

Goal of the lecture

To learn the main operating principle of the Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC)

- What is measured? How?

To learn how DTA and DSC can be used in (metallurgical) R&D

- How the results can be used?
- How the results of DTA/DSC and TGA support each other?

Contents

Differential Thermal Analysis - DTA Differential Scanning Calorimetry - DSC

- Main principles
 - What is measured?
 - What kind of phenomena can be observed?
- Strengths and restrictions
 - Requirements for samples
- Connection with other devices

Utilization of DTA/DSC results

- Application areas in (metallurgical) R&D
- How the results can be processed further?

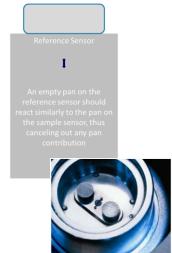
Examples

Oulun yliopisto

Differential Thermal Analysis (DTA)

Main operating principle

- Temperature difference between sample and a reference is measured as a function of time
 - Heating and/or cooling at a certain rate
 - Results often shown as a function of temperature rather than time
 - (Isothermic tests)
 - Atmosphere is chosen to correspond the conditions of interest
 - Reducing, oxidising, inert, sulphurizing, etc.
 - Simulation of certain process conditions
 - CO, CO₂, H₂, H₂O, Ar, N₂, O₂, S₂, SO₂, etc.


All the phenomena in which entalphy / heat content changes can be observed

- Chemical reactions (exo-/endothermic)
- Removal of moisture and/or volatile components (endoth.)
- Phase transformations (endoth. when heated)
 - No mass change not observable with TGA

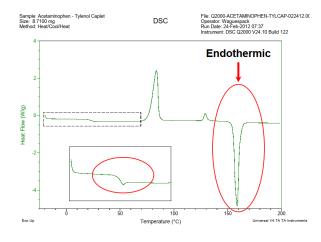
Differential Scanning Calorimetry (DSC)

Figures: TA Instruments.

Main operating principle

- Heat flow difference between sample and a reference is measured as a function of time
 - Heating and/or cooling at a certain rate
 - Results often shown as a function of temperature rather than time
 - (Isothermic tests)
 - Atmosphere is chosen to correspond the conditions of interest
 - Reducing, oxidising, inert, sulphurizing, etc.
 - Simulation of certain process conditions
 - CO, CO₂, H₂, H₂O, Ar, N₂, O₂, S₂, SO₂, etc.

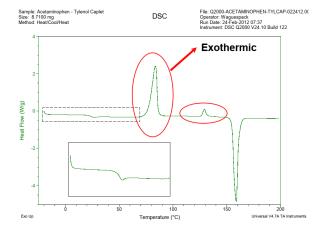
All the phenomena in which entalphy / heat content changes can be observed


- Chemical reactions (exo-/endothermic)
- Removal of moisture and/or volatile components (endoth.)
- Phase transformations (endoth. when heated)
 - No mass change not observable with TGA

N.B. From this point onwards the presentation focuses on DSC, but most things are applicable for DTA, too.

Figure: TA Instruments.

Differential Scanning Calorimetry (DSC)


Observation of endothermic phenomena Heat flows into the sample as a result of

- - heat capacity heating
 - C_P melting entalphy of fusion (melting) $\Delta H_E / \Delta H_M$ evaporation entalphy of vaporization (boiling) $\Delta H_V / \Delta H_B$
 - sublimation entalphy of sublimation ΔH_S

 - phase transformation (during heating)
 - entalphy of transformation ΔH_{TR}
 - glassy transition ("melting" of amorphous materials)
 - reaction entalphy of reaction For endothermic reactions such as reduction
 - mixing entalphy of mixing ΔH_{M}
 - For endothermic mixing of components

Differential Scanning Calorimetry (DSC)

Observation of exothermic phenomena

- Heat flows out of the sample as a result of

deposition entalphy of sublimation phase transformation (during cooling)

entalphy of transformation -∆H_{TR}

crystallisation (of amorphous materials)

