

Multi-modal machine learning and deep learning for earth observations and climate change mitigation in sub-Arctic and Arctic regions

Jaakko Suutala Biomimetics and Intelligent Systems Group University of Oulu, Finland

Insight SFI Research Centre for Data Analytics Visiting Researchers Programme Seminar

4th Oct 2023

email: <jaakko.suutala@oulu.fi>

Outline

\blacktriangleright Research group introduction

- \triangleright AI for earth observations and climate change mitigation
- \triangleright Short highlights of on-going activities in AoF project
	- \blacktriangleright Snow water equivalent forecasting
	- \triangleright Surrogate models and their application to geophysical soil simulations
	- \triangleright Satellite remote sensing: image enhancement and segmentation
- \triangleright Multi-source road quality forecasting
- \blacktriangleright Future plans

[Research Group and Activities](#page-2-0)

Biomimetics and Intelligent Systems Group

- \triangleright Research unit in Faculty of ITEE of 40+ researcher studying different aspects of intelligent systems, led by Prof. Juha Röning
- ▶ Data Analysis and Inference Group (DataAI)
	- \triangleright Statistical signal processing, machine learning, data mining, applied AI, XAI
- \blacktriangleright Robotics Group
	- \triangleright Mobile robotics, control and sensing systems, perception and machine intelligence
- ▶ Oulu University Secure Programming Group (OUSPG)
	- \triangleright Software security, vulnerabilities, cybersecurity
- \blacktriangleright Bio-ICT
	- \blacktriangleright Integrating technology with biology/biomedicine, bioinformatics, biosensors

 $\sqrt{2}$

DataAI Group

I Senior Researchers Dr. Jaakko Suutala, Asst. Prof. Dr. Pekka Siirtola, Adj. Prof. Dr. Satu Tamminen, Uni. Lecturer \blacktriangleright Post-docs

Dr. Lauri Tuovinen Dr. Henna Tiensuu

- **Doctoral Candidates: Gunjan Chandra, Anusha** Ihalapathirana, Miika Malin
- **Research Assistants: Joonas Tuutijärvi, Samuli Paloniemi,** Justin Seby, Nirzor Talukder

Research Themes

Some Recent Research Activities

[Data-driven Climate Change Adaptation and](#page-7-0) **[Mitigation](#page-7-0)**

Climate Change Mitigation

- \triangleright Extreme and unusual weather conditions are increasing (including sub-Arctic and Arctic regions)
	- \triangleright Climate change can affect the urban infrastructure: buildings, roads etc.
	- \triangleright Causing frost quakes, changes in ground frost, snow characteristics, groundwater levels, etc.

Images: CC0 Public Domain, Dr. Jarkko Okkonen (GFS)

INIVERSITY OF OUL U Climate Change Mitigation (cont'd)

- \triangleright Detecting and predicting long-term and sudden changes, and possible future hazards and damages in proactive manner
	- \triangleright Resilience and adaptation for a changing climate
- \triangleright Multi-disciplinary approach combining expertise of geophysics, computer science, and AI to tackle climate change adaption and mitigation
	- ▶ Academy of Finland funded Green Deal project 2022-2024
	- **Participants: University of Oulu (BISG, OMS) and Geological** Survey of Finland
- \triangleright Our group is interested in applying data-driven approaches to earth observation data to build predictive models and tools

 $\sqrt{2}$

AI and ML for Earth Observations

- \triangleright Spatio-temporal modelling and forecasting
	- \triangleright Multi-modal deep learning and probabilistic modelling
	- **In Combining spatial data and time-series in multi-modal neural** network architectures

Left image: Roadscanners Ltd.

Ŵ UMIVERSITY OF OULU

AI and ML for Earth Observations (cont'd)

- \blacktriangleright Physics-aware machine learning
	- \triangleright Speed-up physical and geophysical simulations by statistical surrogate models and Bayesian optimization (e.g., Gaussian processes)
	- \triangleright Physics-informed ML/DL to combine traditional and data-driven approaches to increase the performance and explainability of the models (e.g., in the case of limited data)

Multi-modal and Multi-source approaches

- \blacktriangleright Multi-source data-driven approaches for modelling and forecasting
	- \blacktriangleright Machine learning framework for combining multi-modal data
	- \blacktriangleright Analysis of seasonal weather, geological data, and remote sensing data, and their effects to unusual phenomena, hazards etc.
	- \blacktriangleright Practical forecasting models from sparse time-series measurements, images, and simulations

Images: Copernicus, Creative Commons

[Highlights of Project Activities](#page-13-0)

[Snow Water Equivalent Forecasting](#page-14-0)

- Snow water equivalent (SWE) = the amount of water in the snowpack
- \triangleright Affected by the weather conditions throughout the winter
- \triangleright Difficult information to collect
	- \triangleright Measured from 2 to 4 km long snow course
	- \blacktriangleright Depth is measured from 80 points, and the snow is weighted at 8 points to get the snow density
	- \triangleright Combined with snow cover information to get the average estimate for SWE (on snow course)

Images: Creative Commons, Hannula et al. (2016)

- \triangleright Traditionally, modelling and forecasting is done using physical snow model
- \triangleright We are interested if the SWE forecast could be enhanced and improved with recurrent neural networks
- \triangleright Applications: flood predictions and modelling hydrological systems, seasonal changes etc.

