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Abstract

Sulphur is considered one of the main impurities in steel. Hot metal desulphurisation serves as the
main unit process for sulphur removal in the production of steel. The main objective of this thesis
is to identify the relevant phenomena and attributes needed to construct a mathematical model
suitable for online use. The study also includes a detailed literature review on the modelling of hot
metal desulphurisation, which considers a categorisation of the existing models for the process,
but also outlines the main uncertainties in the process that may decrease the prediction
performance of the existing models.

In this study, model-based process identification techniques are studied. More specifically, the
objective is to study different techniques, both to explain the variance and to predict the end
content of sulphur in the process. To do this, a modelling framework exploiting data-driven and
mechanistic modelling techniques is proposed. The model identification procedure is divided into
variable construction, variable selection, model structure selection, and model parameter
identification steps. The model identification procedure considers both manual and automatic
model identification techniques. The thesis focuses on grey box and black box model structures.
In automatic model identification, the focus is on evolutionary search strategies, particularly
genetic algorithms.

The results of this study show that in the case of lime-based hot metal desulphurisation, the
major factors inducing variance in the end content of sulphur are related to the properties of the
reagent, i.e. to the rate of the transitory contact reaction. If the particle size distribution is known
a priori or can be assumed constant, the prediction accuracy of the models can be improved
considerably. In addition, the parameterisation of the reaction models improves the prediction
performance. It was also found that physically meaningful descriptions for the uncertain
phenomena may help to constrain the search of parameters. In addition, in-depth phenomena-
based analysis and automatic model identification strategies may assist in model selection.

Keywords: data-driven methods, genetic algorithm, hot metal desulphurisation,
mathematical modelling, model selection





Vuolio, Tero, Raakaraudan rikinpoiston mallipohjainen analyysi. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Teknillinen tiedekunta
Acta Univ. Oul. C 777, 2021
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Rikki on keskeisimpiä raakarautaan liuenneita epäpuhtauksia. Hiiliteräksen valmistusketjussa
raakaraudan rikinpoisto on prosessi, jossa rikki pääasiallisesti poistetaan. Tämän työn tavoittee-
na on tunnistaa prosessin kannalta merkityksellisiä ilmiöitä ja tekijöitä, joita tarvitaan on-line
käyttöön soveltuvien matemaattisten mallien luomiseen. Työ sisältää myös yksityiskohtaisen
kirjallisuusselvityksen, jonka tavoitteena on kategorisoida kirjallisuudessa esitetyt mallit, mutta
myös tarkastella mallien suorituskykyyn liittyviä epävarmuustekijöitä prosessin näkökulmasta.

Menetelmällisesti työ perustuu prosessin mallipohjaiseen analyysiin ja mallien valintaan.
Tarkempana tavoitteena on tarkastella systemaattisia tapoja selittää prosessin loppurikkipitoisuu-
den vaihtelua, mutta myös ennustaa loppupitoisuutta luotettavasti saatavilla olevan aineiston
perusteella. Tätä varten tehtiin mallinnuskehys, joka hyödyntää sekä täysin datapohjaisia, mutta
myös mekanistisiin ilmiöihin pohjautuvia dataa hyödyntäviä malleja. Mallin vallinta jaotellaan
ennustemuuttujien rakenteluun, ennustemuuttujien valintaan, mallin rakenteen valintaan sekä
malliparametrien estimointiin. Valinnassa käytetään sekä automaattisia, että asiantuntijatietoon
perustuvia tekniikoita. Mallit ovat rakenteellisesti joko harmaa- tai mustalaatikko filosofiaan
pohjautuvia. Automaattisessa mallien valinnassa tarkastellaan eniten erityisesti geneettisten
algoritmien toimintaa.

Tämän työn tulokset näyttävät, että reagenssin ominaisuuksilla kuten partikkelikokojakau-
malla sekä kaasua injektoivien lisäaineiden määrällä on vaikutus rikkipitoisuuden vaihteluun eri-
tyisesti partikkelien ja rautasulan välillä tapahtuvan reaktion nopeuden näkökulmasta. Yleisesti
mallien suorituskykyä voidaan parantaa, kun partikkelikokojakauman vaihtelu tunnetaan, tai sen
voidaan otaksua olevan vakio. Malliparametrien optimointia helpottavat fysikaaliset reunaehdot
ja prosessituntemus. Automaattisten mallin valintatekniikoiden käyttäminen voi auttaa mallinta-
jaa tarkoituksenmukaisen mallin valinnassa, mutta asiantuntijatiedon merkitystä mallinnuksessa
ei voi kuitenkaan korostaa liikaa.

Asiasanat: datapohjaiset menetelmät, geneettiset algoritmit, mallin valinta,
matemaattinen mallinnus, raakaraudan rikinpoisto
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List of abbreviations and symbols 

Abbreviations 

ANN  Artificial neural network 

BCGA Binary-coded genetic algorithm 

CV        Cross-validation 

GA         Genetic algorithm 

LMO-CV      Leave-multiple-out cross-validation 

LOO-CV       Leave-one-out-cross-validation 

MAE      Mean absolute error 

MLR      Multivariable linear regression 

MSE      Mean squared error 

PSD       Particle size distribution 

RCGA    Real-coded genetic algorithm 

RMSE    Root mean-squared error 

SSE        Sum of squared error 

HMD      Hot metal desulphurisation 

Symbols  

A Area [m2] 

a Activity of a species [-] 

bi Regression coefficient for a variable i [-] 

CS
'  Sulphide capacity based on slag-metal equilibrium [-] 

CS Sulphide capacity based on slag-gas equilibrium [-] 

d80 Diameter of a particle corresponding to 80 V-% in a cumulative 

particle size distribution [m] 

dka Mean particle diameter according to surface area approximation and 

Sh = 2. [m] 

d32 Sauter mean diameter of a particle size distribution [m] 

D Diffusion coefficient [m2/s] 

K Equilibrium constant [-]  

ki Time constant for a reaction i [1/s] 

LS Sulphur partition ratio [-] 

M Molar mass [kg/mol] 
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N Normal distribution [-] 

N Number of cross-validation splits [-] 

neff Molar efficiency of a reagent [%] 

npop Number of individuals [-] 

mሶ  Reagent feed rate [kg/s] 

pC Crossover probability [-] 

pM Mutation probability [-] 

Q Volumetric gas flowrate [m3/s] 

R Universal gas constant [J/(mol∙K)] 

Ri Reaction rate for mechanism i [%/s] 

R2 Coefficient of determination [-] 

r Uniformly distributed random number [-] 

t Time [s] 

tres Residence time [s]  

V Volume [m3] 

xi Input variable i [-] 

y Output variable [-] 

yො Predicted output variable [-] 

w Mass fraction [-] 

X Data matrix [-] 

α Confidence level [-] 

β Mass transfer coefficient [m/s] 

ρ Density [kg/m3] 

γ Individual in the population of a genetic algorithm [-] 

[ ] Species dissolved in hot metal 

( ) Species in slag phase 

{ } Species in gas phase 

< > Solid species 
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1 Introduction 

1.1 Hot metal desulphurisation in steel production 

In steelmaking, sulphur is considered one of the main impurities in hot metal. The 

sulphur originates from the raw materials used in blast furnace ironmaking. The 

existence of sulphur in the final steel product causes brittleness, decreasing its 

weldability and corrosion resistance. The sulphur content after the blast furnace is 

typically around 0.030–0.045 wt-%. The appropriate final sulphur content depends 

on the final steel product, but it can be as low as 0.001 wt-% (10 ppm) (Schrama et 

al. 2017). In steel production, the sulphur is removed either in secondary 

metallurgical processes such as hot metal desulphurisation (HMD) and ladle 

furnace (LF), or in primary metallurgical processes such as blast furnace (BF) or 

Basic Oxygen Furnace (BOF) (Schrama et al. 2017). Figure 1 illustrates the hot 

metal desulphurisation and its role in ironmaking at SSAB Europe’s Raahe 

steelworks.  

Fig. 1. Hot metal desulphurisation in ironmaking (Reprinted, with permission, from 

SSAB Europe [Raahe steelworks] 2019 © SSAB). 

Hot metal desulphurisation serves as a unit process for external sulphur removal 

prior to decarburisation in the basic oxygen furnace. Desulphurisation is more 
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efficient prior to converting the hot metal to steel, because it demands reductive 

conditions, which prevail in melts with high silicon or carbon content. In this 

context, external sulphur removal entails desulphurisation outside the blast furnace 

process (Oeters 1994).  

There are three primary techniques for conducting hot metal desulphurisation: 

the lance injection technique; the Kanbara process; and the permanent contact 

reaction with bottom stirring (Schrama et al. 2017). Of these, this study most 

considers the full-scale processes conducted using lance injection. The Kanbara 

process is a common technique for hot metal desulphurisation in east Asia, mainly 

in Japan and China (Schrama et al. 2017). In European steelmaking, lance injection 

is considered a standard practice (Schrama et al. 2017). Less attention is therefore 

paid to the mechanisms of the Kanbara process and bottom stirring in this thesis, 

although Publication V also reviews the models available for Kanbara. For a 

comprehensive review of other hot metal desulphurisation techniques and reagents, 

the review article by Schrama et al. (2017) provides a detailed and accessible 

summary. 

In lance injection-based hot metal desulphurisation, sulphur is extracted from 

the metal phase and transferred to the slag phase by injecting a fine-grade 

desulphurisation reagent, with the aid of a carrier gas via an immersed lance. A 

typical gas used in the injection is nitrogen (N2), but the use of other gases such as 

natural gas is also possible (Oeters 1994). The desulphurisation reagent can be 

composed of a single chemical compound, or it can be a mixture of several 

compounds. Suitable chemical compounds include calcium oxide (CaO), calcium 

carbide (CaC2), calcium carbonate (CaCO3), sodium carbonate (Na2CO3), 

magnesium (Mg), and zinc oxide (ZnO), as well as their mixtures (Schrama et al. 

2017). Of these, this study considers CaO, CaCO3, Na2CO3, and CaC2.  

The main benefits of lance injection are the easy controllability of the reagent 

injection, and that it allows the co-injection of various compounds that enhance the 

reaction conditions (Irons 1988). Compared to the desulphurisation conducted with 

top slag, the reaction mechanisms in lance injection are considerably faster due to 

the substantial interfacial area available for mass transfer. In addition, the injection 

gas tends to keep the hot metal well-mixed (Irons 1988; Irons 1989). However, the 

utilisation ratio of the hot metal desulphurisation reagent is relatively low, mainly 

due to the short residence time of particles injected into the melt (Oeters 1994). 

The reagent can be injected with or without gas-forming compounds that may 

form substantial amounts of gas when decomposing due to the heat prevailing in 

the hot metal. From the previously mentioned, the CaCO3 is nowadays injected as 
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a gas-forming auxiliary compound. The use of auxiliary compounds with the 

primary reagent has been proposed to promote direct reagent-metal contact in the 

three-phase system, i.e. in lance injection (Irons 1989), but also to enhance the 

scattering of the agglomerated reagent particles in the two-phase system 

(Lindström, Nortier, & Sichen 2014). However, the effect of the gas formed in 

decomposition was found to have a negligible effect on the stirring of the metal 

bath (Irons 1989). 

1.2 Outline and contribution of the thesis 

In this study, the hot metal desulphurisation process and related phenomena are 

investigated with experimental and mathematical modelling. The emphasis is on 

the data-driven models, which are briefly categorised in Section 3 and in more 

detail in Publication V. The research questions to be answered in this thesis are as 

follows:  

1. What are the main attributes that affect the efficiency of hot metal 

desulphurisation? 

2. What is the effect of reagent particle size distribution on the rate and efficiency 

of lime-based desulphurisation? 

3. What types of model might be considered applicable in explaining and 

predicting the behaviour of the process in online use? 

With reference to the research questions, the objective of this thesis is twofold. The 

thesis provides a discussion of the relevant phenomena that need to be considered 

in the construction of prediction models for the process under study. The emphasis 

is on building parameterised models suitable for online use, but also for explanatory 

analysis of the contributing factors in the system. The guidelines proposed in the 

thesis and in the publications can therefore also be applied to systematic process 

development, along with the use of models in process control and optimisation. 

However, the thesis also introduces some automatic model selection techniques for 

generic model structures, thus providing alternatives for the use of domain 

knowledge in model selection.  

It should be noted that Section 3 summarises some fundamental considerations 

that are not reported in Publications I–V, but that are used as a basis for the 

construction of the model selection strategies and the models presented in the 

publications, and in the Results and discussion section. More specifically, the 

articles focus on methods and literature surveys, whereas this thesis opens the 
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background and motivation for the studies. The derivation of the models yet to be 

included in any of the listed publications is described more exhaustively in the 

Results and discussion section, in Sections 5.3, 5.4., 5.5., and 5.7. The meta-

analysis of the sulphide capacity models and the collected sulphide capacity data 

has been discussed in the case of CaO-SiO2-Na2O in Publication II and is extended 

in this thesis in Section 5.7. The results and discussion section also covers 

discussion and smaller studies beyond the scope of Publications I–V, which they 

therefore do not report. The objectives and the outline of the publications are 

presented in Table 1.  

Table 1. Objectives and outline of the thesis. 

Publication Objectives and contents 

Publication I The article aims to plug the literature gap on the effect of particle size distribution on the 

rate of hot metal desulphurisation by exploiting explanatory and predictive modelling. 

 

Publication II The primary objective of this study is to systematically investigate the industrially 

relevant problem of re-sulphurisation. The re-sulphurisation kinetics and mechanisms 

are evaluated through systematic explanatory modelling. 

 

Publication III As in Publication I, the primary objective is to select a prediction model for primary hot 

metal desulphurisation. Here, the proposed model structure is generic, and the 

proposed selection strategy employs the genetic algorithm. 

 

Publication IV The objective of this study is to extend prediction model identification studies to neural 

network models. The models are employed to predict carbide-based hot metal 

desulphurisation. 

 

Publication V The objective of this paper is to provide a comprehensive review of the modelling of hot 

metal desulphurisation and discuss the future needs, outlines, and trends in the field. 
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2 Modelling of hot metal desulphurisation  

The general desulphurisation reaction is described as a reaction in which the 

oxygen acts as an electron donor for sulphur to form a negatively charged anion 

(Oeters 1994):  

 
ሾSሿ  ሺOଶିሻ ⇄ ሺSଶିሻ  ሾOሿ. ሺ1ሻ 

  

The main reaction is considered to occur via three different mechanisms, which are 

as follows (Pal & Patil 1986; Chiang et al. 1990; Oeters 1994): 

i. The transitory contact reaction, which occurs between the injected 

reagent particles and the metal phase, mainly during the ascending of 

particles towards the bath surface. 

ii. The permanent contact reaction between the top slag and the metal 

phase. 

iii. The reaction between the particles entrapped inside the bubbles 

formed due to the injection of the carrier gas. 

In the literature, the overall desulphurisation reaction is often assumed to follow 

first-order reaction kinetics, and the main reaction control mechanism is attributed 

to mass transfer (Oeters 1994). Provided that the particles come into contact with 

the metal phase, the transitory contact reaction is often considered to be controlled 

by two sequentially occurring steps, which are the boundary layer and solid-state 

diffusion (Oeters 1994). The situation in which the particles remain inside the 

carrier gas bubbles, preventing them from coming into direct metal contact, is 

referred to here as contact control, as in Chiang et al. (1990). The general form for 

the rate of the individual mechanism is  

 
𝑅 ൌ  െ𝑘ሺሾSሿ௧ െ ሾSሿ∗ሻ, (2) 

 

where Rj is the rate of reaction scheme j, being now either i, ii, or iii, kj is the time 

constant for the reaction scheme j, [S]t is the sulphur content at time instant t, and 

[S]* is the equilibrium content of sulphur in the bulk or the sulphur content at the 

reaction interface for a reaction scheme j. As outlined in Publication V, a huge 

number of models is available for the hot metal desulphurisation process. In most, 

the change of sulphur in the metal bath is considered to follow first-order kinetics, 

as above. Referring to the existing models, the overall rate for desulphurisation can 
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be written as the sum of the above rates (Deo & Boom 1993; Seshadri, Da Silva, 

Da Silva, & von Krüger 1997) 

 
𝑅௧௧  ൌ  𝑅    𝑅    𝑅 , ሺ3ሻ 

 

where Rtot is the overall rate, Ri is the rate of transitory reaction, Rii is the rate of 

permanent contact reaction, and Riii is the rate between the metal phase and the 

particles entrapped in the bubbles.   

2.1 Transitory reaction 

As stated, the reaction that occurs between the reagent particles and the melt is 

referred to as the transitory reaction. The main desulphurisation reaction with CaO-

based reagent particles with sulphur is (Oeters 1994)  

 
൏ CaO  ሾSሿ → ൏ CaS  ሾOሿ. ሺ4ሻ 

  

With CaC2 based reagents, the considered reaction is  

 
൏ CaCଶ  ሾSሿ → ሺCaSሻ  2ሾCሿ. ሺ5ሻ 

  

In this study, these reactions are referred to as transitory reactions, because they 

are considered to occur during the ascent of the injected particles through the metal 

bath to the top slag. The transitory desulphurisation reaction can be generalised as 

an extraction process, in which the sulphur that is dissolved in the metal phase is 

bound to a suitable cation (Oeters 1994). In the above reactions, the Ca2+ acts as 

the binding cation. Of the rate expressions, the rate of transitory reaction is often 

considered the most significant (Chiang et al. 1990; Rastogi et al. 1994). However, 

there are some contradictions to this. For example, Hara et al. (1986) reported that 

if the CaCO3 was used as the reagent, the contribution of the transitory reaction to 

the overall rate was only around 25%, whereas in the modelling study of Seshadri 

et al. (1997), the particle size specific contributions to the overall rate varied from 

0 to 60%, depending on particle size. However, the model of Seshadri et al. (1997) 

was not validated with experimental data but was a good semi-quantitative 

illustration of the effects of different attributes on reaction rates.  

As indicated in Publications I and V, there are many uncertainties regarding the 

description of the relevant phenomena in the models, which may result in the 
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expressions for the rate laws suffering from uncertainty. In addition, the datasets 

available for the identification of such full-scale mechanisms are often scarce or 

may not contain all the relevant data. These uncertainties complicate the evaluation 

of the relative contribution, because the rate of transitory reaction depends on the 

type and properties of the reagent, such as particle size distribution (Coudure & 

Irons 1994; Lindström & Sichen 2015). In addition, as the residence times and the 

fraction of particles in contact with the metal phase are not accurately known, there 

can be numerous solutions for relative contributions that satisfy the observed rate. 

It is assumed that the actual contribution depends on at least (Irons 1989; Chiang 

et al. 1990; Zhang & Irons 1994; Oeters 1994; Coudure & Irons 1994; Lindström 

et al. 2014; Lindström & Sichen 2015):  

– the solid surface area of the particles in contact with the melt; 

– the feed rate of the particles; 

– the local oxygen activity; 

– the rate of solid-state diffusion; 

– the average residence time of the reagent particles; 

– the mass transfer in the metal-reagent boundary layer. 

Many of these factors are extremely difficult to quantify, not only in the full-scale 

process but at the laboratory scale. There are therefore several degrees of freedom 

in the system. Depending on the process and the drawn assumptions, the expression 

can be simplified by neglecting mechanism iii, because the contribution and the 

actual reaction mechanism between the metal phase and the particles entrapped in 

the carrier gas bubbles is difficult to estimate. This is mainly because the 

experiments provide only direct or indirect information concerning the fraction of 

entrapped particles inside the carrier gas bubbles. For example, Zhao and Irons 

(1994) used model-based analysis and the heat transfer correlations to determine 

this attribute (Zhao & Irons 1994).  

As many studies outline, in both CaC2 and CaO reagents, the effective solid 

surface area in contact with the metal is an important factor to be considered 

(Coudure & Irons 1994; Lindström & Sichen 2015), and the surface area to volume 

ratio of particles is theoretically proportional to particle size, because for ideal 

spheres, the following holds:  

 

൬
𝐴
𝑉
൰

ൌ  

6
𝑑

, ሺ6ሻ 
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where A is the surface area of a spherical particle, V is its volume, and dp is its 

diameter. Due to the surface forces prevailing in the complex three-phase injection 

system, the effective surface area of particles is assumed to be smaller than the 

nominal surface area. This assumption is supported by Lee and Morita (2004), for 

example. They propose that for fine-grade particles (100 μm), the penetration 

velocities can be as high as 100 m/s. Some findings supporting this assumption 

concerning particle size distribution have been made by Coudure and Irons (1994), 

who find that the effect of mass transfer, determined by exploiting the equivalent 

diameter of a spherical particle in a diffusion-controlled process, is smaller than the 

theoretical effect. A regression analysis with logarithmic effects shows that the 

coefficient corresponding to the equivalent diameter for <CaC2> reagent was dka
-1.31, 

whereas the authors propose that the theoretical effect is squared, i.e. dka
-2  (Coudure 

& Irons 1994). The squared effect is based on the assumption that the characteristic 

length of diffusion is equal to the particle diameter (Coudure & Irons 1994). 

Publication I provides similar findings, as does this thesis.  

Another factor that complicates the analysis of the reaction rate is the 

penetration behaviour and the residence times of reagent particles. There is no 

consensus in the literature concerning the values to use for these attributes. 

Nevertheless, it is almost impossible to directly quantify these attributes in 

industrial conditions by measuring, and only numerical estimates can therefore be 

made with dedicated computational fluid dynamics models. However, for online 

applications, these models provide only descriptive information on the boundary 

conditions or on the system attributes, because the governing equations for 

momentum, mass, and heat transfer are computationally very expensive to solve, 

and their use in process control is therefore impractical. This study relies on 

explanatory analysis with parameterised and generic data-driven models of 

quantifying the effect on CaO.  However, this attribute is very difficult to determine 

precisely both in full-scale and at laboratory scale, and only semi-quantitative 

results are therefore available (Engh et al. 1979; Farias & Irons 1985; Farias & 

Irons 1986).  

2.2 Permanent reaction 

The permanent reaction has often been assumed to be mainly a function of specific 

surface area, the thermodynamic driving force, and the overall mass transfer rate in 

the boundary layer. The driving force of the slag-metal reaction is often taken as 

the concentration difference between the bulk-metal and metal-slag boundary 
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layers (Deng & Oeters 1990). The concentration in the boundary layer can be 

expressed by the sulphur partition ratio (Seshadri et al. 1997). The sulphur partition 

ratio can be defined between the slag and metal phases as follows 

 

𝐿ୗ ൌ  
ሺ%Sሻ
ሾ%Sሿ

. ሺ7ሻ 

 

As indicated in Publication II, the direction of the reaction can be expressed with 

the aid of the following inequalities of the sulphur partition ratio:  

– LS,t < LS,eq  – is a sufficient condition for desulphurisation; 

– LS,t > LS,eq – is a sufficient condition for re-sulphurisation.  

As discussed in Publication II, resulphurisation is considered a major problem in 

the industry. The rate of re-sulphurisation was found to be controlled by the 

magnitude of the thermodynamic driving force. Furthermore, the magnitude of the 

thermodynamic driving force can be associated with the sulphide capacity of the 

slag phase, which can be defined either on the basis of the slag-metal reaction 

presented above or on the basis of the slag-gas reaction of (Nzotta et al. 1998) 

 
1
2
ሼSଶሽ  ሺOଶିሻ → ሺSଶିሻ 

1
2
ሼOଶሽ. ሺ8ሻ 

 

Based on the equilibrium constant of the above reaction, the expression for the 

sulphide capacity can be given as  

 

𝐶ୗ ൌ ሺSሻඨ
𝑝మ
𝑝ୗమ

, ሺ9ሻ 

 

where  pi is the partial pressure of a gaseous species i. Further, the equilibrium 

partition ratio of sulphur between the slag and metal phases can be expressed as 

(Oeters 1994) 

ሺ%Sሻ
ሾ%Sሿ

ൌ
𝐶ௌ
ᇱ

𝑎ሾሿ
ୌ 𝑓ୗ

ୌ, ሺ10ሻ 
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where CS
'   is the sulphide capacity on slag-metal reaction basis, and a[O]

H   is the 

Henrian based activity of oxygen and 𝑓ୗ
ୌ is the activity coefficient of sulphur in the 

metal. From this definition, it can be seen that (Oeters 1994)  

 

𝐶ௌ
ᇱ ൌ  

𝐾𝑎ሺሻ
ୖ

𝛾ሺୗሻ
ୖ , ሺ11ሻ 

 

where 𝛾ሺୗሻ
ୖ  is the Raoultian activity coefficient of sulphur in the slag. The sulphide 

capacity thus depends on the composition and temperature of the slag phase. As 

reported in Publication II, the functional dependency of the sulphide capacity on 

the temperature and slag composition has been studied quite extensively. Sections 

4.3. and 5.7.2. discuss the concept and modelling of sulphide capacity with meta-

analysis, and extend the studies conducted in Publication II.   

