorphic symmetric encryption scheme.
We do not consider fully homomorphic schemes but schemes that have homo-
morphic properties over some operation. We devise a condition which ensures
that the induced decision HIP is infeasible, essentially turning the encryption
scheme into a public-key primitive using the AGDH.

The paper is organized as follows. In Section 2, we lay out the preliminaries
for rest of the paper. Section 3 presents a brief survey on the algebraic properties
of existing key exchange schemes. In Section 4, we present our main contribution
by formulating the algebraically generalized Diffie-Hellman scheme AGDH and
the computational and decision versions of the homomorphic image problem
HIP. In Section 5, we study the problem of enabling key exchange with a
homomorphic symmetric encryption scheme using the AGDH. Finally, Section 6
provides the conclusions.

2 Preliminaries

2.1 Computation

We follow the standard model of probabilistic polynomial time computation. A
search problem is a binary relation R = {0, 1}∗ × ({0, 1}∗ ∪ {⊥}). For every
(x, y) ∈ R, we call x an instance of the problem and y the solution to the
instance x. If y =⊥, then we say that x has no solution. The set of solutions
of an instance x is denoted by R(x). A probability ensemble X = {Xk}k∈N
consists of random variables Xk indexed by the natural numbers. Our problems
will be distributional meaning that a computational problem P = (R,X) always
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comes with a probability ensemble X = {Xk}k∈N from which its instances are
drawn. Here, the index k ∈ N determines the binary length of the instance.
The notation y ← A(x; r) means that a probabilistic algorithm A on input x
and randomness r outputs y.

Given a distributional search problem P = (R,X) and a probabilistic poly-
nomial time (PPT) algorithm A, we are interested in the probability of A solving
a typical instance, called the advantage,

AdvPA (k) = Pr [A(Xn) ∈ R(Xn)] .

A function ε is negligible if for every n ∈ N there is k′ ∈ N such that ε(k) ≤
1/nk for every k ≥ k′. A problem P is infeasible if AdvPA (k) is negligible for
every PPT algorithm A. The problem of distinguishing probability ensembles
X = {Xk}k∈N and Y = {Yk}k∈N is denoted by D(X,Y ) and

Adv
D(X,Y )
D (k) = |Pr [1← D(Xk)]− Pr [1← D(Yk)]|

for every PPT algorithm D.

2.2 Diffie-Hellman key exchange

The Diffie-Hellman scheme [24] is defined as follows. Let us assume that S is
an algorithm that on input the security parameter 1s, where s ∈ N, samples a
cyclic group G of a suitably large order and a generator g of G. Depending on
the representation of the group, the order of the group should be chosen so that
the Diffie-Hellman problem (see Defs. 2.2 and 2.3) is infeasible.

Definition 2.1 (Diffie-Hellman key exchange (DH)). Let the participants be
Alice and Bob.

Alice Bob
Sample (G, g)← S(1s)
Sample a← U(Z|G|)

(G, g, ga) −−−−→
Sample b← U(Z|G|)

←−−−− gb
k ← (gb)a = gab k ← (ga)b = gab

The security of the scheme depends on the infeasibility of the Diffie-Hellman
problem.

Definition 2.2 (Computational Diffie-Hellman problem (CDHP)). Let (G, g)←
S(1s), where G is a cyclic group and g is a generator of G. Let a, b← U(Z|G|).
Given (g, ga, gb) ∈ G3, find y ∈ G such that y = gab.

The infeasibility of the computational version is often insufficient. We want
the adversary to be unable to determine any information about gab. This is
formalized by the decision version of the problem.
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Definition 2.3 (Decision Diffie-Hellman problem (DDHP)). Let G be a cyclic
group and let g be a generator of G sampled by (G, g) ← S(1k). Let B ←
U({0, 1}) and a, b, c← U(Z|G|). Given

(g, ga, gb, gab) ∈ G4, when B = 0,

(g, ga, gb, gc) ∈ G4, when B = 1,

determine B.

DDHP is the problem of distinguishing the probability ensembles determined by
(g, ga, gb, gab) and (g, ga, gb, gc).

2.3 Universal algebra

Universal algebra encompasses general concepts underlying different algebraic
structures such as groups, semigroups, modules and quasigroups. Let A be a
non-empty set and let n ∈ N. A (finitary) operation on A of arity n is a function
f : An → A. We define A0 = {∅}. A type of algebras is a function τ : Ω→ Z≥0,
where the elements of Ω are the basic operators of the type. The type τ assigns
an arity for each basic operator f ∈ Ω.

An algebra (or an algebraic structure) of type τ is an ordered pair A =
(A,F ), where A is a non-empty set and F is a set of operations on A such
that for every n-ary basic operator f of the type there is an n-ary operation
fA on A. By the notation x ∈ A, we mean x ∈ A, where A = (A,F ). We
often write f for fA when it is clear that we mean an operation and not an
operator. If Ω = {f1, f2, . . . , fn} for the type, we write A = (A, f1, f2, . . . , fn)
or A = (A, fA1 , f

A
2 , . . . , f

A
n ) for A = (A, {fA1 , fA2 , . . . , fAn }) and often τ(f1) ≥

τ(f2) ≥ · · · ≥ τ(fn). The set A of an algebra A = (A,F ) is called the underlying
set (or the universe) of A. An algebra A = (A,F ) is finite, if A is a finite set.

Let A = (A,FA) and B = (B,FB) be algebras of the same type. If B ⊆ A
and for every basic operator f of the type, fA|B = fB, then B is a subalgebra
of A. In such a case, we write B ≤ A. The set of subalgebras of an algebra A
is closed under intersections. Therefore, every X ⊆ A determines the smallest
subalgebra 〈X〉 ≤ A that contains X, the subalgebra generated by X.

Let A = (A,FA) and B = (B,FB) be algebras of the same type τ . A
mapping α : A→ B is a homomorphism from A to B if

α(fA(a1, a2, . . . , an)) = fB(α(a1), α(a2), . . . , α(an))

for every n-ary basic operator f of the type and every ordered n-tuple (a1, a2, . . . , an) ∈
An. The set of homomorphisms from A to B is denoted by Hom (A,B). If
A = B, then α is an endomorphism. The set of all endomorphisms of A con-
stitutes a semigroup and it is denoted by End (A). If α : A→ B is a surjective
homomorphism, then B is a homomorphic image of A.

Let τ be a type of algebras and let Ω be the set of basic operators of the
type. Let X be a set of distinct objects called variables. The set of terms of
type τ with variables X is the smallest set T (X) such that X ⊆ T (X) and for
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every p1, p2, . . . , pn ∈ T (X) and every n-ary basic operator f ∈ Ω the string
f(p1, p2, . . . , pn) ∈ T (X).

