
Improvement of Energy Consumption for “Over-

The-Air” Reprogramming in Wireless Sensor

Networks
Konstantin Mikhaylov

#1
and Jouni Tervonen

#2

RFMedia Laboratory, Oulu Southern Institute, University of Oulu

Vierimaantie 5, 84100, Ylivieska, Finland
1
konstantin.mikhaylov@oulu.fi

2
jouni.tervonen@oulu.fi

Abstract—�ew hardware platform architecture for “over-the-

air” reprogramming in Wireless Sensor �etworks (WS�) is

presented in this article. The suggested approach is based on the

usage of microcontroller RAM memory for running the program

while the program memory is being changed. Implementation of

suggested solution does not require any additional components

and is applicable to a wide range of microcontrollers in new

designs or provide possibility to add “over-the-air”

reprogramming feature to existing applications without necessity

of making hardware changes. The presented approach allows a

lowering of the power consumption of the nodes and time for

node reprogramming comparing with other reported solutions.

Summary of our experiences in practical implementation using

Texas Instruments (TI) EZ430-RF2500 and CC2430DK

development boards and discussion about some key features of

suggested “over-the-air” reprogramming method are included.

I. INTRODUCTION

During recent years Wireless Sensor Network (WSN)

technology has developed greatly, allowing to create a wide

range of different applications: from small in-flat sensor

networks for security or climate control to huge sensor

networks distributed over the cities. One common thing for

most WSN systems is that sometimes it is required to make

changes to sensor nodes initial software. The reasons for

changing the software of a node can be different: fixing

software errors, changing the communication protocol,

modifying the tasks of individual nodes or entire network, or

even the movement of the whole network to another place with

different conditions [1].

In traditional WSN systems, the only way to change the

software of the nodes is to do it manually for every node. So,

this operation would require a lot of time and expenses to

access every node that should be reprogrammed and is not

always practical in real conditions (for example if the system is

deployed in hard-reachable or dangerous location). However

during recent years different methods for wireless or “over-the-

air” programming (OAP) of nodes in WSN were suggested,

which allow to change the software of the nodes of the whole

network in several minutes without direct accessing the nodes.

The realization of OAP is a hard task in WSN due to many

contradictory requirements for such systems. First of all, as the

nodes in WSN often have limited amount of energy, it is

necessary to minimize the power consumption during

reprogramming. This can be achieved, for example, by

minimizing the amount of transmitted information and using

more reliable transmitting channels or error correcting to avoid

data retransmission. The second requirement for such systems

is that the new software received by a node should be

absolutely reliable and should reach every node in WSN [2].

Besides, it is usually very hard to predict the topology of a

WSN and radio network situation for different connections in

WSN, but reprogramming should work for all possible cases.

Numerous solutions and protocols for WSN reprogramming

realization have been suggested and reported. The main

protocols that today represent the state of the art for OAP are

Deluge[1], Synapse[2], and MNP[3]. These protocols are now

often used and there are regularly appearing publications

considering improvement of different aspects of these

protocols or with the suggestion of some new protocols.

Although, a significant improvement of WSN

reprogramming protocols was reached during recent years,

there were not many publications considering possible

improvement of WSN nodes hardware architecture. Most of

the hardware platforms that are today used with OAP (Mica2,

MicaZ, Telos, Tmote Sky, IRIS etc.) have not changed greatly

since the first steps for OAP although the electronics had

already moved further, allowing to improve the design of the

nodes.

In this article, we suggest and evaluate a different hardware

architecture of WSN node for OAP that allow to lower the

power consumption of the nodes significantly comparing with

most often used for OAP WSN hardware platforms. Although

our approach is intended for applications where the power

consumption is the key-point (like the systems, which are

working from the batteries or harvest energy from

environment), suggested solution can be used in any system

requiring OAP possibility.

II. RELATED WORK

Today the most general WSN nodes usually have

architecture similar to one presented in Fig. 1.