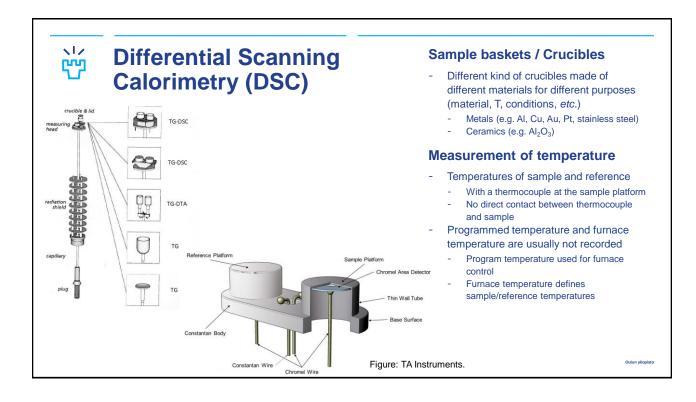
reaction entalphy of reaction ΔH_R

- For exothermic reactions such as oxidation / combustion mixing entalphy of mixing ΔH_{M}

- For exothermic mixing of components

Oulun yliopisto

-∆H_S


Figure: TA Instruments.

Differential Scanning Calorimetry (DSC)

Requirements for samples

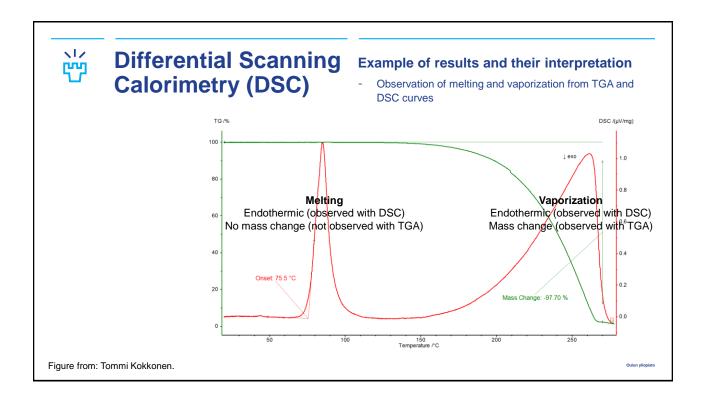
- Size suitable for furnace/device
 - Fits crucible/sample basket (size often very small; 1...20 mg)
 - Challenge with representativity using very small sample size!
- Preferably in solid state
 - Molten samples may be studied in some cases
- Does not destroy the equipment
 - Does not react with the crucible/sample basket
 - Does not release gas components which are (too) corrosive for gas treatment equipment
 - e.g. alkali, chlorine and sulfur can be detrimental

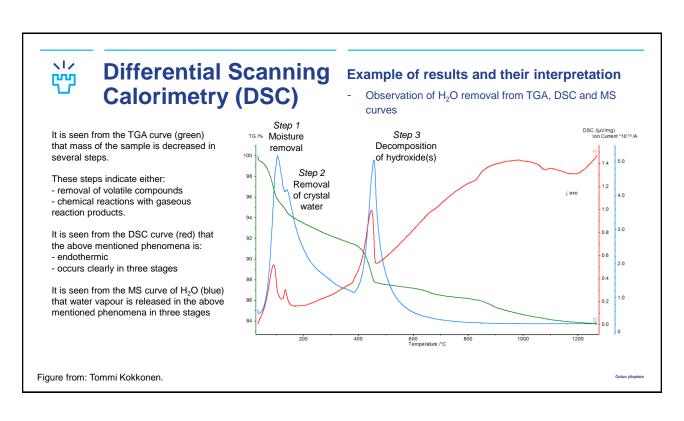
Differential Scanning Calorimetry (DSC)

Figure: Riku Mattila.

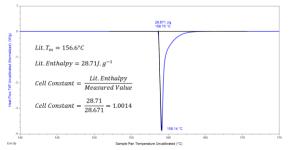
To obtain more detailed/informative data:

1) DSC (or DTA) is often connected with other devices


- Thermal Gravimetric Analysis
- Offgas from the system may be analysed (e.g. MS)


2) Samples are often characterized after tests

- Chemical composition
- Mineralogical composition
- Other properties (e.g. strength, leaching, etc.)