We often consider n-ary polynomials over a field F as polynomial functions
Fn → F. Such a consideration can be also applied to terms. Let p(x1, x2, . . . , xn)
be a term of type τ over a set of variables X. Given an algebra A = (A,F ) of
type τ , the term function on A corresponding to p is pA : An → A defined by

1. if p is a variable xi, then pA(a1, a2, . . . , an) = ai for a1, a2, . . . , an ∈ A,

2. if p is of the form f(p1(x1, . . . , xn), . . . , pk(x1, . . . , xn)), where f is an k-ary
basic operator, then

pA(a1, a2, . . . , an) = fA(pA1 (a1, . . . , an), . . . , pAk (a1, . . . , an)).

For our considerations, the term functions are useful since they behave like the
finitary operations with respect to congruences and homomorphisms [14]. In
particular, for every homomorphism α : A → B and every n-ary term p we
have

α(pA(a1, a2, . . . , an)) = pB(α(a1), α(a2), . . . , α(an))

for every a1, a2, . . . , an ∈ A.

3 On the algebraic properties of key exchange
schemes

In the algebraic point of view, we can easily identify a fundamental requirement
for successful key exchange: something must commute. For the DH, we have
(ga)b = (gb)a for every a, b ∈ N. In this section, we present a brief survey
on the algebraic properties of two party key exchange schemes suggested in the
literature. In particular, for each scheme we identify the source of commutativity
and the most general suitable algebraic platform structure.

3.1 Cyclic group based schemes

Different versions of the DH have been obtained by replacing Z∗p with an-
other cyclic group [70, 49]. There are suggestions based on finite extension
fields [12] and groups based on elliptic curves over finite fields [56, 47]. A
common element is obtained by the commutativity of exponentiation or mul-
tiplication. In particular, the elliptic curve groups E(Fp), for p prime, have
yielded very successful variants of the DH. Other groups over Abelian varieties
have been also suggested [48]. Another variant is the XTR [50] and its pre-
decessors [51, 58, 59, 75, 49, 12]. Rubin and Silverberg suggested the group
structure on an algebraic torus [69]. A common element is established by the
commutativity of exponentiation in Fmq and mapping the result to the torus us-
ing a birational map. Buchmann and Williams suggested a generalization of the
Diffie-Hellman scheme based on an ”almost” cyclic group structure on a set of
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reduced principal ideals of a real quadratic field [13]. A common reduced ideal
is derived based on the commutativity of real number multiplication and addi-
tion. These methods are based on the idea of replacing the original group family.
Therefore, algebraically such schemes can be considered in the framework of the
original DH.

3.2 Diffie-Hellman based on pairings and multilinear maps

Pairings on elliptic curves have been used both in cryptanalytic investigations,
as well as in many useful cryptographic constructions. Joux was the first to
point out the cryptographic potential of such pairings and suggested a three-
party generalization of the Diffie-Hellman scheme based on the Weil and Tate
pairings [43]. The common key is established between three parties based on the
homomorphic property of the pairing e. The security follows from the hardness
of computing e(P, P )abc from (P, aP, bP, cP ), where P is a point on the curve
and a, b, c are random integers. Based on Joux’s scheme, Verheul suggested a
variant with reduced exponentiations and half the number of exchanged bits,
as well as a variant of the ElGamal encryption scheme [80]. Bilinearity was
also used by Boneh and Franklin to construct a fully functional identity-based
encryption scheme [7].

Boneh and Silverberg extended Joux’s scheme to n ≥ 4 parties using multi-
linear maps [8]. First practical schemes for n-party key exchange for any n were
suggested by Garg et al [33] using ideal lattices (the GGH scheme) and Coron et
al. [20] using the integers (the CLT scheme). However, these schemes have been
shown to be insecure [39],[15]. The improved version of GGH [34] have been
also shown to be insecure [19]. Obfuscation-based multilinear maps have been
suggested in [83] [9] [1].

3.3 Schemes based on commuting functions

Several methods have been suggested to generalize the DH by replacing group
exponentiations with other commuting functions. In principle, for such schemes,
we are not interested in the underlying algebraic structure. However, the func-
tions are often generated using algebraic methods. For example, Shpilrain and
Zapata characterize discrete logarithm based primitives on groups of prime or-
der as a group action Aut (G) × G → G [73]. They suggest a generalization
based on commuting semigroup actions on a set. To the best of our knowledge,
semigroup actions were first suggested by Monico [57]. Similar suggestions can
be found from [53] and [78]. There are also suggestions based on commuting
chaotic maps [82].

3.4 Non-commutative structure based schemes

The field on non-commutative cryptography is often considered to have started
with the work of Anshel et al. [4] and Ko et al. [46]. Ko et al. suggested a
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Diffie-Hellman like scheme using the braid group and commuting inner auto-
morphisms. According to [21], the same scheme has been independently sug-
gested by Sidel’nikov [74] using a non-commutative semigroup. A polynomial
time algorithm breaking the Ko et al. scheme on the braid group can be found
from [16]. Baumslag et al. [5] suggested a scheme based on a finitely presented
group G with two commuting subgroups A,B ≤ G. A common key is derived
using the identity abgb′a′ = baga′b′ for every g ∈ G, a, a′ ∈ A and b, b′ ∈ B.
A semidirect product AoB of two groups, where B is Abelian, was suggested
by Habeeb et al. [37]. A common key is established based on two commuting
embeddings ϕ, φ : A→ Aut (B).

In the supersingular isogeny key exchange (SIDH), Alice and Bob create
distinct, non-commuting isogenies φA, φB of a known curve E. They generate
point pairs (PA, QA) and (PB , QB) and share their images (φA(PB), φA(QB))
and (φB(PA), φB(QA)) under the secret isogenies. In the supersingular case, the
endomorphism ring is non-commutative. However, based on the homomorphic
properties of the two isogenies φA and φB , Alice and Bob are able to derive a
shared curve EAB that is isogenous to E. The established key is defined as the
j-invariant of this curve [41].

For the Anshel-Anshel-Goldfeld (AAG) scheme [4], the common key follows
from the homomorphic property β(x, y1 · y2) = β(x, y1) · β(x, y2) together with
γ1(x, β(y, x)) = γ2(y, β(x, y)). For the conjugation based AAG [4, 3] on a non-
commutative group, the key is derived as the commutator [a, b] of elements a
and b contributed by Alice and Bob, respectively. Shpilrain and Ushakov [72]
generalize the construction to use the centralizer instead of the commutator. For
both of these schemes, the common key follows from the homomorphic property.
Braid groups have been suggested as the platform. However, both schemes can
be broken in polynomial time on the braid group [79].

Stickel [77] suggested the application of a non-commutative semigroup G
for key exchange. Let g1, g2 ∈ G be non-commuting elements. Alice and Bob
exchange ga11 ga22 and gb11 g

b2
2 . A common key, ga1+b11 ga2+b22 , is derived by the

commutativity ga+b = gb+a. The application of tropical algebras for the im-
plementation of this scheme was suggested in [35]. Rabi and Sherman [67]
suggested the use of associative one-way binary operations. In such a case, a
common key is derived based on associativity.