2010 5th International Symposium on Wireless Pervasive Computing (ISWPC)

978-1-4244-6857-7/10/$26.00 ©2010 IEEE 86

Fig. 1. Typical structure of a WSN node without OAP possibility

As shown in Fig. 1 the WSN node usually consists of a

controlling device (typically a low power microcontroller), a

radio transceiver chip (microcontroller and radio transceiver

can also be implemented in one chip – System-on-Chip(SOC)),

power supply (often batteries), some sensors and other

peripheral devices depending on application. To save limited

power resources, the microcontroller of WSN node usually

stays for most of the time in some sort of low power mode,

periodically “waking up” to read data from sensors or to send

or receive data via radio. WSN nodes are typically both price

and power consumption sensitive devices meaning that in-

build memory (usually Flash) of microcontroller is used for

program storage and external components are not desired.

One of the main difficulties with such WSN node

reprogramming implementation is that generic

microcontrollers are usually unable to both run the stored

program in in-build memory and write to this memory at the

same time, which is required during reprogramming. This fact

has lead to the situation that up to now two main approaches to

the realization of WSN OAP of general microcontrollers has

been reported and used. The former suggest usage of a second

microcontroller for controlling the radio during the

reprogramming of the main microcontroller. The latter uses an

external memory chip for the temporary storage of received

over the radio program and for rewriting the microcontroller

program with this data as soon as the whole program would be

received.

The second of these approaches (the structure of such node

is presented on Fig. 2) is used in most of the hardware

platforms for WSN with OAP possibility such as Mica2,

MicaZ, Telos, Tmote Sky etc, which were used for testing

most of today OAP implementations [1-7]. Our work was

partly inspired by [8], where was presented a table of current

consumption during different operations for some of

commonly used OAP platforms – see Table I.

From Table I it can be seen that the current consumption for

working with external memory of the node is rather high and is

comparable to the current required for receiving the program

over radio. Besides, if external memory would not be switched

off completely after reprogramming, it would add some

consumption during the node sleep mode. For comparison: the

current consumption in the deepest sleep mode of STM25P80

Flash-memory chip (that is used in Telos node) is at least 20%

of overall sleep mode power consumption of Telos node [9].

Fig. 2. Typical structure of a WSN node with OAP possibility

TABLE I

CURRENT CONSUMPTION FOR OPERATIONS DURING OAP[8]

Operation
Mote

Telos Mica2 MicaZ

Node standby

(Real-time clock on)

5,1 µA 19 µA 27 µA

Microcontroller (MCU) Idle

(Digitally-controlled

oscillator on)

54,5 µA 3,2 mA 3,2 mA

MCU Active 1,8 mA 8 mA 8 mA

MCU Active +Radio RX 21,8 mA 15,1 mA 23,3 mA

MCU Active +RadioTX

(0 dBm)

19,5 mA 25,4 mA 21 mA

MCU Active +Flash Read 4,1 mA 9,4 mA 9,4 mA

MCU Active +Flash Write 15,1 mA 21,6 mA 21,6 mA

So, it can be seen, that usage of external Flash-memory

during reprogramming has serious impact on overall power

consumption for node reprogramming and can influence the

power consumption during node sleep [10]. Also the addition

of an external component to WSN node design would

definitely increase the price and size of the node. Besides, until

now it was necessary to plan OAP possibility beforehand -

already on WSN node hardware developing stage -to have

external memory chip installed. Above-mentioned inspired us

to propose the new approach for OAP implementation that

allows excluding of an external memory chip from the design,

which leads to reduce in the price, the size and power

consumption of the node.

III. OVER-THE-AIR REPROGRAMMING IMPLEMENTATION

SUGGESTION

Let us consider a generic low-power microcontroller. As an

example of such microcontroller, we would use MSP430x2xx

microcontroller [11, 12], whose structural diagram is presented

in Fig 3.

From Fig. 3 one can see that in this microcontroller there

are two available memory banks: Flash ROM memory that is

usually used as program memory and RAM memory that

87

stores the data that is used by the program. Nevertheless, this

is not the only possible function of RAM memory.

Fig. 3. MSP430 Architecture [11]

One feature that most microcontrollers have and which can

be effectively used for implementing OAP, is the usage of

temporary memory banks (like RAM) for running the

microcontroller program while normal program memory is

rewritten [13].