3) Results may be further processed

- Determination of thermochemical properties
 - Heat capacity
 - Entalphy
- Rate phenomena (time-dependence) may be studied
 - Determination of kinetic parameters from the results of isothermic experiments in at least three different temperatures

Differential Scanning Calorimetry (DSC)

Selection of Temperature & Enthalpy Standards

Enthalpy (cell constant)

- Benzoic acid (147.3 J/g) $T_m = 123^{\circ}C$ Indium (28.71 J/g) $T_m = 156.6^{\circ}C$
- Cyclopentane = -93.43°C Cyclohexane = -83°C Adamantane = -65.54°C
- Water = 0°C Gallium = 29.76°C
- Indium = 156.60°C

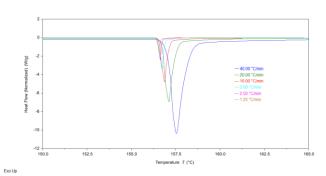
 Tin = 231.95°C

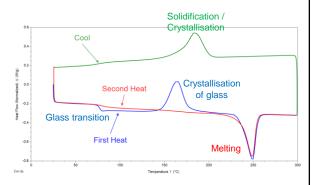
 Lead = 327.46°C

 Zinc = 419.53°C calibration standards:

Restrictions

- Has to be calibrated with known samples
 - Temperature calibration typically with melting points of pure metals (e.g. indium, lead, etc.) as references
 - Heat flow calibration with standards of either heat of fusion/melting or heat capacity - Definition of cell constant
- Necessary to exclude the baseline from the results
 - Baseline run with an empty cell over the temperature range of interest
- Heating/cooling rate as well as possible atmospheres are limited
 - Depends on the equipment
- Sources of inaccuracy
 - Heating/cooling rate
 - System is not in spatial or temporal equilibrium
 - Sample size limitations
 - Small samples not representative
 - Large samples not uniform in composition/conditions
 - Transport phenomena as limiting factors
 - Conditions in sample and reference are not completely identical, although they are assumed to be (temperature, thermal resistance, heat capacity, etc.)
 - Heat exchange with the surroundings should be zero
 - Can be decreased (but not completely removed) with better equipment (e.g. to obtain a thermal resistance imbalance of less than 1%, the manufacturing tolecance of sensors is $1.27\mu m$)

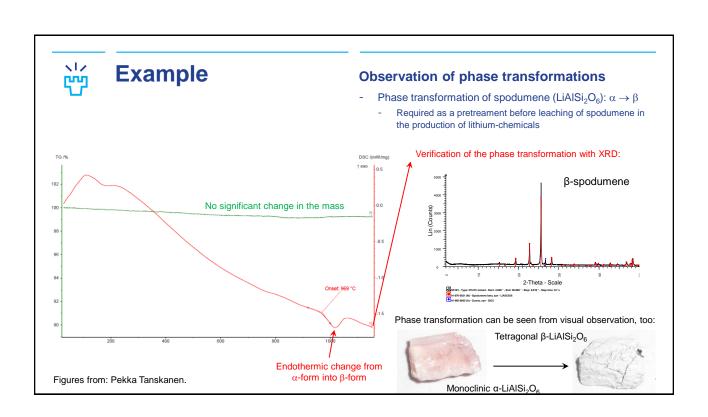

Figure and list of

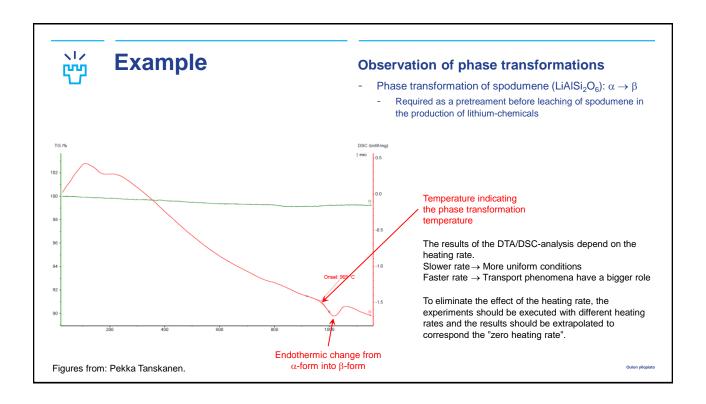

TA Instruments.