 $\sqrt{2}$

$\sqrt{2}$ UNIVERSITY OF OULU

Snow Water Equivalent Forecasting with Recurrent Neural Networks (cont'd)

- \blacktriangleright 3 test sites
- I Long-term dataset 1960-2021
- Inputs: daily temperature, precipitation, and bi-weekly history SWE values of 180 days
- Output: Next SWE value

Right image: Google maps

▶ Gated Recurrent Unit (GRU) -based neural network models

 $\sqrt{2}$

 \triangleright Forecasting results of physical snow model, naive baseline, and GRU-based models

 $\sqrt{2}$

 \triangleright Numerical comparison (NSE) of physical snow model, naive baseline, and LSTM/GRU-based models

 $\sqrt{2}$

[Machine Learning -based Surrogate Modelling](#page-21-0)

ML-based Surrogate Models for Hydrogeological Simulation

- \blacktriangleright Emulators to speed-up computation of expensive (black-box) simulations
- I Approximating the solution with subset of simulated points or online active learning
- Interpolating and extrapolating (with uncertainty quantification) outside simulated location
	- Enabling large-scale spatio-temporal modelling and prediction

INIVERSITY OF OULU

ML-based Surrogate Models for Hydrogeological Simulation (cont'd)

- \blacktriangleright New effective tools to analyse hydrological and mechanical properties of soil/ground to understand our environment from easy to get indirect measurement
- \blacktriangleright 4 years of data (2011-2015) recorded in northern Finland (Oulu area) with ground truth observations of soil temperature and water content (down to depth of 2 meters)

Image: Dr. Kari Moisio (OMS)

ML-based Surrogate Models for Hydrogeological Simulation (cont'd)

- Inputs: daily air temp., precipitation (rain/snow), wind speed, long- and shortwave radiation, relative humidity
- \triangleright Outputs: soil temperature and water content (+ simulated ice content)

ML-based Surrogate Models for Hydrogeological Simulation (cont'd)

- **Preliminary result utilizing Gaussian process regression** (GPR), Multi-layer Perceptron (MLP)
- \blacktriangleright Prediction accuracy

Table: Soil temperature prediction accuracy.

ML-based Surrogate Models for Hydrogeological Simulation (cont'd)

- \triangleright Computation times (in seconds)
- \triangleright ML models trained with standard and simulator with high-end laptop, respectively

Table: Soil temperature computation times.

[Satellite Remote Sensing for Monitoring Earth](#page-27-0) [Surface and Environment](#page-27-0)

- \triangleright Remote sensing for large-scale monitoring of Earth surface and environment
- Multi-image super-resolution prediction from low-resolution satellite images
- \triangleright Semantic segmentation from super-resolved image
	- \triangleright Input: Sentinel-2 low-resolution optical images
	- Output: Segmentation map

Multi-image Super-resolution

9 x Sentinel-2 images $10m \times 10m$ / pixel

Super-resolved image 2.5m x 2.5m / pixel

Seamentation

Seamentation with the super-resolved image

- \blacktriangleright Image super-resolution: enhancement of low-resolution satellite images
	- Input: Sentinel 2 low-resolution (LR) optical images
	- Output: Super-resolution image
- \blacktriangleright Training data from Maxar high-resolution (HR) and low-resolution (LR) Sentinel-2 samples
- ca. 12 000 32x32 LR image sets $(9 \text{ images}) + \text{HR-image}$ (1 image)

$\sqrt{2}$ UNIVERSITY OF OULU

Remote Sensing for Land and Road Segmentation (cont'd)

First research challenges: outlier detection, image registration, and image calibration (with histogram matching)

 $\frac{1}{31}$ [Insight DCU](#page-0-0) 31

 \triangleright Cloud detection (with LR and downsampled HR differencing) and utilization of mask in DNN training

Cloud detection

 \blacktriangleright Permutation invariance and uncertainty network (PIUnet)

Valsesia et al. (2022). Permutation Invariance and Uncertainty in Multitemporal Image Super-Resolution. IEEE Trans. on Geoscience and remote sensing.

\blacktriangleright Next research steps

- \triangleright Training and evaluating the super-resolution model on the large-scale dataset
- ▶ Accurate segmentation of small and narrow objects such as roads from super-resolved images
- \triangleright Applications: monitoring roads and seasonal road conditions, snow melting, floods, etc.