The main advantages of this approach are:

• the suggested approach gives the possibility of

executing a program and writing to microcontroller

program memory at the same time,

• the suggested approach can be used for a very wide

range of microcontrollers, as well to old and to new

ones,

• the suggested approach does not require any external

components for its realization.

However there are also some features and limitations for

this method. There are three main factors that limit the

possibility and efficiency of using RAM memory for OAP:

• the size of RAM in microcontroller,

• the complicity of used wireless communication and

OAP protocol,

• amount of features that are realized in hardware on

microcontroller and radio chip.

The first and the main limiting factor for OAP

implementation using the suggested approach is the size of

RAM memory, as usually it is much smaller than the size of

program Flash-memory. TI EZ430-RF2500 board use

MSP430F2274 microcontroller which has 16 kbytes of Flash-

memory and only 1 kbyte of RAM memory (more powerful

microcontrollers, like TI MSP430F5418 can have up to 16

kbytes of RAM memory). Meanwhile, this memory must

contain the program that should allow realizing radio receiving

and transmitting, the checking of data correctness (the whole

communication and OAP protocols) and writing of received

data to location in Flash-memory.

This difficulty can be partly solved by using a part of Flash-

memory (which would not be rewritten during reprogramming)

for the storing OAP protocol program. In this case, at the

beginning of reprogramming, to special non-rewritable

location in Flash-memory would be copied the program,

realizing OAP protocol. This program would be used for

initiating OAP, receiving radio packets, checking received

packets and sending the acknowledgements (ACK). As soon as

OAP program would receive and check a packet, it would call

a special small program that is stored in RAM memory, which

will rewrite the necessary Flash-memory block with received

data. As soon, as writing would be finished, the control will be

given back to the program in Flash-memory. Obviously, the

described method would not allow making a complete

reprogramming of the whole Flash-memory, as it is necessary

to keep untouched the temporary block from which the OAP

would be running. However, the usage of Flash-memory for

OAP protocol allows removing the limitations on the size and

complicity of used OAP protocol which are defined by the size

of RAM memory when the whole program is stored in RAM.

Also this approach allows having an effective “back up”

program in the case, if something would go wrong during

reprogramming.

Two above described approaches are rather general and can

be implemented for most microcontrollers, which are used in

WSN applications now. The third option, that can be used for

some chips (like CC2430) requires the presence of a direct-

memory access (DMA) controller, which is a part of many of

contemporary microcontrollers and SOC. Usage of DMA

channel for coping data from RAM to Flash allows to realize

OAP without using RAM memory for storing the program at

all. However at the same time, it is impossible to continue to

execute the node program while Flash-memory is cleared or

written in this case, unlike when rewriting Flash-memory

using the program in RAM. Besides, this method is not as

universal as two previous and can be implemented only for

microcontrollers with the in-builded DMA controller (for

example MSP430F2274 does not have DMA controller).

Fig. 4. Microcontroller memory allocation for suggested approaches

realisation: for program fully stored in RAM(a), program in non-

reprogrammable Flash part with RAM program used during Flash writing(b)
and program in non-reprogrammable Flash part and using DMA for Flash

rewriting(c)

The second factor that should be considered when

developing a program using described approaches is the

unavailability of interrupts when Flash-memory is rewritten.

The reason for it is that interrupt vectors for microcontrollers

88

should be on specific positions inside Flash-memory. So, if the

application requires continuous monitoring of environment (for

example in hazard detection application), this should be done

by the program running in RAM.

The third factor is defined by used architecture and should

be considered when OAP protocol for such system is

developed. Old systems with external memory chips were able

firstly to store the whole new program and then to change the

whole program at once. For suggested architecture, as there is

no place for temporary storing the program any more, program

pages should be written to microcontroller Flash as soon as

they are received and checked. This fact makes it harder to

keep a back-up copy of the whole node program (although it

can be possible if the size of on-chip Flash-memory is at least 2

times bigger, than the size of program) and makes it hard to

stop the reprogramming process once it had started.