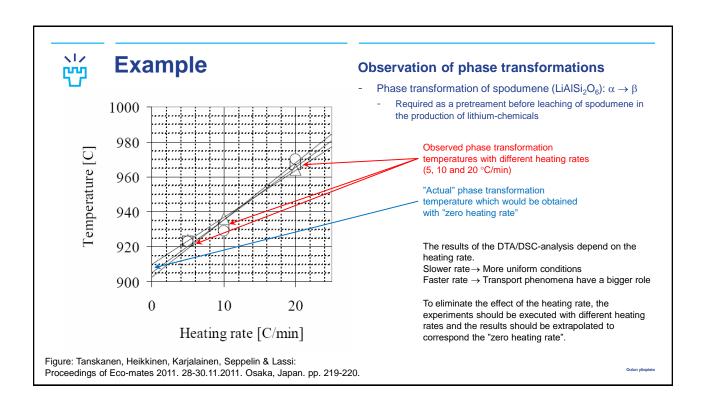
Differential Scanning Calorimetry (DSC)

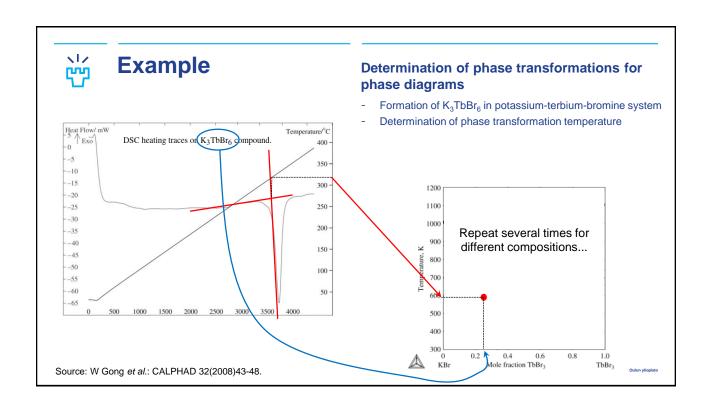
The results are influenced by e.g.:

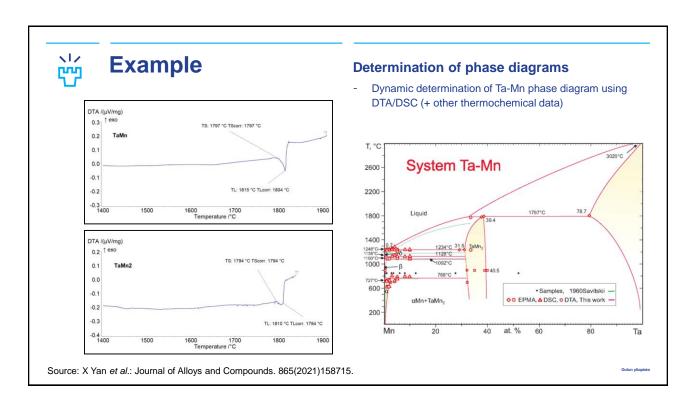
- "direction" of temperature change (heating/cooling)
- heating/cooling rate
- thermal history of the sample

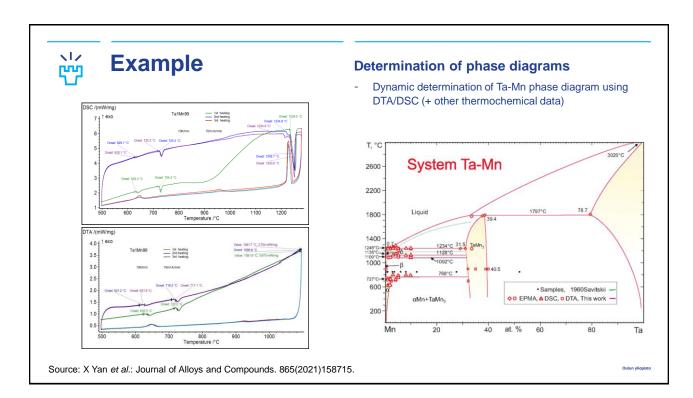

Figures: TA Instruments.