According to the formulation of Deng and Oeters (1982), the overall mass 

transfer coefficient in steady flow conditions also depends on sulphide capacity 

(Deng & Oeters 1982). In a steady flow system, Choi et al. (2001) and Tong et al. 

(2017) propose a linear relationship between the overall time constant and slag’s 

sulphide capacity. However, the mass transfer rate for the slag-metal reaction also 

depends on the composition and temperature through viscous mass-transfer and the 

diffusion rate, which cannot be considered independent of the composition, making 

the system non-linear in nature. Moreover, the mass transfer in the ladle depends 

on the convective flows in the system (Oeters 1994). Indeed, the convection 

dominates diffusion-related mass transfer due to the large gas flowrate, and the 

reaction volume is therefore often assumed to be perfectly mixed, allowing the 

lumping of the spatial dimensions. In practice, this assumption allows the use of 

mathematical models with a phenomenological basis online due to the reasonable 

computational time. Due to the large gas flowrate and bubble bursting phenomenon 

(Oeters 1994), during the injection, a large number of metal droplets are induced 

from the metal to the slag phases, in which they get entrapped. In theory, these 

droplets might react with the slag phase, further promoting the reaction. However, 

as the exact droplet size distribution and the behaviour of the slag phase 

surrounding the droplets is not well known, this mechanism is usually ignored in 

the models and in this work.  

As the area for the slag-metal interface is significantly smaller than that of the 

surface area of the fine-grade powder, the overall rate for the permanent contact 

reaction is often considered significantly slower. Rastogi et al. (1994) estimate that 
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the contribution of the slag phase is half that of the reagent contribution, whereas 

Seshadri et al. (1997) estimate that the permanent contact reaction essentially 

defines the overall rate. However, these attributes greatly depend on the chosen 

residence time for the transitory contact reaction. As Oeters (1994) proposes, the 

emulsification of the slag droplets in the metal phase in a liquid slag cause the 

system behaviour to approach an emulsified reaction system, which drastically 

increases the reaction rate. However, due to the relatively low temperature, the 

solubility of the solid CaO in the slag phase is very limited, making the slag a 

heterogeneous system, consisting of the liquid slag phase and the solid particles, 

especially with high reagent injection rates. Chiang et al. (1990) study the effect of 

different slag conditions on calcium carbide-based desulphurisation, finding that 

the dry slag in fact provides a slower rate than the liquid slag. This property is 

attributed to the capacity of liquid slag to dissolve the reaction products. Similar 

behaviour was observed when the metal phase was not initially surmounted by the 

slag phase (Chiang et al. 1990). The computational complexity for the 

heterogeneous systems are naturally quite high, and the derived models often 

therefore consider the slag phase to be fully liquid, and the mass transfer 

coefficients are expressed with empirical correlations, such as the correlation of 

Riboud and Olette (1982), which is given as 
 

𝛽௧௧ ൌ  𝜏 ൬𝐷ሾୗሿ
𝑄௧௧
𝐴
൰
.ହ

, ሺ12ሻ 

 

where τ is an empirical describing the relation between the gas flowrate Qtot  

through a specific surface area A in bath surface conditions (temperature and 

pressure) and D[S] is the diffusion coefficient of sulphur in the hot metal. The 

authors suggested a value of 500 (m-0.5) for τ to be suitable for converter and ladle 

metallurgical operations (Riboud & Olette 1982). In hot metal desulphurisation, 

due to the injection of solid species, the composition of the slag phase evolves 

dynamically during the injection. Practical observations have revealed that the slag 

is initially liquid at the operating temperature, but during the injection, it 

approaches a heterogeneous system due to the high content of non-dissolved CaO 

particles. The compositional details of the slag phase are discussed in Section 4.1., 

which describes the experimental data used in this study.   
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2.3  Comparable models presented in the literature 

As a detailed review of the models proposed for hot metal desulphurisation has 

been given in Publication V, this section focuses on comparable models, i.e. those 

that use a similar methodology to that of this study. The focus of this section in 

terms of the presented categorisation is illustrated in Figure 2. It can be seen that 

data-driven modelling techniques often rely either on parameterised reaction or 

parametric regression models, including neural networks, or a multiple linear 

regression and its variants. Overall, data-driven models are a minority in both the 

modelling of hot metal desulphurisation and more broadly, in the metallurgical 

context. The reasoning for this is provided in Publication V and in Sections 2 and 

3. The next subsections provide a more detailed description of these models.  

 

Fig. 2. Categorisation of the existing data-driven models for hot metal desulphurisation. 

(Reprinted [adapted] under CC By 4.0 lincense from Publication V © 2019 Authors). 

2.3.1 Rastogi et al. (1994) 

In the study of Rastogi et al. (1994), a phenomena-based model proposed by Deo 

and Boom (1993) is used as an identification basis to study the contribution of 

different desulphurisation mechanisms in carbide-based hot metal 

desulphurisation. The model belongs to the category of parameterised reaction 
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models, because it relies on the phenomenological description of the reaction rates 

that are corrected with explicitly estimated empirical parameters. The model 

parameters are identified with a binary-coded genetic algorithm, which is compared 

with the analytical solution of the least-squares objective function. The genetic 

algorithm is found to provide a more realistic estimate of the contributing 

mechanisms than the analytical solution. It is also found that the error for the 

training set of the parameterised model is 58% smaller than the prediction error for 

the non-parameterised model. The study’s authors evaluate the figures of merit for 

the test set as R2 = 0.69 and MAE = 19.1 ppm. As the authors do not report the 

prediction error for the end sulphur content for the external validation set, they 

evaluate the model performance from the dimensionless quantities given in the 

study.   

2.3.2 Datta et al. (1994) 

Datta et al. (1994) present a neural network model for hot metal desulphurisation. 

The model is manually selected, and trained using the backpropagation and 

gradient descent methods. The figures of merit for the external validation dataset, 

consisting of 11 treatments, are R2 = 0.60 and MAE = 27 ppm. The model structure 

is selected manually, and the input variables are sulphur content before the 

treatment, treatment time, the mass of the hot metal, and the gas and CaC2 

flowrates. However, the gas flowrate is constant in the data, and there is therefore 

no covariance between the gas flowrate and the observed sulphur content, which 

means the effect of input gas flowrate is non-observable in the data.  

2.3.3 Deo et al. (1994) 

The study of Deo et al. (1994) presents a neural network model whose learning rate 

is meta-optimised with various methods. The model uses the parameterised model 

presented by Rastogi et al. (1994) as one of the input variables. The model structure 

is identified using trial and error. In addition, the authors propose that the logistic 

transform of the output enhances the convergence of the network. The model 

performs similarly to the previous model, but for a larger test set of 45 treatments.   
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2.3.4 Dudzic and Zhang (2004) 

Dudzic and Zhang (2004) apply an adaptive partial least-squares (PLS) regression 

modelling algorithm for the online control of hot metal desulphurisation. They use 

the poor knowledge of the underlying mechanisms as an argument for constructing 

a fully data-driven model. The constructed models use 14 input variables, and the 

data is divided into two parts, based on the used reagent. To achieve adaptivity, the 

transformed input data is treated with moving average transformation, and the new 

model parameters are updated accordingly. The authors do not report the 

quantitative estimation error for the end content of sulphur, but the model can 

provide a well-correlating estimate of the reagent consumption with the true value 

of the consumed reagent. The article of Quinn et al. (2002) considers the use of the 

proposed algorithm in plant practice.   

2.3.5 Bhattacharya et al. (2004) 

The study of Battacharya et al. (2004) considers the use of PLS regression to predict 

carbide consumption in the lance injection process. The study finds that the PLS 

model performs slightly better than the multivariable linear regression (MLR) 

model. However, the dimensions of the MLR model are not reduced, and a detailed 

variable selection is not considered. The study finds that the most influential 

variables are the initial, final, target, and turndown sulphur content.  

2.3.6 Vinoo et al. (2007) 

In the study of Vinoo et al. (2007), a piecewise linear regression model is 

constructed with manual selection techniques to predict the consumption of CaC2 

in hot metal desulphurisation. The model constitutes four linear equations that are 

identified for pre-classified temperature ranges. The figures of merit R2 = 0.48 and 

MAE 15.3 ppm are defined for 15 treatments in online use. The properties of the 

reagent are not accounted for. 

2.3.7 Dan et al. (2008) 

In the approach of Dan et al. (2008), model selection is conducted manually to 

predict three attributes of a Kanbara process. The output variables of interest are 

the consumption of the reagent, stirring speed, and stirring time. To this end, three 
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different configurations of artificial neural networks are used. The authors use a 

semi-empirical relation to determine the optimal number of hidden neurons instead 

of selecting the hyperparameters with cross-validation.  

2.3.8 Feng et al. (2019) 

In this work, the authors use a case-based reasoning model and a parameterised 

model to predict the end content of sulphur in a Kanbara hot metal desulphurisation. 

The final estimate of the end content of sulphur is constructed based on the 

weighted and biased Euclidean norm of the predictions of the case-based reasoning 

and the parameterised model. The case-based reasoning model works similarly to 

the k-nearest-neighbour (kNN) algorithm, because it regresses the future outcome 

as the mean, median, or equivalent of the similar observations, i.e. those closest in 

the feature or the variable space (Altman 1992). 
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3 Data-driven mathematical modelling 

Mathematical models are a set of equations that describe the behaviour of a static 

or dynamic system, or a specific phenomenon prevailing in it (Szekely 1988). Two 

very general purposes of mathematical models are to explain the mechanisms or 

predict the future outcome of the system (Shmueli 2010). With mathematical 

models, the output variable Y is to be predicted or explained based on a set of input 

variables X = [x1, x2… xn]. The relation between the output and input variables is 

linked with a mechanistic or a generic statistical function, i.e. Y = f(X), where f(X) 

is the assumed functional relation between the input and the output variable. In the 

context of regression problems, Y is defined in continuous space, but the variables 

in X can be either discrete or continuous. Especially in the context of statistical 

models, the models usually contain parameters that are estimated based on the 

available data. Thus, the form of the prediction model becomes (Hastie et al. 2009) 

 
𝑌 ൌ 𝑓ሺ𝑋,𝜃ሻ  𝜀, (13) 

  

where f(X, θ) is the parametric functional form of the model, 𝜃  is the model 

parameter vector, and ε is the modelling residual (or modelling error), following a 

certain distribution. The distribution of error term is usually assumed 

homoscedastic, i.e. ε = N (0, σଶ). The model itself is denoted as f(X, θ), which can 

be interpreted as the conditional expectation of Y with given X and θ, i.e. f(X, θ) = 

E (Y | X, θ) (Hastie et al. 2009).  

As Publication V outlines, numerous mathematical models are available for 

hot metal desulphurisation, and a categorisation of models is therefore necessary, 

especially as a huge number of models is developed for different purposes with 

different approaches. In the mathematical modelling of systems and processes, 

there are several default examples of model categorisation. A rough categorisation 

distinguishes between model types based either on data or domain knowledge, i.e. 

quantitative information or prior knowledge (Sohlberg & Jacobsen 2008). 

However, this categorisation is quite narrow concerning the current state of the art 

in the field of modelling, especially because the field of machine learning and data-

driven modelling has recently gained increased popularity mainly because of the 

results achieved with deep learning in pattern recognition applications (LeCun et 

al. 2015). A more detailed categorisation would be the frequently referenced 

division based on the model structure in which the different types of mathematical 

model are often differentiated as follows (Sjöberg et al. 1995):  
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– White box models are models, which are constructed based on prior knowledge 

and physical principles, by making argumentative assumptions concerning the 

system and its phenomena. In such a case, the model functions (f(X)) tend to 

have a physical significance, but the function itself contains no parameters that 

fit the available data on the system to be the model, i.e. the expected model 

output does not depend on θ.  

– Black box models have no physically significant structure, and the model is 

identified solely based on data. Black box models are therefore usually generic, 

providing flexibility for modelling. In this study, black box models are also 

referred to as data-driven models.  

– Grey box models have a physically meaningful structure but contain parameters 

(θ ) identified from the data-driven estimation of the relation between the 

system inputs and system outcomes based on the data to be explained or 

predicted. In the literature, grey box models may also be called semi-

mechanistic models (Te Braake et al. 1998). The parameters can have a 

physical significance or meaningless units. In the statistical model context, the 

estimation process is referred to as model training, parameter estimation, etc., 

whereas in the field of process control and system identification, the term that 

is often used is model parameter identification. Another approach to grey box 

modelling is given in Sohlberg and Jacobsen (2008) and Stosch et al. (2014), 

who introduce serial and parallel configuration of white box models with black 

box models, resulting in an overall grey box model structure.  

Publication V provides an overview of model types in the context of hot metal 

desulphurisation. The categorisation relies on the above categorisation but 

distinguishes between the different model subcategories. For example, grey box 

models in the context of hot metal desulphurisation are referred to mostly as 

parameterised reaction models, whereas, for example, the category of black box 

models sprouts in linear and non-linear regression, of which MLR,  PLS, PCR, and 

ANN are special examples. As the literature concerning the use of black box models 

to predict hot metal desulphurisation is relatively scarce, the categorisation is not 

sprouted further, because it would not support the outline of this thesis, and much 

more influential reviews and books are available for this category’s models. More 

detailed descriptions and reviews of neural networks can be found in LeCun et al. 

(2015) and Haykin (1994), and the fundamentals of the random forests can be found 

in Breiman’s study (2001), not to mention the huge number of other available 

algorithms. For example, model ensembles (bagging and boosting) are very 
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influential, but the algorithms are not found to serve this study’s purposes. For 

efficient boosting and bagging algorithms in pattern recognition, the reader is 

advised to begin with the studies of Chen and Guestrin (2016) on XgBoost, 

Breiman (2001) on random forests, and Hastie et al. (2009) on AdaBoost. It should 

also be noted that there are many more ways to categorise prediction models. For 

example, regression models can be further divided into nonparametric and 

parametric regression (Altman 1991). However, this categorisation is impractical 

in this context, because there are very few examples in the literature that consider 

non-parametric data-driven methods in the modelling of hot metal 

desulphurisation. Indeed, the only study referenced in this thesis that uses non-

parametric estimators in the modelling of hot metal desulphurisation is the study of 

Feng et al. (2019). Furthermore, the data-driven approaches can be categorised as 

non-supervised and supervised learning methods (Hastie et al. 2009), but because 

the methods considered in this thesis and in the previous literature on hot metal 

desulphurisation mostly consider supervised learning, this categorisation is not 

discussed further. 

3.1 Applications of mathematical models 

A fundamental question determining the methodology to select a mathematical 

model and the suitability of a model per se for a problem under study is “Does this 

study consider explanatory or predictive modelling?” The division between 

explanatory and predictive modelling originates in the field of statistical modelling, 

but the principles of model selection also intersect with the principles of 

mechanistic white box and grey box model selection, especially concerning the 

evaluation of the model performance (Sargent 2010), but also of model training and 

validation. In explanatory modelling, the general objective is to find a model that 

helps to answer the formulated causal hypotheses, whereas in predictive modelling, 

the models are built to predict the future outcomes of the system based on the 

examples drawn from historical data (Shmueli 2010). The methodology for 

evaluating the explanatory and predictive models is dissimilar, and it is therefore 

necessary to differentiate the approaches at a very early stage. The objectives of 

these three types of model can be summarised as in Szekely (1988) and Shmueli 

(2010): 

– Descriptive modelling uses a mathematical model to construct a description of 

underlying relations in the data. The objective of descriptive modelling is not 
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to explain the phenomenological basis by studying the causal hypothesis but to 

investigate the relation between X and Y.  

– Explanatory modelling uses mathematical models to test the formulated causal 

hypothesis. However, the hypothesis testing can be seen very differently, 

depending on whether the studied model is a statistical or mechanistic model. 

For example, the hypothesis tests are well-defined for multivariable linear 

regression, but the techniques to study the causality of phenomena in the case 

of mechanistic models are very different (Sargent 1988; Sargent 2010). 

– Predictive modelling uses mathematical models to predict the system’s future 

outcomes given the set of input data (Shmueli 2010). In predictive modelling, 

the main emphasis is on the model’s predictive performance, and less attention 

is usually paid to explanatory analysis. If meaningful predictions are to be 

made, the need for data is generally higher than in the explanatory model.  

This study mostly considers explanatory and predictive modelling in the context of 

both fully data-driven and parameterised grey box models. However, Publication 

V also presents the other modelling techniques available in the context of hot metal 

desulphurisation. In considering Publication V, it may be asked what the purpose 

of the presented models is in the context of hot metal desulphurisation. A high 

temperature and otherwise hostile conditions constitute a solid argument for the use 

of mathematical models in the context of full-scale extractive metallurgy (Saxén & 

Pettersson 2007). As it is very difficult to measure system properties, the models 

can offer a phenomenological insight into the system. In some contexts, it is a 

commonplace to refer to such model usage as soft sensing (Lin et al. 2007). Soft 

sensors refer to using software and models to sense the system conditions without 

physical measurements. As this study does not consider the final control 

application, the term soft sensor is not used or explained further. 

As indicated in Publication V, most models for hot metal desulphurisation are 

phenomena-based mathematical or computational fluid dynamics models, both of 

which can usually be categorised as white box models. However, referring to the 

problem of the residence time of the particles, for example, the models usually 

contain empirically fitted parameters, even though the parameter identification 

procedure is often not very sophisticated but is conducted on a manual trial-and-

error basis (Oeters 1994). The generic data-driven and parameterised models used 

for fully predictive purposes are a minority in the context of hot metal 

desulphurisation but are also relatively rare in the field of modelling ferrous 

pyrometallurgical processes. However, their usability is widely acknowledged in 
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the literature. Good but limited examples of the use of such models are given in the 

context of metallurgy other than hot metal desulphurisation (Petterson et al. 2007) 

and in other disciplines (Odom & Shadra 1990; Ghiaus et al. 2007; Barbosa et al. 

2011).  

Studies often refer to the use of models in process control and optimisation 

purposes. For example, it is claimed the model by Ma et al. (2017) is designed for 

this purpose. However, with reference to the argument of Saxén and Pettersson 

(2007) on the hostile conditions for measurements, the validation data available for 

testing the predictive performance of the models is often scarce, which, according 

to statisticians, does not encourage the use of models to predict future outcomes, 

especially if the model contains any parameters fitted to the experimental data 

(Hastie et al. 2009). More often, the objective is to explain the phenomena and 

causalities concerning the operating parameters and the process behaviour, and 

furthermore to study their effect on the process outcome. For example, Chiang et 

al. (1990), Coudure and Irons (1994), Zhao and Irons (1994a), and Zhao and Irons 

(1994b) use a detailed model-based analysis to explain the rate phenomena during 

injection. In this context, the phenomenological analysis appears very useful, but 

as shown by the analysis of Oeters (1994) and Chiang et al. (1990), the assumptions 

made affect the results.  

3.2 Model selection 

The purpose of model selection is to select the best mathematical model from the 

set of candidate models. In the literature, a term that is often used is the true model 

of the system (Chatfield 1995). The true model can be interpreted as a model that 

explains the mechanisms of the underlying system in arbitrary accuracy. In model 

selection, the existence of a true model has often been questioned. Instead, it is 

recommended to find the best approximative model based on the data (Chatfield 

1995). The criterion that determines which model is best depends on both the 

model’s final application and its type (Shmueli 2010; Heinze et al. 2018).  

Some very general preferred criteria that seem independent of the model type 

and application field can be summarised as accuracy and interpretability. In the 

context of data-driven models, parsimonicity is also a desired criterion (Burnham 

& Anderson 2002), but with reference to Publication V, it is poorly applicable to 

mechanistic models, because the models usually seek to explain the causalities with 

relatively exhaustive descriptions, especially in the case of CFD models. Thus, a 

good mathematical model could be summarised at least as an accurate but 
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interpretable abstraction of real-world complexities. As model selection techniques 

are very different in mechanistic and data-driven models, the next subsections are 

structured with this in mind.  

3.2.1 Data-driven model selection 

In statistical models, data-driven models, machine-learning models, etc., the 

semantics may differ, but the basic principles are very similar. The objective is to 

select an explanatory or predictive model by using a collection of observations, i.e. 

a set of experimental data. If the dataset on whose basis the prediction models are 

to be constructed has already been collected and pre-processed, data-driven 

prediction model selection (i.e. black box or grey box model selection) can be 

divided roughly into five steps:  

1. model structure selection;  

2. variable construction or feature extraction; 

3. variable or feature selection; 

4. model parameter identification or model training; 

5. model validation or model performance assessment. 

Some of these introduced steps can be gone through sequentially or in parallel, 

depending on the components implemented to carry out the task. For example, in 

the case of model-based variable selection algorithms (i.e. wrapper algorithms), the 

model must be trained during the selection (Kohavi & John 1997). As it is more 

common to call computational variables “features”, especially in the context of 

signal analysis, this study mainly uses the term “variable”. However, Section 3.4. 

shows that the modelling scheme also includes the use of several computational 

variables.  

The selection of a data-driven predictive model is a combination of discrete 

and continuous optimisation problems, where the model is selected such that the 

specified objective function is either minimised or maximised, depending on the 

objective. The discrete optimisation problem arises from the selection of the 

variables, whereas model parameter identification is usually defined in the 

continuous space. In the context of predictive models, the general objective of 

model selection is to identify the trade-off between model bias and model variance, 

i.e. to minimise the risk that is defined as the sum of model variance and the squared 

bias. However, estimating these quantities is not straightforward, and a Monte 

Carlo type approximation is usually used. For example, Baumann and Baumann 
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(2014) give a detailed description of such an approach. The bias-variance trade-off 

can be simplified to analyse model complexity as follows (Hastie et al. 2009):  

1. A more complex model reduces model bias but increases model variance. 

Models with high variance tend not to generalise well to external datasets, 

because the model output changes drastically with given inputs.  

2. A simplistic model has a large bias but small variance, i.e. the model cannot 

explain the variance in the output and does not generalise well to external 

datasets.  

The above cases can also be described in terms of overfitting and underfitting. The 

model is said to be underfitted if it fails to describe the underlying mechanisms of 

the system, because the model is too simplistic, whereas the overfitted model 

replicates the data that fits very well but fails to generalise to external datasets. In 

other words, the prediction errors measured with the training and external 

validation sets are not consistent in such a way that the external validation error is 

much larger (Hastie et al. 2009). However, it should be noted that underfitted 

models also tend to generalise poorly, because they completely fail to describe the 

system. However, determining the underfitting by comparing the performance to 

the true model is seldom possible, because the data does not describe the true 

behaviour of the assumedly ultimately complex system (Burnham & Anderson 

2002). For example, Burnham and Anderson (2002) differentiate the terms 

underfitting and overfitting to consider only the best available approximative model 

instead of the true model, which can be considered a much more practical approach 

(Burnham & Anderson 2002). To select a model with the least tendency either for 

over or underfitting, the rule of parsimonicity (Occam’s razor) is often applied, 

which means that of the model candidates with equal prediction performance, the 

simplest should be selected. (Rasmussen 2001) However, it is common in practical 

applications to trade some variance of a model for model bias (Heinze et al. 2017). 

Thus, in model selection one often arrives at a principle of Occam’s razor that 

advises the selection of a model that performs similarly to the other solution 

candidates but has the least complexity (Rasmussen 2001).   

A comparison of the available approximative models can be conducted by 

using a performance metric. The objective function for data-driven model selection 

is usually formulated by using a performance assessment criterion. According to 

Baumann (2003), the objective function steers the variable selection in the right 

direction. Similar ideas have been expressed by Burnham and Anderson (2002) and 

Hastie et al. (2017), and various other authors who are not listed here, because 
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model selection is an extensively studied area. In regression, the objective function 

is usually based on the squared error function and its variants. In this study, the 

used variants are the sum of squared error (SSE), mean squared error (MSE), and 

root mean squared error (RMSE), determined either for the cross-validation set or 

the training set, depending on the case. In the case of statistical or data-driven 

models, the standard metrics for model evaluation include Akaike’s Information 

Criterion (AIC) (Akaike 1974), the Bayes Information Criterion (BIC) (Schwarz 

1978), Mallows’s Cp (Mallows 2000) and cross-validation statistics (Shao 1993), 

and many others. The introduced information criteria degrade the estimated model 

performance by adding a penalty term describing model complexity, resulting in a 

favouring of parsimonious models over complex ones in the selection. Cross-

validation estimates model variance and bias by exploiting a dataset that is 

independent of the model selection process (Hastie et al. 2009). In this study, the 

different variants of cross-validation, hypothesis testing, and information criteria 

are mainly used to guide model selection. The computational details of these are 

given in Section 3.7. 