3.5 Schemes based lattices

Due to strong security guarantees, lattice based schemes have become a strong
alternative for post-quantum cryptography. Since the seminal work of Regev [68]
on the learning with errors problem (LWE), it has attracted a lot of research on
schemes implementing, for example, cryptographic hash functions, public-key
cryptography, digital signature schemes, as well as fully homomorphic encryp-
tion [66].

In [42], Ding et al. introduced an extension of the Diffie-Hellman prob-
lem with errors based on the LWE (and the corresponding problem in a cy-
clotomic ring, R-LWE). The common key is derived based on the associativity
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of matrix multiplication by computing a bilinear form in two different ways:
(xTA)y = xT (Ay), where T denotes transpose. Peikert applied the R-LWE in
the construction of a key encapsulation mechanism and an authenticated key ex-
change scheme [65]. In the scheme, a ”randomized function” dbl, a reconciliation
function rec and two modular rounding functions b·e2, 〈·〉2 are used to establish
a common key µ in two different ways: µ = bdbl(v)e2 and µ = rec(w, 〈dbl(v)〉2),
where w = g(e0a + e1)s1 and v = ge0(as1 + s0) + e2 are noisy ring elements.
A key encapsulation mechanism can be also implemented based on the NTRU
cryptosystem [38][22], as well as on error correcting codes [23].

Based on Peikert’s scheme, Bos et al. investigated the parameters for a
practical implementation in [11] and the resulting scheme was later optimized
by Alkim et al. into a scheme called NewHope [2]. Based on the work of Ding
et al. [42], Bos et al. applied the generic LWE in a scheme called Frodo [10].
A provably secure authenticated key exchange protocol applying the R-LWE
was presented by Zhang et al. [84] and a password authenticated key exchange
scheme was presented by Ding et al. [25].

3.6 Non-associative structure based schemes

There are many suggested applications of non-associative algebra in cryptog-
raphy. It has been applied, for example, to construct block ciphers, stream
ciphers, hash functions and authentication schemes.

Some suggestions for key exchange exist. The implementation of commuting
semigroup actions based on both exponentiation and conjugation in a Moufang
loop was suggested by Maze [52]. A generalization of the conjugation based AAG
for LCC loops was given by Partala and Seppänen [64]. The construction works
for any LCC left quasigroup [63] and, similarly to the original AAG, the common
key is derived as the commutator but this time on the left multiplication group;
the permutation group generated by the bijections La(x) = a∗x, where ∗ is the
binary operation of the left quasigroup. A generalized Diffie-Hellman scheme
was first described in [61] and refined in this paper. The common key is derived
based on the homomorphic property. Wang et al. [81] suggested a scheme similar
to DH by considering conjugacy search in a monoid. The scheme works in a non-
associative left distributive (LD) structure Q, satisfying a∗(b∗c) = (a∗b)∗(a∗c)
for every a, b, c ∈ Q, induced by conjugation and a common key is derived based
on the property an+m ∗ b = an ∗ (am ∗ b), where ∗ is the binary operation of
the LD structure and exponentiation is conducted in the original monoid. In
this case, the common key is a result of both the homomorphic property of
conjugation and the commutativity of exponentiation.

We have gathered the essentially different key exchange schemes and their
algebraic properties into Table 1.
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4 Algebraic generalization of the Diffie-Hellman
scheme

Many key exchange schemes in our brief survey can be seen as generalizations
or different versions of the DH. A straightforward generalization is to use other
commuting functions. However, it is not straightforward to construct commut-
ing functions with the needed infeasibility requirements. Here, our emphasis is
on the algebraic properties of the exponentiation map. Many generalizations
have observed that exponentiations in a cyclic group commute. However, expo-
nentiation in a cyclic group is also an endomorphism of the group. Typically,
generalizations concentrate on the commutativity property instead of the ho-
momorphic property. Notable exceptions include, for example, pairing-based
schemes, such as the tripartite Diffie-Hellman scheme of Joux [43], where a
common key is derived based on bilinearity of the pairing. In this paper, we
also concentrate on the homomorphic property.

Based on it, we formulate a generalization for the DHP. Our main motivation
for such a generalization is the possibility of lifting the Diffie-Hellman from cyclic
groups to more general algebraic structures. In particular, the escape from cyclic
groups is necessary to ensure security in the quantum computation model. The
removal of algebraic laws enables us to do that and facilitates the development
of new, quantum resistant, key exchange schemes. Existing suggestions require
the platform structure to satisfy special laws, such as the group axioms. Our
formulation permits the application of any algebraic structure without special
algebraic laws except the existence of homomorphisms. In addition, as a direct
generalization of the DH, it aims to preserve the utility of the DH.

Another motivation follows from cryptographically useful properties of ho-
momorphisms. In particular, in most cases a homomorphism f is resamplable [28].
That is, there is a PPT algorithm A that on input (x, b) produces a distribution
(X ,B) such that the event ”b = f(x) if and only if b′ = f(x′)” holds with proba-
bility one for every (x′, b′)← (X ,B). Resamplability is a special form of random
self-reducibility [29] that allows us to infer average-case hardness of certain prob-
lems based on their worst-case infeasibility. Resamplability also enables us to
derive tighter bounds on advantage when invoking the hybrid argument [28].
Therefore, due to resamplability and worst-case to average-case reductions, we
expect homomorphism based schemes to obtain stronger guarantees for their
security similar to learning with errors based schemes [68, 65], where several
worst-case to average-case reductions are known.

First, we give a universal algebraic view on the Diffie-Hellman scheme. We
observe that the security of DH can be seen to be based on the infeasibility of
computing a homomorphic image. Based on this observation, we formulate a
homomorphic image problem (HIP) that asks to compute the image of a given
element under an unknown homomorphism. We show that the required com-
mutativity is induced by the homomorphic property and it is sufficient for key
exchange. This consideration allows us to lift the DHP from a cyclic group to
any pair of algebras A and B with a suitably large set of efficiently samplable
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and computable homomorphisms from A to B. We define a notion that is anal-
ogous to a group family G = ({Gi : i ∈ I},S) that consists of a collection of
cyclic groups {Gi : i ∈ I} and an algorithm S to sample from that collection [6].
We define a similar family of algebras and use it to formulate a decision version
of the HIP.

4.1 Universal algebraic view of the Diffie-Hellman scheme

Our construction is based on the following observation. Let us consider a cyclic
group Gi as an algebra Gi. Then, every exponentiation function αa : x 7→ xa

is both an endomorphism and a term function Gi → Gi. Let us now consider
the original Diffie-Hellman key agreement scheme in the following form that
introduces an apparent asymmetry in the computational procedures of Alice
and Bob.

