

Characterization methods of inorganic materials

X-ray photoelectron spectroscopy (XPS)

Ahmadreza Soodmand

(Ahmadreza.mohammadiansoodmand@oulu.fi)

13.2.202

Oulun yliopi

Goals of this lecture

To learn the basic principles of X-ray photoelectron spectroscopy (XPS)

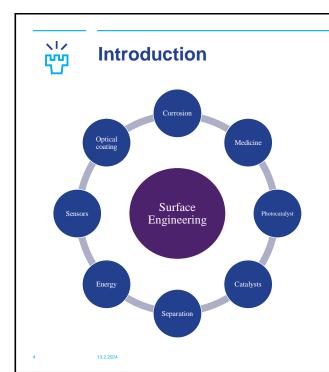
- What can be measured?
- How can it be measured?

To learn about the types of data that can be obtained from XPS spectra

- Elemental analysis
- oxidation states of elements
- Qualiative
- Quantiative
- State-of-the-art examples

2

ılun yliopisto



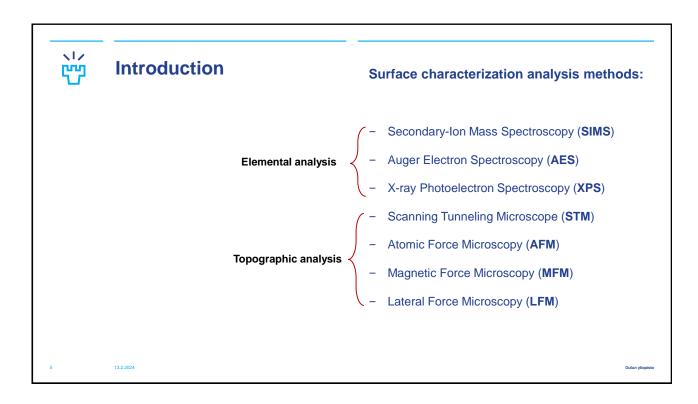
Content

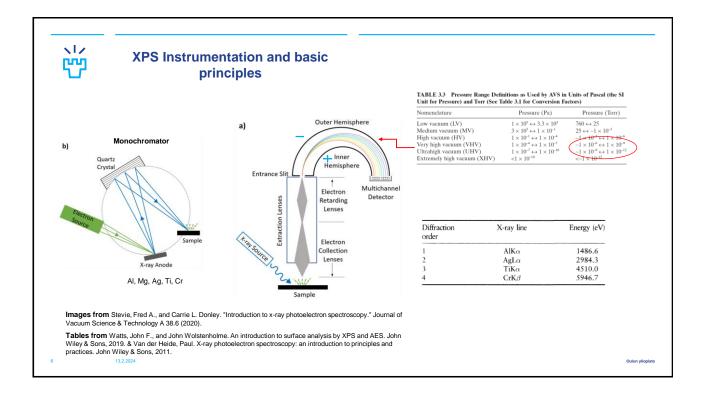
- Introduction
- Instrumentation and basic principles
- Theory and basis
- Database
- XPS applications and examples
- XPS analysis comparison
- XPS pros and cons
- Summary
- References

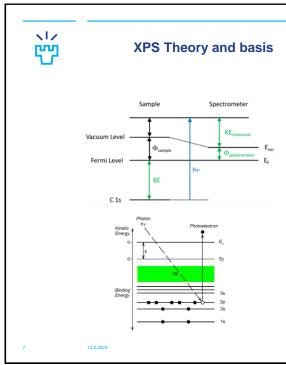
13.2.2024

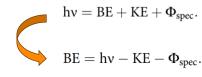
Oulun yliopi

The *surface chemistry* plays a pivotal role in chemical reactions and materials properties


- Gas-solid or liquid-solid reactions or mass transfer
- Thin film technologies (CVD, PVD)
- Corrosion is surface phenomenon
- Adhesive materials (polymers)


Ambient circumstances highly affect the surface characteristics


Temperature, pH, external fields, photons and radiations


Understanding the mechanism of a particular surface phenomenon will help to improve the efficiency of the process