3.2.2 Mechanistic model selection 

Referring to the division between the selection of mechanistic or statistical models, 

the steps taken in model construction differ methodologically but can be 

philosophically seen as overlapping with data-driven model selection. However, 

some steps are only suitable for generic models, whereas others apply only for 

mechanistic models, especially in terms of formulating the optimisation problem. 

For example, the term variable selection often refers to a case where a set of input 

variables is selected to explain or predict the system behaviour with a generic 

model. However, the construction of mechanistic models can be seen as a special 

case of variable selection and construction, because model selection involves the 

identification of the relevant phenomena to be described, and thus selects and 

constructs the necessary predictor variables within the model’s derivation. This 

process can be formulated as the model component selection problem, assuming 

that there is a set of model components C, each describing a specific sub-model of 

a system, and the objective is to find the most suitable combination of components, 

constrained by the a priori information. Such an approach has been studied by Levy 

et al. (1997). However, as this analogy is somewhat shallow and tendentious, it is 

not proceeded with further. Mechanistic model selection, i.e. white box model 

selection, can be summarised as consisting of the following non-sequential steps 
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and their analogies with data-driven model selection (Sargent 1988; Levy et al. 

1997; Sargent 2010):  

1. formulate the hypothesis on the system behaviour based on domain knowledge; 

2. select the relevant phenomena to be modelled, and how to model each 

phenomenon; 

3. explain the phenomena with mathematical equations that accounts for the 

phenomena and assumptions;  

4. evaluate the available system data;   

5. implement the computerised model; 

6. verify and validate the model. 

If the model is a grey box, the variable selection and model parameter identification 

steps can be included in the selection framework in Step 5. With reference to the 

different architectures of grey box models, the variable selection can consider the 

selection of an auxiliary equation, sub-model, or similar. The identification of the 

model parameters can be conducted similarly to the training of the data-driven 

models, i.e. by minimising the model prediction error by using the squared error 

function (Tan & Li 2002).  

Similarly, as in the context of data-driven models, there is often a question of 

the goodness of the model with mechanistic models. As the outline of this thesis is 

not to provide a comprehensive overview of the limitations of white box models, 

the next chapters cut some corners. In the case of mechanistic models, the true 

model context can be attributed to describing all the phenomena that define system 

behaviour. However, in the context of computationally complex white box models 

(i.e. CFD models), the endeavour towards the true model is clearly limited, for 

example, by the accuracy of the domain knowledge, used boundary conditions, and 

computational complexity, because the discretisation method applied for the 

computational lattice may be a significant source of error, for example. In addition, 

detailed white box models usually also contain sub-models (or auxiliary equations) 

that are constructed by means of data-driven techniques, of which chemical 

reaction models and turbulence models are good examples (Oberkampf & Trucano 

2002). Obviously, the error associated with the data-driven auxiliary equations 

accumulate to the total error of the mechanistic model. As indicated in Publication 

V and the other literature, in the context of metallurgy and hot metal 

desulphurisation, the accurate description of the injection scheme requires the 

solving of the governing equations for transport phenomena, which are defined in 

the time and spatial domain (Oberkampf & Trucano 2002). 
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With reference to data-driven model selection, it would also be beneficial to 

select mechanistic models in terms of the best explaining model among all model 

candidates. However, as the computational complexity of solving the governing 

equations is great, this assumption of several model candidates with respect to the 

auxiliary equation, boundary condition, and numerical solution strategy space is 

indeed very ambitious and ambiguous. Instead, candidate models are often 

conceptual, meaning that the abstraction is constructed based on the arguments 

considering the system behaviour before the actual implementation. Thus, in 

mechanistic model selection, one often arrives at selecting a model with an 

acceptable level of agreement with the domain of intended application (Oberkampf 

& Trucano 2002). 

3.2.3 Parameterised models 

As discussed in Publication V, parameterised prediction models are referred to as 

models for which a physically meaningful structure is constructed by making 

argumentative assumptions concerning the system behaviour. The model structure 

is then used as a basis of the parameter identification process, i.e. the model is fitted 

to the experimental data using mathematical optimisation. As stated earlier, this 

approach is often referred to in the literature as the grey box approach, because it 

is a combination of white box and black box approaches. According to the literature 

review we present in Publication V, nearly all the suggested models for hot metal 

desulphurisation contain some experimental parameters and functions, mainly 

related to the determining of physical quantities, even though the model structure 

is physically meaningful. However, these parameters are defined independently for 

the data used to validate the model. Thus, in Publication V, parameterised reaction 

models are referred to as those that use a sophisticated optimisation strategy for 

parameter identification.  

A non-parameterised mechanistic reaction model is usually validated with data 

from the actual system. Parameterised models differ from these in that they are 

trained according to the data gathered from the process. Thus, parameterised 

models are by default more accurate at explaining the variance of the studied data 

but are assumed to be less generalisable to other contexts than non-parameterised 

mechanistic models, because the parameters capture some variance that is induced 

by the specific process due to differences in equipment, sampling technique, 

analysing technique, and so on. The parametrisation strategies used in this study 

are discussed in more detail in Section 3.6.   



45 

Parameterised reaction models can be either dynamic or static. If the model 

contains several auxiliary equations, the computation procedure for a dynamic 

parameterised model usually consists of the computation of several constructed 

variables. Because of these properties, the variable selection step is poorly 

applicable in constructing these models, and the model structure is therefore usually 

selected manually. In modelling, the trade-off between the computational 

complexity and level of detail in the mathematical description of the system is of 

great importance, because the final application determines the weighting of these 

individual factors. Computational complexity can therefore also steer the selection 

of a parameterised model, albeit depending on the final application. The lumped 

parameter approach is often applicable to computational complexity, meaning that 

spatially defined model equations are simplified and presented in fewer 

dimensions, i.e. the model defined in t–x–y–z dimensions is described, for example, 

only in the time domain (Suesserman & Spelman 1993). Indeed, in Publication V, 

most of the mathematical models for hot metal desulphurisation are lumped 

parameter models that significantly simplify the computational domain.  

As stated, the parameters can have a physical meaning, or they can be 

dimensionless. For example, Katare et al. (2004) use metaheuristic and local search 

methods to solve rate constants, entropies, and changes in activation energies in 

large-scale kinetic models. The test problems reported by the authors show that the 

optimisation of the reaction rate constants is common, especially in consecutive 

and parallel reaction systems. However, it is also found that the suitable parameter 

ranges are wide, and there are several equally good solutions to the problem.  

3.3 Model structure selection 

This section describes the model structure used in this study with reference to the 

earlier sections and Publication V. Model structures are selected for generic models 

such that the models remain interpretable with respect to input variable space. 

Hence, the modelling techniques that rely on projection of X into a new variable 

space, such as partial least squares regression (see e.g. Gelaldi & Kowalski (1986)) 

and principal component regression (see e.g. Jolliffe 1982) (and many others), are 

omitted from the thesis, even though their existence as model structure candidates 

is acknowledged.  
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3.3.1 Generic data-driven models 

Generic prediction models are used in Publications I–V. In generic models, the 

functional form of the model includes no physically meaningful relations, which 

makes the models flexible and suitable for situations where no external knowledge 

is available about the system. However, as shown in Publications I, III, and V, the 

existence of a physical meaning is not straightforward to include or exclude in 

model categorisation. The suitable functional form depends on the relations 

between the selected input and the output variables. For example, linear models 

assume linear dependencies between inputs and outputs. The next subsections 

introduce the model types considered in this study. 

Multiple linear regression 

In this study, the multiple linear regression (MLR) models were used for both 
predictive and explanatory analysis. The general form of a multiple linear 
regression is (Harrell 2001)  
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where b0  is the bias term, and bi is the corresponding regression coefficient for 

variable i. The coefficients can be interpreted such that the values define the 

direction and magnitude of the change in the output variable when an explanatory 

variable is changed by one unit. The bias of the multiple linear regression can be 

low only if the dependencies between the explanatory and output variables are 

linear. However, some transformations are useful to preserve the linearity of the 

parameters and to allow the analytical solution for the estimates. For example, a 

logistic transform of the explanatory and the predictor variables can be used 

(Harrell 2001). Estimates of the unknown parameters b = [b0, b1… bj]T can be 

obtained by minimising the sum of the squared error (SSE) between the model 

predictions and measured outcomes. b, which minimises the SSE, can be obtained 

with the matrix pseudoinversion (Harrell 2001) 
 

𝑏 ൌ ሺX்XሻିଵX்𝑦. (15) 
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Artificial neural networks 

Artificial neural networks (ANN), usually called simply “neural networks”, are 

computational models that are inspired by the biological neurons of natural brains. 

Depending on the network structure, neural networks can be used for classification, 

regression, and clustering problems. A well-known example of the use of neural 

networks is the field of statistical pattern recognition, which is a typical 

classification problem (LeCun et al. 2015). In regression problems, the output to be 

modelled and predicted is continuous, whereas a classification model maps the 

output of the network to discrete space with the decision rule. In this study, neural 

networks are used to predict the sulphide capacity in Publication II and the end 

content of sulphur in carbide-based hot metal desulphurisation in Publication IV. 

Publication IV also studies the use of the hybrid encoded genetic algorithm in the 

simultaneous variable selection and selection of the number of hidden neurons. In 

this context, modelling problems are therefore defined in continuous space, which 

is why the classification networks are excluded from the study, even though they 

are very influential and extremely popular (LeCun et al. 2015).  

In function approximation and regression problems, neural networks are 

considered universal approximators, because they can map any continuous function 

with arbitrary accuracy, provided that the network structure is sufficiently complex 

(Hornik et al. 1989). Neural networks are therefore suitable for predicting even 

complex and non-linear system behaviour, based solely on the available data about 

the system. With reference to categorisation, neural networks are themselves 

considered black box models, but can also be implemented in series or in parallel 

with a white box model, defining the overall model as a grey box type. Good 

examples of a parallel grey box model with a neural network in the context of 

chemical engineering can be found in the study of Xiong and Jutan (2002). 

Although the networks are flexible and generic, the selection and training of a 

neural network model cannot be considered trivial. For example, even in simple 

multilayer feedforward networks, there are several hyperparameters to be defined, 

including the input variables, number of hidden neurons, fraction of connectivity, 

and used activation functions (Hagan et al. 1997). In a regression neural network, 

either a hyperbolic tangent or non-scaled sigmoid function is used as the hidden 

layer activation, and a continuous linear function is used as the output activation 

function. With reference to the network’s layered structure, the model output can 

be given with the following function decomposition, with a linear activation 

function in the output layer:  
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where w0
o is the bias term of the output neuron, wi

o is the weight coefficient between 

the output layer and the hidden layer, g is the hidden layer activation function, Wi 

is the weight matrix between the input variables and the hidden layer, and w0
i  is the 

bias term of the hidden neuron. It is common to use the sigmoid type activation 

function in the network in regression problems. This study uses the hyperbolic 

tangent (i.e. the scaled sigmoid) function as the hidden layer activation. As the 

number of parameters in a fully connected network is usually large, the amount of 

data needed to select a well-generalising network is large. Consequently, in this 

study, neural networks are used only for Datasets 2 (secondary desulphurisation) 

and 3 (sulphide capacity data). Identifying these weights is referred to as the 

training of a neural network. In the literature, numerous training algorithms are 

available; indeed, several algorithms suitable for continuous function optimisation 

are also suitable for the training of neural networks. The general idea of training is 

first to calculate the network output and then to update the network coefficients 

iteratively, such that the training error is minimised. The iterative steps are taken 

towards the gradient of the error function. In most approaches, the gradient of the 

error is computed with the backpropagation algorithm (Lecun et al. 2015). In this 

study, the main training algorithm is the Levenberg-Marquardt algorithm with or 

without Bayesian regularisation. Exhaustive descriptions of these algorithms can 

be found in the studies of Hagan and Menhaj (1994) and Foresee and Hagan (1997), 

for example. These algorithms have proved useful in the training of feedforward 

neural networks, and their implementation is relatively simple. 

The Levenberg-Marquardt algorithm relies on the second-order derivative of 

the objective function, i.e. the Hessian matrix. However, the Hessian matrix is 

approximated with JTJ, where J is the Jacobian matrix that is constituted in the first-

order derivatives of the prediction residual (Hagan & Menhaj 1994). As a second-

order method, the Levenberg-Marquardt algorithm is relatively fast, and often 

performs well, provided the network architecture is not too complex, making the 

computation of the Jacobian matrix computationally inefficient compared to first-

order methods. The Bayesian regularisation increases the generalisation capability 

of the networks, because it simultaneously minimises the sum of squared weight 

coefficients and the training error. The regularisation parameter can also be 

specified prior to model identification, as in the classic Lasso regression (Tibshirani 
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1996). In the Bayesian regularisation, Foresee and Hagan (1997) propose optimal 

regularisation parameters α and β, which are estimated in the Bayesian sense by 

using the information concerning the number of parameters that are effectively used 

in the minimisation of the objective function (Foresee & Hagan 1997).   

If a neural network is used as the model basis in wrapper-based variable 

selection, the computational complexity of the iterative network training needs to 

be addressed. To tackle this issue, the wrapper algorithm employed in Publication 

IV uses the extreme learning machine (ELM) architecture originally proposed by 

Huang et al. (2006). In the ELM model, the hidden layer weight matrix is left 

untrained, and the weight coefficients between the hidden and the output layers are 

solved with the Moore-Penrose inversion described earlier. A more detailed 

description of this approach is given in Publication IV. Some variants of ELM 

conduct the training of the hidden layer weight coefficients with a metaheuristic 

algorithm such as particle swarm optimisation (PSO) (Zeng et al. 2017) or the real-

coded genetic algorithm (Suresh et al. 2010), although this approach is not 

considered here. 

3.4 Variable construction 

Variable construction entails generating a set of useful variables from a set of raw 

data. Suitable variable construction techniques are somewhat case-specific and 

depend on the available data (Guyon & Elisseef 2006). However, many standard 

techniques and procedures are available, especially in the field of signal and image 

analysis. In the context of image analysis, variable construction is quite intuitive, 

because the images themselves contain objects and patterns that can be easily 

distinguished by human perception, but without extracting the features from the 

image, the image data itself is useless for pattern recognition, because it contains 

spatial variation, thus requiring local transformation operations. It should be noted 

that image analysis is used here only as an analogy for illustrative purposes.  

On the other hand, variable construction can refer to data pre-processing. Pre-

processing techniques include standardisation, scaling, normalisation, noise 

reduction, and discretisation. The purposes of these operations are further 

discussed in Guyon and Elisseef (2006). Of these, this study uses the 

standardisation and scaling operations, and some variants of the Box-Cox 

transformation (Box & Cox 1964). Standardisation is given as (Han et al. 2011) 
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where Xᇱ is the transformed column vector that has a zero mean and unit variance. 

The scaling of data means scaling the data to a pre-specified interval, i.e. such that 

Xᇱ  = {a, b} (Han et al. 2011). As a default, this study uses Xᇱ  = {0, 1} as the scaling 

interval.  

In the context of this study, an obvious example of a constructed variable is the 

sulphide capacity (CS) of the slag, which is estimated based on the chemical 

composition of the slag and other system conditions. In this analogy, data pre-

processing is linked to dimensional reduction, because the original dimensionality 

of the data would be from n+k to 1, where n is the number of slag components, and 

k is the number of system conditions. The sulphide capacity is then used to 

determine the equilibrium stage of the permanent contact reaction through to the 

evaluation of the sulphur partition ratio between the slag and metal phase. The 

construction of the sulphide capacity from the raw data is explained in detail in 

Publication II and Section 4.3. In the metallurgical context, it is common to estimate 

the mass-transfer of the available mass-transfer correlations that use the Reynolds’, 

Schmidt, and Sherwood numbers, for example (Clift et al. 1978). Similarly, the 

whole particle size distribution is not applicable in a generic data-driven model, 

because the dimensionality of the model would explode. Instead, deriving a 

meaningful characteristic value such as the Sauter mean diameter (Pacek et al. 

1998), mean volume-based size, or median area-based size, all of which describe 

the properties of the distribution, is an example of constructing a suitable predictor 

based on a raw measurement.  

The importance of domain knowledge cannot be underestimated in variable 

construction. Indeed, most of the complex simulation models use variable 

construction techniques that are based on theoretical, empirical, or semi-empirical 

models. However, there is no actual need to draw a solid analogy between dynamic 

simulation and data-driven prediction models, for which the concept of variable 

construction was originally introduced. Instead, acknowledging and understanding 

this connection may help in deriving more meaningful data-driven models.  

From the examples above, it is obvious that the constructed variables may be 

correlated, raising the problem of multicollinearity, i.e. a situation in which the 

explanatory variables have a strong linear relation with each other. This is 

detrimental, especially for the explanatory analysis of the models, because the 

multicollinearity increases the error of the parameter estimates and may saturate 
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the individual effects (Harrell 2015). In addition, as the dimensionality of the data 

increases within the number of constructed variables, there is potential to increase 

the number of redundant, irrelevant, and noisy variables (Guyon & Elisseef 2006). 

To distinguish these variables from the relevant ones, input variable selection is 

needed (Guyon & Elisseef 2003). 

3.5 Variable selection 

Input variable selection plays a crucial role in data-driven model selection (Heinze 

et al. 2018). The need for variable selection arises within the increased number of 

available input variable candidates. Variable selection can be seen as the most 

computationally intensive step in model selection, especially when there is a large 

number of variable candidates in the dataset, and no domain knowledge, either of 

the suitable number of predictor variables or the suitable predictor variables 

themselves, is available. This is because the number of available models increases 

exponentially within the number of variables (Kohavi & John 1997). Variable 

selection has been discussed as a way to improve model performance and 

interpretability. The improved performance can be attributed to the improved 

generalisation of the model through to decreased variance, because decreasing the 

number of input variables reduces the model complexity (Hastie et al. 2009). In 

addition, in very large models, variable selection also decreases the computational 

load of the model parameter identification if each variable is associated with a 

corresponding parameter (Guyon & Elisseef 2003).  

The primary objective of variable selection is to find a suitable subset of 

variables that maximises model performance in terms of the assessed criteria. The 

criteria themselves in variable and model selection are similar. In addition, as in 

model selection, the criteria can be formulated as objective functions to be 

maximised or minimised. The importance of the objective function in the context 

specifically of variable selection has been discussed and illustrated by Baumann 

(2003). Philosophically, variable and model selection have similar objectives, but 

the variables are usually selected for a pre-specified model structure, of which a 

very common example is multiple linear regression (Heinze et al. 2018), whereas 

model selection involves the selection of the model structure and its parameters 

(Heinze et al. 2017). However, it should again be emphasised that the wrapper 

approaches for variable selection demand simultaneous model parameter 

identification (Kohavi & John 1997). In the variable selection for a predictive 

model, the objective is to maximise predictive performance, whereas in the variable 



52 

selection for explanatory models, the main emphasis is on testing the causal 

hypotheses and the system’s theoretical considerations (Shmueli 2010).  

When choosing the subset for a prediction or explanatory model, selection can 

be conducted manually or automatically by algorithmic means. In manual selection, 

the domain knowledge of the system is used for selection or as an initial guess for 

selection. There are obvious advantages in manual selection, such as the fact that 

an input variable in a model is included because of true causality (Heinze et al. 

2018), provided that the domain knowledge is sufficiently precise. However, 

whether this dependency provided by the knowledge can be identified from the data 

is often another question, because the relation can be biased or non-observable 

because of other sources of variation, including measurement noise and 

collinearities. This issue, among others, could make the subset selection based on 

the hypothesis testing problematic, and thus support the use of domain knowledge 

in selection (Burnham & Anderson 2002; Harrell 2015). 

The algorithmic approach can be considered a good alternative for variable 

selection if the problem to be modelled is very complex (Breiman 2001), the 

domain knowledge is not properly addressed, and a large number of variable 

candidates is available. The variable selection algorithms can be further divided 

into wrappers, filters, and embedded methods (Guyon & Elisseef 2003), which can 

be described as follows:  

– In wrapper algorithms, the search is carried out based on the objective function 

that considers the performance of the model itself (Kohavi & John 1997). The 

wrappers are computationally intensive, because they require several model 

parameter identifications and performance evaluations to construct the final 

solution.  

– Filter approaches are computationally more efficient, because the variables are 

selected based on a specified ranking criterion. Several criteria exist, but the 

correlation and the mutual information between the input and the output 

variables can be considered influential (Guyon & Elisseef 2003).  

– Embedded methods include shrinkage or regularisation operators such as Lasso 

(Tibshirani 1996), among many others. In these techniques, the model 

parameters are reduced towards zero, making the corresponding variables 

meaningless in the model. As stated earlier in Section 3.3.1., the Bayesian 

regularisation technique is similar to Lasso, but in this study, it is only used in 

the context of neural networks.  
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Generally, as can be summarised based on the thoughts of Breiman (2001), it is 

good not to stick to a single solution but to experiment with several techniques in 

constructing the solution (Breiman 2001). In this study, four main techniques are 

compared for model selection, i.e. manual selection with domain knowledge, 

exhaustive search, deterministic forward selection and its variates (3 versions), and 

genetic algorithms. These algorithms are chosen because it is characteristic of hot 

metal desulphurisation data that it contains a limited number of observations but a 

relatively large number of predictors, and is thus substantially exposed to the 

selection of overfitted or coincidental models (Baumann 2005; Harrell 2015). The 

next sections describe the implemented variable selection algorithms.  

3.5.1 Manual selection  

In the literature, manual selection is often referred to as variable subset selection 

using domain knowledge (Guyon & Elisseef 2003; Heinze et al. 2018). For 

example, Burnham and Anderson (2002), Guyon and Elisseef (2003), and Heinze 

et al. (2018) suggest the use of domain knowledge as a preferable strategy for subset 

selection, because domain knowledge contains information that the data itself does 

not easily reveal. 

Domain knowledge can be used either in generic model or mechanistic model 

selection. However, the formulation of manual selection in the case of mechanistic 

models is not as straightforward as it is for generic models. In mechanistic models, 

manual selection can be seen as merely corresponding to the derivation of the 

model, although the model structure is selected simultaneously. In generic models, 

manual selection refers to the selection of a meaningful subset of variables to be 

used in a generic model structure (Heinze et al. 2018). However, the need to include 

a variable in a model is debated. It is known to influence the output, even though 

this does not appear significant. For example, Burnham and Anderson (2002) prefer 

the inclusion of models that make sense physically, and the exclusion of models of 

which estimated parameters do not make sense at all, even though they appear 

significant in hypothesis tests (Burnham & Anderson 2002). 

With reference to the above guidelines, domain knowledge is of great 

importance in this study, both in model selection and the evaluation of model 

performance.  The extraction of domain knowledge is mainly conducted with 

literature reviews that create the baseline for reasoning. Such studies are performed 

in Publications I, II, and V.  
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3.5.2 Optimal search strategies for variable selection 

As stated earlier, variable selection can be treated as an optimisation problem, 

where the objective is to find the subset of variables that minimises the given 

objective function. The optimal search strategies are algorithms that basically 

evaluate all the possible subsets. This approach is also referred to as best subset 

selection (Hastie et al. 2009). However, the computational complexity of the 

optimal search is exponential, because the required number of model evaluations 

is 2n–1, where n is the number of variable candidates. Because of the computational 

complexity, this strategy is considered only for linear models constructed from 

small datasets. The variant of best subset selection is the branch-and-bound 

algorithm (Guyon & Elisseef 2003), which is not considered here. As the variable 

selection problem is discontinuous, the optimal search strategies are the only ones 

that can guarantee the globally best model. In this study, this strategy is used as a 

comparison, but only for Dataset 1 (primary desulphurisation), because it is the 

only dataset for which the strategy is computationally feasible. 

