

Multi-modal machine learning and deep learning for earth observations and climate change mitigation in sub-Arctic and Arctic regions

Jaakko Suutala Biomimetics and Intelligent Systems Group University of Oulu, Finland

Insight SFI Research Centre for Data Analytics Visiting Researchers Programme Seminar

4th Oct 2023

email: jaakko.suutala@oulu.fi

Outline

Research group introduction

- Al for earth observations and climate change mitigation
- Short highlights of on-going activities in AoF project
 - Snow water equivalent forecasting
 - Surrogate models and their application to geophysical soil simulations
 - Satellite remote sensing: image enhancement and segmentation
- Multi-source road quality forecasting
- Future plans

Research Group and Activities

Biomimetics and Intelligent Systems Group

- Research unit in Faculty of ITEE of 40+ researcher studying different aspects of intelligent systems, led by Prof. Juha Röning
- Data Analysis and Inference Group (DataAI)
 - Statistical signal processing, machine learning, data mining, applied AI, XAI
- Robotics Group
 - Mobile robotics, control and sensing systems, perception and machine intelligence
- Oulu University Secure Programming Group (OUSPG)
 - Software security, vulnerabilities, cybersecurity
- Bio-ICT
 - Integrating technology with biology/biomedicine, bioinformatics, biosensors

DataAl Group

Senior Researchers
Dr. Jaakko Suutala, Asst. Prof.
Dr. Pekka Siirtola, Adj. Prof.
Dr. Satu Tamminen, Uni. Lecturer
Post-docs

Dr. Lauri Tuovinen Dr. Henna Tiensuu

- Doctoral Candidates: Gunjan Chandra, Anusha Ihalapathirana, Miika Malin
- Research Assistants: Joonas Tuutijärvi, Samuli Paloniemi, Justin Seby, Nirzor Talukder

Research Themes

Some Recent Research Activities

Data-driven Climate Change Adaptation and Mitigation

Climate Change Mitigation

- Extreme and unusual weather conditions are increasing (including sub-Arctic and Arctic regions)
 - Climate change can affect the urban infrastructure: buildings, roads etc.
 - Causing frost quakes, changes in ground frost, snow characteristics, groundwater levels, etc.

Images: CC0 Public Domain, Dr. Jarkko Okkonen (GFS)

Climate Change Mitigation (cont'd)

- Detecting and predicting long-term and sudden changes, and possible future hazards and damages in proactive manner
 - Resilience and adaptation for a changing climate
- Multi-disciplinary approach combining expertise of geophysics, computer science, and AI to tackle climate change adaption and mitigation
 - Academy of Finland funded Green Deal project 2022-2024
 - Participants: University of Oulu (BISG, OMS) and Geological Survey of Finland
- Our group is interested in applying data-driven approaches to earth observation data to build predictive models and tools

11

AI and ML for Earth Observations

- Spatio-temporal modelling and forecasting
 - Multi-modal deep learning and probabilistic modelling
 - Combining spatial data and time-series in multi-modal neural network architectures

Left image: Roadscanners Ltd.

AI and ML for Earth Observations (cont'd)

- Physics-aware machine learning
 - Speed-up physical and geophysical simulations by statistical surrogate models and Bayesian optimization (e.g., Gaussian processes)
 - Physics-informed ML/DL to combine traditional and data-driven approaches to increase the performance and explainability of the models (e.g., in the case of limited data)

Multi-modal and Multi-source approaches

- Multi-source data-driven approaches for modelling and forecasting
 - Machine learning framework for combining multi-modal data
 - Analysis of seasonal weather, geological data, and remote sensing data, and their effects to unusual phenomena, hazards etc.
 - Practical forecasting models from sparse time-series measurements, images, and simulations

Images: Copernicus, Creative Commons

Highlights of Project Activities

Snow Water Equivalent Forecasting

Snow Water Equivalent Forecasting with Recurrent Neural Networks

- Snow water equivalent (SWE) = the amount of water in the snowpack
- Affected by the weather conditions throughout the winter
- Difficult information to collect
 - Measured from 2 to 4 km long snow course
 - Depth is measured from 80 points, and the snow is weighted at 8 points to get the snow density
 - Combined with snow cover information to get the average estimate for SWE (on snow course)

Images: Creative Commons, Hannula et al. (2016)

Insight DCU

Snow Water Equivalent Forecasting with Recurrent Neural Networks (cont'd)

- Traditionally, modelling and forecasting is done using physical snow model
- We are interested if the SWE forecast could be enhanced and improved with recurrent neural networks
- Applications: flood predictions and modelling hydrological systems, seasonal changes etc.