ılun yliopisto

Where:

hv: The X-ray energy

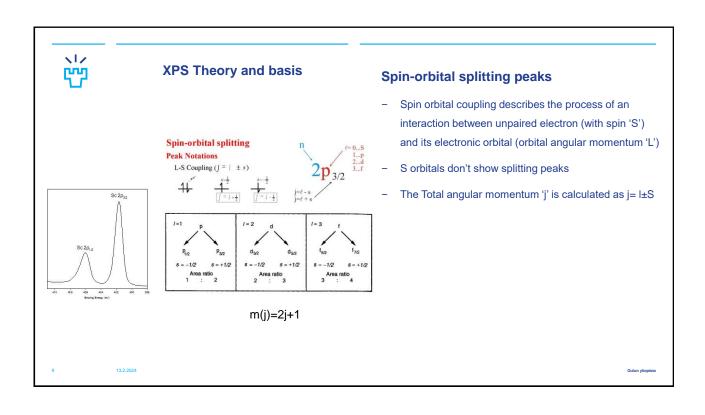
BE: The binding energy (how tightly it is bound to the atom/orbital to which it is attached)

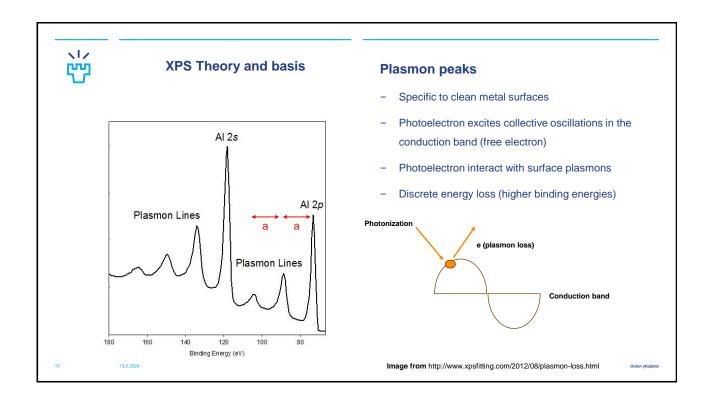
KE: Kinetic energy (KE) of the electron that is emitted

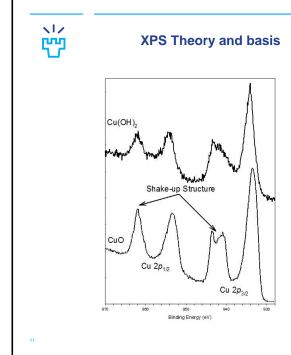
Φ: Work function of the spectrometer which is the amount of energy absorbed by the instrument by moving photoelectron from solid state sample to the vacuum chamber (constant value)

Outun viioniet

XPS Theory and basis

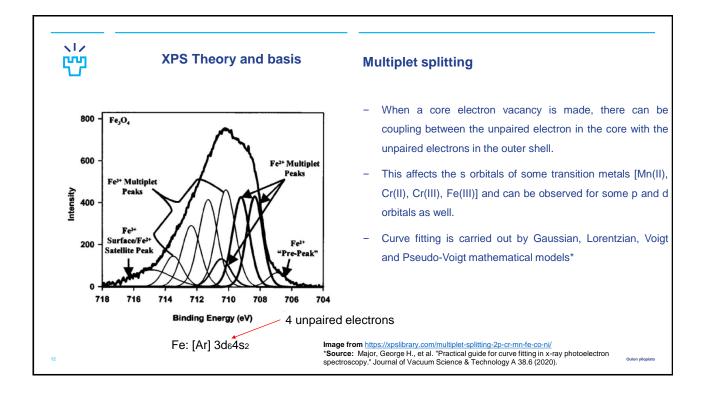

O 1s Al 2s C KLL O KLL O KLL Al 2p 1200 1000 800 600 400 200 0 Binding energy (eV)

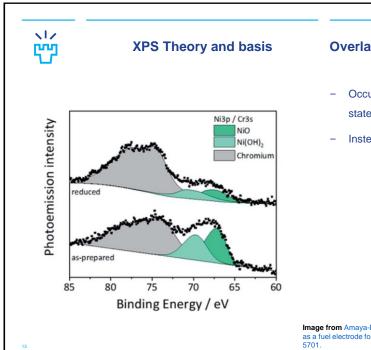

Source of image and data from XPS analysis lecture (2020) by Prof. Mir ghasem Hosseini and Dr. Mahdi Ebrahimi Farshchi at university of Tabriz


What kinds of peaks can be obtained from XPS spectra?