3.5.3 Deterministic algorithms for variable selection 

Deterministic variable selection algorithms are strategies that solve the problem of 

variable selection with sequential elimination or additive operations (Guyon & 

Elisseef 2003). In the statistical literature, strategies have often been referred to as 

stepwise regression techniques (Harrell 2015). The use of stepwise regression with 

hypothesis testing has been criticised, because it results in nested models, of which 

the R2 values are biased highly, and the p-values are too small due to an 

underestimation of standard errors and confidence intervals that are too narrow 

(Harrell 2015). Instead of stepwise regression, Harrell (2015) recommends using 

the full model for statistical inferences. An alternative view of this is the one 

proposed by Burnham and Anderson (2002), who state that the full model inference 

may be problematic especially in the case of a limited number of observations and 

large number of irrelevant variable candidates. According to the authors, this setting 

leads to a situation in which the bias in the estimates deteriorates the inference 

(Burnham & Anderson 2002). In this study, the selection of a proper subset is 

favoured over the full model inference, because the number of observations is 

relatively limited.  
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Forward Selection 1 

The forward selection algorithm belongs to a family of deterministic model 

selection methods. The forward selection algorithm is initialised with an empty 

variable vector, and the variables are added to the model in a greedy manner, i.e. 

such that the variable that most increases the model prediction performance during 

the search is included. The algorithm has also been referred to in the literature as 

sequential forward selection (SFS) or the hill-climbing algorithm (Kohavi & John 

1997; Guyon & Elisseef 2003) As was empirically proved by Kohavi and John 

(1997) in the context of classifiers, the main problematic of forward selection is 

that the algorithm often tends to stick in the local optimum in the variable space. 

The steps of the forward selection can be given as follows:  

1. Add each feature candidate xi to the trial model from a set Xk = {1, 2 … M–k}. 

2. Evaluate the objective function value for each of the trial models. 

3. Select the best model along the set of M–k trial models. 

4. If the objective function value is improved, update the current model 

containing the k number of features. 

It can be shown that worst-case complexity is the forward selection of order O(n2), 

where n is the number of available variable candidates corresponding to the case, 

where all the variable candidates existing in the data are selected in the model. This 

is often a more practical choice than the exhaustive search, of which the complexity 

is of order O(2n), because 2n–1 subset combinations are theoretically available. The 

algorithm does not consider the possibility that eliminating a variable from a model 

will improve prediction performance (Kohavi & John 1997; Guyon & Elisseef 

2003). For this, floating search extensions of the sequential selection algorithms 

have been proposed (Pudil et al. 1994). Compared to the backward elimination 

strategy, which starts from a full set of variables, forward selection tends to select 

more parsimonious models but does not in theory evaluate the interacting variable 

combinations as efficiently as the backward elimination (Kohavi & John 1997). 

However, as the datasets in this study are rather small, and the number of 

observations is limited, one of the primary objectives is to keep models 

parsimonious, which is why forward selection is preferred to the backward 

elimination.   
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Forward Selection 2 

Filters in variable selection are often used to reduce the complexity of deterministic 

wrappers. In this study, the tested filter approach combines forward selection and 

variable ranking. The algorithm proceeds as follows:  

1. Sort the variables based on a ranking criterion into descending order 

2. Add variables sequentially to the model 

3. If the objective function value is decreased, the variable is added to the model 

and otherwise discarded.  

The filter approach is designed to provide a fast alternative for model selection, 

because the complexity of the approach is only linear for linear regression. 

However, the performance of the filter greatly depends on the selected ranking 

criteria (Guyon & Elisseef 2003). 

Forward Selection 3 

In this study, the Forward Selection 3 algorithm is used for the explanatory analysis 

of the datasets and domain knowledge. The algorithm follows similar principles to 

the stepwise forward selection given in Heinze et al. (2018), for example. The 

modified algorithm proceeds as follows:  

1. sort the values with respect to their significance (in t-test terms) in decreasing 

order; 

2. initialise the model with the most significant single predictor; 

3. add the variables sequentially to the trial model in the given order and estimate 

the model after each inclusion; 

4. if the addition of a variable results in a statistically significant p-value (≤ α), 

leave it to the model;  

5. if any of the variables already included in the model get an insignificant p-

value, eliminate them sequentially from the model; 

6. reconsider the previously eliminated variables; 

7. repeat until all variables have been included in the model at least once, along 

with some of the eliminated variables.  

The computational details of the used hypothesis tests are given in Section 3.7.1. 

The reasoning behind the algorithm is that it favours significant single variables, 

but also considers their explanatory power if used with other variables. In addition, 
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the elimination step allows all variables that appear insignificant compared to the 

others to be discarded, whereas the reconsideration step makes it possible to include 

a variable that could be significant in terms of the new trial model, even though it 

is considered insignificant in previous iterations. By doing this, the algorithm 

guarantees a convergence to a subset in which all the estimated p-values are below 

the chosen risk level; the full model is chosen by setting α = 1. This is necessary, 

because some of the variables may seem insignificant individually but may be 

useful as part of a multivariable model, and vice versa (Guyon & Elisseef 2003). 

However, with reference to the Freedman paradox (Freedman & Freedman 1983), 

which states that the input variables independent of the output variable can pass the 

hypothesis test, the solution provided by this algorithm is only used as a supportive 

solution for domain knowledge.  

3.5.4 Stochastic algorithms for variable selection 

Unlike deterministic algorithms, stochastic variable selection techniques rely on 

random operators to modify the solution vectors. Metaheuristic algorithms for 

variable selection are a family of methods that rely on the heuristic evaluation of 

solution candidates. The term metaheuristic refers to the fact that the solutions 

provided by these algorithms are not necessarily optimal, but otherwise of high 

quality. The stochastic metaheuristic algorithms that have been used successfully 

for variable selection include genetic algorithms, tabu search, simulated annealing, 

and particle swarm optimisation (Baumann 2003; Guyon & Elisseef 2003; Wang 

2007), and many more. In this study, a genetic algorithm is chosen as the search 

engine to solve the variable selection problems, in which it is proved to perform 

relatively well, both in regression and classification problems (Siedlecki & 

Sklansky 1993; Leardi et al. 2002; Huang et al. 2007; Sorsa et al. 2013; Oreski & 

Oreski 2014). The genetic algorithm is considered the wrapper search engine, 

because it uses the system model to evaluate the solution candidates (Kohavi & 

John 1997; Guyon & Elisseef 2003).  

When a genetic algorithm is used for variable selection, each of the solution 

candidates, i.e. the individuals in a population, corresponds to a binary-encoded 

variable vector. In this vector, if a gene corresponds to 1, the variable is selected 

and otherwise not (Siedlecki & Sklansky 1993). Consequently, the algorithm uses 

of binary crossover and mutation operators, which differ somewhat from the 

operations defined for real-coded genetic algorithms. Such a genetic algorithm is 

used in Publications III and IV. However, in the latter, the binary-encoded genetic 
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algorithm is responsible for selecting the subset of variables, whereas the neural 

network structure is selected using integer-based encoding, which results in a 

hybrid overall encoding of the chromosomes.  

However, the selection operators are the same as in the real-coded version. The 

real-coded genetic algorithm with hybrid operators is used in this study for the 

parameter identification of a dynamic model, which is why the selection operators 

are reported within it. The following sections introduce the binary-encoded 

operators used in this study.  

Fitness function  

As the regression model selection aims to minimise the prediction error, the fitness 

function of the genetic algorithm is given as the inverse of the objective function. 

In this study, the genetic algorithms use the inverse of the internal validation error 

defined for N repetitions (or cross-validation error) as the fitness measure. To avoid 

the selection of collinear variables, Publications III and IV also use the VIF index, 

which is estimated based on the collinearities between input variables. In 

Publication III, the maximum VIF between input variable pairs is used, whereas in 

Publication IV, the VIF is defined as the largest element in the inverse of the 

correlation matrix. However, it was found that the problem was also solved well 

without constraining the objective function. 

Crossover 

In a binary-encoded crossover, the offspring of the selected parents is formed such 

that segments of two individuals, i.e. the parent individuals, are swapped with each 

other. The swapped segment of the chromosome is defined either with a single or 

two randomly chosen crossover spots (Goldberg 1989). Crossover between 

individuals is regulated by crossover probability pC. Typically, a high crossover 

probability (i.e. pC = 0.8–0.9) is used. In practical implementation, crossover occurs 

if a continuous random number in the range {0, 1} is smaller than the specified 

crossover probability pC (Goldberg 1989).   

Mutation  

The mutation operator is implemented to increase the diversity of a population by 

making stochastic changes to individuals. In mutation, a random bit, several bits, 
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or a segment of bits in a chromosome are inverted  (Goldberg 1989). The mutation 

of individuals is controlled by the mutation probability. The criteria for mutation to 

occur are the same as for crossover. The mutation operator can be implemented in 

various ways, but the following implementations are used in this study:  

1. Uniform dot mutation – A single bit of an individual is inverted with a 

probability of pM. 

2. Segment mutation – A whole segment of an individual is inverted after the 

specified cut-off point with a probability of pM∙(1 – pM,D), where pM,D is the 

probability of dot mutation. A similar mutation strategy for a whole bit string 

is illustrated in Gharahbagh and Abolghasemi (2008), for example. 

In this study, the mutation probability evolves deterministically within generations, 

according to the scheduling rule proposed by Bäck and Schultz (1996). The idea 

behind the control of mutation probability is to target the high mutation rates at the 

algorithm’s first generations, i.e. the global search phase, where the region of the 

optimal (or a very good) solution exists. In later generations, the mutation 

probability decreases to reduce the stochastic changes in the population during the 

proceeding of generations. A similar reasoning for controlling the mutation effect 

is proposed in the context of real-coded genetic algorithms by Michalewicz (1992).  

3.6 Model parameter identification 

The estimation of model parameters is often referred to as model training or model 

parameter identification, and is conducted via optimisation by minimising or 

maximising a suitable objective function in a continuous space. Model training can 

be expressed as a form of optimisation problem, in which the squared prediction 

residual is usually minimised. The objective functions used in this study are 

introduced within the model derivation. A suitable solution strategy is determined 

by the model’s characteristics. As has been seen, in multivariable linear regression 

or other linear models, the parameters can be estimated analytically with the 

pseudoinversion given on page 45. The requirement for this is that the parameter 

identification problem can be expressed in a closed-form solution, which demands 

a linear model structure (Harrell 2015). In non-linear and dynamic models, a 

suitable iterative procedure is needed to determine the parameters.  

The iterative model parameter identification or training strategies – in other 

words, the optimisation algorithms – can be categorised in gradient-based and 

gradient-free optimisation. Gradient-based optimisation algorithms obviously 
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require the computation of the gradient of the objective function to search for the 

optimum. However, the main problem of the gradient-based search in the context 

of parameter identification is that the functions are usually multimodal (i.e. have 

multiple local optima), and gradient-based methods therefore tend to get stuck. 

However, some algorithms deal well with the function valleys. For example, the 

Levenberg-Marquardt algorithm uses an adaptive damping parameter (λ) (Hagan 

& Menhaj 1994), which both helps the algorithm to jump over the function valleys 

and to converge with the bottom of the valley. The multimodality itself arises from 

measurement errors (or noise), both in the variables to be predicted and explanatory 

variables, and in determining the problem. To tackle this, gradient-free search 

strategies are usually suggested (Katare et al. 2004; Nyarko & Scitovski 2004; 

Khalik et al. 2007). In this study, neural networks are trained using analytical and 

gradient-based optimisation, whereas parameterised models are trained using 

gradient-free strategies, mainly genetic algorithms. More details on the training 

strategies are given in Publications I, IV, and Section 5. 

3.6.1 Real-coded genetic algorithm in parameter identification 

Compared to a binary-coded genetic algorithm, its real-coded invariant provides a 

more reliable and precise alternative for a parameter identification algorithm. 

Whereas operators of the binary-coded algorithm are defined in the discrete space, 

operators in the real-coded algorithm define them in the continuous space, which 

allows an increased precision of solutions near the minima. The real-coded genetic 

algorithm therefore does not suffer from the precision problems commonly 

attributed to the binary-encoded population when used in a continuous space, also 

referred to as Hamming’s cliff (Deep et al. 2009). Otherwise, the basic idea of the 

real-coded genetic algorithm is similar to that of the binary-coded version, but the 

implementation of the mating operators differs.  

Selection 

The genetic algorithm used in this study implements two different selection 

strategies, i.e. tournament selection (TS) and roulette wheel selection (RWS), as 

well as the combination of both. The tournament selection for k individuals is 

implemented as follows (Goldberg et al. 1989):  

1. generate a random permutation vector of size npop; 
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2. sort the population according to the permutation vector; 

3. define a scale of k individuals that is moved across the population; 

4. select the winner of the tournament as the fittest in the scale of k individuals; 

5. repeat until the pre-specified number of individuals is selected.  

The roulette wheel selection is implemented as follows:  

1. calculate the cumulative probability distribution based on the fitness 

likelihoods of the population; 

2. draw a random number between 0 and 1; 

3. the index which corresponds to the drawn random value in the cumulative 

probability distribution is selected. 

Arumugam et al. (2005) offer convincing results on the effect of hybrid selection 

strategy on the convergence of the algorithm in the scheduling problem, which 

encourages the use of a hybrid selection strategy. Consequently, in this study the 

real-coded genetic algorithm selects 50% of the individuals with tournament 

selection and 50% with roulette wheel selection (Arumugam et al. 2005). 

Crossover 

For the crossover operator, the hybrid approach proposed by Arumugam et al. 

(2005) is used. The hybrid crossover combines two different crossover operators 

and treats a predefined part of the population with a specified operator. This study 

uses a hybrid of the arithmetic convex crossovers. The arithmetic crossover is 

defined as (Arumugam et al. 2005) 

 
𝛾ை,ଵ ൌ  𝛼𝛾,ଵ  ሺ1 െ 𝛼ሻ𝛾,ଶ, ሺ18ሻ 

and 
𝛾ை,ଶ ൌ  𝛼𝛾,ଶ  ሺ1 െ 𝛼ሻ𝛾,ଵ, ሺ19ሻ 

 

where 𝛼 is a uniformly distributed random number between -0.25 and 1.25. It is 

common that 𝛼 is defined between 0 and 1. However, the expansion of the range 

allows the exploration of a wider region. It should be noted that an excessively wide 

range for 𝛼  would probably result in the divergence of the population from the 

minima, because the changes made in the individuals would be large. As an 

alternative crossover method, the average convex crossover is used. The average 

convex crossover is like an arithmetic crossover, expect that the crossover 
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parameter is set as 𝛼 = 0.5 (Arumugam et al. 2005). The individuals are treated 

with the crossover operators so that approximately 50% of the individuals are 

treated with the arithmetic crossover, and the rest with the average convex 

crossover.  

Mutation 

Mutation is implemented for the real-coded genetic algorithm with two strategies, 

the Mäkinen-Periaux-Toivanen mutation (MPT) (Mäkinen et al. 1998) and non-

uniform mutation, proposed originally by Michalewicz (1992). The Mäkinen-

Periaux-Toivanen mutation is described in more detail in Publication IV, where it 

is used to mutate the real-coded part of the individuals. The non-uniform mutation 

is defined by Michalewicz (1992) as  

 

𝛾ை
ᇱ ൌ  ൜

𝛾ை  𝑓ሺ𝑖,   𝑢 െ  𝛾ைሻ, 𝑖𝑓  𝑟 ൏ 0.5
𝛾ை െ 𝑓ሺ𝑖,   𝛾ை െ 𝑙ሻ,          𝑖𝑓 𝑟  0.5 

, ሺ20ሻ 

 

where  𝛾ை
ᇱ  is a mutated individual, 𝛾ை is an individual, i is the current generation, 

u and l correspond to the upper and lower bounds of the mutated individual, and r 

is a randomly drawn number r = {0, 1}. f is a function that defines the mutation 

range as a function of the current generation. The function f is defined as 

(Michalewicz 1992) 
 

𝑓ሺ𝑖,𝑑𝑥ሻ ൌ 𝑑𝑥 ቆ1െ 𝑟ቀଵି
௧
்ቁ

್

 ቇ , ሺ21ሻ 

 

where dx is the mutation function. The algorithm for parameterisation is 

implemented so that approximately 50% of the mutated individuals are treated with 

either MPT or non-uniform mutation. The reasoning behind such an 

implementation is that non-uniform mutation shifts to a local search in the latter 

generations, of which dependency is controlled with parameter b.  In this study, b 

= 2. However, MPT mutation does not depend on generation, and it thus allows the 

algorithm to use both globally and locally efficient mutation operators, even in 

latter generations.  
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Elitism 

Stochastic optimisation strategies tend to suffer from a loss of information due to 

an unpredictable event during the search. This issue can be overcome with the 

elitism operator, which allows a monotonic decrease of the objective function 

value. The elitism operator is implemented such that the globally best individual is 

preserved in the population during the iterations, preventing the loss of information. 

Population shifting 

Population shifting towards the elite is proposed as the convergence acceleration 

method by Wong et al. (1997). The original idea in shifting relies on the assumption 

that the elite of the population is correctly directed in relation to the optima. The 

approach is extended by Arumugam et al. (2004). In their study, population shifting 

is carried out as  

𝛾ை
ᇱ ൌ 𝛾ை,  𝑟൫𝛾ை, െ  𝛾ை൯, ሺ22ሻ 

 

where 𝛾ை,  is the elite of the population, and r is a random number defined 

between r = {-1 1}. Shifting towards the elite is not conducted for each individual, 

but approximately 10% of them, i.e. the probability for shifting is pS = 0.1.  

3.7 Model performance assessment and validation 

Evaluating model performance is a crucial step in model selection, because the step 

gathers evidence on the model’s applicability. Model validation techniques differ 

concerning whether the model is used for explanation or prediction. For a predictive 

model, generalisability is an important factor, because it is defined as model 

performance in independent test data (Hastie et al. 2009). In validating an 

explanatory model, it is of interest to consider whether the model explains the stated 

hypotheses, and how well it fits the collected observations. These can be answered 

by diagnosing residuals and goodness-of-fit tests. Standard hypothesis tests are also 

often used in explanatory model validation. It is important to point out that the 

goodness of an explanatory model is not a guarantee of its good predictive 

performance (Shmueli 2010). 
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3.7.1 Hypothesis testing for linear models 

In the explanatory analysis of the data, multivariable linear regression models are 

used as a basis for hypothesis testing. The hypothesis tests determine whether the 

variable of interest has an observable and reliable effect on the output variable. It 

is well known that hypothesis tests are limited to the assumptions considering the 

distributions of the input and output variables, regression coefficients, and the 

prediction residuals. The formulation for the hypothesis considering the 

significance of the regression coefficients is (Harrell 2015)  

H0: the estimated effect of the variable is not significant, i.e. bj does not differ 

significantly from zero, and 

Hα:  the estimated effect of the variable is significant, i.e. bj differs significantly 

from zero.  

The hypothesis testing for the regression coefficient is conducted using a t-test. The 

t-test statistic for a regression coefficient of an input variable j can be calculated by 

equation (Hastie et al. 2009) 

 

𝑡 ൌ
 𝑏 െ  𝑏
SE൫𝑏൯

,  ሺ23ሻ 

 

where  bj  is the least-squares estimate of the regression coefficients, bj  is the 

expected regression coefficient, and SEሺbjሻ is the standard error associated with the 

regression coefficient bj. The computation of the standard error can be conducted 

with a variance-covariance matrix, which is given as (Hastie et al. 2009) 

 

𝐶 ൌ  𝜎ଶሺ𝑋்𝑋ሻିଵ, (24) 

 

where C is the variance covariance matrix, and σ2  is the mean squared error 

estimate for a given degrees of freedom. The standard errors are given by the square 

root of the diagonal elements of C. σ2 is thus defined as (Hastie et al. 2009) 

 

𝜎ଶ ൌ
𝑆𝑆𝐸

𝑛 െ 𝑘 െ 1
ൌ  
∑ ሺ𝑦 െ  𝑦ොሻଶ

 ୀଵ

𝑛 െ 𝑘 െ 1
 , ሺ25ሻ 
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where SSE is the sum of the squared error, and k is the number of input variables 

in the model. Hypothesis tests can be problematic if the model residuals have a 

non-constant variance, i.e. the error terms are heteroscedastic. To reduce the effect 

of heteroscedasticity, James et al. (2013) suggest a shrinkage of Y with logistic 

(ln(Y)) or with root transform (√Y ), which belong to a family of Box-Cox 

transformations (Box & Cox 1964). Indeed, Box and Cox (1964) propose a logistic 

transform (λ = 0) as the primary assumption in modelling chemical rate law 

dependencies (Box & Cox 1964). To test the validity of the selected Box-Cox 

transformation, the simple Anderson-Darling test is used to test the normality of 

variables. The test rejects in a null hypothesis if data does not belong to normal 

distribution with a 5% significance level. The test is also used to test the normality 

of the prediction errors in Publication IV. Another issue concerns the correlation of 

error terms. If the error terms are correlated with the predictors, the estimated 

standard errors may underestimate the true standard error (James et al. 2013), which 

results in an increased significance in t-test terms. Similar problems have been 

outlined by Harrell (2015) in considering the stepwise techniques for variable 

selection based on hypothesis tests.  

3.7.2 Bootstrapping 

Another option for determining the distributions of the coefficient estimates is the 

bootstrapping method. Bootstrapping allows the testing of coefficients without any 

assumptions of the distribution of the residual or the data in general, and is thus 

tolerant to heteroscedasticity. In addition, bootstrapping can also be used to define 

the confidence intervals and the shape of the parameter distributions for non-linear 

models. For example, Ghosh et al. (2011) use the quantile method and the bias-

corrected and accelerated method to determine the distributions of the Richards 

growth model, the parameters of which are identified with a genetic algorithm 

(Ghosh et al. 2011), whereas Loibel et al. (2006) use a similar procedure, relying, 

however, on the Box-Cox transformation of the data to obtain the logistic form of 

the growth model. The computation of the bootstrapped distribution of a random 

variable, or in this case for a regression coefficient, can be presented with the 

following generalised steps (Efron & Tibshirani 1993): 

1. draw n samples from the data with n rows with replacement; 

2. compute the estimate for bBS
∗

 for the drawn sample; 

3. repeat steps 1 and 2 N times. 
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The SE for the estimate bj can then be defined by computing the standard deviation 

over the sample distribution. The confidence intervals can be approximated, for 

example, by making use of the quantile method, in which the confidence intervals 

are defined simply with the qth quantiles of the observed distribution, although 

more sophisticated methods also exist (Efron & Tibshirani 1993). The significance 

of the regression coefficient can be evaluated with the bootstrap p-value. According 

to Davison and Hinkley (1997), the bootstrap p-value can be computed as the 

probability of bootstrap sample observations differing from the test-statistic 

(Davidson & Hinkley 1997). Keeping this and the proposed hypotheses in mind, 

the equal-tail bootstrapped p-value can be approximated as (MacKinnon 2009) 
 

𝑝ୗ ൌ 2 minቆ
∑ 𝐼ሾ𝑏ୗ

∗ே
ୀଵ  𝑏തሿ

𝑁
,
∑ 𝐼ሾ𝑏ୗ

∗  𝑏ത ே
ୀଵ ሿ

𝑁
 ቇ , ሺ26ሻ 

 

where pBS is the bootstrap p-value, N is the number of repetitions, I is the logical 

function returning 1 for a satisfied condition, and bത is the test-statistic value, which 

in this case is 0, because in H0 it is proposed that bj = 0. It is arguable how many 

repetitions are needed to generate reliable bootstrap estimates. For example, Efron 

and Tibshirani (1993) suggest 200 repetitions for standard error estimation, and 

Davidson and Hinkley (1997) propose that the number of bootstrap samples should 

be at least 100 and up to 1,000. Harrell (2015) suggests using as many replicates as 

needed for the convergence of the distribution of the estimates. However, it should 

be kept in mind that if bootstrapping is used in the stepwise variable selection stage 

for inferences, the number of resamples increases the computational complexity of 

the algorithm by a factor of NBS. It should be noted that bootstrapping can also be 

used for prediction error estimation (Harrell 2015), but this case is not considered 

in this study. 

3.7.3 Estimation of model performance with cross-validation 

Cross-validation is a popular technique to estimate the prediction error of a model 

(Hastie et al. 2009). The general idea of cross-validation is simple. First, the data is 

divided into training and validation sets. The training set is used for model 

selection, and the validation set is used to estimate the prediction error. The division 

is carried out by sampling without replacement (Hastie et al. 2009). Cross-

validation makes no assumptions concerning the linearity of the model parameters 
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or normality of error distribution, for example (Shao 1993). However, as the 

validation data is sampled without replacement, the coefficient estimates are less 

precise than in the case of estimates drawn from the full data (Harrell 2015). This 

is because the training error tends to be less than the true error, meaning that the 

training error is too optimistic an estimate of model performance (Hastie et al. 