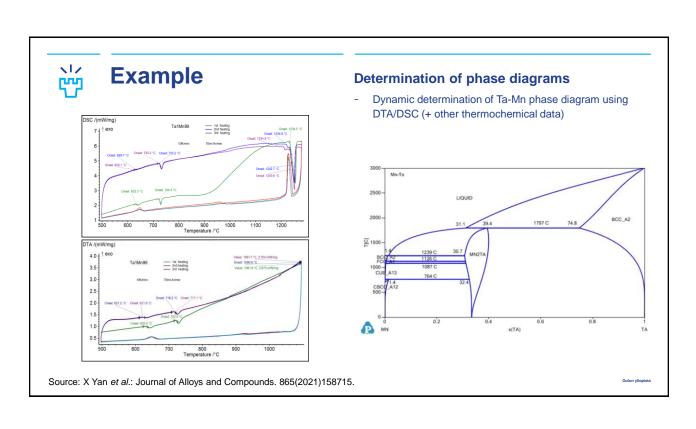


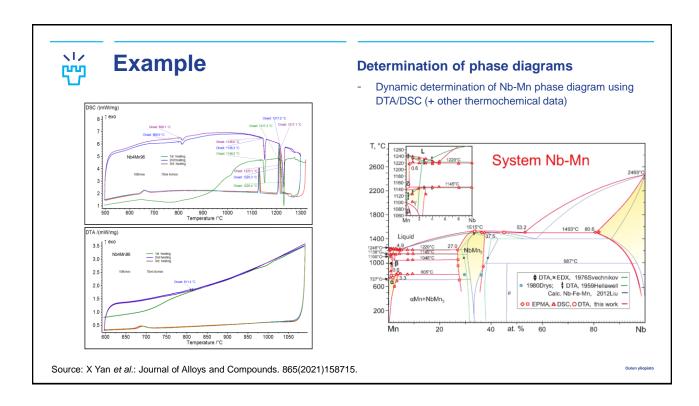

Differential Scanning Calorimetry (DSC)

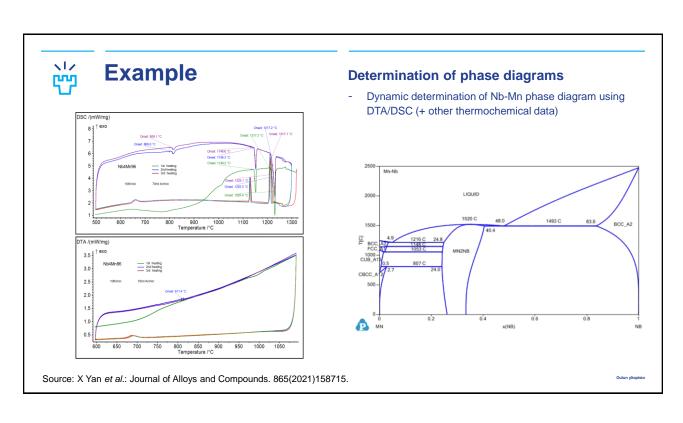

Possible areas of utilization

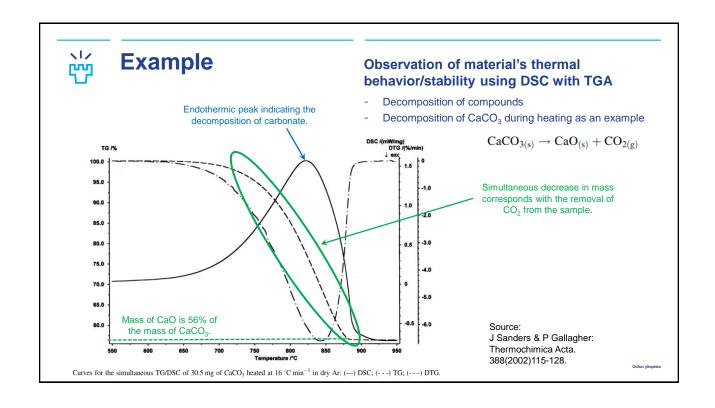

- Phase transformations
 - incl. solid state transformations and melting in which the mass of the sample does not change
 - Dynamic method for determining phase diagrams
- Removal of moisture/volatiles from materials
- Chemical reactions e.g.:
 - Decomposition of compounds
 - Reduction of materials
 - Oxidation of materials
- Definition of thermochemical properties of materials
 - Entalphy, heat capacity
- Thermal stabilities of materials
- Characterisation of multicomponent systems
 - Comparison of experimental results with known behaviour of different elements/compounds