Definition 4.1 (Diffie-Hellman key agreement). Let the participants be Alice
and Bob and let G = ({Gi : i ∈ I},S) be a group family.

Alice Bob
Sample (i, g)← S(1s)

Sample αa : x 7→ xa ∈ End (Gi)
(i, g, αa(g)) −−−−→

Generate a random term
p of the type of Gi

Compute

gb = pGi (g)
Compute

αa(g)
b = pGi (ga)

←−−−− gb
k ← αa(g

b) = gab k ← αa(g)
b = gab

Alice first samples a private endomorphism αa : x 7→ xa, where a ← U(Z|Gi|).
Bob generates a random term p of the type of Gi such that the term function
pGi is polynomial time computable. He computes

gb = pGi(g) = gg · · · g︸ ︷︷ ︸
b times

.

The same term function is applied on αa(g) = ga to obtain a secret element

αa(g)b = pGi(ga) = αa(g)αa(g) · · ·αa(g)︸ ︷︷ ︸
b times

= gaga · · · ga︸ ︷︷ ︸
b times

= gab.

The binary operation is not actually applied b− 1 times. Rather, Bob chooses
a term function such that the fast exponentiation algorithm can be applied to
reach gb and gab in a polynomial number of operations. Alice can compute
αa(gb) = gab and the equality of the established key follows from the homomor-
phic property of αa.

We can immediately see that it is possible to exchange the group family G
with a family of non-group algebras. That is, we can consider two algebras A,B
of the same type and let αa ∈ Hom (A,B). There are three different algorithms
implicit in the scheme:

12



1. The sampling algorithm S that can be considered to sample both (i, g)
and αa.

2. A probabilistic polynomial time random composition algorithm R that on
input i ∈ I and an element x ∈ Gi samples a term p and computes the
term function on x.

3. A deterministic polynomial time homomorphism computation algorithm
H that given i ∈ I, a ∈ Z and an element x ∈ Gi evaluates αa(x).

For the generalization of the group family to a family of algebras, these algo-
rithms need to be made explicit. For example, for the group family case both
R and H compute xa using the fast exponentiation algorithm.

4.2 The homomorphic image problem

In this section, we carefully construct a rigorous definition for the family of al-
gebras, as well as for the homomorphic image problem. In order to be able to
increase the security of the different constructions using a security parameter,
the family has to consist of pairs (Ai,Bi) indexed by a countably infinite index
set I. We need a sampling algorithm S that samples such pairs, outputs the
corresponding i ∈ I and a set of generators a1, a2, . . . , an for Ai. We also need
the family to have a meaningful composition algorithm R, for term function
generation, that can be randomized. For an algebra with n generators, poten-
tially several such algorithms can be devised. In contrast, the only meaningful
composition algorithm for a group family is the fast exponentiation algorithm
with a randomized exponent. To see why this is the case, we observe that each
element of a cyclic group Gi is of the form gx for x ∈ N, where g is a generator
of the group. Therefore, for every term p, there is z ∈ N such that pGi(g) = gz

and the fastest way to compute it is using the fast exponentiation algorithm.
Finally, we require participants to be able to efficiently compute homomor-

phisms ϕ ∈ Hom (Ai,Bi) for every i ∈ I. Therefore, the family has to come
with an explicitly stated set of efficiently computable homomorphisms and a
deterministic homomorphism computation algorithm H.

We consider a family of algebras as a countably infinite set of triples (Ai,Bi,Hi),
where Ai and Bi are algebras of the same type and Hi ⊆ Hom (Ai,Bi), together
with the three algorithms explained above. Let us formulate these notions in a
rigorous manner.

Definition 4.2. An algebra A = (XA, FA) is efficiently computable if for
every fA ∈ FA there exists a deterministic polynomial time algorithm A such
that fA(x1, x2, . . . , xn)← A(x1, x2, . . . , xn) for every x1, x2, . . . , xn ∈ A, where
n is the arity of fA.

Definition 4.3. Let A and B be algebras of the same type and let H be a
countable index set. A set of homomorphisms H = {ϕh : h ∈ H} ⊆ Hom (A,B)
is efficiently computable if there is a deterministic polynomial time algorithm H
such that ϕh(x)← H(h, x) for every h ∈ H and x ∈ A.
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Definition 4.4. Let I be a countably infinite index set. A collection of efficiently
computable algebras is a countably infinite set of triples

C = {(Ai,Bi,Hi) : i ∈ I}

such that Ai and Bi are efficiently computable algebras and Hi ⊆ Hom (Ai,Bi)
is a set of efficiently computable homomorphisms for every i ∈ I.

Definition 4.5. A family of algebras is a four-tuple

A = (C,S,R,H),

where C = {(Ai,Bi,Hi) : i ∈ I} is a collection of efficiently computable algebras,
Hi = {ϕh : h ∈ Hi} and

1. S(1s) is a PPT sampling algorithm such that given a security parameter
1s outputs (i, h, a1, a2, . . . , an) ← S(1s), where i ∈ I, h ∈ Hi and aj ∈ Ai

for every j ∈ {1, 2, . . . , n}.

2. R(i, d, x1, x2, . . . , xn) is a PPT random composition algorithm that given
an index i ∈ I, a bit d determining whether we are composing elements of
Ai (d = 0) or Bi (d = 1) and elements x1, x2, . . . , xn of the corresponding
algebra outputs a random element x← R(i, d, x1, x2, . . . , xn) such that

x ∈ 〈x1, x2, . . . , xn〉

and

ϕh(R(i, 0, z1, z2, . . . , zn ; r)) = R(i, 1, ϕh(z1), ϕh(z2), . . . , ϕh(zn) ; r) (1)

for every i ∈ I, h ∈ Hi, z1, z2, . . . , zn ∈ Ai and every randomness r.

3. H(i, h, x) is a deterministic PT homomorphism computation algorithm
that given i ∈ I, h ∈ Hi and x ∈ Ai, outputs ϕh(x)← H(i, h, x).

The requirement (1) imposed on R restricts it to respect the homomorphisms
of the algebra. In general, it means that R generates a random n-ary term p of
the type such that R can compute both term functions pA and pB in polynomial
time. Then, depending on d, R computes either pA or pB.