2009). A very common error metric for model selection is the sum of the squared 

error (SSE) and the mean squared error (MSE). There are many variants of cross-

validation, for example, hold-out cross-validation, k-fold-cross-validation, leave-

one-out (LOO) cross-validation (k = 1), and repeated random subsampling cross-

validation, i.e. Monte Carlo cross-validation or leave-multiple-out (LMO) cross-

validation (Baumann 2003). The key difference between the methods is that in k-

fold-cross-validation, each of the observations is used in training and testing at least 

once (Hastie et al. 2009), whereas in repeated random subsampling, this is not 

obviously guaranteed. For unbalanced data, each of these can be carried out with 

intentional balancing between class labels, which is referred to as stratified cross-

validation (Kohavi 1995). The other computational details for these are given, for 

example, in Hastie et al. (2017), Baumann (2003), and Kohavi (1995). Of these, 

this study uses the hold-out method and repeated random subsampling and their 

stratified variants. In Baumann’s study (2003), leave-one-out cross-validation is 

outperformed by leave-multiple-out (LMO) cross-validation, provided the number 

of data splits is adequate. If the cross-validation procedure constitutes multiple data 

splits, the error estimate is drawn as the mean of the splits. To exemplify this, if the 

SSE is used as the error metric, the cross-validation error is given as   

 

SSE ൌ  
1
𝑘
ሺ𝑦 െ 𝑦ොሻଶ


ୀଵ

, ሺ27ሻ 

 

where k is now the number of splits. Cross-validation also allows the use of other 

metrics such as the coefficient of determination (R2), mean squared error (MSE), 

root mean squared error (RMSE), and mean absolute error (MAE). If random 

subsampling is used, Baumann (2003) recommends the use of multiple splits for 

the evaluation, for example, k = 2N splits, where N is the number of data rows in 

the training data. The adequate number still depends on the dataset size. This is 

because the training and validation errors are not independent of the data subset, 

especially for small and sparse datasets (Baumann 2003). Considering the 

practicality of the model selection, the computational complexity limits the 
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reasonable number of splits, and it is intended to find a trade-off between reliability 

and computational complexity. If cross-validation is to be used as the objective 

function in the model selection, a double cross-validation procedure is 

recommended (Baumann & Baumann 2014). In model selection, double cross-

validation proceeds as follows: 

1. divide the data into training and external validation datasets; 

2. divide the training set into training and internal validation sets; 

3. estimate the model performance based on N splits in the internal validation 

loop; 

4. select the candidate model with the best performance in the internal validation 

loop; 

5. assess the prediction performance of the model with the external validation set.  

According to Baumann and Baumann (2014), model performance cannot be 

assessed only with the internal validation dataset, because it is affected by model 

bias. Model selection bias can be avoided by using the external validation set 

(Baumann & Baumann 2014). Publications III and IV use the double cross-

validation procedure as the default, with a single data split in the outer loop. In 

Publication III, 4N repetitions in the internal validation loop are used, whereas in 

Publication IV, the number of splits repeated is reflected in the uncertainty of the 

mean. Double cross-validation is a rarely referenced term, but the procedure is 

widely used in model selection. However, the internal validation set is often 

referred to as the validation set, and the external validation set is referred to as the 

test set (Hastie et al. 2009). In model training (or model parameter identification), 

control of model variance is often based on the validation set error; the validation 

error estimate is computed within iterations, and the training is stopped as soon as 

the validation error increases. In the context of neural networks, this is sometimes 

referred to as the early stopping method. Hagan et al. (1997) propose that Bayesian 

regularisation provides a somewhat equivalent result to early stopping, without the 

need for data splits (Hagan et al. 1997). In data splitting, the size of the data subsets 

needs to be considered carefully, because the extraction of the validation data 

subsets steals information from the training set, and too small a validation may 

result in the test set having an over-optimistic model performance. Typically, 50–

70% are used for training, and 15–25% are the validation sets. However, the proper 

subset sizes depend at least on the data’s signal-to-noise ratio, its functional form, 

the complexity of the model being fitted to the data, and the number of available 

observations (Hastie et al. 2009).  
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3.7.4 Information criteria 

As outlined in Section 3.2., several information criteria are available for the 

selection of models from the candidate models. Of these, Mallows’s Cp and small-

sample corrected AIC (AICC) were used. These are given as (Mallows 2000; 

Hurvich & Tsai 1989; Burnham & Anderson 2002) 

 

𝐶 ൌ  
𝑆𝑆𝐸
𝜎ොଶ

െ 𝑛  2𝑝,  ሺ28ሻ 

and 

AICେ  ൌ AIC   
2ሺ𝑝  1ሻሺ𝑝  2ሻ

𝑛 െ 𝑝 െ 2
, ሺ29ሻ 

 

where σො2  is estimated with the mean squared error for the full model, p is the 

number of model parameters, and n is the number of observations. For a model of 

which parameters are estimated by means of least squares, the AIC is defined as 

(Burnhan and Anderson 2002) 

 

AIC ൌ 𝑛 ln𝜎ොଶ   2𝑝. ሺ30ሻ 
 

For small datasets, Burnham and Anderson (2002), Hurvich and Tsai (1989), and 

Hurvich and Tsai (1995), for example, recommend using the AICC instead of CP 

and AIC for small datasets, because this adds an additional term for the criterion, 

penalising from the complexity, thus trading some model variance to bias, yielding 

as more parsimonious models. According to Burnham and Anderson (2002), the 

interpretation of AICC cannot be taken as an absolute value, but it must be compared 

to other model candidates in the set. For this purpose, the authors suggest the 

following metric (Burnham & Anderson 2002):  

 
∆ൌ AIC, െ  AIC,୫୧୬, ሺ31ሻ 

 

where ∆i  is the difference in AICC values between the model i and the smallest 

AICC of all candidate models (AICC,min).  The authors also suggest using 2 as the 

threshold for significant model candidates (Burnham & Anderson 2002). However, 

determining the best model from the set of model candidates is not a trivial task. 

As outlined in Section 3, the selection of the best model can be guaranteed only 
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with an optimal search. In this case, an exhaustive search was used. The procedure 

for the search was as follows:  

1. evaluate the AICC for all the possible models; 

2. find the model with the minimum AICC; 

3. calculate the ∆i for all the models; 

4. select the final model candidates as the ones with ∆i < 2. 
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4 Datasets and pre-processing 

In this study, two different datasets are available to model the hot metal 

desulphurisation process. The considered datasets are gathered from SSAB Raahe. 

In addition, a dataset used for the predictive modelling of sulphide capacity and the 

sulphur partition ratio is extracted from the literature. The characteristics and pre-

processing of data is outlined in the following sections.  

4.1 Primary desulphurisation dataset (Publications I and III) 

The first dataset is used to study primary hot metal desulphurisation. The data is 

mainly used in Publications I and III. The first pre-processing step considers the 

outlier detection and treatment. Outlier detection methods are used to exclude both 

contextual and global outliers from the data. For global outlier detection, the 

assumption of normal distribution is used as an exclusion criterion, in which if a 

datapoint is more than ±3σ from the basic distribution, it is excluded from the data. 

Consequently, 6 treatments are removed. For example, blast furnace cold runs are 

excluded, as they are both contextual and global outliers with respect to the normal 

function of the process. In addition, cold runs are rather rare, and the aim of this 

study is only to model a characteristic behavior of the process. After pre-processing, 

the dataset constitutes 39 observations and more than 20 variable candidates. The 

full datasets constitute the following measurements:  

1. composition of the metal before and after the treatment; 

2. composition of the slag before and after the treatment; 

3. temperature of the hot metal before and after the treatment; 

4. particle size distributions of the applied reagents; 

5. injection parameters. 

The average hot metal composition at the primary hot metal desulphurisation site 

before the treatment is C = 4.5 wt-%, Si = 0.45 wt-%, S = 0.045 wt-%, and Mn = 

0.172 wt-%, whereas the average temperature is around 1,623 K (1,350 °C). The 

average mass of the hot metal is around 80 t. The composition of the slag before 

the injection is on average CaO = 39.28 wt-%, SiO2 = 38.82 wt-%, Na2O = 13.66 

wt-%, Al2O3 = 5.78 wt-%, and MgO = 1.63 wt-%. After the injection, the CaO 

content can be as high as 78–85 wt-%, ignoring the metal droplets entrapped in the 

slag phase.   
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The particle size distributions of the reagents are defined on a volume basis with 

the laser diffraction method. The corresponding values for the measured 

distributions used in the identification of the models are given in Publications I and 

III. The values for the characteristic particle sizes (d10, d25, d50, d80, d90) are extracted 

from Vuolio (2019), except for reagent E, whose characteristic particle size 

distribution is determined later as an average of several measurements. Reagent D 

is a commercially produced reagent, and the others are produced onsite. The 

sampling of the reagents onsite is carried out batchwise, by taking several samples 

of a single reagent batch of 10–12 tonnes. The sampling of reagent E is similar to 

reagents A–D. During the manufacture of reagents A, B, and E, varying amounts 

of CaCO3 wt-% are mixed in the CaO. The particle size distribution of the CaCO3 

measured and its effect are mathematically extracted from the distribution. 

However, the extraction of CaCO3 from the reagent mix is found to be negligible 

for the characteristic particle size distribution values, because it changes the values 

to an order of 0.5–5 μm. In addition, the dataset is enriched with variable 

construction by adding computational variables to the set. Depending on the 

model’s characteristics, variables are constructed statically or dynamically. 

Dynamic variable construction is used in the case of parameterised models, of 

which the sulphur trajectory is solved numerically (Section 5.3.), whereas static 

construction is used in cases where the analytic solution of the end sulphur content 

or the static output variables are available. 

Prior to modelling, the missing values are treated with regression and mean 

imputation. The imputation mainly considers the compositions of the slag, which 

are not available for every treatment. It has been shown that imputation techniques 

perform better than complete case analysis, which means that only the observations 

with no missing values in the explanatory data are included in modelling. A 

complete case analysis may cause significant loss of information and even lead to 

falsely interpreted results (Stavseth et al. 2019). The following procedure is used 

for regression imputation:  

1. search a functional relation within the data; 

2. fit a model to the data; 

3. predict the missing values based on the regression model; 

4. impute the values to the data.  

Mean imputation corresponds simply to imputing mean values to the data. During 

the analysis of the slag compositions, a functional relation is found with the 
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temperature and (CaO) wt-%, presented in Figure 3. The corresponding linear 

regression model used to impute the values is (CaO) wt-% = 0.3878T (⸰C) – 501.3. 

 

Fig. 3. Relationship of the temperature and CaO content of the slag. 

4.2 Secondary desulphurisation dataset (Publication IV) 

The dataset considers secondary desulphurisation and is used in the prediction 

model identification in Publication IV, as well as in Section 5.6. The experimental 

data is gathered from the secondary hot metal desulphurisation process at SSAB 

Europe Oy in Raahe, Finland. The dataset is rather similar to that collected from 

primary desulphurisation with respect to available attributes. However, this dataset 

constitutes only production data, and it therefore omits the composition of the slag 

and particle size distributions from the variable candidates. The data that is treated 

with variable construction consists of 551 treatments and 23 candidate variables. In 

addition, to test the performance of the model selection algorithm, 10 to 20 columns 

of variables constituting only white noise N(0,1) are added to the data. However, 

the experiments carried out with the white noise imputed datasets are not reported 

in Publication IV, but only in this study.  
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4.3 Sulphide capacity dataset (extended from Publication II) 

As outlined in Publication II, a plethora of sulphide capacity models is available in 

the literature, but the most referenced models with a simple model structure usually 

lack data on CaO-SiO2-Na2O slag systems. Dataset 3 is therefore collected to cover 

this slag system and other systems. The referenced studies are Chan and Fruehan 

(1986), Chan and Fruehan (1989), Fetters and Chipman 1941, Grant et al. (1951), 

Hatch and Chipman (1949), Inoue and Suito (1982), Taylor and Stobo (1954), Tsao 

and Katayama (1986), Venkatradi and Bell (1969), Van Niekerk and Dippenaar 

(1993), and Winkler and Chipman (1946). The referenced studies cover the slag 

systems with CaO, SiO2, Al2O3, MgO, Na2O, FeO, and MnO, and the temperature 

ranges from 1200 to 1700 °C. However, it should be noted that the dataset itself is 

multivariate and sparse, which could affect the model’s reliability and 

generalisability. However, the objective is not to gather a comprehensive dataset, 

but a relatively representative one for identification studies. The data consists of 

sulphur partition ratios determined with the slag-metal-equilibrium technique. In 

this technique, the slag and metal phases are equilibrated, and the sulphur content 

in both phases is measured. Based on these measurements, the slag’s sulphide 

capacity is computed. A detailed description of this method can be found in the 

referenced studies. The observed partition ratio of sulphur and metal between the 

slag and metal phases can be converted to sulphide capacity with the equilibrium 

constant derived for slag-gas and slag-metal desulphurisation reactions.  The 

following expression for the sulphur partition ratio can be derived from the details 

given in Young et al. (1992) as  

 

logଵ𝐿ୗ ൌ logଵ𝐶ୗ െ logଵ 𝑎ሾሿ
ୌ െ

935
𝑇

 1.375 logଵ 𝑓ሾୗሿ
ୌ ,  ሺ32ሻ 

 

where 𝑓ሾୗሿ
ୌ  is the Henrian activity coefficient of sulphur in the metal phase. As seen 

in the previous equation, the sulphide capacity is a property that seeks to capture 

the slag’s sulphur extraction capacity, independently of the activity of oxygen 

prevailing in the system. The slag’s sulphide capacity determines the 

thermodynamic driving force for the slag-metal reaction. To predict the sulphide 

capacity of slag, a description of the activity of oxygen in the equilibrium state is 

needed (Oeters 1994). The activity of oxygen can be measured or estimated from 

the expression of the equilibrium constants for the governing oxidation reactions. 

In this study, the activity of oxygen is assumed to be defined by one of the reactions 
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Fe  ሾOሿ → ሺFeOሻ, ሺ33ሻ 
 

ሾCሿ  ሾOሿ → ሼCOሽ, ሺ34ሻ 
and 

ሾSiሿ  2ሾOሿ → ሺSiOଶሻ. ሺ35ሻ 

 

On the basis of the reactions above, and by assuming that the pCO = 1 and aFe
R  = 1, 

the following expressions can be derived for the equilibrium activity of oxygen 

based on the Henrian standard state:  

 
logଵ aሾሿ

ୌ ൌ െ logଵ 𝐾ሼେሽ െ  logଵ൫𝑓ሾେሿ
ୌ ሾ%Cሿ൯, ሺ36ሻ 
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2
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2

logଵ ሺ𝑓ሾୗ୧ሿ
ୌ ሾ%Siሿሻ 
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2

logଵ ൫𝛾ୗ୧మ
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and 

logଵ aሾሿ
ୌ ൌ െlogଵ 𝐾ሺୣሻ 

1
2

logଵ ൫𝛾ୣ
ோ 𝑥ሺୣሻ൯, ሺ38ሻ 

 

where 𝛾୧
ோ is the Raoultian activity coefficient for component i in the slag phase, 

xSiO2
 is the molar fraction of component i in the slag phase, and 𝑓ሾ୧ሿ

ୌ is the Henrian 

standard state activity coefficient for [i] in the metal phase. The equilibrium 

constants for the oxidation of carbon and silicon are extracted from Pal and Patil 

(1986) and Görnerup and Sjöberg (1999) respectively. The equilibrium constant for 

the oxidation of iron to iron(II)oxide is computed based on the change of Gibb’s 

free energy (∆G°) reported in Basu et al. (2008). The value on the basis of which 

the sulphide capacity is calculated is chosen as the minimum value of the oxygen 

activities. The activity coefficient for (SiO2) is calculated with the extended regular 

solution model proposed by Ban-Ya (1993). In this model, the activity coefficient 

following a Raoultian standard state is given as (Ban-Ya 1993) 

𝑅𝑇 ln𝛾 ൌ  ∑ 𝛼 𝑋
ଶ   ∑ ∑ ሺ𝛼   𝛼 െ 𝛼ሻ𝑋𝑋    𝐼.

° ,   (39) 

 

where αij is the interaction energy between two corresponding cations (i and j), Xi 

is the cation fraction of i, and  IC.
°   is the conversion factor of the activity coefficient 
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between a hypothetical regular solution and a real solution (J/mol). The interaction 

energies for the slag components are extracted from (Ban-Ya 1993). The activity 

coefficient for (FeO) is estimated with the empirical model proposed by Basu et al. 

(2008). Similarly, the activity coefficients for the metal phase are calculated with 

the WLE formalism for dilute solutions presented in Sigworth and Elliot (1974) by 

using equation 

logଵ 𝑓
ு ൌ  𝑒

ሾ% 𝑗ሿ,

ೕ

ୀଵ

 ሺ40ሻ 

 

where ei
j is the mass-based interaction coefficient between component i and j. The 

values for the interaction coefficients are extracted from the study of Sigworth and 

Elliot (1974).  
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5 Results and discussion 

In this section, the results presented in Publications I–V are presented with yet 

unpublished results considering the parameterised models and the modelling of 

sulphide capacity. The sections go through the analysis of the dataset, using both 

generic and parameterised reaction models. In addition, some explanatory 

modelling results not included in the publications are introduced. 

5.1 Explanatory analysis of Dataset 1 

The objective of the explanatory analysis of the data is divided into two 

subsections: 

– In the first section, the different particle size distribution parameters and their 

effects are estimated on a linear and logarithmic model basis.  

– In the second subsection, the dependency of different particle size distribution 

parameters on the rate of desulphurisation is analysed in more detail.  

5.1.1 Analysis with the linear model basis 

Prior to the model structure selection for prediction models, an explanatory analysis 

was carried out for Dataset 1. The explanatory analysis was made to support the 

identification of the presented models, both in terms of model parameter 

identification and model structure selection. In this analysis, two output variables, 

namely the molar efficiency of the desulphurisation reagent and the time constant 

for the overall reaction, were the dependent variables of interest. The definition for 

the assumed time constant can be found in Publication I, whereas the molar 

efficiency of the reagent is defined as the molar ratio of the removed sulphur and 

the injected reagent. A similar metric to describe the efficiency of desulphurisation 

reagents can be found in the study of Lindström and Sichen (2015), although the 

authors use the inverse of the metric, along with many others not referenced here. 

For explanatory purposes, the predictive properties of the models are not 

accounted for in this section. It should be noted that the models identified in this 

section can only consider the magnitude and sign of the effects of individual 

variables in an explanatory manner. A more detailed analysis of the mechanisms, 

as well as their contributions, demands more sophisticated model structures, 

examples of which Publication I and Sections 5.2. and 5.3. in this thesis provide.  
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In the explanatory model selection, manual selection, an exhaustive search with 

information theoretic criteria, and Forward Selection 3 are used. Referring to the 

guidelines given by various authors (e.g. Burnham & Anderson 2002; Heinze et al. 

2018), manual selection is considered the selection basis prior to applying any 

search strategies. 

A comprehensive description of the basis and execution of the manual selection 

is discussed in detail in Publications I and V. In principle, the manual selection of 

variables is conducted using the literature survey, considering the process 

phenomena to guide the selection. The literature survey and simulations are 

elaborated in detail in Publications I and V. With reference to Publications I and V, 

the relevant attributes are particle size distribution, injection gas rate, the injected 

quantity of gas-forming compounds, the mass flowrate, the mass of the hot metal, 

and the Henrian standard state activity of sulphur. To analyse the significance of 

regression coefficients, the t-test with normality assumption is used, and the level 

of significance is set as α = 0.05. The analysis is conducted for both datasets with 

and without the slag components, using MLR as the model basis.   

In the search of the explanatory model, Forward Selection 3 is used. The 

convergence graph for Forward Selection 3 used in model selection for explaining 

molar efficiency is given in Figure 4. The figure shows that the selection method 

sequentially improves model performance in terms of root mean squared error and 

the adjusted coefficient of determination. The figure on the right-hand side presents 

Mallows’s Cp and the small sample corrected AICC values for the models 

considered during the search.  
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Fig. 4. Convergence of Forward Selection 3 to select a model for the stoichiometric 

efficiency of the reagent for the entire dataset, with imputation of the slag components 

without a transform of the input and output variables. 

As Figure 4 shows, stepwise selection tends to converge towards smaller values for 

both metrics, i.e. to models with a small error but relatively small complexity. To 

evaluate the reliability of the stepwise search, the procedure using exhaustive 

search and information criteria introduced previously is applied for comparison. 

The results of the exhaustive search and information criteria-based analysis are 

given in Table 2. The table shows that the particle size distribution parameters d80, 

Qtot, mFe, and mሶ r are the variables of interest related to the transitory contact reaction. In 

addition, some of the metal and slag phase components appear in the set of models with 

a similar performance.  
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Table 2. Selected sets of variables with exhaustive search and setting ∆i < 2 for neff (%) 

and ktot. 

y x1 x2 x3 x4 x5 x6 x7 x8 x9 

neff (%) 𝑚ሶ  Qtot* d80 mFe [Si] 𝑎ሾୗሿ
ୌ  (MnO) - -  

𝑚ሶ  Qtot* d80 mFe [Si] 𝑎ሾୗሿ
ୌ  (MgO) (MnO) -  

𝑚ሶ  Qtot* d80 mFe [C] [Si] 𝑎ሾୗሿ
ୌ  (MgO) (MnO)  

𝑚ሶ  Qtot* d80 mFe [Si] 𝑎ሾୗሿ
ୌ  (S) (MgO) (MnO) 

 
         

ktot (1/min) 𝑚ሶ  Qtot* d80 mFe       - - - - -  
𝑚ሶ  Qtot* d80 mFe [C] - - - -  
𝑚ሶ  Qtot* d80 mFe [P] - - - -  
𝑚ሶ  Qtot* d80 mFe [V] - - - -  
𝑚ሶ  Qtot* d80 mFe [Cr] - - - -  
𝑚ሶ  Qtot* d80 mFe 𝑎ሾୗሿ

ୌ  - - - -  
𝑚ሶ  Qtot* d80 mFe [P] 𝑎ሾୗሿ

ୌ  - - -  
𝑚ሶ  Qtot* d80 mFe [P] (MnO) - - -  
𝑚ሶ  Qtot* d80 mFe [Ti] 𝑎ሾୗሿ

ୌ  - - -  
𝑚ሶ  Qtot* d80 mFe [V] 𝑎ሾୗሿ

ୌ  - - -  
𝑚ሶ  Qtot* d80 mFe [Cr] 𝑎ሾୗሿ

ୌ  - - -  
𝑚ሶ  Qtot* d80 mFe [Cr] MnO - - -  
𝑚ሶ  Qtot* d80 mFe [Mn] 𝑎ሾୗሿ

ୌ  - - -  
𝑚ሶ  Qtot* d80 mFe 𝑎ሾୗሿ

ୌ  B2 - - - 

Notes: *) Qtot (m3/s) is the total volume of gas in the conditions at the lance tip, accounting for both the 

injection gas and the gas-forming compounds (assuming 100% decomposition). 

The selection results for Forward selection 3 for both the considered output 

variables are given in Table 3 for the non-transformed case and in Table 4 for the 

data with logistic transform. As the table shows, all the explanatory variables can 

be considered significant in t-test and p-value terms, because the associated p-value 

is well below the chosen risk level. It can also be seen that the explanatory 

performance of all the selected models is relatively good, because the R2 – adj. 

varies from 0.85 to 0.98, and the RMSE value is relatively small. The variable 

subsets differ slightly depending on the output variable to be explained, but are still 

in high agreement, for example, with the results of Chiang et al. (1990), Coudure 

and Irons (1994), Lindström and Sichen (2015), and Lindström et al. (2015). In 

addition, the logistic transform of the input and output data seems to eliminate the 

compositional variables related either to hot metal or slag composition from the 

selected subset. The reasoning behind this could be either that the compositional 

variables lack an observable effect on the output variables as the covariance 

between the reagent and injection properties is relatively strong. A less likely 
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explanation would be that the compositional variables lack any effect on the reagent 

efficiency or the rate of reaction measured in terms of the time constant, because it 

is known, for example, that the activity of silicon may control the oxygen potential 

in the system and cause the formation of CaO∙SiO2 (Oeters 1994). Interestingly, the 

temperature effect seems not to be significant. However, this is probably related to 

the fact that the considered volumetric gas flowrate depends on the temperature and 

that the variance of the temperature is relatively small. However, it is also plausible 

that as the transitory reaction is controlled by the mass transfer rate, which depends 

only moderately on the temperature, the temperature seems to lack an observable 

dependency.  