Finally, RAM memory is power dependent – with power

reset the data in RAM memory will be lost. Thereby designs

with a program in RAM are very sensitive to power downs. So,

if power downs are possible (like, for example, in systems

with energy harvesting), one should implement restoring

program that would be in non-rewritable part of Flash and that

would be launched after power supply would be restored.

IV. HARDWARE EVALUATION OF SUGGESTED APPROACHES

To evaluate described above approaches we used two

different platforms. The first was TI EZ430-RF2500

development boards, which encapsulate MSP430F2274

microcontroller and CC2500 radio chip[14]. The second -

CC2430DK development boards with based on 8051

microcontroller CC2430 SOC [15]. The programs were

developed using IAR Embedded Workbench without any

operational system (OS) (difference with regard to most of the

contemporary OAP protocols that usually use TinyOS or some

other OS[1-2]). There were two main reasons for not using OS.

First one is limited amount of microcontroller resources,

especially if OAP protocol would be stored fully in RAM

memory. Secondly - although the usage of OS makes the

programming of the nodes simpler, OS requires additional

computational power and would increase the overall power

consumption of a node.

 The design of EZ430-RF2500 board appeared to suit rather

good for implementing suggested OAP approaches –

microcontroller and radio chip already have some realized in

hardware features that allowed lowering the size of program.

For example, the radio chip on the board is connected to the

microcontroller via Serial Peripheral Interface (SPI) interface,

the drivers for which in microcontroller are realized in

hardware. Also, some network level features like address or

error checking are already included and implemented in

hardware of the radio chip [16]. CC2430DK boards are also

quite suitable for OAP realization. As CC2430 is SOC, it is not

necessary to transfer data from radio to microcontroller,

because microcontroller can access radio registers directly.

Also one of the very useful features of CC2430 that was used

during OAP was DMA. Usage of DMA controller for

transferring data between RAM and Flash memories allowed

to launch memory writing directly from Flash program,

without using RAM.

Our main task was to check if it is possible to use suggested

approaches for simplifying hardware architecture and to

evaluate power consumption compared with existing solutions

with “classical” architecture. Therefore in our tests we used a

very simple OAP protocol that had only the most important

features.

The principal diagram of the developed test application

program is presented on Fig. 5. Developed program

implements simple control over radio for:

• receiving reprogram data packets,

• checking the correctness of a received packet (using

implemented in radio hardware features like cyclic

redundancy check, CRC),

• sending negative acknowledgement to the base station

to show that the packet was received with errors

(similar to Deluge protocol),

• writing data to Flash-memory of microcontroller if the

received packet was without errors.

Fig. 5. Algorithm of test program

Such simple protocol with the usage of hardware

implemented features whenever possible, allowed us to make

the size of developed program very low. So, for EZ430-

RF2500 development boards when OAP protocol was working

from RAM (like in Fig 4. a) the size of program is as low as

208 bytes for Initialization Subprogram, 28 bytes for coping

the program to RAM and 476 bytes (around of 46% of

available RAM memory for MSP430F2274 microcontroller,

including the buffer of 64 bytes for storing the received

reprogram packet) When OAP protocol was working from

Flash-memory on EZ430-RF2500 (like in Fig 4. b), the size of

used memory was 352 bytes of Flash for OAP protocol

(including the copy of the program which is running in RAM

N

N

Y

Y

N

Y
N

Initialization

Normal application work

Start reprogram?

Change reset start address to

reprogram initialization

Download OAP protocol to

RAM(a) or Flash(b) & run it

Wait for reprogram packet

Errors in packet?

Write data from radio RX FIFO

buffer to RAM, copy from RAM

to Flash

Send negative ACK

Reprogram end?

Finalize program rewrite, change

reset start address to the

beginning of new program

89

for back-up realization) and 180 bytes of RAM (including the

buffer of 64 bytes for storing the received reprogram packet).

The size of program, with DMA (like in Fig 4. c) for CC2430

based boards, was 3832 bytes (around 6% of the available). As

shown in all cases the amount of used memory is quite small,

which allows to make the significant improvements of OAP

protocol in future or to use more complicated OAP protocols

using the same approach.