Example 4.1. A group family is a family of algebras G = (C,S,R,H), where
C = (Gi,Gi,End (Gi)) is a collection of cyclic groups and

1. (i, a, g)← S(1s), where i ∈ I, g is a generator of Gi and a← U(Z|Gi|),

2. xb ← R(i, d, x), where d ∈ {0, 1}, b ← U(Z|Gi|) and xb is computed using
the fast exponentiation algorithm,

3. xa ← H(i, a, x), where xa is computed using the fast exponentiation algo-
rithm.
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Let us consider the DH in the form of Def. 4.1. Alice obtains gab as the image
under the endomorphism α. For an eavesdropper, the problem of computing
gab from (g, ga, gb) = (g, αa(g), gb) can be seen as the problem of computing
the image of gb under an unknown endomorphism αa. Therefore, we formulate
an analogue for the computational DHP in the following manner: we give a set
of elements and their homomorphic images under an unknown homomorphism.
Then, we sample a random element x from the algebra and ask for its homo-
morphic image under the same homomorphism. We call this analogue of the
DHP the homomorphic image problem (HIP).

Definition 4.6 (Computational HIP (CHIP)). Let A = (C,S,R,H) be a family of
algebras and let C = {(Ai,Bi,Hi) : i ∈ I}. Suppose that (i, h, a1, a2, . . . , an) ←
S(1s) and x← R(i, 0, a1, a2, . . . , an). Given

i, (a1, ϕh(a1)), (a2, ϕh(a2)), . . . , (an, ϕh(an)), x,

compute ϕh(x).

We can easily deduce a necessary condition for the infeasibility of the CHIP.
Suppose that it is feasible to find a term p of the type such that the term
function on a1, a2, . . . , an evaluates to x. Suppose also that the term function
can be computed as a polynomial number of applications of the operations of
Ai. If such a factorization as a term is given, we can exchange each occurrence
of aj by ϕh(aj) and each occurrence of an operation of Ai by the corresponding
operation of Bi. Since ϕh is a homomorphism, the image ϕh(x) is then obtained
by evaluating the obtained expression which can be done in polynomial time
since Bi is efficiently computable. Therefore, finding such a factorization as a
term needs to be infeasible.

Definition 4.7 (Algebraic factorization problem (AFP)). Let A = (C,S,R,H)
be a family of algebras of type τ . Let (i, h, a1, a2, . . . , an) ← S(1s) and y ←
R(i, 0, a1, a2, . . . , an). Find a term p of type τ such that the length of (the binary
representation of) p is polynomial in i and

y = pA(a1, a2, . . . , an).

The requirement for the polynomial length in i ensures that pA can be evaluated
in polynomial time. For the group family case, finding a factorization of ga using
the generator g is equivalent to the DLP.

Let us now formulate the decision version of the HIP.

Definition 4.8 (Decision HIP (DHIP)). Let A = (C,S,R,H) be a family of
algebras and let (i, h, a1, a2, . . . , an) ← S(1s), x ← R(i, 0, a1, a2, . . . , an) and
B ← U({0, 1}). Let the following be given:

i, (a1, ϕh(a1)), (a2, ϕh(a2)), . . . , (an, ϕh(an)), (x, z),

where either
z = ϕh(x) if B = 0,
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or
z ← R(i, 1, ϕh(a1), ϕh(a2), . . . , ϕh(an)) if B = 1.

Output B.

Note that when B = 1, R is run with fresh randomness. That is, we are
either given the correct homomorphic image (B = 0) or a random element
from 〈ϕh(a1), ϕh(a2), . . . , ϕh(an)〉 (B = 1) each with probability 1/2. Let S =
{Ss}s∈N denote the probability ensemble corresponding to the choice of the
string

(i, (a1, ϕh(a1)), (a2, ϕh(a2)), . . . , (an, ϕh(an)))

according to (i, h, a1, a2, . . . , an) ← S(1s) and let X = {Xs}s∈N, Z = {Zs}s∈N
denote the probability ensembles corresponding to the choice of x and z accord-
ing to x ← R(i, 0, a1, a2, . . . , an) and z ← R(i, 1, ϕh(a1), ϕh(a2), . . . , ϕh(an)). If
D is a probabilistic polynomial time algorithm, we define its DHIP-advantage
on A as

AdvDHIP
D,A (s) = |Pr [1← D(1s, Ss, (Xs, ϕh(Xs)))]− Pr [1← D(1s, Ss, (Xs, Zs))]| .

Definition 4.9 (DHI-assumption). A family of algebras A satisfies the DHI-
assumption if there is a negligible function ε such that

AdvDHIP
A (s) := max

D
{AdvDHIP

D,A (s) : D PPT} ≤ ε(s)

for every s ∈ N.

For a group family G, the DHI assumption is equivalent to the decision Diffie-
Hellman assumption with the choice of S,R and H as in Example 4.1.

In the more general setting, the DH can be now written in the following
form.

Definition 4.10 (Algebraically generalized Diffie-Hellman scheme (AGDH)).
Let the participants be Alice and Bob and let A = (C,S,R,H) be a family of
algebras.

Alice Bob
Sample

(i, h, a1, a2, . . . , an)← S(1s)
−−−−→

(i,
(a1, ϕh(a1)),
(a2, ϕh(a2)),

. . . ,
(an, ϕh(an)))

Generate randomness r for R
Compute

x← R(i, 0, a1, a2, . . . , an ; r)
←−−−− x

Compute Compute
k ← H(i, h, x) k ← R(i, 1, ϕh(a1), ϕh(a2), . . . , ϕh(an) ; r)

The secret randomness used by Alice is the index h of the homomorphism ϕh.
For Bob, the secret randomness is the internal randomness r used by R.
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Proposition 4.1. AGDH is correct and the common element is indistinguishable
from a randomly generated one under the DHI assumption.

Proof. Correctness of the scheme follows from the homomorphic property of ϕh
and the property (1) of R. If an eavesdropper observes the exchange of messages,
she sees the index i and

(a1, ϕh(a1)), (a2, ϕh(a2)), . . . , (an, ϕh(an)) and x,

which is an instance of the CHIP on A. If A satisfies the DHI-assumption, then
an eavesdropper distinguishes ϕh(x) from a random

y ← R(j, ϕh(a1), ϕh(a2), . . . , ϕh(an))

with only negligible probability.

Comparing AGDH to DH we note that several properties of the platform
algebra affect the performance of the scheme. For example, a large number of
generators n results in a large number of transmitted elements from Alice to Bob.
The optimal case is obtained with mono-generated algebras. In this regard, DH
is optimal. On the other hand, contrary to DH, AGDH is not symmetric with
respect to Alice and Bob. Asymmetry enables us to minimize the computational
effort of Bob in a scenario where we want key exchange to be light-weight for
one of the parties. Contrary to DH, where H and R essentially apply the same
algorithm, in AGDH these can be different.

It is possible that, for some algebras, R can be made very efficient at the
expense of S and H. For example, if the number of generators is large, then
Alice needs to compute and communicate a large number homomorphic images.
However, since the number of generators is large, Bob can reach a large number
of different elements of the algebra with only a few applications of the finitary
operations.

4.3 Potential instantations

In this section, we offer some concrete examples of potential algebras for AGDH.
To instantiate AGDH, the family of algebras has to support a large set of homo-
morphisms. We have identified four different approaches and described them
below.