As can be interpreted from the regression coefficient signs and magnitudes, an 

increase in the reagent and gas flowrates increases the observed rate of 

desulphurisation, whereas decreasing the particle size d80 increases the rate. As 

indicated in Publication I, these can be attributed to the general properties of mass 

transfer controlled reactions. For example, a coarser particle size distribution 

results in a slower reaction rate, because the particle size is strongly related to the 

solid interfacial area available for mass transfer. Interestingly, the reagent 

efficiency seems higher with slow particle flowrates (mሶ r ), which can be further 

associated with the fact that with lower sulphur content, the reaction rate decreases 

due to the decrease in the driving force. Increasing the time constant therefore does 

not result in a significant improvement in reagent efficiency, referring to the 

expression Rj. Another explanation could be the transition from a coupled to a non-

coupled flow scheme, which is further discussed in Irons (1988). A more detailed 

analysis considering the magnitudes of the effects of the selected variables in the 

case of the rate of transitory reaction can be found in Publication I.   

To summarise, the results of the explanatory analysis determined with three 

different methods arrive at basically the same conclusion, because the results 

provided by the algorithmic approach and the domain knowledge are in high 

agreement. Publication III also presents that the genetic algorithm that uses 

repeated cross-validation as the objective function produces similar results, 

although a more intensive tuning of the computational parameters is needed. 

However, it should be noted that the data of this set does not represent regular 

production, but an experimental setting, because the main objective is to identify 

the effects of particle size distribution and other injection parameters on the rate 

and efficiency of the process. However, this analysis provides at least a relatively 

strong indicator of the explanatory power of these factors, and based on this, the 

mentioned factors could induce a substantial amount of variance in the process if 
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the reagent properties and injection parameters are not controlled appropriately. 

However, it should be noted that the data and linear models suffer moderately from 

heteroscedasticity, which directly affects the reliability of the hypothesis tests. The 

domain knowledge can therefore be considered a very effective model selection 

method, even though the algorithmic approaches produce quite similar results. In 

addition, as the linear estimates may also suffer from heteroscedasticity, it would 

be beneficial to consider a non-linear modelling scheme.   
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Table 3.  The selected models for the molar efficiency of the reagent and the time 

constant of desulphurisation, using Forward Selection 3 for non-transformed data. 

y Variable Estimate SE t-value p-value   𝑅ୟୢ୨.
ଶ  RMSE 

neff (%) b0 0.82 1.75 0.47 0.64 
 

0.96 0.54  
𝑎ሾୗሿ
ୌ  33.36 1.68 19.82 6.68∙10–20 

   

 
d80 –0.01 1.84∙10–3 –4.42 1.00∙10–4 

   

 
𝑚ሶ   –0.04 8.30∙10–3 –5.12 1.29∙10–5 

   

 
Qtot 0.09 2.33∙10–2 3.72 7.39∙10–4 

   

 
mFe 5.28∙10–5 1.67∙10–5 3.16 3.39∙10–3 

   

         

neff (%)* b0 –2.34 1.66 –1.41 0.17 
 

0.98 0.48  
𝑎ሾୗሿ
ୌ  35.14 1.62 21.65 7.22∙10–20 

   

 
d80 –0.01 0.00 –3.37 2.10∙10–3 

   

 
𝑚ሶ  –0.05 0.01 –6.91 1.13∙10–7 

   

 
Qtot 0.09 0.02 4.98 2.47∙10–5 

   

 
(MnO) 2.89 0.65 4.47 1.04∙10–4 

   

 
mFe 5.43∙10–5 1.38∙10–5 3.94 4.50∙10–4 

   

 
[Si] 2.56 1.05 2.43 0.02 

   

 
(MgO) 0.26 0.12 2.11 0.04 

   

         

ktot (1/min) b0 0.14 0.06 2.15 0.04 
 

0.85 0.02  
d80 –5.59∙10–4 6.30∙10–5 –8.87 2.29∙10–10 

   

 
Qtot 0.01 8.68∙10–4 6.12 5.97E∙10–7 

   

 
mFe –1.48∙10–6 6.03∙10–7 –2.46 0.02 

   

 
𝑚ሶ  1.60∙10–3 2.97∙10–4 5.39 5.40∙10–6 

   

         

ktot (1/min)* b0 0.14 0.06 2.15 0.04 
 

0.85 0.02  
d80 –5.59∙10–4 6.30∙10–5 –8.87 2.29∙10–10 

   

 
Qtot 5.31∙10–3 8.68∙10–4 6.12 5.97∙10–7 

   

 
mFe –1.48∙10–6 6.03∙10–7 –2.46 0.02 

   

  𝑚ሶ  1.60∙10–3 2.97∙10–4 5.39 5.40∙10–6       

Notes: *) With the slag components included in the dataset. 
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Table 4. The selected models for the molar efficiency of the reagent and the time 

constant of desulphurisation, using Forward Selection 3 for transformed data (λ = 0). 

ln (y) ln(Variable) Estimate SE t-value p-value   𝑅ୟୢ୨.
ଶ  RMSE 

neff * b0 –0.47 2.96 –0.16 0.87 
 

0.95 0.10  
𝑎ሾୗሿ
ୌ  0.89 0.05 19.61 9.39–20 

   

 
d80 –0.22 0.05 –5.00 1.81∙10–5 

   

 
𝑚ሶ  –0.35 0.13 –2.74 0.01 

   

 
Qtot 0.34 0.07 4.83 3.05∙10–5 

   

 
mFe 0.53 0.24 2.20 0.03 

   

         

ktot* b0 3.19 3.93 0.81 0.4 
 

0.81 0.14  
d80 –0.49 0.06 –8.43 7.58∙10–10 

   

 
Qtot 0.55 0.09 6.26 4.04∙10–7 

   

 
mFe –0.71 0.32 –2.21 0.03 

   

  𝑚ሶ  0.87 0.18 4.93 2.09∙10–5       

Notes: *) With the slag components included in the dataset. 

5.1.2 Analysis of the rate with different particle size distribution 

parameters, using surface area approximation 

Single particle models 

As Coudure and Irons state (1994), there is often a question of which distribution 

parameter should be used in modelling mass transfer controlled reactions, in which 

solid particles are used for extraction (Coudure & Irons 1994). In Publication I’s 

results, only the identification results for the distribution parameter d80 are reported. 

This is mainly because it gives the best results in terms of goodness of fit measures, 

and the values are most consistent with the values predicted by surface-area 

approximation. However, various other characteristic values for particle size 

distributions exist. The values can be calculated from either the raw values of the 

particle size distribution or by using a fitted mathematical distribution. For 

example, a commonly used measure for mean diameter in mass transfer processes 

is the Sauter mean diameter, commonly denoted as d32. The Sauter mean diameter 

can be calculated based on the number of the particle size distribution as follows 

(Pacek et al. 1998):  

 

𝑑ଷଶ ൌ
∑ 𝑛𝑑

ଷ
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,  ሺ41ሻ 
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where ni is the number of particles in channel i of diameter d. Due to the 

characteristics of particle size distribution, some intrinsic problems arise in using it 

to predict the rate of hot metal desulphurisation. The major problem is that in 

practical desulphurisation reagents, the measured particle size distribution contains 

an enormous number of very small particles (d < 1 μm) assumed to float without a 

reaction to the surface of the metal bath (Lee & Morita 2004). However, the Sauter 

mean diameter, if calculated for the whole distribution, suggests that the interfacial 

area for the mass transfer is very high, because the d32 usually varies from 3–7 μm, 

even though it is assumed a relatively large number of particles do not participate 

in the reactions at all. Assuming that the residence times of the particle are as long 

as suggested – Oeters (1994), for example, proposes a residence time of 75 s 

(Oeters 1994), and Ma et al. (2017) suggests 28.6 s – at full scale, the extraction 

capacity of the overall distribution will be sufficiently large if all the particles are 

assumed to come into contact the melt. Coudure and Irons (1994) use a value of 

0.83 sec at lab scale, and as referenced in Section 2, find that the number of particles 

that come into contact is in the order of 20–30% for CaC2. However, Coudure and 

Irons (1994) use their own metric as the mean, denoted as the equivalent diameter 

for a diffusion-controlled process (dka) given by (Coudure & Irons 1994) 

 

𝑑 ൌ  ൭
𝑉𝑜𝑙ሺ%ሻ

100𝑑,
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where dka is the equivalent diameter for the diffusion controlled process, Voli(%) is 

the volumetric amount of size class i in volume-based particle size distribution, and 

dp,i is the diameter of size class i. However, with reference to the original 

publication, the exponent should be -0.5 instead of -2, i.e. the equation comes in 

the form of 

 

𝑑 ൌ  ൬∑
ሺ%ሻ

ଵௗ,
మ


ୀଵ ൰

ି.ହ

, (43) 

 

because the equivalence is expressed in terms of the surface-area approximation as 

(Coudure and Irons 1994) 
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where Lp is the immersion depth of the lance, and up is the ascent velocity of the 

particles in the melt. Nevertheless, the dependency of the particle size and rate 

constant is found to be significantly smaller than the squared dependency (Coudure 

& Irons 1994). The calculated particle size distribution parameters for the studied 

reagents are given in Table 5.  

Like the applied particle size distribution parameter, the assumed residence 

time of the particles affects the relation. The residence time greatly depends on the 

assumptions drawn from the system. For example, Oeters (1994) suggests a 

residence time of 39 s for the boundary-layer diffusion-controlled case, and 78 s 

for the solid-state diffusion-controlled case. However, in the study of Oeters (1994), 

the mean particle size used in the calculations is presumably quite large, although 

it is not reported in detail. In the study of Visuri et al. (2019), the measured particle 

size distribution is used as the identification basis, and a residence time of 2 s is 

obtained (Visuri et al. 2019). This value resembles what can be computed based on 

the procedure proposed by Seshadri et al. (1997), who uses the empirical 

correlation proposed by Sahai and Guthrie (1982) to determine the plume velocity 

by equation 

 

𝑈௨ ൌ 4.5
൫𝑄ேమ
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where Uplume is the plume velocity, Rl is the radius of the ladle, and QN2
  is the 

flowrate of the injection gas (N2) in the conditions corresponding to the lance tip. 

The gas is assumed to heat up to 80% of the bath temperature. The force balance 

calculations reveal that the terminal velocities of the particles are very near to 

velocity of the continuous phase surrounding them. Assuming that the particles 

reach their terminal velocities very quickly once injected yields a residence time of 

1.93 ≈ 2 s for an average treatment. However, this assumption ignores the 

possibility of recirculating the particles in the melt. Seshadri et al. (1997) propose 

that the mass transfer coefficient can be estimated with the Sherwood number and 

the correlation derived from Kolmogoroff’s theory of local isotropy. The particle 

size is used as the characteristic to compute the mass transfer coefficient, based on 

the Sherwood number (Seshadri et al. 1997). On average, this yields a mass transfer 
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coefficient of 1.23∙10-4 m/s, taken as a mean of the entire particle size distribution 

for Reagent A. The metal-side mass transfer coefficients are presented for each of 

the characteristic reagent parameters in Table 5. Of these, the values corresponding 

to d80 are the closest to those proposed by Oeters (1994), who suggests using a 

residence time as high as 39 s to 78 s, yielding a best fit for a mass transfer 

coefficient of 6.3∙10-5 m/s.  

Table 5. Mass transfer coefficient computed with different characteristic particle size 

distribution values. 

Reagent d80* dka** d32***   β (m/s) (d80) β (m/s) (dka) β (m/s) (d32) 

A 135.00 2.73 6.37 
 

4.56∙10-5 0.0023 9.66∙10-4 

B 223.60 2.88 6.30 
 

2.75∙10-5 0.0021 9.77∙10-4 

C 233.60 2.94 6.80 
 

2.63∙10-5 0.0021 9.05∙10-4 

D 73.30 2.08 3.92 
 

8.39∙10-5 0.0030 0.0016 

E 69.90 2.55 5.38   8.81∙10-5 0.0024 0.0011 

Note: *) Extracted from Publication I. **) Differs from Publication I due to erroneous interpretation of the 

equation found in Coudure and Irons (1994). β = mass-transfer coefficient. ***) Calculated with equation 42. 

When using either d32 or the dka as the identification basis for Dataset 1, it can be 

seen that the direction of the dependency is similar to that suggested by Coudure 

and Irons (1994). For example, when using d80 and ln-transformation, the 

corresponding dependency of the particle size is –0.22. For smaller particle sizes, 

the estimated dependency is obviously slightly larger. However, the parameter itself 

is only a descriptive relation of the dependency.  

To estimate the reaction rate without the corresponding parameter, an estimate 

of the efficient surface area is needed. As previously stated, the surface area 

estimated from the nominal particle size distribution plausibly over-estimates this 

value. For this purpose, an effective Sauter mean diameter (d32,eff.) is proposed. The 

effectiveness is deduced by using the prior information provided by the particle 

size distribution and the contact probability, based on the expected value of the 

particle size distribution coming into contact with the melt. In the distribution, the 

expected volume for size class i is stated as the conditional expected value as  

 
𝑉𝑜𝑙ሺ%ሻ,. ൌ 𝐸൫𝑉𝑜𝑙ሺ%ሻ,. ห 𝑄୲୭୲,ୟୡ.,𝑢ሻ,  (46) 

 

where Vol(%)i,c. is the volumetric amount of particles in contact with size class i, 

E(Vol(%)i,c. | Qtot, uc) is the expected value for volume fraction of particles that come 

into contact with the melt, Qtot,ac. is the volume of gas that is formed in the 
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decomposition of the auxiliary compounds, and uc is the critical velocity calculated 

from the critical Weber number. To estimate the expected value, the probabilistic 

law for the volume of particles that come into contact is needed. For this purpose, 

a logistic risk function is used, in which the probability is that particles come into 

contact given the volumetric amount of gas generated due to the decomposition of 

the gas-forming agents and the critical penetration velocity of the particles. The 

probabilistic function can be given as a continuous sigmoid function as 

 

𝑃ሺϕ ൌ 1 | 𝑄୲୭୲,ୟୡ.,𝑢ሻ ൌ  
1

1 exp ቀെ൫𝑏  𝑏ଵ𝑄௧௧,.  𝑏ଶ𝑢൯ቁ
.  ሺ47ሻ 

 

The empirical fitting parameters [b0, b1, b2] define the direction and magnitude of 

the effect on the conditional contact probability. A more detailed description of the 

properties of the logistic regression and the sigmoid function is given in Harrell 

(2015), for example. The expected volume for a particle size distribution in contact 

with the metal is therefore 
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ୀଵ 𝑄୲୭୲,ୟୡ.,𝑢ሻ,  (48) 

 

where Voli(%) is the volume of size class i in the volume-based particle size 

distribution, and k is the number of size classes. The volume-based distribution is 

then converted into a number-based distribution, based on which the effective 

Sauter mean diameter is estimated. The time constant for the surface-area 

approximation is then given as (Oeters 1994) 
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where d32,eff. is the effective Sauter mean diameter, βtot is the metal side mass transfer 

coefficient, and tres is the residence time of the particles. It should be noted that it 

is expected that d32,eff. > d32. It should also be noted that a somewhat similar 

approach is used in Publication I, but the expected value for contact is based on the 

estimation of the weighted time constant for the surface area approximation, and 

assuming that the particle velocities are random, following a normal distribution. 
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The parameter identification for the probabilistic risk function parameters is 

carried out with the real-coded genetic algorithm, using the RMSE as the objective 

function. In the identification, the mass transfer coefficient and the residence time 

are set as βtot = 5.5∙10-5 and tres = 12 s respectively. Since the objective of this study 

is not to demonstrate the predictive performance but carry out a model-based 

estimation of particle size distribution, the identification is not validated 

exhaustively. The best performing parameters for a few repetitions are found to be 

b = [b0, b1, b2] = [1.39, 18.36, –0.39]. With these parameters, the figures of merit 

are R2 = 0.93 and MAEev = 8.8 ppm for the external validation set respectively. The 

corresponding objective function value is RMSE = 0.0017 for the training set. The 

resulting probabilistic functions are presented in Figure 5. The figure shows that 

according to the probability risk function, estimated based on the surface-area 

approximation, the probability of direct metal-particle contact increases withi the 

size of the particles, which is due to the decrease in the critical penetration velocity. 

Similarly, adding CaCO3 to the reagent increases the probability of contact, which, 

according to Irons (1989), is because the decomposition of CaCO3 causes the 

eruption of the carrier gas bubbles that entrap the reagent, and thus the injection of 

auxiliary compounds increases the probability of direct reagent-metal contact. With 

reference to this, the behaviour of the likelihood function is logical, and the contact 

probability may partly explain the covariance between the injection of CaCO3 and 

the rate constant.  
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Fig. 5. Probability functions for particle-metal contact. 

It should be noted that this approach suffers from two limitations. The first is that 

the surface area approximation assumes that the extraction capacity of the particles 

is of infinite magnitude. This means that as it ignores the solid-state diffusion-

controlled phase, the rates for the smaller particle sizes are highly over-estimated 

(Oeters 1994), which can be seen in Figure 6. The form of the estimated particle 

size distribution indicates that the small particles do not come into contact with the 

metal at all, which results in the estimated mean surface area for mass transfer being 

significantly larger than the corresponding value measured for the powder prior to 

injection. However, it should also be noted that the values for the probability 

functions depend on the setting of the residence time, because the error concerning 

the limited extraction capacity is in fact a function of residence time, again due to 

solid-state diffusion control (Oeters 1994). For a more detailed estimate, a 

numerical solution and the expression of the solid-state diffusion control is needed 

to limit the extraction capacity of the distribution.   
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Fig. 6. The estimated particle size distribution in contact with the melt and the measured 

particle size distribution (true distribution). The estimated distribution has been 

normalised such that ∑ 𝑽ሺ%ሻ𝒌
𝒊ୀ𝟏 ൌ 𝟏𝟎𝟎. 

Models using particle size distribution 

According to Publication V, the only model using the full particle size distribution 

is presented in the study of Visuri et al. (2019). The time constant surface area 

approximation that uses the expected value for the contacted volume fraction can 

be given as the sum of the time constant, defined for individual size classes:  
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In this approach, it is assumed that mass transfer is controlled by the transport on 

the metal side, and the mass transfer coefficient is therefore approximated as 

discussed earlier. Hence, in this case, the number of parameters left to be optimised 

is four, one being the residence time and the rest arguments of the probabilistic 

function. The parameters are optimised with the real-coded genetic algorithm. To 

study the distribution of the residence time and the parameters of the probabilistic 

expression for the particle size distribution, 1,000 bootstrap samples are drawn 

from the data, based on which the parameters are estimated. The distributions of 

the parameters are given in Figure 7, which shows that the estimated parameters 
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follow an almost normal distribution. However, the parameter associated with the 

gas flow associated with the decomposition of the particles is biased to the right 

and follows an almost exponential distribution. The estimated residence time seems 

to be 9.28 s on average, and the standard deviation of the bootstrap samples is 1.97 

s. The 2.5% and 97.5% quantiles of the distribution are 5.61 s and 12.88 s 

respectively. 

 
 

Fig. 7. Distribution of the parameters for 1,000 bootstrap samples. 

5.2 A parameterised model for the transitory contact reaction in 

primary desulphurisation (Publication I) 

In Publication I, a parameterised prediction model is presented to predict the end 

sulphur content based on Dataset 1. The final model structure is partly based on the 

surface-area approximation presented by Oeters (1994), which provides the initial 

subset of variables. Further, it is assumed that the desulphurisation reaction can be 

described well with first-order kinetics, provided the process operates relatively far 

from the thermodynamic equilibrium. This allows the neglection of the [S]eq by the 
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concentration difference. It is often suggested in the literature that the reaction rate 

of the transitory reaction is much higher than the rates Rii and Riii, and their 

exclusion from the rate expression may therefore be justified. The other 

assumptions considering the derivation of this model are given in Publication I.   

The detailed reasoning behind the model structure is discussed in detail in 

Publication I.  

As said, in Publication I, the model structure and the predictor variables are 

identified with manual and forward selection, supported by regression-based 

hypothesis testing using a multiple linear regression as the model basis. As seen in 

the previous section, the data-driven reasoning and explanatory analysis with 

variable selection algorithm provides a very similar result to manual identification. 

Consequently, the variables chosen in the model are d80 particle size, Qtot, mሶ r and 

mFe, because it appears to be the most parsimonious model explaining the variance 

in the overall time constant. The used objective function is derived such that the 

integral form of the first-order desulphurisation expression approaches the sulphur 

content at the end of the treatment when integrated from t0 to tend. In addition, it 

was also found that [S]t,pred = 0 for all treatments is a local minimum for the non-

constrained cost-function, which as a solution is practically infeasible. The details 

of the objective function are presented in Publication I, and are therefore not 

repeated here. 

In the original publication, the model is trained with the genetic algorithm. The 

prediction performance of the parameterised model is evaluated with an external 

dataset, i.e. with a completely independent dataset. As the dataset that is used for 

the model parameter identification is small, and the used reagents discretise the 

variable space, the random subsampling method and the simple hold out are 

discarded as a validation technique. Instead, the data was split into training and 

validation sets using a following stratified hold-out procedure:  

1. sort the data with respect to used reagent classes in ascending order; 

2. draw class-wise samples randomly without replacement from the data;  

3. continue until the specified number of samples is taken.  

The number of selected samples for validation was 15, i.e. 37.5% of the full dataset. 

As the number of reagents in the data is 5, the above procedure ensures that at least 

three samples present each reagent. Table 6 presents the quantitative figures of 

merit and the suggested model parameters. The measured and predicted sulphur 

values at the end of the treatment for both sets are presented in Figure 8. The table 

and the figure show that the model is capable of explaining the variance in the 
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sulphur content at the end of the treatment with sufficient accuracy. The 

quantitative figures of merit are R2 = 0.91 and MAE = 11.3 ppm for training, and 

R2 = 0.90 and MAE = 10.9 ppm for the external validation set selected with the 

stratified hold out. The simple model structure and the consistency of the external 

validation predictions with the predictions on the training support the applicability 

of the model structure.  

The suggested model parameters are presented in Table 6. The direction of the 

parameters shows that increasing the particle size decreases the rate of reaction, 

whereas the addition of gas-forming compounds to the reagent increases the rate of 

desulphurisation. The parameter values are consistent with those identified in the 

previous section, but only semi-quantitatively, because the model structure is non-

linear. The parameter values are also directionally similar to the findings of Chiang 

et al. (1990) in the case of CaC2 and Coudure and Irons (1994), who have a similar 

model structure. Thus, the domain knowledge supports the identification results. 

However, it should be noted that the parameters do not necessarily generalise well 

to other processes, because the modelling scheme makes no assumptions 

considering the process equipment, for example, which may induce variance to the 

rate of desulphurisation, especially when considering the parameters attributed to 

the effect of particle size distribution and the average volumetric amount of gas in 

the system. In addition, it should be noted that without the information concerning 

the variance of the particle size distributions of the lime-based reagents during the 

treatment, the effect of this attribute on the overall rate obviously cannot be 

identified.  

Table 6. Model parameters and the figures of merit computed for training and external 

validation datasets (constructed based on the data given in Publication I). 

 Value b0 b1 b2 b3 b4 

Model parameters (GA) –1.05 0.50 0.48 0.91 1.03 
      

R2- training 0.91 
    

R2 - external validation 0.90 
    

      

MAE - training (ppm) 11.3 
    

MAE - external validation (ppm) 10.9 
    

During the analysis, it was also found that the parameterisation of the model 

significantly improved model performance. Indeed, the model is more accurate 
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than detailed mechanistic models such as the one presented in the study of Visuri 

et al. (2019). However, the parameterised model is only suitable for process control 

purposes, because it does not provide a detailed insight into the flows prevailing in 

the ladle or rate controlling mechanisms from the perspective of individual 

particles, for example. However, this allows a fast computation of the estimation of 

the end sulphur content, but it provides no further information. However, the model 

structure serves its use in predictive purposes very well.  

 

Fig. 8. Measured and predicted sulphur content at the end of the treatment. 