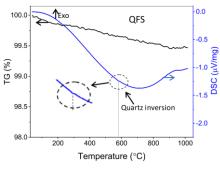








Example Observation of material's thermal وس behavior/stability using DSC with TGA Removal of volatiles Zinc removal from EAF and CRC dusts by heating as an Thermal analyses of CRC and EAF dusts: a TG and b DSC example ---- TG- EAFC with 1.2 C Reduction and evaporation ---- DSC - EAFC with 1.2 C of zinc from EAF dusts 90 Reduction and evaporation of zinc from EAF dusts 80 -1.00 70 -1.50 60 -2,00 -2,50 Temperature (°C) Temperature (°C) Material Chemical compositions of the dusts (wt%) C Fe₂O₃ ZnO Cr₂O₃ CaO MgO MnO SiO K₂O EAF dust 1.54 34.45 45.64 0.60 6.08 1.10 4.09 3.29 Source: M Omran, T Fabritius, Y Yu, E-P Heikkinen, G Chen & Y Kacar: CRC dust 22.89 14.72 10.06 1.04 Journal of Sustainable Metallurgy. 7(2021)1,15-26.


Example

Observation of material's thermal behavior and characterisation of material

 Behavior of glass wool waste and mine tailings (quartz feldspar sand; QFS) during heating as an example

Chemical composition (wt%) of glass wool and QFS.													
Samples	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO	SO_3	Other	SUM
QFS	77.5	13.5	0.2	0.3	0.0	4.8	3.3	0.0	0.1	0.0	0	-	99.9
Glass wool	63.4	1.9	1	8.3	2.5	16.1	0.6	0.0	0.0	-	0.2	6	100

TGA-DSC-curves of QFS and glass wool

100.0 Glass wool

99.5

99.5

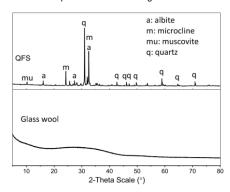
Endothermic melting peak

98.0

Temperature (°C)

Broad endothermic melting peak suggests that melting occurs on a broad temperature range. This could indicate the existence of amorphous material

Amorphous structure of the glass wool can be seen with e.g. XRD analysis (cf. lack of clear intensity peaks peaks which can be seen from GFS's XRD analysis).

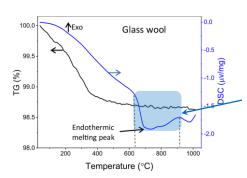

Oulun yliopisto

Source: P Lemougna, J Yliniemi, H Nguyen, E Adesanya, P Tanskanen, P Kinnunen, J Röning & M Illikainen: Journal of Building Engineering. 31(2020)101383.

*

Example

XRD patterns of QFS and glass wool



Observation of material's thermal behavior and characterisation of material

 Behavior of glass wool waste and mine tailings (quartz feldspar sand; QFS) during heating as an example

Samples	SiO_2	Al_2O_3	Fe_2O_3	CaO	MgO	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO	SO_3	Other	SUM
QFS	77.5	13.5	0.2	0.3	0.0	4.8	3.3	0.0	0.1	0.0	0	-	99.9
Glass wool	63.4	1.9	1	8.3	2.5	16.1	0.6	0.0	0.0	-	0.2	6	100

Chemical composition (wt%) of glass wool and QFS.

Broad endothermic melting peak suggests that melting occurs on a broad temperature range. This could indicate the existence of amorphous material

Amorphous structure of the glass wool can be seen with e.g. XRD analysis (cf. lack of clear intensity peaks peaks which can be seen from GFS's XRD analysis).

Example

Determination of thermochemical properties

 Changes of enthalpy related to observed phenomena can be calculated from the DTA/DSC curves

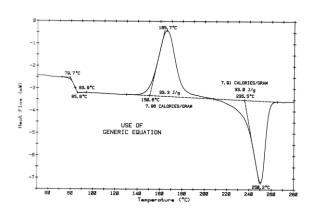
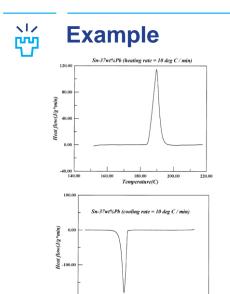



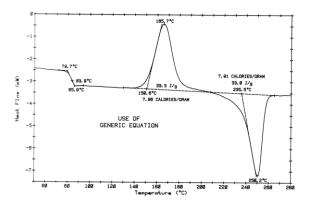
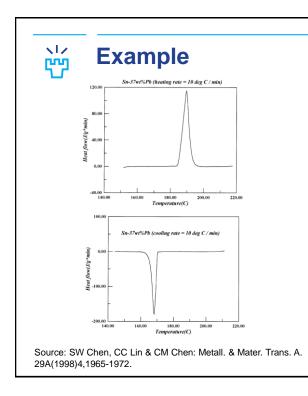
Figure from: Skoog & Leary: Principles of Instumental Analysis.