- Sharp peaks (elastically scattered from first layers)
- Spin orbit splitting
- Multiplet splitting (occurs when unpaired electrons exist)
- Satellite peaks (Shake up, Shake off)
- Plasmon
- Overlapping peaks
- Chemical Shifts (Due to atomic interactions and oxidation)
- Auger peaks

Oulun yliopist

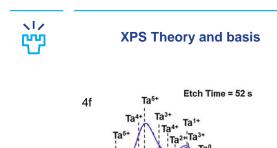



Satellite peaks (Shake-up and Shake-off)

- Non-monochromator
- Shake-up results from a de-excitation process, where the
 outgoing core electron interacts with a valence electron and
 excites it to a higher energy level and as a results its kinetic
 energy decreases and small peaks appear at higher binding
 energies.
- If the valance electron is ejected completely, a broadening will appear in core level peak (Shake-off)
- The strength and shape of the shake-up features can aid in the assignment of chemical states

Image from M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci. 257 (2010)

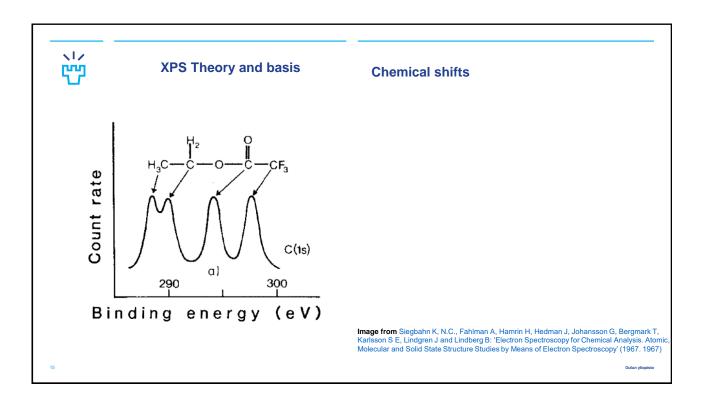
Oulun yliopisto



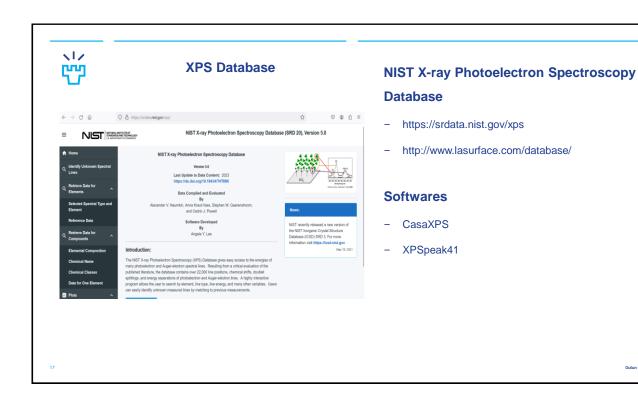
Overlapping

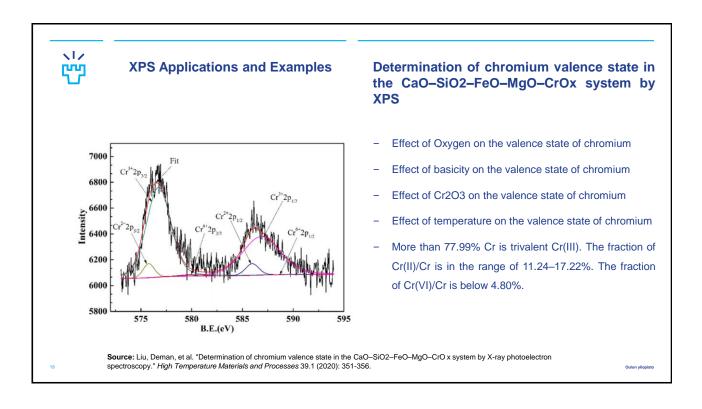
- Occurs when multiple components or different oxidation states coexist in the sample
- Instead of sharp peaks a wider peak is displayed.