4.3.1 Homomorphic symmetric encryption schemes

For the AGDH, we need the computation of homomorphisms to be provably
infeasible. If a symmetric encryption scheme is homomorphic in respect of some
algebraic operation, its decryption algorithm induces a large set of functions
that are homomorphisms from the ciphertext space to the plaintext space. Fur-
thermore, if the scheme is provably secure, it is infeasible to compute these
homomorphisms without a key. We will consider this approach more closely in
Section 5.
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4.3.2 Vector spaces

Vector spaces are a natural source for a large number of homomorphisms. If V
is a finite dimensional vector space over a field F, then End (V ) consists of all
linear transformations V → V [40]. Linear transformations can be learned in
polynomial time given uniformly random samples [30]. However, adding noise
to the samples makes the problem infeasible. Noisy versions of problems based
on linear transformations, such as learning parity with noise (LPN) and more
generally learning with errors (LWE), have been utilized in several cryptographic
constructions. Applying these problems in the instantation of AGDH would lead
to a scheme that bears similarities to lattice based key agreement schemes.

4.3.3 Left distributive groupoids

Let us consider the random composition algorithm R. Let i ∈ I, h ∈ Hi and let
the generators a1, a2, . . . , an ∈ Ai be fixed. For every randomness r used by R,
let us define functions

Rr : Ai → Ai, Rr(x)← R(i, 0, a1, a2, . . . , an−1, x ; r)

and

R′r : Bi → Bi, R′r(x)← R(i, 1, ϕh(a1), ϕh(a2), . . . , ϕh(an−1), x ; r).

Then by (1),
anRrϕh = anϕhR

′
r (2)

for every h ∈ Hi and every randomness r. We saw that the hardness of solving
the CHIP is based on the hardness of algebraically factoring anRr into a term p
such that pAi and pBi are polynomial time computable without knowing r and
the hardness of computing ϕh without h. Therefore, it seems useful to consider
the case that both Rr and ϕh come from the same class of functions. This leads
us naturally to the class of left distributive (LD) groupoids Q that satisfy

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)

for every a, b, c ∈ Q.
Suppose that Qi is a LD groupoid and set Ai = Bi = Qi. Let La(x) = a ∗x

for every a, x ∈ Qi. The left distributivity property ensures that La ∈ End (Qi)
for every a ∈ Qi. Then, we can set both R and H to compute a series of
such functions. The best known example of an LD structure arises from the
conjugation operation a ∗ b = a−1ba in a non-Abelian group G [76]. If we take
for instance Hi ⊆ 〈L∗a : a ∈ Gi〉, then the hardness of the CHIP is closely related
to the conjugacy problem on G. However, group conjugation is not the only
possible source of left distributive groupoids. For example, such structures arise
naturally in knot theory as a classifying invariant of a knot [44].
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4.3.4 Medial groupoids

A groupoid Q is medial (also called entropic) if

(a · b) · (c · d) = (a · c) · (b · d)

for every a, b, c, d ∈ Q. For a medial groupoid the ”squaring” function e2(x) =
x · x is an endomorphism of Q. There is also a way of constructing new en-
domorphisms. For every α, β ∈ End (Q), let us define a function α + β by
(α + β)(x) = α(x) · β(x). It follows from mediality that α + β ∈ End (Q) [31].
Therefore, there is a large set of efficiently computable endomorphisms of Q
whenever the binary operation of Q is efficiently computable.

Medial operations can be induced by algebraic varieties and, in particu-
lar, algebraic plane curves that are good sources of a wide range of algebraic
laws [54]. For example, the chord-tangent construction on a cubic plane curve
defines a quasigroup operation that is medial [27]. The situation is depicted
in Fig. 1. From this quasigroup operation the elliptic curve group law is also
derived. However, mediality is not restricted to binary operations. It can be
generalized to n-ary operations. Such algebras can be constructed, for example,
by algebraic equations on fields [17].

Figure 1: Medial quasigroup law on a cubic curve y2 = x3 − 3x+ 3.
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5 Symmetric homomorphic encryption and key
exchange

In this section, we consider the question of turning a symmetric encryption
scheme possessing homomorphic properties into a public-key primitive using the
AGDH. If the encryption scheme is secure, then it is hard to compute images
under the decryption functions without the key. Furthermore, if the decryption
functions are homomorphisms with respect to some operation, then we have a
natural candidate for the implementation of the AGDH. However, the hardness
of decrypting is not sufficient for the induced key exchange to be secure. In
addition, the underlying algebraic operation has to be sufficiently complex. In
this section, we derive a condition such that there is an explicit construction for
secure key exchange using the encryption scheme if the condition is satisfied. We
call encryption schemes satisfying this condition homomorphic key agreement
capable.

Let SE = (Gen,Enc,Dec) be an encryption scheme such that the decryption
functions are homomorphic with respect to some operations on the ciphertext
space Cs and the plaintext space Ms, where 1s is the security parameter. In par-
ticular, suppose that SE is homomorphic from a finite algebra Cs = (Cs, FCs)
to a finite algebra Ms = (Ms, FMs

), where 1s is the security parameter. Let
the key space of SE be Ks. We stress that we do not require the scheme to be
fully homomorphic. Instead, we only assume that there are non-trivial algebras
of the same type on the ciphertext space Cs and on the plaintext space Ms such
that the functions arising from decryption are homomorphisms Cs → Ms. In
addition, we do not require the scheme to be strongly homomorphic. An en-
cryption scheme is called strongly homomorphic if it is possible to re-randomize
ciphertexts without the secret key. Obviously, such schemes can be used for key
transport.

An encryption scheme is malleable if, given a ciphertext, it is possible to
generate a different ciphertext so that the two plaintexts are related [26]. A
scheme that is homomorphic with respect to some operations is always mal-
leable, since the homomorphic property enables us to derive related plaintexts.
Due to malleability, it is impossible to achieve adaptive CCA-security (IND-
CCA2), which is the standard notion of secure encryption, if we want to retain
the homomorphic property [45]. It would be possible to achieve non-adaptive
CCA-security (IND-CCA1), but, for our construction, CPA-security will be suf-
ficient. It should be noted that standard transforms to convert CPA-secure
schemes into CCA2-secure schemes, such as Naor-Yung double-encryption [60]
or Fujisaki-Okamoto [32], can be applied when the scheme is used for encryption.
However, our key exchange construction depends on homomorphic properties
that will be destroyed by any such transform.

Let AdvIND-CPA
A,SE (s, n) denote the advantage of an adversary A in a CPA-

experiment where A makes at most n queries to the encryption oracle. Since Dec
is deterministic, each key k ← Gen(1s) determines a decryption homomorphism
Deck from Cs to Ms. Let Ds = {Deck : k ∈ Ks} be the set of such functions
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arising from Dec indexed by the keys k ∈ Ks. Let us consider a family of
algebras C = (C,S,R,H) such that

C = {(Cs,Ms,Ds) : s ∈ N}.