 To check the efficiency of the suggested OAP approach

compared with already existing, we measured the energy

consumption for developed programs. The curves of current

consumption during reprogramming for RF2500 boards are

presented on Fig. 6 and for CC2430 – on Fig.7. The measured

average values for different operations during reprogramming

for both hardware platforms are presented in Table II. In

Table II are also presented the values for operations with

external Flash-memories (STM25P80, that is used in Telos

nodes and Atmel AT45DB041D in Mica nodes) which would

be required for OAP realization using “old” architectures.

Fig. 6. Current consumption for reprogramming one Flash page (512 bytes)

for RF2500 boards. (Measurements were made for voltage drop on 4.7 Ohm

resistor using TEK MSO4054 oscilloscope, channel 1 – OAP protocol in
Flash-memory, channel 2 – OAP protocol in RAM)

Fig. 7. Current consumption for reprogramming one Flash page (1024 bytes)

for CC2430 boards. (Measurements were made for voltage drop on 4.7 Ohm
resistor using TEK MSO4054 oscilloscope)

TABLE II
POWER CONSUMPTION DURING OAP

Operation

Consumption
Average

current,

mA

Time,

ms

Energy,

µJ

Preparation for reprogramming:

Copy OAP protocol to RAM a 1,7 3,54 15,1

Copy OAP protocol and RAM
program to “temporary” Flash,

download program to RAM b

2,04

62,82

320,1

Erase microcontroller Flash sector

(512 bytes for RF2500/1024 bytes for
CC2430)

2,15 14,5 77,9

6,7d 21,6 d 376,4 d

Reprogramming (64 bytes):

Receive 64 bytes over radio (incl.
switching) + OAP protocol in RAM a

16,63

2,61

108,5

Receive 64 bytes over radio (incl.

switching) + OAP protocol in Flash b

16,70 2,61 109,0

28,22 d,e 3,22 d,e 236,3 d,e

OAP protocol in RAM+ Idle Radio a 1,70 3,4 14,5

OAP protocol in Flash+ Idle Radio b 1,76 3,4 15,0

4,3 d - -

Write page (64 bytes) to

microcontroller Flash, Program
working in RAM a,b

2,13

5,32

28,3

Send NACK packet over radio

(including switching Idle->TX) +
OAP protocol in RAM a

7,89

2,52

49,7

Send NACK packet over radio

(including switching Idle->TX) +
OAP protocol in Flash b

7,92

2,52

49,9

23,19d 0,92d 55,5d

Overall(for receiving 64 bytes, packet

is ok) OAP protocol in RAM a

5,34

11,33

151,3

Overall(for receiving 64 bytes, packet
is ok)OAP protocol in Flash b

5,38 11,33 152,3

28,22 d,e 3,22 d,e 236,3 d,e

Reprogramming of a Flash page (512 bytes for RF2500 and 1024 bytes

for CC2430):

OAP protocol in RAM (only
reprogramming/including

preparation) a

5,34
/4,8

90,64
/108,68

1210,3
/1303,3

OAP protocol in Flash (only
reprogramming/including

preparation) b

5,38
/3,85

90,64
/167,96

1218,1
/1616,1

21,0d

/21,0

78,76d

/78,76

4298,7d

/4298,7

External memory (512 bytes): [9,10,16,17]

Write to Flash (STM25P80

) (for operations with pages)c

16,02 7,16 298

17,5 7,16 326

Read from Flash (STM25P80
) (for operations with pages) c

5,7 4,16 62

8,3 4,16 90

Sector erase (STM25P80)(64 kbytes) 15 1000 39000

Write to Flash (AT45DB041D)(for

operations with pages) c

12,75 8,22 272

14,2 8,22 304

Read from Flash (AT45DB041D) (for

operations with pages) c

8,7 4,22 96

11,3 4,22 124

Sector erase (AT45DB041D) (64

kbytes)

12

1600

49920

Low power modes:

