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Abstract: The ability to connect sensors to the Wireless Sensor Network (WSN) nodes without 
the need for physical device configuration has many advantages: application development is 
simplified, network deployment and service is easier, and sensors can be swapped or added on-
the-fly. The existing solution for sensor Plug-and-Play (P&P) for WSN nodes is the IEEE 1451 
set of standards developed for smart transducers. The serious drawback of this solution is that it 
cannot be used with the most widespread plain transducers without adding multiple external 
components. Therefore, in this paper, we introduce a novel mechanism that allows implementation 
of P&P connection to WSN nodes for commercially available off-the-shelf sensors with the  
most widespread wired plain digital interfaces (SPI, I2C, 1-wire etc.) without any single external 
component utilisation. 
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1 Introduction 

The technological advances that have occurred during recent 
years have extended the range of the parameters that can  
be measured using existing transducers. Today’s sensor 
technologies combine high precision, fast operation, and low 
energy consumption within relatively small casings, which 
has made possible the rapid development and dissemination 
of various Distributed Measurement and Control (DMC) 
applications. As revealed in the work of Akyildiz et al. 
(2002), Bertocco et al. (2008), Chee-Yee and Kumar (2003) 
and Yunseop et al. (2008) the use of wireless communication 
between the sensor nodes reduces installation and maintenance 
costs and provides high levels of network scalability and 
flexibility, making Wireless Sensor Networks (WSNs) one of 
the key technologies for the future. As shown in the work  
of Akyildiz et al. (2002), Akyildiz and Xudong (2005) and 
Yunseop et al. (2008), contemporary WSNs are often 
implemented as mesh networks with dynamic self-organisation 
and self-configuration, which simplifies DMC application 
deployment and service. 

At the core of a WSN node are the actual sensors (see 
Figure 1) that make the WSN meaningful. However connecting 
these general sensors usually requires modifications to the 
node’s hardware, or at least to the node’s software, which 
makes the nodes application-dependent. Connection of 
different sensors without device modifications now relies on 
a Plug-and-Play (P&P) approach that has been standardised 
as part of the Institute of Electrical and Electronics Engineers 
(IEEE) IEEE-1451 set of standards for intelligent smart 
sensors interfaces (Gilsinn and Lee, 2001; IEEE Std. 1451.0, 
2007; IEEE Std. 21 450, 2010; Lee et al., 2004; Wobschall, 
2008). The availability of sensor P&P (according to 
Gumudavelli et al. (2010), a sensor can be considered P&P if 
it becomes operational and networked after turned on and is 
physically connected to a WSN node’s microcontroller) 
provides several significant benefits for WSNs, such as: 

• simplified application development, device manufacturing, 
WSN deployment, and service (when manufactured, a 
WSN node does not require any sensor-specific software 
– it can be obtained, e.g. from the WSN once node is 
switched on and its sensors are identified); 

• deployed WSN nodes can be upgraded or dynamically 
reassigned for new tasks by changing the sensors; 

• sensors that disconnect for unexpected reasons from a 
WSN node can be automatically taken out of use. 

The general concept of a smart transducer, developed in the 
late 1980s, is that it is a device that combines both a sensing 
system and a local microcontroller with required interface 
circuitry, processor, memory, and a circuitry for implementing 
network communication (Song and Lee, 2008a). According to 
Lee and Song (2005) and Song and Lee (2008b), the smart 
transducers also implement system level functions (e.g.  
 
 

measurement compensation, automatic calibration, self- 
diagnosis) and networking communication functions such as 
node identification and node loss detection. The IEEE 1451 
set of standards defines a common communication interface 
for connecting these types of smart transducers to digital 
systems and instruments in network-independent environments. 
The standard also defines the hardware interfaces for connecting 
transducers to a microcontroller or to an instrumentation 
system, and the set of software interfaces for connecting 
transducers to a network (Lee and Song, 2005; Potter, 
2002). One of the IEEE 1451 key elements is the definition 
of the Transducer Electronic Data Sheet (TEDS) format. 
The TEDS are the memory blocks that are embedded into 
each sensor (see Figure 2) and contain information about the 
sensor’s manufacturer, model, serial number, measurement 
range, sensitivity, and various calibration information, all of 
which can be used in sensor self-identification and self-
description as discussed in the work of Potter (2002) and 
Ross et al. (2009). 