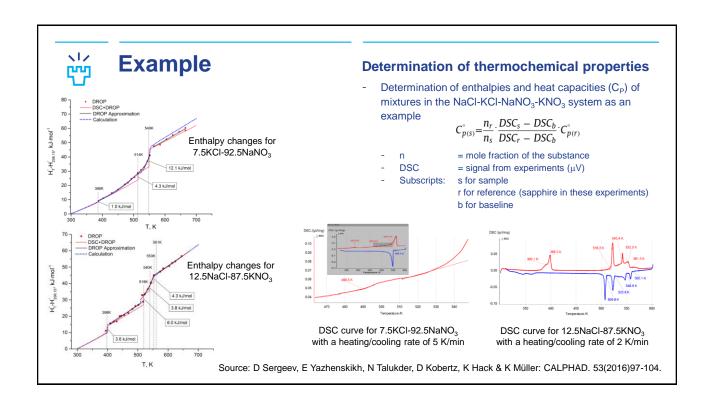
Oulun yliopisto

Source: SW Chen, CC Lin & CM Chen: Metall. & Mater. Trans. A. 29A(1998)4,1965-1972.

Determination of thermochemical properties

- Changes of enthalpy related to observed phenomena can be calculated from the DTA/DSC curves
- Determination of enthalpies of fusion with DSC for various tin-based solder materials as an example


Figure from: Skoog & Leary: Principles of Instumental Analysis.

Determination of thermochemical properties

- Changes of enthalpy related to observed phenomena can be calculated from the DTA/DSC curves
- Determination of enthalpies of fusion with DSC for various tin-based solder materials as an example

Composition	Scaning Rate	R	Reaction Temperature(s)				
(Pct)	(°C/min)		Enthalpy of Fusion (J/g				
Sn-3.5 wt pct Ag	10	222	_	_	68.2		
Sn-3.5 wt pct Ag	-10	186	_	_	-65.6		
Sn-3.5 wt pct Ag	1.25	218			66.4		
Sn-3.5 wt pct Ag	-1.25	200	_	_	-64.6		
Sn-58 wt pet Bi	10	139	_	_	43.2		
Sn-58 wt pet Bi	-10	123	_	_	-42.7		
Sn-58 wt pet Bi	1.25	138	_	_	49.1		
Sn-58 wt pet Bi	-1.25	131	_	_	-49.8		
Sn-37 wt pet Pb	10	183			45.2		
Sn-37 wt pct Pb	-10	172	_	_	-44.		
Sn-37 wt pet Pb	1.25	184			48.2		
Sn-37 wt pet Pb	-1.25	172	_	_	-49.1		
In-10 wt pet Ag	10	142	168		38.3		
In-10 wt pet Ag	-10	233	136		-37.9		
In-10 wt pet Ag	1.25	143	167		41.6		
In-10 wt pet Ag	-1.25	240	140		-43.0		
In-15 wt pet Ag	10	142	167		42.5		
In-15 wt pet Ag	-10	279	136		-40.8		
In-15 wt pet Ag	1.25	144	169		41.4		
In-15 wt pet Ag	-1.25	288	140		-43.1		
In-13 Wi pet Ag In-20 wi pet Ag	10	143	168	343	37.4		
	-10	323	136		-41.4		
In-20 wt pet Ag	1.25	323 144		_	-41.4 39.4		
In-20 wt pet Ag	-1.25	329	169 143	_	-43.0		
In-20 wt pct Ag				_			
Sn-42 wt pet Pb-8 wt pet Bi	10	154			38.0		
Sn-42 wt pet Pb-8 wt pet Bi	-10	171	162	128	-41.6		
Sn-42 wt pet Pb-8 wt pet Bi	1.25	155	163	_	39.0		
Sn-42 wt pet Pb-8 wt pet Bi	-1.25	179	171	_	-37.9		
Sn-43 wt pet Pb-14 wt pet Bi	10	134	140	_	38.4		
Sn-43 wt pet Pb-14 wt pet Bi	-10	160	151	128	-36.3		
Sn-43 wt pet Pb-14 wt pet Bi	1.25	135	137	168	35.6		
Sn-43 wt pet Pb-14 wt pet Bi	-1.25	166	159	134	-35.8		
Sn-35 wt pet Pb-10 wt pet Bi	10	135	142	_	42.7		
Sn-35 wt pet Pb-10 wt pet Bi	-10	147	142	128	-43.5		
Sn-35 wt pet Pb-10 wt pet Bi	1.25	135	142	_	46.0		
Sn-35 wt pet Pb-10 wt pet Bi	-1.25	164	134	_	-45.3		
Sn-45 wt pet Pb-10 wt pet Bi	10	143	150	_	38.4		
Sn-45 wt pet Pb-10 wt pet Bi	-10	176	160	130	-40.5		
Sn-45 wt pet Pb-10 wt pet Bi	1.25	136	142	_	44.0		
Sn-45 wt pet Pb-10 wt pet Bi	-1.25	179	162	_	-44.3		
Sn-55 wt pet Pb-10 wt pet Bi	10	121	153	175	30.7		
Sn-55 wt pet Pb-10 wt pet Bi	-10	197	153	128	-32.2		
Sn-55 wt pet Pb-10 wt pet Bi	1.25	135	141	171	34.2		
Sn-55 wt net Pb-10 wt net Bi	-1.25	202	163	134	-35.0		