MSP430 Microcontroller + CC2500 0,0012

CC2430 SOC 0,0005

STM25P80 (deep sleep) 0,001

AT45DB041D (deep sleep) 0,015

a. For implementation with OAP protocol in RAM (Fig.4, a)

b. For implementation with OAP protocol in Flash-memory (Fig.4, b,c)

c. Data for External Flash-memory is given with 1MHz clock frequency

(which was used for microcontroller) and includes microcontroller power
consumption (microcontroller sleep mode used whenever possible)

d. The values in “shaded” cells are for CC2430 development boards, in

white – for EZ430-RF2500

e. The values include the processing of the packet and writing it to RAM

memory of CC2430

90

Here it is necessary to explain the choice of some

parameters, which affected the work of our application and

received results. Both boards, which we used for practical

implementation, have radios working in 2.4 GHz ISM band.

However, RF2500 uses a proprietary radio protocol stack (in

our case – MSK modulation and 250 kbit/s data rate) while

CC2430 uses physical layer of 802.15.4 standard [18]. For

both cases, each sent packet contained 64 bytes of

reprogramming data. The reasons for using this packet size are

that this amount of data allows to leave enough space for all

sorts of headers for 802.15.4 standard and additional

information for packet correctness checking. Also, 64 bytes is

the maximum size of data page that can be written using a

single command in MSP430 microcontroller Flash. The size

of Flash page during erasing for MSP430 is 512 bytes and

1024 bytes for CC2430. Thus we developed the test

applications that would rewrite a single page in Flash-memory.

Thereby, during testing were sent 8 packets (512 bytes of

payload) for RF2500 boards and 16 packets for CC2430

boards (1024 bytes of payload). (See Fig.6 and Fig.7).

Presented in Table II measurement results were used for

calculating overall power consumption for single page

reprogramming using suggested approaches and for

calculating the additional power consumption of an external

Flash, required if the traditional approach would be used.

V. COMPARISON OF SUGGESTED AND CLASSICAL

APPROACHES EFFICIENCY

As it can be seen from presented in Table II results, in the

case without necessity to retransmit the packets, the power

consumption for reprogramming 512 bytes for RF2500 boards

would require 1210 µJ of energy, at the same time, if

reprogramming would be done using external memory chip it

would take additional 360 µJ with STM25P80 chip (suggesting

that external memory has been already erased, if considering

also the Flash erase with the sector erase – 664 µJ) and 366 µJ

with Atmel AT45DB041D chip (756 µJ considering the Flash

erasing). So, the profit on energy consumption for suggested

OAP hardware architecture would be 23% (with Flash erase –

38.5%) comparing with traditional solution with Atmel

AT45DB041D chip and 23% (with Flash erase – 35%) with

STM25P80 chip and the profit in required for reprogramming

time would be around 9% (17.5% considering Flash erase) for

STM25P80 and 12%(21.6% with Flash erase) for

AT45DB041D chip. (The values are given only for

reprogramming, not considering preparation procedures). For

CC2430 boards, the page reprogramming with 1024 bytes

requires 4300 µJ of energy. The additional power consumption

for using external memory chips would be 651 µJ for

STM25P80 chip (1260 µJ with Flash erasing) and 608 µJ for

Atmel AT45DB041D chip (1388 µJ with Flash erasing). In this

case, the profit in power consumption due to excluding

external memory would be 12.4% (with Flash erase – 24.4%)

for Atmel AT45DB041D chip and 13.1% (with Flash erase –

22.6%) for STM25P80. The profit in time for reprogramming

for the CC2430 based system is around 22% (32% with Flash

erase) for STM25P80 and 24% (39% considering Flash erase)

for AT45DB041D chip.

Besides, as it can be seen at Table II, great profit for power

consumption in sleep mode is achieved, that is often even more

important, as a WSN node usually spends most of the time in

this mode. For RF2500 boards this profit would reach 45%

comparing with an application with STM25P80 memory chip

and 94% comparing to an application with AT45DB041D. For

CC2430 – 67% and 97% respectively. The other profit of

excluding external memory chip from WSN node is the supply

voltage, which is needed for the system. Considered external

memory chips require to have at least 2.7 V supply voltage

during writing, while writing to internal microcontroller

memory can be done with supply voltages above 2.2 V.