Snow Water Equivalent Forecasting with Recurrent Neural Networks (cont'd)

- 3 test sites
- Long-term dataset 1960-2021
- Inputs: daily temperature, precipitation, and bi-weekly history SWE values of 180 days
- Output: Next SWE value

Right image: Google maps

Insight DCU

い い UNIVERSITY OF OULU

Snow Water Equivalent Forecasting with Recurrent Neural Networks (cont'd)

Gated Recurrent Unit (GRU) -based neural network models

、レ い UNIVERSITY OF OULU

Snow Water Equivalent Forecasting with Recurrent Neural Networks (cont'd)

 Forecasting results of physical snow model, naive baseline, and GRU-based models

Snow Water Equivalent Forecasting with Recurrent Neural Networks (cont'd)

 Numerical comparison (NSE) of physical snow model, naive baseline, and LSTM/GRU-based models

Machine Learning -based Surrogate Modelling

ML-based Surrogate Models for Hydrogeological Simulation

- Emulators to speed-up computation of expensive (black-box) simulations
- Approximating the solution with subset of simulated points or online active learning
- Interpolating and extrapolating (with uncertainty quantification) outside simulated location
 - Enabling large-scale spatio-temporal modelling and prediction

Insight DCU

ML-based Surrogate Models for Hydrogeological Simulation (cont'd)

- New effective tools to analyse hydrological and mechanical properties of soil/ground to understand our environment from easy to get indirect measurement
- 4 years of data (2011-2015) recorded in northern Finland (Oulu area) with ground truth observations of soil temperature and water content (down to depth of 2 meters)

Image: Dr. Kari Moisio (OMS)

ML-based Surrogate Models for Hydrogeological Simulation (cont'd)

- Inputs: daily air temp., precipitation (rain/snow), wind speed, long- and shortwave radiation, relative humidity
- Outputs: soil temperature and water content (+ simulated ice content)

ML-based Surrogate Models for Hydrogeological Simulation (cont'd)

- Preliminary result utilizing Gaussian process regression (GPR), Multi-layer Perceptron (MLP)
- Prediction accuracy

Motric	Method					
Wethe	GPR	MLP	Simulator			
$R^2\uparrow$	0.82	0.89	0.96			
RMSE↓	1.93	1.59	0.89			
MSE ↓	3.72	2.51	0.79			

Table: Soil temperature prediction accuracy.

ML-based Surrogate Models for Hydrogeological Simulation (cont'd)

- Computation times (in seconds)
- ML models trained with standard and simulator with high-end laptop, respectively

Comp.	Method				
times	GPR	MLP	Simulator		
Training	14.0	79.0	-		
Inference	0.2	1.8	-		
Total	14.2	80.8	320.0		

Table: Soil temperature computation times.

Satellite Remote Sensing for Monitoring Earth Surface and Environment

- Remote sensing for large-scale monitoring of Earth surface and environment
- Multi-image super-resolution prediction from low-resolution satellite images
- Semantic segmentation from super-resolved image
 - Input: Sentinel-2 low-resolution optical images
 - Output: Segmentation map

Multi-image Super-resolution

9 x Sentinel-2 images 10m x 10m / pixel

Super-resolved image 2.5m x 2.5m / pixel

Segmentation

Segmentation with the super-resolved image

- Image super-resolution: enhancement of low-resolution satellite images
 - Input: Sentinel 2 low-resolution (LR) optical images
 - Output: Super-resolution image
- Training data from Maxar high-resolution (HR) and low-resolution (LR) Sentinel-2 samples
- ca. 12 000 32x32 LR image sets (9 images) + HR-image (1 image)

Remote Sensing for Land and Road Segmentation (cont'd)

 First research challenges: outlier detection, image registration, and image calibration (with histogram matching)

4th Oct 2023

 Cloud detection (with LR and downsampled HR differencing) and utilization of mask in DNN training

Cloud detection

Insight DCU

4th Oct 2023

Permutation invariance and uncertainty network (PIUnet)

Valsesia et al. (2022). Permutation Invariance and Uncertainty in Multitemporal Image Super-Resolution. IEEE Trans. on Geoscience and remote sensing.

Insight DCU	4th Oct 2023	33

Next research steps

- Training and evaluating the super-resolution model on the large-scale dataset
- Accurate segmentation of small and narrow objects such as roads from super-resolved images
- Applications: monitoring roads and seasonal road conditions, snow melting, floods, etc.

Road Quality Forecasting

Multi-source Deep Learning for Long-term Road Conditions forecasting

- Preliminary research on data-driven road quality/damage forecasting and proactive maintenance
- Analysis of seasonal weather, climate, and geological data, and their effects to road quality and damages

Images: Roadscanners Ltd., CC0 Public Domain

Study Sites

- Asphalt roads in northern Finland (sub-Arctic, near Arctic region)
- In this study, three different sites where we have:
 - Road surface quality data, 2015-2022
 - Long-term weather and road surface/ground data from road weather stations, 2010-2022
 - Additional data: meas. locations, past road maintenance info, surrounding soil types etc.