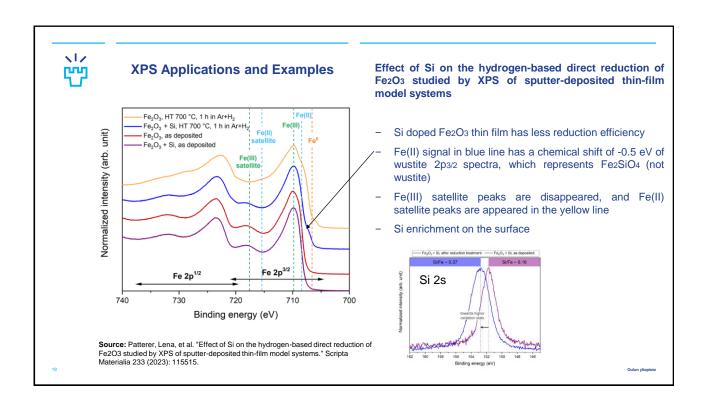
Image from Amaya-Dueñas, Diana-María, et al. "A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs)." Journal of Materials Chemistry A 9.9 (2021): 5685-5701.

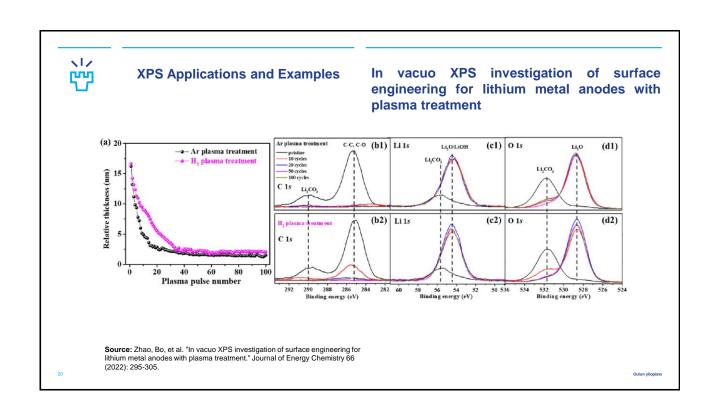

32 31 30 29 28 27 26 25 24 23 22 21 20 Binding Energy (eV) Ta2O5, TaO2, Ta2O3, TaO, Ta2O

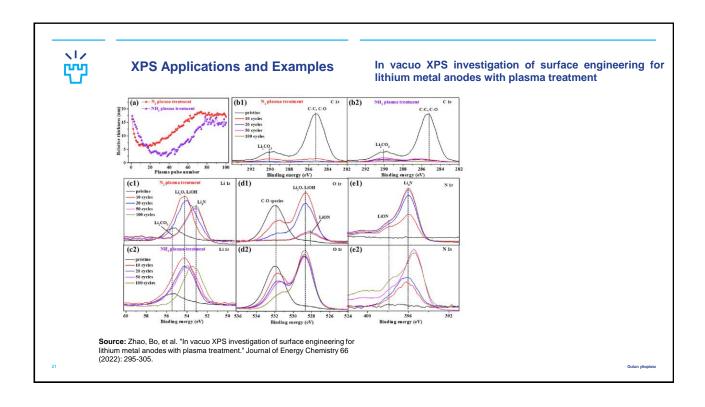
Chemical shifts

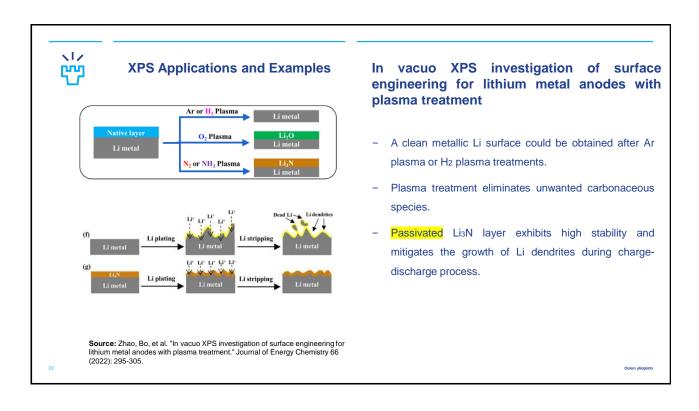

Atoms of a higher positive oxidation state exhibit a higher binding energy due to the extra coulombic interaction between the photo-emitted electron and the ion core.


