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Introduction
Snow water equivalent (SWE) is a measure of liquid water in
the snow pack. This information is important in many cases,
for example when predicting spring flooding in arctic and sub-
artic regions. The measurement of SWE requires a lot of man-
ual work and multiple samples. Because of this, efficient and
accurate forecasts of SWE are crucial to get reliable estimates
of SWE to be used in downstream problems (e.g. hydrological
modelling). We compared two different recurrent neural net-
work (RNN) architectures: Long short-term memory (LSTM)
and gated recurrent unit (GRU) and had commonly used phys-
ical model as a baseline. All the models were verified with real
data from Finland. We used three test stations Inari, Vaala,
and Lohja which had good spatial variability along the north-
south axis. Lohja and Inari stations are 975 km apart, Vaala
is between these two.

Comparing GRU and LSTM
We wanted the model to be efficient, and tuned the model be
as lightweight as possible while maintaining the forecasting ac-
curacy. We compared the GRU and LSTM RNN with hidden
state dimension of 8 and 128 (lightweight and heavy). Both
had input of temperature, precipitation and history SWE val-
ues of 180 days. Lightweight model used two-week weighted
mean of the inputs, and thus input length of 12. NSE error
metric of RNNs can be seen in Figure 1. Table 1 shows the
amount of parameters and required model training time for all
model variants.

Figure 1:NSE error metric for lightweight and heavy with GRU and LSTM architectures.
Single model was trained with data from only one station, and after that the model was
evaluated in all of the stations test sets.

Table 1:Number of parameters and training time in seconds for all model variants

Training time (s) Parameters
RNN Heavy Lightweight Heavy Lightweight
LSTM 1202 30 67713 393
GRU 994 32 51201 321

Enhancing the model further
After finding out that the GRU performs with similar per-
formance in the heavy model model variant, and even better
with the lightweight we tried to push the forecasting accuracy
even further with GRU. We added time2vec (t2v) layer to the
model, and trained the model with data from all stations. We
found out that the lightweight model did not benefit either
from the extra data from all stations or the added t2v layer.
With the heavy model we were able to enhance the average
NSE from 0.91 to 0.95. Our proposed model architectures can
be seen in Figure 2 together with forecast in Figure 3.

Figure 2:Proposed model architectures.

Figure 3:Forecast for the test set of all stations by both proposed models.

Conclusions
We have shown that the RNNs have strong generalization ca-
pabilities for SWE forecasting, and that GRU outperforms the
LSTM with efficient model architectures. As the outcome we
propose two models: a lightweight and heavy model. The com-
monly used physical model had an average NSE of 0.81. We
were able to enhance the forecasting accuracy from this signif-
icantly; an average NSE of 0.91 and 0.95 for lightweight and
heavy model, respectively.