Depending on the operations FCs and FMs
, there could be many possible algo-

rithms for randomly composing elements. Therefore, our results will be stated
in terms of the choice of R. Let us fix the other two required algorithms:

1. Sampling algorithm S(1s): Sample ks ← Gen(1s). Sample ns distinct
generators m1,m2, . . . ,mns from Ms. Compute at ← Enc(ks,mt) for
every t ∈ {1, 2, . . . , ns}. Output (s, ks, a1, a2, . . . , ans).

2. Homomorphism computation algorithm H(s, ks, x): Output z ← Dec(ks, x).

In the following, we will be using probability ensembles on the key space and
the plaintext space, as well as two ensembles on the ciphertext space. These
have been defined below.

Definition 5.1. Let (s, ks, a1, a2, . . . , ans) ← S(1s) and let mi ← Dec(ks, ai)
for every i ∈ {1, 2, . . . , ns}.

1. The key ensemble K = {Ks}s∈N is the probability ensemble such that
Ks = Gen(1s).

2. The random plaintext composition ensemble Z = {Zs}s∈N is the proba-
bility ensemble such that Zs = R(s, 1,m1,m2, . . . ,mns)

3. The random ciphertext composition ensemble R = {Rs}s∈N is the proba-
bility ensemble such that Rs = R(s, 0, a1, a2, . . . , ans).

4. The encryption ensemble E = {Es}s∈N is the probability ensemble such
that Es = Enc(Ks, Zs).

If SE has indistinguishable encryptions there is a probability ensemble X =
{Xs}s∈N such that the probability ensemble Enc(Ks, Ys) is computationally
indistinguishable from X for every efficiently samplable probability ensemble
Y = {Ys}s∈N on Ms. Typically, X is the uniform probability ensemble U . How-
ever, we do not place such a restriction on X. We will be considering the random
ciphertext composition ensemble R and show that the DHI-assumption holds
whenever R is computationally indistinguishable from X. Let us first consider a
modified version of the DHIP, which we denote by DHIPY , where R is replaced
by Y . That is, for an instance of the DHIPY ,

s, (a1,Dec(ks, a1)), (a2,Dec(ks, a2)), . . . , (an,Dec(ks, an)), (x, z),

we have x← Ys instead of Rs.
Ultimately, our goal is to relate the hardness of the DHIP to the security of

SE. We first bound the difference |AdvDHIP
A,C (s) −AdvDHIPY

A,C (s) | based on the
problem of distinguishing R and Y . It will help us later to achieve negligibility
of AdvDHIP

A,C (s) with a proper choice of R and Y .
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Proposition 5.1. For every PPT algorithm A and every probability ensemble
Y on the ciphertext space there is a PPT algorithm B such that

Adv
D(R,Y )
B (s) ≥ 1

2

∣∣∣AdvDHIP
A,C (s)−AdvDHIPY

A,C (s)
∣∣∣

for every s ∈ N.

Proof. Let A be a PPT algorithm considered as a distinguisher for DHIP or
DHIPY . We construct an algorithm B that applies A to distinguish between Y
and R:

1: procedure B(1s, x)
2: (s, ks, a1, a2, . . . , ans)← S(1s)
3: mt ← H(s, ks, at) for every t ∈ {1, 2, . . . , ns}
4: b← U({0, 1})
5: if b = 0 then
6: z ← H(s, ks, x)
7: b′ ← A(1s, s, (a1,m1), (a2,m2), . . . , (ans ,mns), (x, z))
8: output b′

9: else
10: z ← R(s, 1,m1,m2, . . . ,mns)
11: b′ ← A(1s, s, (a1,m1), (a2,m2), . . . , (ans ,mns), (x, z))
12: output b′

13: end if
14: end procedure

Let S = {Ss}s∈N denote the probability ensemble corresponding to the choice
of the string k, (a1,m1), (a2,m2), . . . , (ans ,mns). By the description of B, the
input to A is a valid instance of either DHIP (x ← Rs) or DHIPY (x ← Ys).
In addition, if b = 0, the homomorphic image of x is z, otherwise a random
element Zs. Both of these cases happen with probability 1/2. Therefore,

Pr [1← B(1s, Rs)] =
1

2
(Pr [1← B(1s, Rs) |b = 0]

+ Pr [1← B(1s, Rs) |b = 1])

=
1

2
(Pr [1← A(1s, Ss, (Rs, z))]

+ Pr [0← A(1s, Ss, (Rs, Zs))])

=
1

2
(1 + Pr [1← A(1s, Ss, (Rs, z))]

−Pr [1← A(1s, Ss, (Rs, Zs))])

=
1

2

(
1 + (−1)eAdvDHIP

A,C (s)
)
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and

Pr [1← B(1s, Ys)] =
1

2
(Pr [1← A(1s, Ss, (Ys, z))]

+ Pr [0← A(1s, Ss, (Ys, Zs))])

=
1

2
(1 + Pr [1← A(1s, Ss, (Ys, z))]

−Pr [1← A(1s, Ss, (Ys, Zs))])

=
1

2

(
1 + (−1)e

′
AdvDHIPY

A,C (s)
)

for some e, e′ ∈ {−1, 1}. Without loss of generality, we may assume that e = 1
(if not, then reverse the output of A). This means that

Adv
D(R,Y )
B (s) = |Pr [1← B(1s, Rs)]− Pr [1← B(1s, Ys)]|

=
1

2

∣∣∣AdvDHIP
A,C (s)− (−1)e

′
AdvDHIPY

A,C (s)
∣∣∣

≥ 1

2

∣∣∣AdvDHIP
A,C (s)−AdvDHIPY

A,C (s)
∣∣∣ .

In the following proposition, we bound the advantage on DHIPE using the
CPA-advantage on SE. In particular, we construct a CPA-adversary for SE
based on an assumed distinguisher for the DHIPE . This leads to a negligible
advantage on DHIPE and enables us to also bound the advantage on DHIP using
Proposition 5.1.

Proposition 5.2. For every PPT algorithm A, there is a PPT algorithm B
such that

AdvIND-CPA
B,SE (s, ns) ≥ AdvDHIPE

A,C (s) .

Proof. Let A be a PPT algorithm considered as an DHIPE distinguisher for C.

Let us define the following IND-CPA adversary B = (B
Encks
1 ,B2).