Another result which can be seen at Table II is that the time

and power consumption for reprogramming in RF2500 for

tested approaches (when OAP protocol was in RAM and in

Flash-memory) are very close, but the program in RAM

consumes slightly lower power (around 0.6% lower) than the

one in Flash-memory. This result is caused by lower power

consumption for the microcontroller program running from

RAM comparing with the program, running from Flash-

memory. By our tests, the difference in power consumption for

single microcontroller with the program running from RAM

and from Flash is around 10-15% for MSP430 and around 15-

20% for CC2430. This fact can be used for further

improvement of power consumption in systems with harsh

energy conditions and can give significant improvement if the

system requires many similar operations during data

processing.

Also, it can be seen that the preparation for running OAP

program from Flash for RF2500 boards requires much more

time due to the necessity of coping OAP protocol to Flash-

memory. (This can be fixed by keeping Flash program in non-

rewritable Flash, but in that case it would be impossible to

change OAP protocol wirelessly at all). Usage of DMA for

transferring data between RAM and Flash-memory does not

require any special preparation procedures at all and can be

initialized directly from OAP Flash-memory.

VI. DISCUSSION AND CONCLUSIONS

“Over-the-air” reprogramming (OAP) feature for Wireless

Sensor Network (WSN) is now becoming one of the

substantial things in modern designs. This article describes a

potential, new, and energy efficient hardware approach for

implementing OAP in WSN. Suggested in this article new

method is based on the usage of microcontroller RAM for

storing the node program while reprogramming is performed.

Two possible variants of this method were presented and

evaluated: the first method suggests placing the whole OAP

protocol in RAM memory, the second uses stored in non-

rewritable during reprogramming Flash-memory OAP protocol

and small program in RAM for coping received data to Flash-

memory. Usage of second method allows overstepping the

limitation on the size and complicity of OAP protocol caused

by the size of RAM memory for the first approach and allows

realizing an effective back-up at the same time, but this method

91

requires significantly longer and power consumptive

“preparation” cycle due to the necessity of coping Flash-

memory parts. We have also evaluated the modification of

second approach based on using DMA for transferring

received data from RAM to Flash. Although this method

requires microcontroller containing the in-builded DMA

controller, it does not require any program running from RAM

to copy data to Flash, which simplifies the development of the

program and preparation for reprogramming. The main

disadvantage of this method is that using it, it is impossible to

track and reply to any events, while Flash-memory is being

modified.

For evaluating suggested approaches, were developed

applications using two WSN platforms, based on MSP430 and

8051 microcontrollers and two types of radios: FSK with

proprietary protocol and 802.15.4 standard. The fundamental

tests of possibility of program memory rewriting with a

program running from other memory were also done for Atmel

ATmega128 microcontroller (there instead of RAM memory

was used a Boot section block in Flash-memory)[19]. Thus we

are convinced that suggested approaches are applicable to most

popular microcontrollers which are used today for WSN

platforms. Besides, suggested solution allows adding OAP

feature to some already existing applications without necessity

of changing the hardware design.

The main advantage of our approach over other reported

OAP implementations is that it does not require any external

components, like second microcontroller or external memory

chip. This is very critical due to the typical WSN node

requirements of low power consumption and cost efficiency.

According to our measurements, the possible improvement for

reprogramming power consumption and reprogramming time

due to excluding external Flash-memory chip from the design

are 10-40% for power consumption and up to 40% for time

compared with the designs containing external memory chip,

depending on microcontroller and memory chip characteristics.

Besides, removing external memory from the design allows

also lowering the power consumption during the sleep mode

(for reviewed designs the profit was 45-97%, depending on

memory chip characteristics) as well as lowering the size and

the price of a node.

Although suggested approaches were tested only for a

simple proprietary OAP protocol, we are convinced that the

same idea can be used with the wide range of already

developed OAP protocols such as Deluge, MNP, Synapse, etc.

Such solution would allow designers to combine the features

of these protocols (like reliability, scalability, etc.) with the

low power consumption of the suggested hardware approach.

This, together with the practical implementation of WSN OAP

using suggested approaches for other platforms would be our

future tasks.