Example

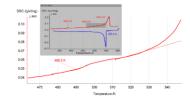
Coefficients of the linear equation of heat capacity (J $mol^{-1} K^{-1}$) $C_p^c = AT + B$ for the 7.5NaNO₃ = 92.5KCl and 12.5NaCl-87.5KNO₃ mixtures taken from DSC measurements.

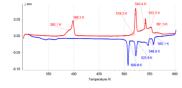
Temperature range (K)	Α	$\pm \Delta A^a$	В	$\pm \Delta B^{a}$
7.5KCl-92.5 NaNO ₃				
298-549	$2.241 \cdot 10^{-1}$	$5.81 \cdot 10^{-3}$	15.504	2.232
549-700	-	-	111.67	5.63
12.5NaCl−87.5KNO ₃				
298-398	0.338	$2.80 \cdot 10^{-3}$	-15.258	-0.954
398-561	0.114	$4.29 \cdot 10^{-3}$	56.878	1.007
561-670	0.162	$2.24 \cdot 10^{-3}$	27.089	1.4

^a Standard uncertainties are obtained taking into account the statistical scatter of the experimental data and are $u(C_p^r) = \Delta AT + \Delta B \ J \ mol^{-1} \ K^{-1}$.

Determination of thermochemical properties

 Determination of enthalpies and heat capacities (C_P) of mixtures in the NaCl-KCl-NaNO₃-KNO₃ system as an example


 $C_{p(s)}^{\circ} = \frac{n_r}{n_s} \cdot \frac{DSC_s - DSC_b}{DSC_r - DSC_b} \cdot C_{p(r)}^{\circ}$


- n = mole fraction of the substance - DSC = signal from experiments (μV)

- Subscripts: s for sample

r for reference (sapphire in these experiments)

b for baseline

DSC curve for 7.5KCI-92.5NaNO₃ with a heating/cooling rate of 5 K/min

DSC curve for 12.5NaCl-87.5KNO₃ with a heating/cooling rate of 2 K/min

Source: D Sergeev, E Yazhenskikh, N Talukder, D Kobertz, K Hack & K Müller: CALPHAD. 53(2016)97-104.

Summary

Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) are widely used in metallurgical R&D

- Possibility to study all the phenomena in which heat content of the sample changes
 - Removal of moisture/volatiles from materials
 - Decomposition of compounds
 - Reduction of materials
 - Oxidation of materials
 - Phase transformation (incl. phenomane in which mass does not change)
 - Characterisation of multicomponent systems
- Thermochemical properties of materials can be calculated based on results

Restrictions

- Equipment may limit heating/cooling rate, atmospheres, sample size, etc.
- Inaccuracies caused by the method must be known

DTA/DSC is often connected with other devices

- TGA, MS, sample analysis