1: procedure B
Encks
1 (1s)

2: Sample ns distinct generators m1,m2, . . . ,mns of Ms according to S(1s)
3: Query Encks for at ← Enc(ks,mt) for every t ∈ {1, 2, . . . , ns}
4: x0 ← R(s, 1,m1,m2, . . . ,mn)
5: x1 ← R(s, 1,m1,m2, . . . ,mn)
6: output (x0, x1, s) . s is the state information that includes all of the

used values
7: end procedure

1: procedure B2(1s, cb, s) . cb is the challenge ciphertext
2: b′ ← A(s, (a1,m1), (a2,m2), . . . , (an,mn), (cb, x0))
3: output b′

4: end procedure
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Note that both x0 and x1 are sampled according to Zs. Since the challenge
ciphertext cb ← Enc(ks, Zs), it is sampled according to E. If b = 0, then x0
is the homomorphic image of cb. If b = 1, x0 is a random element sampled
according to Z. Therefore, the input to A is a valid instance of DHIPE and A

succeeds with advantage AdvDHIPE

A,C (s). Since B outputs the same bit as A,

AdvIND-CPA
B,SE (s, ns) = AdvDHIPE

A,C (s) .

We are now ready to derive a bound on the DHIP. We achieve this by
considering the indistinguishability of E and R. Intuitively DHIPE and DHIP are
both hard if E and R are indistinguishable. This is formalized in the following
proposition.

Proposition 5.3. For every PPT algorithm A,

AdvDHIP
A,C (s) ≤ 2 ·AdvD(R,E) (s) + AdvIND-CPA

SE (s, ns)

Proof. Let A be a PPT algorithm. Suppose that

AdvDHIPE

A,C (s) ≥ AdvDHIP
A,C (s) .

Then by Proposition 5.2 there is a PPT algorithm B such that

AdvDHIP
A,C (s) ≤ AdvDHIPE

A,C (s) ≤ AdvIND-CPA
B,SE (s, ns) ≤ AdvIND-CPA

SE (s, ns) .

Therefore, we may assume that

AdvDHIP
A,C (s) ≥ AdvDHIPE

A,C (s) .

By Proposition 5.1 there is a PPT algorithm B such that∣∣∣AdvDHIP
A,C (s)−AdvDHIPE

A,C (s)
∣∣∣ = AdvDHIP

A,C (s)−AdvDHIPE

A,C (s)

≤ 2 ·Adv
D(R,E)
B (s) .

But now, by Proposition 5.2 there is a PPT algorithm C such that

AdvDHIP
A,C (s) ≤ 2 ·Adv

D(R,E)
B (s) + AdvDHIPE

A,C (s)

≤ 2 ·Adv
D(R,E)
B (s) + AdvIND-CPA

SE,C (k, ns)

≤ 2 ·AdvD(R,E) (s) + AdvIND-CPA
SE (k, ns) .

As a corollary, we obtain the following result on the infeasibility of the DHIP.
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Proposition 5.4. If SE is IND-CPA secure and the random ciphertext com-
position ensemble R is computationally indistinguishable from the encryption
ensemble E, then C satisfies the DHI-assumption.

Proposition 5.4 asserts that AGDH can be instantiated using a symmetric en-
cryption scheme if the underlying algebra admits a suitably complex random
composition algorithm R. This motivates the following definition for a symmet-
ric encryption scheme SE.

Definition 5.2 (Homomorphic key agreement capable). Let SE = (Gen,Enc,Dec)
be an IND-CPA secure symmetric encryption scheme. If there exists a family
of algebras C = (C,S,R,H) such that H(s, ks, x) = Dec(ks, x) for every key ks
and every plaintext message x and the probability ensemble R induced by

R(s, 0, a1, a2, . . . , ans)

with (s, ks, a1, a2, . . . , ans) ← S(1s) is computationally indistinguishable from
the probability ensemble E induced by Enc(ks, x) for

x← R(s, 1,Dec(ks, a1),Dec(ks, a2), . . . ,Dec(ks, ans)),

then SE is called homomorphic key agreement capable.

In general, a key agreement capable symmetric encryption scheme can be always
transformed into a public-key primitive using AGDH for key exchange. The
resulting protocol is secure by Proposition 5.4.

6 Conclusions

We propose a universal algebraic generalization of the Diffie-Hellman scheme
called AGDH. Its security is based on the hardness of a homomorphic image
problem which requires the adversary to compute the image of a given element
under an unknown homomorphism from an algebra A to B. We rigorously
formulate computational and decision versions of this problem. AGDH provides
a method of considering different algebraic structures for key exchange with-
out placing structural restrictions on them. The study offers potential for the
development of new algebraic key exchange schemes. We also identified four in-
teresting approaches to instantiate the AGDH and pursued one of these options
by considering the instantation of AGDH using symmetric encryption schemes
that are homomorphic over algebraic operations. We formulated a condition
called homomorphic key agreement capability and showed that an IND-CPA se-
cure scheme that satisfies this condition can be securely used for key exchange,
essentially turning the symmetric scheme into a public-key primitive.
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[76] D. Stanovský. Left distributive left quasigroups. PhD thesis, Charles Uni-
versity in Prague, 2004.

[77] E. Stickel. A new method for exchanging secret keys. In Information
Technology and Applications, 2005. ICITA 2005. Third International Con-
ference on, volume 2, pages 426–430, July 2005.

[78] A. Stolbunov. Constructing public-key cryptographic schemes based on
class group action on a set of isogenous elliptic curves. Advances in Math-
ematics of Communications, 4:215–235, 2010.

[79] B. Tsaban. Polynomial-time solutions of computational problems in
noncommutative-algebraic cryptography. Journal of Cryptology, pages 1–
22, 2013.

[80] E. R. Verheul. Evidence that xtr is more secure than supersingular elliptic
curve cryptosystems. In B. Pfitzmann, editor, Advances in Cryptology —
EUROCRYPT 2001: International Conference on the Theory and Appli-
cation of Cryptographic Techniques Innsbruck, Austria, May 6–10, 2001
Proceedings, pages 195–210, Berlin, Heidelberg, 2001. Springer Berlin Hei-
delberg.

32



[81] L. Wang, L. Wang, Z. Cao, E. Okamoto, and J. Shao. New constructions of
public-key encryption schemes from conjugacy search problems. In X. Lai,
M. Yung, and D. Lin, editors, Information Security and Cryptology, volume
6584 of Lecture Notes in Computer Science, pages 1–17. Springer Berlin
Heidelberg, 2011.

[82] D. Xiao, X. Liao, and K. Wong. An efficient entire chaos-based scheme
for deniable authentication. Chaos, Solitons & Fractals, 23(4):1327 – 1331,
2005.

[83] T. Yamakawa, S. Yamada, G. Hanaoka, and N. Kunihiro. Self-bilinear
map on unknown order groups from indistinguishability obfuscation and
its applications. In J. A. Garay and R. Gennaro, editors, Advances in
Cryptology – CRYPTO 2014: 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, pages 90–
107, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[84] J. Zhang, Z. Zhang, J. Ding, M. Snook, and Ö. Dagdelen. Authenticated
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