Functional Group		Binding Energ (eV)	ay .
hydrocarbon	<u>C</u> -H, <u>C</u> -C	285.0	C Electronegativity
amine	C-N	286.0	N Increase
alcohol, ether	<u>C</u> -O-H, <u>C</u> -O-C	286.5	0
CI bound to C	<u>C</u> -CI	286.5	CI Binding energy
F bound to C	C-F	287.8	Fincrease
carbonyl	<u>C</u> =O	288.0	Double-bond


Image from Simpson, Robin, et al. "XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide." Applied Surface Science 405 (2017): 79-87.




7	XPS Database										
	Element	1s	2s	2p _{1/2}	2p _{3/2}	3s	3p _{1/2}	3p _{3/2}	3d _{3/2}	3d _{5/2}	
	H (H ₂ gas)	13.6									
	He (He gas)	24.6*									
	Li	54.7*									
	Be	111.5*									
	В	188*									
	C (graphite)	284.7 ^b									
	N (N ₂ gas)	409.9*	37.3*								
	N (ionic solid)	399.0b	12.0 ^b								
	O (O ₂ gas)	543.1*	41.6*								
	O (ionic solid)	531.0b	22.0b								
	F (F ₂ gas)	696.7*	22.0								
	F (ionic solid)	686.0b	31.0 ^b								
	Ne (Ne gas)	870.2*	48.5*	21.7*	21.6*						
	Na	1070.8 [†]	63.5 [†]	30.81ª	30.65a						
	Mg	1303.0†	88.7	49.78	49.50						
	Al	1559.6	117.8	72.95	72.55						
	Si	1839	149.7**	99.82	99.42						
	P	2145.5	189*	136*	135*						
	S	2472	230.9	163.6*	162.5*						
	Cl (Cl ₂ gas)	2822.4	270*	202*	201*						
	Cl (ionic solid)		270ь	202ь	200 ^b						
	Ar (Ar gas)	3205.9*	326.3*	250.6 [†]	248.4*	29.3*	15.9*	15.7*			
	K	3608.4*	378.6*	297.3*	294.6*	34.8*	18.3*	18.3*			
	Ca	4038.5*	438.4 [†]	349.7 [†]	346.2 [†]	44.3 [†]	25.4 [†]	25.4 [†]			
	Sc	4492	498.0*	403.6*	398.7*	51.1*	28.3*	28.3*			
	Ti	4,966	560.9 [†]	460.2 [†]	453.8 [†]	58.7 [†]	32.6^{\dagger}	32.6^{\dagger}			
	V	5,465	626.7 [†]	519.8 [†]	512.1 [†]	66.3 [†]	37.2 [†]	37.2 [†]			
	Cr	5989	696.0^{\dagger}	583.8 [†]	574.1 [†]	74.1 [†]	42.2 [†]	42.2 [†]			
	Mn	6539	769.1 [†]	649.4 [†]	638.7 [†]	82.3 [†]	47.2 [†]	47.2 [†]			