[Road Quality Forecasting](#page-34-0)

Multi-source Deep Learning for Long-term Road Conditions forecasting

- \triangleright Preliminary research on data-driven road quality/damage forecasting and proactive maintenance
- \triangleright Analysis of seasonal weather, climate, and geological data, and their effects to road quality and damages

Images: Roadscanners Ltd., CC0 Public Domain

Study Sites

- \blacktriangleright Asphalt roads in northern Finland (sub-Arctic, near Arctic region)
- \blacktriangleright In this study, three different sites where we have:
	- \blacktriangleright Road surface quality data, 2015-2022
	- \blacktriangleright Long-term weather and road surface/ground data from road weather stations, 2010-2022
	- \blacktriangleright Additional data: meas. locations, past road maintenance info, surrounding soil types etc.

Image: Google maps

Measurements

- \triangleright Annual road condition and quality data
	- Road surface: International Roughness Index (IRI) (Roadscanners Ltd., IMU-based system)
	- \triangleright Past maintenance information (open data)
- \triangleright Static ground data: soil types (open data)
- Daily and sub-hourly observations from the closest road weather stations (open data)
	- \blacktriangleright Ground temperature
	- Precipitation

Left image: Roadscanners Ltd.

Dataset Preparation

- \triangleright Pitch IRI measurements in 100 meter segments (10 meter interval)
	- Input: current year 10 IRI values from each segment
	- ▶ Output: next year 10 IRI values from each segment
- \triangleright 2D Location of each IRI segment
- \triangleright Past maintenance: days since last repair for each segment, 3+3 repair types from last two maintenance
- \triangleright Daily road weather / climate data
	- ▶ 12 hand-coded features: ground temperature (mean & std) and precipitation (sum & std) for 3 seasons (autumn, winter spring)
	- \triangleright 64 length latent feature vector: autoencoding of seasonal ground and precipitation observations
- \triangleright 12 soil types: generic type (such as coarse soil, fine soil, clay etc.) in the road segment

$\sqrt{2}$ UNIVERSITY OF OULU

Road Quality Forecasting: Framework

- \triangleright Deep learning framework for forecasting road quality
	- ▶ Autoencoder and feed-forward backbone (input layers), fusion embedding (fusion layer), and regression feed-forward head (output layers)

Road Quality Forecasting: Autoencoder

- \triangleright Stacked convolutional autoencoder for feature extraction
- \blacktriangleright Latent low-dimensional representation of seasonal weather: daily ground temperature and precipitation

Road Quality Forecasting: MLP

- \blacktriangleright Feed-forward deep neural networks
	- \triangleright Multi-layer perceptron (MLP) with multi-source inputs
	- ▶ Concatenated fusion, dense ReLU layers

Road Quality Forecasting: Results

- \triangleright Deep learning approach: MLP + Conv. autoencoder (Early stopping, Adam optimizer with learning rate 1e-4)
- \triangleright Baseline: Bayesian linear regression (BLR) model (Gaussian priors, HMC sampling with 4 chains and 8000 samples)

Road Quality Forecasting: Results (cont'd)

 \triangleright Comparison of baseline (BLR), MLP, and MLP with convolutional autoencoder

Table: IRI prediction performance.

Road Quality Forecasting: Explainability

- Explainability of MLP predictions (Road 428)
- \triangleright Shapley Additive Explanations (SHAP)

 $\sqrt{2}$

Road Quality Forecasting: Data Sources

 \blacktriangleright Influence to prediction performance by adding data sources (Road 428)

Table: IRI prediction performance with fusion of data sources.

[Next Steps and Future Plans](#page-46-0)

Future Plans

\triangleright Road quality forecasting (in AoF project)

- \triangleright Extending ML models with different sources: road structural course (e.g., using ground penetrating radar), amount of daily traffic, snow water content and soil moisture, remote sensing etc.
- \triangleright Country (and other (sub-)Arctic regions) level long-term spatio-temporal forecasting
- **In Studying of more advanced fusion strategies in framework**
- \triangleright Adding more explainability and physics-aware properties to AI/ML framework

Future Plans (cont'd)

- \blacktriangleright Large-scale monitoring and forecasting applications by combining and extending the models and tools developed for particular small-scale problems to be able to
	- \triangleright Combine the best properties from different limited vet complementary data sources and modelling approaches
	- \blacktriangleright Understand better effects of unusual weather and climate change to environment and infrastructure
	- \triangleright Build practical forecasting and (multi-hazard) warning systems to increase the resiliency in proactive manner (e.g., frost quakes and road damages in sub-Arctic)

Contact Information and Acknowledgement

Data Analysis and Inference Group @ BISG: <https://www.oulu.fi/bisg/data-ai>

<http://www.cc.oulu.fi/~jsuutala19> e-mail: jaakko.suutala@oulu.fi

The work is supported by Academy of Finland (ADAPTINFA project, decision number: 348811).