ACKNOWLEDGMENT

The authors wish to thank all companies and other parties

who have either participated or financially supported this

study. This work has been supported by European Regional

Development Fund, Council of Oulu Region, Finnish Funding

Agency for Technology and Innovation (Tekes), Ylivieska

Subregion, and companies.

The authors also wish to thank Professor Markku Juntti

from University of Oulu and anonymous reviewers for

valuable contributions and comments on earlier versions of

this article.

REFERENCES

[1] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless Deluge:
Over-the-Air Programming of Wireless Sensor Networks using

Random Linear Codes”, in Proc. IPS/ 2008, pp. 457 – 466, 22-24 Apr.

2008.
[2] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A.F. Harris and M.

Zorzi, “SYNAPSE: A Network Reprogramming Protocol for Wireless

Sensor Networks using Fountain Codes”, in Proc. SECO/ 2008, pp.
188 – 196, 16-20 June 2008.

[3] S. Kulkarni and L. Wang, “Energy-efficient multi-hop reprogramming

for sensor networks”, ACM Transactions on Sensor /etworks (TOS/),
vol. 5, issue 2, pp. 1-40, Mar. 2009.

[4] (2010) Texas Instrumants: Over the Air Download Evaluation Module

Kit. [Online]. Available:
http://focus.ti.com/docs/toolsw/folders/print/oad-emk.html

[5] C. Chen, Y.Huang and C.Zhang, “Toward a Real and Remote Wireless

Sensor Network Testbed”, WASA 2008, LNCS 5258, pp.385-396, 2008.
[6] S. Varma, U.S. Tiwari and R Konakalla, ”Remote reprogramming

mechanism for WSN”, ICIAS 2007, pp. 939 – 944 , 25-28 Nov. 2007.

[7] A. Dunkels, N. Finne, J. Eriksso and T. Voigt, “Run-Time Dynamic
Linking for Reprogramming Wireless Sensor Networks ” in Proc. of

the 4th international conference on Embedded /etworked Sensor

Systems, pp.15 – 29, 31 Oct. – 3 Nov. 2006.
[8] J. Polastre, R. Szewczyk and D. Culler, “Telos: enabling ultra-low

power wireless research”, in Proc. IPS/ 2005, pp. 364- 369, 25-27
Apr. 2005.

[9] “M25P80 datsheet”, ST Microelectronics, Geneva, Switzerland

[10] G. Mathur, P. Desnoyers, D. Ganesan and P. Shenoy, “Ultra-low power
data storage for sensor networks”, in Proc. IPS/ 2006, pp. 374-381,

19-21 Apr. 2006.

[11] “MSP430x2xx Family Users Guide (Rev. E) (SLAU144E)”, Texas
Instruments, Dallas, Texas, USA.

[12] S. Corroy, J. Beiten, J. Ansari, H. Baldus, and P. Mahonen, ”Energy

Efficient Selection of Computing Elements in Wireless Sensor
Networks”, in Proc. SE/SORCOMM 2008, pp. 312 – 318, 25-31 Aug.

2008.

[13] “MSP430 Flash Self-Programming Technique (SLAA103)”, Texas
Instruments, Dallas, Texas, USA.

[14] “EZ430-RF2500 Development Tool User Guide (Rev. E)

(SLAU227E)”, Texas Instruments, Dallas, Texas, USA.
[15] “CC2430 Data Sheet: A True System-on-Chip solution for 2.4 GHz

IEEE 802.15.4 / ZigBee® (rev. 2.1)) (SWRS036F)”, Texas Instruments,

Dallas, Texas, USA.
[16] “Low-Cost Low-Power 2.4 GHz RF Transceiver (Rev. C)

(SWRS040C)”, Texas Instruments, Dallas, Texas, USA.

[17] “AT45DB041D datasheet“, Atmel Corporation, San Jose, California,
USA.

[18] IEEE 802.15.4 Wireless Medium Access Control (MAC) and Physical

Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (WPANs), IEEE Std. 802.15.4, 2006.

[19] "Atmel’s Self-Programming Flash Microcontrollers", Atmel

Corporation, San Jose, California, USA.

92