Image: Google maps

Measurements

- Annual road condition and quality data
 - Road surface: International Roughness Index (IRI) (Roadscanners Ltd., IMU-based system)
 - Past maintenance information (open data)
- Static ground data: soil types (open data)
- Daily and sub-hourly observations from the closest road weather stations (open data)
 - Ground temperature
 - Precipitation

Left image: Roadscanners Ltd.

	1.00	<u> </u>	~ • •	
nsig	ht i			
- III JI B		~	$\sim \circ$	

Dataset Preparation

- Pitch IRI measurements in 100 meter segments (10 meter interval)
 - Input: current year 10 IRI values from each segment
 - Output: next year 10 IRI values from each segment
- 2D Location of each IRI segment
- Past maintenance: days since last repair for each segment, 3+3 repair types from last two maintenance
- Daily road weather / climate data
 - 12 hand-coded features: ground temperature (mean & std) and precipitation (sum & std) for 3 seasons (autumn, winter spring)
 - 64 length latent feature vector: autoencoding of seasonal ground and precipitation observations
- 12 soil types: generic type (such as coarse soil, fine soil, clay etc.) in the road segment

Road Quality Forecasting: Framework

- Deep learning framework for forecasting road quality
 - Autoencoder and feed-forward backbone (input layers), fusion embedding (fusion layer), and regression feed-forward head (output layers)

Road Quality Forecasting: Autoencoder

- Stacked convolutional autoencoder for feature extraction
- Latent low-dimensional representation of seasonal weather: daily ground temperature and precipitation

Road Quality Forecasting: MLP

- Feed-forward deep neural networks
 - Multi-layer perceptron (MLP) with multi-source inputs
 - Concatenated fusion, dense ReLU layers

Road Quality Forecasting: Results

- Deep learning approach: MLP + Conv. autoencoder (Early stopping, Adam optimizer with learning rate 1e-4)
- Baseline: Bayesian linear regression (BLR) model (Gaussian priors, HMC sampling with 4 chains and 8000 samples)

Road Quality Forecasting: Results (cont'd)

 Comparison of baseline (BLR), MLP, and MLP with convolutional autoencoder

Road	Baseline (BLR)			MLP			MLP+Conv-AE		
	$R^2 \uparrow$	MSE ↓	MAE ↓	$R^2 \uparrow$	MSE ↓	MAE ↓	$R^2 \uparrow$	MSE ↓	MAE ↓
428	0.32	0.31	0.33	0.91	0.04	0.12	0.93	0.03	0.11
924	0.59	0.24	0.33	0.76	0.14	0.24	0.76	0.14	0.24
19541	0.90	0.13	0.26	0.91	0.12	0.26	0.92	0.11	0.25
Avg.	0.60	0.23	0.31	0.86	0.10	0.21	0.87	0.09	0.20

Table: IRI prediction performance.

Road Quality Forecasting: Explainability

- Explainability of MLP predictions (Road 428)
- Shapley Additive Explanations (SHAP)

N2

UNIVERSITY OF OULU

Road Quality Forecasting: Data Sources

 Influence to prediction performance by adding data sources (Road 428)

Metric	Fusion of data sources						
	IRI	+Weather	+Maint.	+Soil type	+Loc.		
$R^2 \uparrow$	0.15	0.41	0.51	0.79	0.93		
MSE ↓	0.39	0.28	0.23	0.10	0.03		
MAE ↓	0.28	0.24	0.23	0.16	0.11		

Table: IRI prediction performance with fusion of data sources.

Next Steps and Future Plans

Future Plans

Road quality forecasting (in AoF project)

- Extending ML models with different sources: road structural course (e.g., using ground penetrating radar), amount of daily traffic, snow water content and soil moisture, remote sensing etc.
- Country (and other (sub-)Arctic regions) level long-term spatio-temporal forecasting
- Studying of more advanced fusion strategies in framework
- Adding more explainability and physics-aware properties to AI/ML framework

Future Plans (cont'd)

- Large-scale monitoring and forecasting applications by combining and extending the models and tools developed for particular small-scale problems to be able to
 - Combine the best properties from different limited yet complementary data sources and modelling approaches
 - Understand better effects of unusual weather and climate change to environment and infrastructure
 - Build practical forecasting and (multi-hazard) warning systems to increase the resiliency in proactive manner (e.g., frost quakes and road damages in sub-Arctic)

Contact Information and Acknowledgement

Data Analysis and Inference Group @ BISG: https://www.oulu.fi/bisg/data-ai

http://www.cc.oulu.fi/~jsuutala19 e-mail: jaakko.suutala@oulu.fi

The work is supported by Academy of Finland (ADAPTINFA project, decision number: 348811).