5.3 Parameterised model for transitory and permanent contact 

reactions 

As seen in the previous section, the variance in the rate and the end content of 

sulphur can be explained well by the kinetics of the transitory reaction that have 

been described by the parameterised surface area approximation. As Oeters (1994) 

points out, surface area approximation assumes that the extraction capacity of the 

particles is of infinite magnitude, and the expression may therefore over-estimate 

the contribution of the transitory contact reaction. Furthermore, the model proposed 

earlier conducts the identification by ignoring the physical meanings of the 

parameters, considering only dimensionless parameters, of which comparison with 
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the domain knowledge is not straightforward. Considering the reasoning above, the 

model selection and parameter identification is conducted by taking account of the 

slag-metal reaction and the finite extraction capacity of the overall particle size 

distribution. The overall rate is formulated as a sum of the considered reaction rates. 

The model structure selection is presented in the following subsections.  

5.3.1 Kinetic treatment of the transitory reaction 

In the models of Deo and Boom (1993), Seshadri et al. (1997), and Visuri et al. 

(2019), the sulphur extraction potential of the individual particles is constrained by 

introducing the microkinetic efficiency of the particles. In addition, to account for 

the fraction of particles that remain entrapped in the carrier gas bubbles, the rate 

expression is constrained by weighting the feed rate of the particles with the term 

1 − fp in the macrokinetic term (Deo & Boom 1993). With these considerations, the 

overall rate of the transitory contact reaction can be expressed as:  

 

𝑅 ൌ െ൫1െ 𝑓୮൯𝐿ௌ,େୟ
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ቇ ሾ%Sሿ, ሺ51ሻ 

 

where fp is the fraction of non-contacted particles, LS,CaO is the partition ratio of 

sulphur assuming that the sulphur is in equilibrium with the solid CaO, and tres is 

the residence time of the particles. It should be noted that the overall expression is 

similar to that reported by Rastogi et al. (1994), who employ the expression to study 

the relative contributions of different rate mechanisms. For each iteration, the 

residence time is chosen from tres = min (t, tres). As discussed in Publications I and 

V, the residence time of the particles, the fraction of non-contacted particles, and 

the mass transfer coefficient for the metal phase cannot be estimated accurately 

without formulating the governing equations for the momentum and mass transfer, 

which makes the model overly complex for online use. Instead, these parameters 

are optimised as in Publication I, but for a dynamic case.  

As Coudure and Irons (1994) and Chiang et al. (1990) state, the fraction of 

non-contacted particles is not independent of the particle size, injection gas 

flowrate, and the injection of gas-forming compounds. The study of Lindström et 

al. (2014) recognises the effect of gas-forming compounds on the increased 

probability that the particles will be scattered, although in a two-phase system in 

which the contact probability with the reagent and metal is significantly higher 
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(Lindström et al. 2014). The dependency of particle size can be further associated 

with the critical Weber number and thus the critical penetration velocity (uc), which 

by definition shows that decreasing the particle size increases the velocity, which 

must be overcome for the particles to wet the metal phase (Nakano & Ito 2016). 

The critical velocity is the velocity of an object required to overcome the surface 

forces in the situation where the particle meets the metal, which, in the case of small 

particles, leads to the entrapment of particles in carrier gas bubbles, which is often 

referred to as contact control in the literature (Chiang et al. 1990; Irons 1989).  More 

detailed analyses of this velocity and the critical Weber number in the context of 

hot metal desulphurisation are given in Oeters (1994) and Nakano and Ito (2016). 

However, the evaluation of the single particle size class penetration probability is 

not straightforward. As described by Farias and Irons (1985), the penetration 

behaviour of particle jets also depends on the flow scheme prevailing in the 

submerged lance. The authors divide the schemes into coupled and non-coupled 

flow. In a coupled flow situation, the particles travel with a velocity close to that of 

the superficial gas velocity, whereas in a non-coupled flow, the difference between 

the superficial gas velocity and particle velocity is greater (Farias & Irons 1985). 

As it can be assumed that the flow characteristics are somewhat stochastic in nature, 

the fraction of non-contacted particles is described by a parameterised expression.  

For this purpose, the following functional relation was proposed to describe these 

effects:  

 
𝑓 ൌ  𝑏 lnሺ𝑄௧௧ሻ   𝑏ଵ lnሺ𝑢େሻ , ሺ52ሻ 

 

where uc is the critical penetration velocity calculated from the correlation given in 

Nakano and Ito (2016). As argued by both authors and Irons (1989), the natural 

constraints for the suggested parameters would be b0 < 0 and b1 > 0, because the 

injection of gas-forming additives increases the probability of direct particle-metal 

contact (Irons 1989), whereas a larger particle size decreases the critical penetration 

velocity, increasing the probability of contact (Nakano & Ito 2016). In the lance tip, 

the volumetric gas rate is the sum of the injection gas rate and the amount of gas 

generated by the decomposition of carbonates, assuming a 100% conversion to 

CO2. The total gas volume is computed such that it is expected to be heated to 80% 

of the bath temperature (p = 1 atm + ρFegh; T = 0.8Tm), which is on average just 

above the decomposition temperature of the calcium carbonate. This assumption 

agrees with Irons (1989), who proposes that the decomposition of carbonates 

occurs instantly when the particles end up in the melt. In addition, Yousuf et al. 
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(2012) observe that the decomposition rate of particles larger than 250 μm is 

remarkably slower than that of smaller particles in the same system conditions. This 

behaviour may be associated with the heat transfer-related control of 

decomposition inside the particles due to the endothermic nature of the carbonate 

decomposition (Yousuf et al. 2012).   

Similarly, as in the case of non-contacted particles, the overall mass transfer 

coefficient is computationally extremely complex to estimate, because it depends, 

for example, on the characteristic length of diffusion and the flow conditions in the 

ladle, which are rather inaccurately quantified in the context of hot metal 

desulphurisation (Oeters 1994). Similar reasoning supporting the estimation of the 

mass transfer coefficient from the data is provided by Brooks et al. (2009) in the 

context of emulsified droplets. The mass transfer coefficient therefore remains to 

be identified.  

Treatment of particle size distribution 

To estimate the particle size specific rate constant, two approaches are used. In the 

first approach, a single characteristic value is used as the identification basis. This 

comes with an assumption that this single attribute describes the differences 

between the distributions consistently and adequately. The attributes used are d80 

(the particle size below 80% of the particle volume), dka, d32 (the Sauter mean 

diameter), and dV (the volumetric mean diameter). However, as the single particle 

models only reveal the averaged effect of particle size distribution, they are not 

studied further in this case. 

The second approach includes the use of the Rosin-Rammler-Sperling 

distribution, whose applications originate in mineral processing (Bayat 2015). In 

this model, the cumulative mass fraction of particles is expressed as 

 

𝑊 ൌ 1െ expሺെ𝑐ଵ 𝑑
మሻ, (53) 

 

where Wp is the cumulative mass fraction of a particle with a diameter d, and  c1 

and c2 are experimental fitting parameters, which are optimised by means of least 

squares with the distribution expression and characteristic particle sizes d10, d25, 

d50, d80, and d90. The overall time constant can be expressed as a sum of particle 

size class specific time constants, as in Visuri et al. (2019) and Publication I. It 

should be noted that the use of RRS distribution in the computation decreases the 

computational load of the model parameter identification, because time integration 
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is carried out numerically instead of using measured particle size distribution. The 

characteristic particle size distributions and the corresponding RRS distribution 

parameters for each of the studied reagents are given in Table 7, and the functional 

forms are exemplified in Figure 9. With reference to Publication I, Reagents A, B, 

and E contain 9, 5, and 0 wt-% of CaCO3, which affects the total volumetric rate of 

gaseous compounds in the system. 

Table 7. Characteristic particle size distributions of the studied reagents with 

corresponding RRS distribution parameters. 

Reagent  d90 d80 d50 d25 d10   c1 c2 

A 240.0 135.0 26.5 6.2 2.8 
 

0.06 0.69 

B 482.5 223.6 33.8 6.4 3.0 
 

0.06 0.61 

C 410.1 233.6 43.7 7.2 3.2 
 

0.06 0.62 

D 97.9 73.3 24.2 4.1 1.2 
 

0.09 0.67 

E 117.1 69.9 10.4 4.4 2.2   0.07 0.76 
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Fig. 9. RRS distributions fitted to the data for Reagents C and E. Cumulative mass 

fraction of a specific particle size is presented on the y-axis.  

5.3.2 Kinetic treatment of the slag-metal reaction 

According to Seshadri et al. (1997), the expression for the rate of slag-metal can be 

given as follows:  

 

𝑅 ൌ  െ𝛽௧௧
𝐴
𝑉
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where βtot is now the overall mass transfer coefficient. In a steady flow field, the 

rate of the control step of the slag-metal desulphurisation reaction can be either the 

mass transfer in the slag or the metal phase. To describe the sulphide capacity of 

the slag phase, two different approaches are used, i.e. the MLR model selected 

based on Dataset 3 and the model proposed by Zhang et al. (2013). The reasoning 

behind this is given in Publication II and Section 5.7.2. As during the injection, the 
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slag phase is obviously not in the steady flow state, and the mass transfer 

correlations assuming steady flow conditions are unsuitable. However, to 

determine these attributes accurately, an approximation of the flow field in the ladle 

is needed.  Instead, the semi-empirical correlation proposed by Riboud and Olette 

(1982) is used to describe the overall mass transfer coefficient for the slag-metal 

reaction.  

As Riboud and Olette (1982) derive the approach by assuming that the gas 

ascending in the metal phase is heated to the melt temperature when it reaches the 

slag-metal interface, the sum of the volumetric rate of gas formed by the 

decomposition of carbonates and the injection gas is assumed to correspond to Qtot 

(p = 1 atm; T = Tm). Riboud and Olette (1982) suggest a value τ = 500 m0.5 for 

practical applications, i.e. in the desulphurisation of steel in the converter and ladle 

with bottom plug stirring (Riboud & Olette 1982). However, the value proposed by 

the authors has been estimated for a permanent contact reaction with bottom stirring 

and for mainly liquid slags, which is why in this work, the τ is omitted from the 

estimation of the data. In addition, Chiang et al. (1990) have empirically proved 

that the rate of desulphurisation for a “dry” slag is significantly slower than for 

liquid slags (Chiang et al. 1990). As discussed in Publication II and by Schrama et 

al. (2020), the solid fraction of the HMD slag is around 20–100%, depending on 

the injection stage, composition, and temperature, which can be assumed to make 

the slag quite stiff, and as Chiang et al. (1990) state, dry. Consequently, it can be 

assumed that the magnitude of τ may be relatively low compared to the original 

value proposed by Riboud and Olette (1982).  

5.3.3 Numerical solution and the parameterisation strategy 

As the system state, and especially the sulphide capacity of the slag and the 

residence time of the particles, evolve dynamically, an analytical solution is 

unsuitable for the objective function. Instead, a numerical approximation obtained 

with an implicit Euler method is used. The implicit Euler method is suitable for 

stiff differential equations, which usually contain more than one-time constants. In 

the implicit Euler method, the sulphur content at the next time instant can be given 

as follows (Kreyszig 2006):  

 
ሾ%Sሿ௧ା ൌ ሾ%Sሿ௧  𝑓ሺ𝑡  ℎ, ሾ%Sሿ௧ାሻ. (55)  
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As both sides of the equation now contain the term ሾ%Sሿ௧ା, it needs to be solved 

either analytically or numerically. In this study, the Newton-Rhapson method is 

used. As seen in the description of the model, the total number of parameters is 

five, i.e. the parameter vector to be optimised is b = [b0 b1 βtot tres τ] . It should be 

noted that the convergence is tested by systematically making each of the design 

variables constant one by one (i.e. the penetration ratio, mass transfer coefficient, 

and residence time), following an experimental design matrix. With this procedure, 

it is found that the parameter combination presented above gives the lowest error 

for the full data. It has been suggested in the literature, for example, in Oeters 

(1994), that the suitable value for the residence time is a maximum of 78 s, which 

suggests constraining the residence time in the search. Similarly, as the reagent is 

practically free from sulphur, the driving force of the reaction supports 

desulphurisation, and therefore a negative rate expression. The time constant for 

the expression of the rate of transitory reaction is therefore constrained as ki ≥ 0, 

which in practice, partly rules out the non-feasible solutions connected with the 

empirical relation considering the particle-metal contact. With these considerations, 

the objective function used for the identification is 

 

min RMSE ൌ minඩ
1
𝑛
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which is subject to                                                                         
 𝑡௦  𝑡௦,௫ , ሺ57ሻ 

 

and 
𝑘  0, ሺ58ሻ 

 

where RMSE is the root-mean squared error, and tres,max is the maximum residence 

time. Because the model used is dynamic, the function to be optimised is assumed 

to be multimodal, which makes the use of gradient-based methods non-reliable for 

a global search. The real-coded genetic algorithm is therefore used as the solving 

strategy. The algorithm hyperparameters were set to npop = 50, maxgen = 100 and pC 

= 0.9. The mutation probability was set to evolve deterministically in line with Bäck 

and Schultz (1996). The schematic illustration of the parameter identification 

flowchart is presented in Figure 10. 
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Fig. 10. Flowchart of the parameter identification for the proposed model. The figure is 

simplified to illustrate the treatment of a single individual in the genetic population. 

5.3.4 Results of the identification and analysis of the system 

To identify the model parameters, the genetic algorithm and the stratified data split 

are used. In the first phase, the model performance and parameter identification 

procedures are compared for a static data split, and the variability of the parameter 

values is studied with the corresponding objective function values. In the second 

step, the identification is conducted with repeated stratified cross-validation to 

study the variability of the parameters and the model predictions for different data 
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splits. The best parameters obtained in the first identification step are given in Table 

8. The values for the mass transfer coefficient agree well with the literature, 

especially with the values proposed by Oeters (1994). The figures of merit for both 

cases are approximately R2 = 0.87–0.88 and MAE = 13–14 ppm for the training, 

and R2 = 0.91–0.93 and MAE = 9.24–9.57 ppm for the external validation dataset. 

The model predictions obtained with the given parameters are presented in Figure 

11. 

Table 8. The best parameters obtained with the identification in the first step for the data 

set 1. 

CS  b0 b1 βtot (m/s) tres (s) τ (m-0.5) 
 

Zhang et al.  (2013) –0.22 0.09 6.1∙10–5 7.9 93.6 
 

This work –0.25 0.06 1.7∙10–5 21.3 128.9 
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Fig. 11. Measured and predicted end sulphur content using RRS distribution with 50 

size classes. 

To characterise the distributions of the suitable parameter values for a single piece 

of data, a repetitive test is undertaken. The dataset is divided into training and 

external validation sets with the procedure described in Section 5.2. In this phase, 

the identification is repeated 50 times. It is found that for each of the tests, the 

algorithm converges to the same objective function value, RMSE = 0.0017 wt-%. 

However, as Figure 12 illustrates, the parameter values vary between repetitions. 

This behaviour can be explained with the multimodality of the objective function, 

even for a single data split. The multimodality partly arises from the uncertainties 

discussed earlier that consider the phenomenological behaviour of the system. 
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Fig. 12. Histograms of the parameter occurrences in repetitive testing for a static split. 

The identification is conducted using the sulphide capacity model of Zhang et al. (2013). 

As can be seen, the values identified for the residence time agree with the literature, 

but the variance in the parameter values and the multimodality of the objective 

function still indicate that the uncertainty is relatively large. In Figure 13, the 

objective function values are illustrated with respect to the discretised parameter 

space. Instead of a projection onto two parameter spaces, the objective function 

values are illustrated as circles, and two address the issues concerning system 

identification. In the figure, the size and colour of the circle illustrate the objective 

function values. The objective function values show that there are multiple equally 

good solutions with respect to the error function, and no explicit conclusions can 
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be drawn from the parameters’ absolute values. This strongly agrees with the 

findings of Oeters (1994), who states that the best fit for the residence time greatly 

depends on the assumptions made concerning the system. However, as seen in the 

figure, all the residence times that provide a physically relevant residence time for 

the particles agree with the literature, for example, with the studies of Oeters (1994) 

and Ma et al. (2017). 
 

Fig. 13. Objective function values as a function of the physically meaningful parameters. 

The objective function is constructed by applying the sulphide capacity model of Zhang 

et al. (2013). 

As was seen in Section 5.1.2., if the residence time and mass transfer are assumed 

to be constant, the degree of freedom in the system decreases, which provides a 

solution that can be interpreted more precisely but is not necessarily physically 

feasible. Yet with fewer parameters, the degrees of freedom drop in the system, 

allowing a more explicit solution. Another reasoning behind the multimodality of 

the objective function could be because the effect of slag cannot be explicitly 

identified in the data, which may be partly because the covariance of the slag is 
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simply not observable in the data, because the covariance between the reagent and 

rate of desulphurisation is simply higher. To solve this issue, a more detailed dataset 

is needed. For example, a dataset without a reagent injection and in which the slag 

is of equal composition when there is an injection would probably indicate the total 

mass transfer coefficient for the permanent contact reaction of a stiff slag. Another 

source of variance is found to consider the used sulphide capacity model for the 

slag phase. This issue is discussed in more detail in Publication II and Section 5.7. 

However, with the current knowledge and data, no unambiguous solution is 

available. More detailed reasoning concerning these issues can be found in 

Publication V. 

In the second step, model parameter identification is conducted for repeated 

stratified data splits to study the effect of data split on the variability of parameter 

values and predictive indicators. The splits are repeated 100 times for both sulphide 

capacity models. In Figure 14, the histograms of the R2 values for the external 

validation set are presented in the case of the model of Zhang et al. (2013). The 

distribution of R2 values for the sulphide capacity model derived in this study is 

very similar, so for the sake of clarity, it is not presented here. The remaining 

repetition statistics and parameter values for both cases are presented in Table 9. 

The table shows that as the prediction indicators are quite stable, it is reasonable to 

expect a prediction error of 11–13 ppm for a dataset similar to this data. For both 

models, the mean and median values of R2 for the test set are 0.89, and the MAE is 

around 12 ppm. However, a slight instability in the parameter values can be found, 

and in some cases, the parameter values are clearly overfitted, resulting in an 

external validation error of 17–20 ppm, even though the training error is around 10 

ppm.  

The table shows the standard deviation of the parameters between the split 

repetitions, especially for the residence time and the τ. It is therefore obvious that 

more data would be beneficial for making a more accurate estimate of the 

prediction error and improving the model’s stability, i.e. to decrease the standard 

error of the parameters. An obvious solution for model simplification and 

increasing stability would be the neglection of the Rii (slag-metal reaction) from the 

rate expression, because the original data for the slag composition variables is 

relatively sparse, and the number of imputed points is therefore quite large. 
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Fig. 14. Histogram of coefficient of determination (R2) values for the external validation 

set. The values are identified using the sulphide capacity model of Zhang et al.  (2013). 

Table 9. Repetition test statistics for stratified split test. 

Study b0 b1 b2  b3 b4 Metric Mean Best  Worst 

This study          

mean –0.26 0.05 3.5∙10–5 21.57 118.51 R2 - t. 0.90 0.96 0.84 

std 0.03 0.03 3.3∙10–5 13.62 31.60 MAE- t. 11.17 7.99 15.46           

      
R2 - ev. 0.89 0.95 0.74       

MAE - ev. 12.58 8.39 19.92 

          

Zhang et al. (2013) 
         

mean –0.248 0.065 3.3∙10–5 24.12 88.21 R2 - t. 0.89 0.95 0.80 

std 0.031 0.029 2.1∙10–5 12.20 41.29 MAE- t. 11.47 7.93 14.67           

      
R2- ev. 0.88 0.97 0.74 

            MAE - ev. 13.82 8.29 20.52 
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The estimated mass fractions of particles that come into contact with the metal 

phase are given in Figure 15. The figure shows that the fractions of particles that 

come into contact with the metal phase depend on the particle size and the 

volumetric rate of gas in the system, accounting for the decomposition of the 

carbonates and injection gas. According to this approach, the solid flowrate 

increases the fraction of particles in contact with the melt, only if carbonates are 

mixed with the reagent. The dependency of the carbonate injection is most 

prominent between 0 to 5 wt-%, because of the assumed logistic dependency. 

However, a comparison of the figures with the values obtained with surface area 

approximation shows that the non-contacted mass fraction approaches 0 when the 

particle size approaches 0. With limited extraction capacity, it is estimated that 25–

40 % of the 10 μm particles get in contact with the melt. However, the dependency 

is not as strong as in surface area approximation, because the surface area 

approximation proposes that the expected volume fraction is nearly 0 for particles 

smaller than 10 μm, even with shorter residence times.  
 

Fig. 15. Estimated fraction of particles in contact with the metal phase (1 – fp) as a 

function of particle size and carbonate content in the reagent in the conditions assumed 

in the lance tip. The solid flowrate was assumed constant (mr = 100 kg/min). The particle 

size distribution is estimated using the RRS distribution with N = 50 size classes. 
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Simulation study  

To analyse the behaviour of the process and the dependencies, a simulation study 

is undertaken. The simulations are conducted by systematically changing the initial 

conditions by interpolating between the extreme values. The identified parameters 

for the simulation correspond to those given in Table 8. The simulated sulphur 

trajectory with different particle size distributions is shown in Figure 16. The figure 

shows that by decreasing the particle size distribution, the overall desulphurisation 

rate increases. This can mainly be attributed to the increased solid surface area, 

which results in an increased rate of reaction and thus a higher utilisation ratio of 

individual particles.  
 

Fig. 16. Simulated sulphur trajectory with different particle size distributions. The 

sulphide capacity of the slag is estimated using the correlation proposed by Zhang et 

al. (2013). 

The simulated sulphur trajectory with varying amounts of carbonate injected within 

the primary reagent and constant other system properties are shown in Figure 17. 

The sulphur trajectory shows that the injection of gas-forming compounds 

increases the rate of reaction. In the model, this is attributed to an increased fraction 
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of particles in contact with the metal phase, which is in line with the findings of 

Irons (1989) and Lindström et al. (2015) that consider the effect of decomposition 

of gas-forming additives on the reaction mechanism.  

 

Fig. 17. Simulated sulphur trajectory with different CaCO3 wt-% in the reagent. The 

sulphide capacity of the slag is estimated using the correlation proposed by Zhang et 

al. (2013). 

A further analysis of the simulations reveals that the effect of particle size and the 

flowrate of gas-forming compounds on the reagent efficiency interact. This is 

because the injection of gas-forming compounds increases the fraction of particles 

coming into contact with the melt, and the reagents without gas-forming 

compounds therefore benefit the finer gradation more. Decreasing the particle size 

d80 from 233 μm to 70 μm, and assuming the shape of the distribution remains the 

same, the increase in the reagent efficiency is around 1%, whereas when the CaCO3 

content of the reagent is 9 wt-%, the increase is 0.9%. It should be noted that in this 

case, such an increase in the reagent efficiency corresponds to a 50–60 ppm drop 

in the end sulphur content under these conditions.  
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Figure 18 shows the effect of Na2O content of the slag on the endpoint of 

sulphur is not as remarkable as the other variables. This is mainly because with 

such high injection rates, the end compositions of both cases are practically the 

same, resulting in sulphide capacity of a similar magnitude. The difference between 

the sulphur content is around 10 ppm for a simulated 8-minute treatment. A 

difference as small as this is quite difficult to verify, because the random of the 

measurement for the sulphur content of the metal phase is in the order of several 

ppms. It is therefore obvious that the effect of slag composition on the endpoint of 

sulphur cannot be reliably estimated from the current data because of their non-

constant reagent properties and strong effects on the overall rate. With a different 

dataset, the estimation of the effect of slag would be more reliable, meaning that 

the rate of the transitory reaction and the permanent contact reaction could be 

differentiated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 18. Simulated sulphur trajectory with varying amounts of Na2O in the initial slag. 

The sulphide capacity of the slag is estimated using the correlation proposed by Zhang 

et al. (2013).   
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5.4 Data-driven model selection for the transitory contact reaction 

(Publication III)  

As indicated in Publication I and the previous sections, variable and model structure 

selection usually requires external knowledge of the system to derive meaningful 

relations. The discussed situations are two special cases of manual selection and 

model parameter identification. As seen in the previous section, the use of expert 

knowledge in model structure selection may sometimes allow a more 

comprehensive explanatory analysis of system behaviour, but model structure 

selection needs to be conducted carefully and with a solid argumentative basis, and 

a wide knowledge base is therefore needed. In this section, the results of the 

automatic identification are compared with manual model identification strategies.  