XPS analysis comparison with other surface analysis methods

Table 6.1 Features of various analytical methods discussed in the text

	Incident radiation	Emitted radiation	Property monitored	Elements detectable	Depth of analysis	Spatial resolution	Information level E = elemental C = chemical	Quantification*	Applicability to inorganics*	Applicability to organics*
AES	e-	e -	Energy	Li on	3-10 nm	<12 nm	E (C)	-	0	X
EDX	e	X-ray	Energy	Be on	1 µm	1 µm	E	✓	0†	Χ [†]
EELS	e	e	Energy	Li on	Depends on foil thickness	10 nm	E	0	✓	х
ISS	ions	ions	Energy	Li on	Outer atom layer	100 μm	E	0	✓	0
LAMMS	laser	ions	Mass	All	0.5 µm	1 μm	E, C	X	✓	✓
RBS	ions	ions	Energy	Li on	1 μm	1 mm	E	X	✓	√ 1
SIMS (static)	ions	ions	Mass	All	1.5 nm	1 μm	C (E)	X	~	~
SIMS (dynamic)	ions	ions	Mass	All	See text	50 μm	E	0	✓	x
SIMS (imaging)	ions	ions	Mass	All	See text	50 nm	C (E)	X	0	0
XPS	X-rays	e	Energy	He on	3-10 nm	STD 1 mm ² small area: 10 µm imaging XPS: <3 µm	E, C	7	*	~

^{*✓ =} very good, 0 = reasonable, X = poor Without conductive coating Cryo-stage required

Tables from Watts, John F., and John Wolstenholme. An introduction to surface analysis by XPS and AES. John Wiley & Sons, 2019. & Van der Heide, Paul. X-ray photoelectron spectroscopy: an introduction to principles and practices. John Wiley & Sons, 2011.

XPS analysis pros and cons

Advantages	Disadvantages
Nondestructive	No bulk state information
Surface sensitive (10-200 Å)	Expensive (\$200,000-\$500,000/instrument, \$50-\$500/ sample)
Elemental sensitivity (parts per 1000)	High vacuum (10^-8 to 10^-11 torr)
All elements (except H and He)	Slow (1/2 to 8 hours/sample)
Quantitative	Charging and energy referencing can be a problem
Chemical bonding information	Low resolution (-0.1-1.0 eV)

Source: Andrade, Joseph D. "X-ray photoelectron spectroscopy (XPS)." Surface and Interfacial Aspects of Biomedical Polymers: Volume 1 Surface Chemistry and Physics (1985): 105-195.

Summary

XPS is among the most powerful surface analysis methods, which can provide the following information:

- Elements on the surface and their chemical states
- Oxide-reduced states of metals
- Qualitative information
- Quantitative information
- Mechanistic studies
- Depth-profiling (3-10 nm)

A comprehensive database is available, but practical experience is needed to avoid misleading information from the fitted curves.

25

Outun viioniete

References

- [1] Watts, John F., and John Wolstenholme. An introduction to surface analysis by XPS and AES.
- [2] John Wiley & Sons, 2019. & Van der Heide, Paul. X-ray photoelectron spectroscopy: an introduction to principles and practices. John Wiley & Sons, 2011.
- [3] Stevie, Fred A., and Carrie L. Donley. "Introduction to x-ray photoelectron spectroscopy." Journal of Vacuum Science & Technology A 38.6 (2020).
- [4] Major, George H., et al. "Practical guide for curve fitting in x-ray photoelectron spectroscopy." Journal of Vacuum Science & Technology A 38.6 (2020).
- [5] Liu, Deman, et al. "Determination of chromium valence state in the CaO-SiO2-FeO-MgO-CrO x system by X-ray photoelectron spectroscopy." High Temperature Materials and Processes 39.1 (2020): 351-356.
- [6] Patterer, Lena, et al. "Effect of Si on the hydrogen-based direct reduction of Fe2O3 studied by XPS of sputter-deposited thin-film model systems." Scripta Materialia 233 (2023): 115515.
- [7] Zhao, Bo, et al. "In vacuo XPS investigation of surface engineering for lithium metal anodes with plasma treatment." Journal of Energy Chemistry 66 (2022): 295-305.
- [8] Andrade, Joseph D. "X-ray photoelectron spectroscopy (XPS)." Surface and Interfacial Aspects of Biomedical Polymers: Volume 1 Surface Chemistry and Physics (1985): 105-195.

26

ulun yliopisto

Special thanks to

Eetu-Pekka Heikkinen
Pekka Tanskanen
Mahdi Ebrahimi Farshchi
Prof. Mir Ghasem Hosseini

Oulun yliopisto