As stated in Section 3, the use of model identification algorithms requires a rather 

generic model structure, like the one presented in Publication III. In the referenced 

article, a model with a generic structure is identified solely based on the 

experimental data using a binary-encoded genetic algorithm, a description of which 

was provided earlier in this study. The applied dataset is the same as used in the 

parameterisation and validation of the parameterised reaction models presented in 

the previous sections.   

The results of the variable selection algorithm in Publication III agree with the 

results in Publication I, because the proposed algorithm repeatedly selects the same 

variables as manual selection based on phenomena-based reasoning. In addition, 

the results are very similar to the results of an exhaustive search. The other 

deterministic algorithms (Forward Selection 1 and Forward Selection 2) are also 

compared to the results of the genetic algorithm. Similarly, as in Publication III, the 

objective function is based on 4N cross-validation, and the fractions of data for 

internal and external validation are the same. The results of the genetic algorithm 

are presented only for npop = 100, and the dependency of the search results on the 

algorithm parameters is more comprehensively reported in Publication III. For 

example, increasing the number of individuals in the search increases the 

probability of finding the best subset (d80, Qtot, mሶ r and mFe) for this data. However, 

increasing the number of individuals comes with the increased computational cost.  

The results of the repetitive tests are presented in Figure 19. The figure shows that 

the results of Forward Selection 1 and the genetic algorithm are very similar. 

However, Forward Selection 2 tends to select a larger number of variables and 

consequently some assumedly redundant variables for the model. In addition, the 

hit rate of the most important variables is ~100% for the genetic algorithm and 
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Forward Selection 1, whereas Forward Selection 3 tends to omit the particle size 

distribution (x5) from the subset. In principle, the results are comparable to 

exhaustive search.  

 

Fig. 19. Selected variables with different methods, using repeated random subsampling 

as the objective function. GA = Genetic Algorithm, FS1 = Forward Selection 1 and  

FS3 = Forward Selection 3. The data for the Genetic Algorithm is given in Publication III. 

5.5 Identification of a neural network model for carbide-based hot 

metal desulphurisation (Publication IV) 

Publication IV introduces a model selection scheme completely independent of the 

expert knowledge. In this case, the reagent used is calcium carbide. As the previous 

sections show, several uncertainties prevail in the hot metal desulphurisation 

system, and the process is non-linear in nature. It is also expected that the 

uncertainties, especially in the thermodynamic driving force, make the assumptions 

concerning the system unsuitable, because there is no information on the 
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composition of the slag phase. A black box approach is therefore introduced. In this 

study, a neural network model is identified, using a genetic algorithm with hybrid 

encoding. In this approach, the variable space is described as binary-encoded 

vectors, whereas the neural network architecture is assumed to be a fully connected 

network, whose structure can be expressed with a single integer. To decrease the 

computational complexity of model selection, the ELM architecture is used as the 

model basis. After the selection phase, the final model is trained using the Bayesian 

regularisation algorithm. In the original Publication IV, it was found that a simple 

genetic algorithm using either a single or two-point crossover could be used to 

select well-generalising neural network models for carbide-based hot metal 

desulphurisation. However, the selection results were found to depend on the 

applied objective function and the size of the population. The number of internal 

validation splits was especially found to be an important parameter to consider.  

Figure 20 presents an exemplified training and internal validation error (mean 

squared error averaged over 50 data splits) for the end population. It should be 

noted that the model error is only a function of network complexity, because the 

convergence criterion is set as a homogeneous population. The figure clearly shows 

that the use of cross-validation error as the selection criterion instead of training 

error provides a less optimistic estimate of model prediction performance, and the 

network that minimises the internal validation error should therefore be chosen 

instead of the one that minimises the training error. A model with a good prediction 

performance could thus be repeatedly identified for a static external validation set. 

The model’s prediction results for an external validation set of 100 treatments is 

presented in Figure 21.  
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Fig. 20. Exemplified training and internal validation errors as a function of hidden 

neurons for the end population. 
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Fig. 21. Predicted end sulphur content at the end of injection. (Reprinted, with 

permission, from Publication IV © 2020 Elsevier). 

Prior to using the algorithm to identify hot metal desulphurisation, it is tested with 

several open datasets found in the UCI Machine-Learning Repository with a 

varying number of variable candidates. The results of these tests are beyond the 

scope of this work, so they are not reported here. However, it is found that the 

genetic algorithm can select well-performing models, the dimensions of which are 

significantly smaller than the dimensions of the full model.  

In this study, the performance of the algorithm is also compared to Forward 

Selection 1 and Forward Selection 2, as in the previous section. Prior to selection, 

the input data is scaled between 0 and 1. The general procedure for comparison is 

similar to Publication IV and is illustrated in Figure 22. When using the 

deterministic algorithms, the number of hidden neurons is optimised with the grid 

search from 1 to 30. The performance of the algorithms is compared by repeating 

the search 50 times with a different external validation data split for each repetition 

– tournament selection and roulette wheel selection (50/50 selection scheme). The 

applied GA uses a population of 100 individuals, pC = 0.9, and a hybrid of the 
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performance of each model is not found to depend on the algorithm used, because 

the average R2 for the external validation set of 100 treatments was 0.83–0.86 and 

MAE = 5.13–5.20 ppm for each case. However, the selected input variables vary. 

The equal performance can be explained by the use of the regularisation algorithm 

in model training, which shrinks the coefficients of the redundant variables close 

to zero. Thus, each of the studied algorithms performs well in a dimensional 

reduction that improves the convergence of the Bayesian regularisation training 

algorithm. A more detailed description of the behaviour of the GA in the variable 

selection problem is discussed in Publication IV. 

 

Fig. 22. Procedure for model selection (Reprinted [adapted], with permission, from 

Publication IV © 2020 Elsevier). 
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5.6 Kinetic studies on re-sulphurisation of hot metal with 

experimentally oriented modelling (Publication II) 

Resulphurisation is an important factor to consider in industry. Publication II 

presents a study of the resulphurisation of hot metal. The study finds that the 

resulphurisation of hot metal can occur, provided the sulphur content of the top slag 

is sufficiently high. In other words, a thermodynamic potential for resulphurisation 

and an existing phase contact are needed. The addition of Na2O to the slag increases 

the sulphur partition ratio between the slag and metal, regulating the rate of re-

sulphurisation. However, the heterogeneous slag complicates the analysis. 

Assuming the sulphur content in the top slag follows a first-order reaction rate, the 

change in sulphur content in the slag phase can be written as 

 
dሺ%Sሻ

d𝑡
ൌ  െ𝑘୲୭୲ ቀሺ%Sሻ െ ሺ%Sሻୣ୯ቁ , ሺ59ሻ 

 
where ktot is the rate constant for the re-sulphurisation reaction via a permanent phase 
contact, (%S) is the sulphur content in the slag phase, and (%S)eq is the equilibrium 
sulphur content in the slag phase. The identified rate constants are presented in Table 
10. It is also found that the sulphide capacity models presented in the literature do not 
cover lime-based slags containing Na2O. To this end, a meta-analysis of the 
experimental data collected from previous studies is conducted, and the existing models 
are compared to the collected data. In the analysis, it is found that the Na2O content 
significantly increases the sulphide capacity of the slag. However, it is obvious that the 
sulphide capacity concept is not well defined for heterogeneous slags, although these 
slags are common in real-life applications. The study reported in Publication II is 
extended in Section 5.7. to other slag systems. 

Table 10. Calculated rate constants for re-sulphurisation, compared to the data of Liu 

et al. (2015) (Reprinted under CC BY 4.0 license from Publication II © 2019 Authors). 

 Series  k (1/s) k' (m/s) k'A (m3/s) k'A (cm3/s)   k'A (cm3/s)* k' (m/s)* 

 1  0.0045 2.0∙10-4 3.0∙10-7 0.30 
 

0.07 2.0∙10-5 

 2  0.0044 1.9∙10-4 2.9∙10-7 0.29 
   

 3  0.0033 1.4∙10-4 2.2∙10-7 0.22 
   

 4  0.0022 9.5∙10-5 1.4∙10-7 0.14       

Note: *) Value extracted from the study of Liu et al. (2015). 
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5.7 Data-driven modelling of the sulphide capacity of the slag 

phase based on slag-metal equilibrium experiments (extended 

from Publication II) 

In this section, the estimation and explanation of the dependency of slag 

composition on sulphide capacity based on the slag-metal equilibrium experiments 

described in Dataset 3 is conducted using meta-analysis. The section first estimates 

a model based on the data, and then compares the model to the existing models 

found in the literature. It should be noted that Publication II conducts a similar 

comparative study for only the CaO-SiO2-Na2O system, whereas this section also 

accounts for the other slag components. 

As discussed in Publication II, a relatively large number of sulphide capacity 

models is available in the literature. The models can be categorised as theoretical 

models (semi-white box), semi-empirical models (grey box), and data-driven black 

box models. A more detailed categorisation is given in Publication II, so it is not 

repeated here. However, the general advantage of semi-empirical and data-driven 

models is that they are simple to implement within a prediction model, whereas 

theoretical models often require a more rigorous analysis of the model structure 

during implementation. This comparative study therefore considers only the 

models that are relatively easy to implement and addresses some of their 

limitations. The focus is on the most applicable, yet most referenced models found 

in the literature. 

5.7.1 Model selection for the sulphide capacity 

The first step of the study considers the identification of two new sulphide capacity 

models, whose model structure is based either on the neural network or multiple 

linear regression, using the logistic transformation ln(x+1) for input and output 

data. The explanatory variable candidates are selected as the molar fractions of the 

slag components, and the temperature of the system is expressed in Kelvins. The 

output variable is the estimated sulphide capacity, which is calculated as described 

in Section 4.3.  

Model selection is divided into data pre-treatment, variable selection, and final 

model training steps. Prior to variable selection, the data is split into training and 

external validation sets such that 20% is used for external validation. The training 

set is further divided into training and internal validation sets. Variable selection is 

conducted using Forward Selection 1, and the sum of the squared error for the 
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internal validation set over 8N data splits is used as the objective function to yield 

a realistic estimate of the internal validation error. After selection, the model 

parameters are estimated using the Moore-Penrose inversion for the training data. 

The final model performance is then evaluated, using the external validation set.  

The selection is repeated several times for different training and external 

validation splits, and the results are found to be consistent between splits. As the 

number of input variable candidates is relatively small, the double cross-validation 

is not used. It is found that when using the MLR model as the basis for selection, 

Forward Selection 1 tends to select all the candidate variables except the P2O5 for 

the model. However, this is not considered an issue, because the objective function 

is relatively pessimistic, being based on around 3,500 data splits in the internal 

validation step. As Figure 23 shows, forward selection converges to a set of 9 

variables, indicating a rather monotonic objective function with respect to the 

variable space. However, as the figure shows, the last step results in a rather small 

improvement, and two elimination steps are therefore performed to reduce the 

variance of the model, yielding a total of 7 input variables, including molar 

fractions of CaO, SiO2, Na2O, Al2O3, and MgO. 

The input variables selected with the MLR basis and the data division is used 

for the training and external validation of the network. In training, the number of 

hidden neurons is kept as small as possible to reduce the variance of the model. The 

number of hidden neurons is therefore set to 3, and the number of hidden layers to 

1. The neural network model is trained with the Levenberg-Marquardt algorithm. 

Prior to training, the input data is treated with standardisation (μ = 0, σ2 = 1), in 

which for each column the mean is subtracted, and the result is divided by the 

standard deviation. 
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Fig. 23. Convergence of Forward Selection 1 for the sulphide capacity data. 

5.7.2 Analysis of the considered models 

The prediction performance indicators for the models selected based on Dataset 3 

are found to be R2 = 0.89 and MAE = 0.24 (-) for the MLR model, and R2 = 0.94 

and MAE = 0.17 (-) for the ANN model, determined for the external validation 

dataset. The figures of merit for the models and their comparison are given in Table 

11. 
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Table 11. Figures of merit for the compared models. 

Model R2-full MAE-full   R2-t. MAE-t.   R2 – ev. MAE-ev. 

This study - MLR 0.89 0.24 
 

0.89 0.25 
 

0.89 0.23 

This study - ANN 0.94 0.16 
 

0.94 0.16 
 

0.95 0.17 

Sosinsky and Sommerville (1986) 0.57 1.59 
      

Young et al. (1992) 0.77 0.59 
      

Zhang et al. (2013) 0.68 0.61             

This study’s model predictions are found to be in reasonable agreement with the 

predictions carried out with earlier models. The largest deviation was found to be 

with the model of Sosinsky and Sommerville (1986). This is mainly because the 

temperature range of Dataset 3 is between 1200 °C and 1700 °C, which is 

considerably distant from the range of validity in Sosinsky and Somerville (1986), 

which is between 1400 °C and 1700 °C. Second, as the data based on which the 

model is identified does not contain any Na2O, whose high sulphide capacity has 

been widely discussed in the literature (Chan & Fruehan 1986; Chan & Fruehan 

1989; van Niekerk & Dippenaar 1993; Kunisada & Iwai 1993), the model is 

assumed to underestimate the sulphide capacities for the slag systems containing 

relatively high amounts of Na2O. The model of Zhang et al. (2013) is similar to that 

proposed by Sosinsky and Sommerville (1986), but is fitted to a larger and more 

recent set of experimental data (Zhang et al. 2013). However, the model of Zhang 

et al. (2013) does not cover the Na2O-containing slag systems, which consequently 

results in an underestimating of the sulphide capacity of the corresponding slag 

systems. The best agreement is found to be with the model of Young et al. (1992). 

However, this also suffers from the lack of data from the Na2O-containing slags. 

Figure 24 illustrates the predictions made for the full data with the selected MLR 

model and the model of Young et al. (1992). The figure shows that the predictions 

are consistent except for the negative deviation from the diagonal of the model of 

Young et al. (1992). It should be noted that the consistent predictions for systems 

other than those with Na2O support the assumptions made in the feature generation 

step, i.e. in the computation of the equilibrium activity of oxygen and sulphide 

capacity.  
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Fig. 24. Comparison of the MLR model with the model of Young et al. (1992). 

The residual plots for the compared models presented in Figure 25 show that the 

residuals are positively biased and correlate with the molar fraction of Na2O in the 

slag phase. This basically indicates that the compared models suffer from a lack of 

fit because of the absence of the effect of Na2O. This arises from the definition of 

optical basicity: as there are several slag compositions with the same optical 

basicity, the dependencies of the optical basicity and the sulphide capacity are 

assumed to be of a higher order than for linear. The non-linearity problem is 

addressed by Young et al. (1992), who add the squared terms, which still does not 

fix the problem that the coefficient estimates deviate towards the slag compositions 

without Na2O, resulting in the underestimation.   
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Fig. 25. The residual plots with the analysed models with respect to molar fraction Na2O. 

The x-axis is marked with the dashed line. 

In the second model selection step, the hypothesis concerning the effect of slag 

components on the sulphide capacity is tested with the linear model basis. The 

testing is conducted by drawing 100,000 bootstrap samples from the training data 

and taking the standard deviation of the estimated coefficients as the standard error. 

Further, the confidence interval is determined with the quantile method, and it is 

found that all the coefficients differ significantly from 0, and hence the bootstrap 

p-values are practically infinitely close to 0. The estimated distributions for the 

standardised regression coefficients of CaO, Na2O, SiO2, and Al2O3 are presented 

in Figure 26. The figure shows that the empirical distributions of the estimates are 

nearly normal, and the full data estimate falls near the mean of the distribution. The 

standard error of the estimates shows that the observed coefficient values differ 

significantly from zero, which can be regarded as sufficient evidence for rejecting 

H0. The expected value of the coefficient estimates of Na2O and CaO, shows that 

the ratio (≈ 1/3) for the sulphide capacity is very near the Na2O equivalent value 

(0.3), determined for the sulphur partition ratio reported by Van Niekerk and 
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Dippenaar (1993) and Inoue and Suito (1982). In practice, this means that when 

adding the same amount of Na2O and CaO, the magnitude of the positive effect is 

3 times larger for Na2O under the compositional ranges considered in this study. In 

addition, there seem to be no systematic errors in the variable construction stage, 

because the estimates determined for the partition ratio and sulphide capacity agree. 

The effects of SiO2 and Al2O3 seem to be the opposite of that of Na2O and CaO. 

The direction of the effects agrees with the model proposed by Young et al. (1992), 

who similarly estimated the negative effect of SiO2 and Al2O3 on sulphide capacity. 

With reference to the bootstrap statistics, all the estimated effects seem to be 

reliable, and the probability of making a false interpretation based on chance given 

this data is very small.  
 

Fig. 26. Empirical bootstrap distributions of the linear model estimates of the main slag 

components to sulphide capacity. 

With reference to the poor extrapolation properties of the neural network, in 

practice, the linear model is more applicable in predictive use. This is because the 

composition of the hot metal desulphurisation slag is well beyond the confidence 
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region of the neural network trained in this data, mainly because the CaO contents 

in the slag are excessively high, especially during the end stage of injection, and 

the amount of non-dissolved CaO is relatively high. With reference to the large 

variance of the network models, the models tend to be unstable outside the region 

of the training data. In practice, only the interpolation properties of the network can 

therefore be guaranteed, and the extrapolation with a network should be evaluated 

carefully (Hagan et al. 1997). In other words, to use the neural network model in 

predictive inference, more data must be collected from the sulphide capacities or 

effective sulphide capacities of slags with a high CaO content (> 60%). 

Unfortunately, this data is not available in the literature, because sulphide capacity 

was originally formulated for liquid slags, which limits the use of the concept in 

analysing the sulphur extraction capacity of slags with high solid fractions. This 

issue has also been outlined in Publication II in the context of CaO-SiO2-Na2O slag 

systems. Considering the reasoning above, the linear model is chosen within the 

permanent contact reaction model presented in Section 5.3.  

It should be noted that the KTH model is intentionally omitted from this 

analysis, because the number of model parameters is very large compared to the 

degrees of freedom available for the standard error estimates in this data. A detailed 

description can be found in Nzotta et al. (1998), for example. As is pointed out in 

the study of Zhang et al. (2015), the number of parameters in the KTH model is 

more than 60 for an 8-component system, taking the binary and ternary interactions 

of the cations and the temperature into account. Similarly, Publication II points out 

that the number of parameters in a ternary system is eight, but also that it would be 

beneficial to re-estimate the interaction parameters as new data is provided, because 

it is obvious that the parameter estimates are biased if the considered model 

structure is very far from the best available model. Further, it would be beneficial 

to consider whether the parameters that consider the interactions of the cations can 

be estimated from the data, and not to select the model structure based on the 

assumed interactions, but on the observed ones. However, the latter approach is not 

typical, because nearly every model considers the higher order interactions before 

considering the identification on a linear model basis. As has been seen for this 

data, the linear model structure is arguably sufficient, and more stable for out-of-

sample predictions referring to smaller variance in practice. Indeed, model 

selection is also conducted such that the data includes the higher order interactions. 

This results in a set of 55 candidate variables, which makes the use of 8N repetitions 

in the inner loop impractically slow. In addition, model performance is not found 

to be significantly improved, but it is found to be increasingly unstable within the 
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increase in complexity. Instability is observed in inconsistent training and external 

validation errors, because the external validation error is found to be systematically 

several orders larger than the training error, which basically indicates an overly 

complex model.  

Concerning simulation model selection, the presented procedure can be seen 

as a three-step model construction. In the first step, the sulphide capacity values are 

generated from the phase compositions and the system conditions, involving 

multiple variable constructions for both the input and output variable spaces. In the 

second step, a model for predicting sulphide capacity is selected that best fits this 

data, whereas in the third step, the selected model is used in parallel with a 

mechanistic model to provide the boundary condition for the expression of the rate 

of a permanent contact reaction.  

5.8 Further work 

In this study, different mathematical modelling strategies are employed to study the 

hot metal desulphurisation process. The models derived for lime-based hot metal 

desulphurisation allow the identification of process causalities and a quantitative 

description of the effect of available variables on process efficiency. To extend 

practical usability, the models can be coupled with economic variables such as costs 

of reagent materials and in-depth cost optimisation. In addition, modelling 

strategies can be used as the basis for the data-driven identification of the still non-

quantifiable phenomena. As the results show, the effect of top slag on the rate and 

efficiency can be described only semi-quantitatively, because Dataset 1 does not 

explicitly reveal the effect. To achieve this, a more comprehensive dataset 

describing the covariance of the slag and the metal phase compositions would have 

to be collected, including the information on the variables that relate to the rate of 

the transitory reaction. In addition, a dynamically evolving dataset would plausibly 

allow a more detailed analysis of the individual rate mechanisms.  

Concerning process modelling in general, this study offers guidelines for 

model selection in the context of hot metal desulphurisation. As seen throughout 

the study, other processes such as the basic oxygen furnace and the blast furnace 

have been well covered in the previous literature. Publication V and this study show 

that data-driven techniques in general benefit from more data. However, the 

characteristics of high-temperature processes and the workload needed for analysis 

procedures often restrict this aim, and thus the use of data-driven techniques. For 

example, it is laborious to collect datasets describing the particle size distributions 
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of lime-based reagents, which may limit the use of suggested online models. 

However, a pre-trained model can be applied to find the best practices and 

systematically control the relevant process variables if used online.  
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6 Conclusions 

This study’s objective was to study hot metal desulphurisation with mathematical 

and experimental modelling, emphasising the data-driven identification of both 

parameterised phenomena-based models and a selection of generic prediction 

models. In the literature study, it was found that the most common mathematical 

models proposed for the process fell into the category of mechanistic and CFD 

models. Data-driven models are a minority in the literature, and the use of 

systematic modelling frameworks for process identification have therefore not been 

previously studied.   

An explanatory analysis of the primary hot metal desulphurisation data 

revealed that the estimated rate parameters, i.e. the residence time and the mass 

transfer coefficient, greatly depended on the assumptions, as well as the applied 

particle size distribution parameters. However, the effect of particle size 

distribution was found to be similar, regardless of the applied distribution 

parameter. Indeed, the information concerning particle size distribution was found 

to explain a major part of the variance and other properties of the reagent, namely 

the amount of injected auxiliary compounds. However, the role of injection 

parameters – the loading of the reagent, for example – was not observed or studied. 

The predictive performance of the models was found to be sufficient in all 

cases. However, as measured particle size distribution is not readily available in the 

full-scale process, and there are some fundamental uncertainties concerning this 

attribute’s use in the full-scale process, the full-scale predictive performance of the 

models remains to be exhaustively validated.  

The contribution of the slag phase to hot metal desulphurisation was twofold. 

On one hand, for these cases, the injection parameters and reagent properties 

provided sufficient explanatory and predictive power. The contribution of the slag 

phase was estimated to be 10–20% to the overall rate if the extraction capacity of 

the reagent was not assumed to be of infinite magnitude. If surface area 

approximation was used as the description for the transitory contact reaction, the 

contribution of the permanent phase contact could be neglected. The suitable model 

parameter values were not found to be unambiguous. Indeed, the relative 

contributions and the valid parameter ranges greatly depended on the applied 

descriptions of the individual rate mechanisms.  

Due to the contribution of the slag phase, it was concluded by using a meta-

analysis of previous studies that the used description of the sulphide capacity was 

important. The importance of the description was twofold. On one hand, a realistic 



132 

description provided a sufficiently realistic boundary condition for the rate of the 

permanent contact reaction, but it might also help to estimate the possibility of the  

re-sulphurisation of hot metal in a production situation, and thus assist in the 

selection of slag modifiers to avoid the phenomenon. The effect of Na2O on these 

was found to be important. As the increase in the Na2O content of the slag phase 

increases its sulphide capacity, it can be postulated that it increases the 

thermodynamic driving force for desulphurisation but regulates the driving force 

of the inverse reaction. As the addition of Na2O increases the equilibrium liquid 

phase fraction of the slag phase, it is assumed that slag modification contributes to 

rate mechanisms with an increased mass transfer rate.  

In the case of all the studied datasets, it was found that automated model 

selection strategies provided results that were consistent with domain knowledge, 

provided that the algorithm hyperparameters were carefully chosen. Genetic 

algorithms were found to be suitable for the identification of process models, both 

in variable selection and model training. Indeed, in variable selection for Dataset 1, 

the results of the genetic algorithm were found to be comparable with the results of 

the exhaustive search. Deterministic forward variable selection strategies could be 

said to perform as well as metaheuristic algorithms, especially if the dimensionality 

of the best available model was significantly smaller than the original dimension, 

and if the objective function was monotonic. However, the importance of choosing 

a proper objective function for model selection cannot be exaggerated. It is 

therefore recommended that these strategies be used concurrently with domain 

knowledge (if available), not exclusively.   
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