Figure 1 Structure of a common WSN node 

 

Figure 2 TEDS mechanism in IEEE 1451 

 

Sensor P&P for WSN nodes using the IEEE 1451 can be 
implemented in two ways. The actual sensors can be wirelessly  
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connected using IEEE 1451.5 or .7 Transducer Interface 
Modules (TIMs) to the Network Capable Application 
Processor (NCAP), which will provide further connection to 
the core WSN (Figure 3(a)). Alternatively, Gilsinn and Lee 
(2001) and Wobschall (2008) suggested, multiple sensors can 
be connected over IEEE 1451.1-4 or .6 wired interfaces to the 
NCAP, which is connected to the WSN (Figure 3(b)). Both of 
these solutions need to use IEEE 1451 TIMs between the 
actual sensors and the WSN node (NCAP in this case). 
Provision of the minimum required functionality requires that 
these TIMs contain a memory chip for storing the TEDS, an 
appropriate multiplexing circuitry for separating the TEDS and 
the transducer data, and a required communication interface 
controller (e.g. for IEEE 1451.1-1451.7 physical (PHY) layers) 
(see Figure 2). An implementation of additional IEEE 1451 
features often requires the use of a separate microcontroller or a 
processor on the TIM (consider, e.g. Lee et al. (2004) and Ross 
et al. (2009)). Needless to say, these can significantly increase 
the price and power consumption of the resulting P&P sensors, 
which is especially undesirable for WSN. 

Although today’s WSNs and even a single WSN node 
can have substantial intelligence, the majority of the sensors 
that are currently used on WSN nodes are still very simple 
devices that do not support any smart features (see Figure 1 
for typical structure of a WSN node) (Ovalle et al., 2010). 
The use of these simple sensors allows reduction in the cost 
and power consumption of the WSN nodes, which is 
important due to restricted resource availability of many 
WSN applications. Nonetheless, as noticed in the work of 
Kuorilehto et al. (2007) and Dunbar (2001), the absence  
of smart features within these sensors restricts the 
implementation of P&P sensor connections to a WSN node. 

The IEEE 1451 cannot be used with plain transducers 
without significant hardware modification and use of new 
components. Therefore, in this paper, we introduce a novel 
P&P mechanism intended for the Commercially available 
Off-The-Shelf (COTS) sensors with the most widespread 
(according to Yurish, 2012 and Avnet, 2012) plain wired 
digital interfaces (namely – Serial Peripheral Interface 
(SPI), Inter-Integrated Circuit (I2C) interface, 1-wire and 
proprietary ones) connected to a WSN node. The suggested 
P&P mechanism is not based on the smart sensor concept 
and this allows us to dispense with all of the components 
between the sensor and the WSN node (compared, e.g. to 
Figure 3(b)); thus, it reduces the price and increases the 
applicability of the solution. The developed mechanism uses 
currently existing WSN node resources, and the resources 
within a WSN to implement a P&P support for the sensors. 
The introduced mechanism can be used as a less expensive 
and simpler alternative to the IEEE 1451 for implementing 
the sensor P&P connection to WSN nodes. In this paper, 
specifics of communication in WSN are not addressed  
and the WSN nodes are assumed to have the required 
mechanisms already in place for secure and reliable data 
transmission within the network. 

Figure 3 Wireless transducer plug-and-play implementation for 
WSNs using IEEE 1451, (a) Wireless P&P sensor 
connection to a NCAP (over IEEE 1451.5 or .7 
interfaces) with a wireless interface between the NCAP 
and the core WSN (b) Wired P&P sensor connection to 
a NCAP (over IEEE 1451.1-4 or .6 interfaces) with a 
wireless interface between the NCAP and the core 
WSN 

 
(a) 

 
(b) 

The remainder of the article is organised as follows: Section 2 
describes the suggested P&P mechanism, including the  
mechanisms for detection of sensor connection/disconnection  
 
 



 Plug-and-play mechanism for plain transducers 53 

to/from a WSN node, sensor identification, and retrieval of 
P&P support data from WSN. Section 3 presents the results of 
the P&P mechanism implementation and a real-life evaluation. 
Section 4 concludes the paper and summarises the results. 

2 Suggested sensor plug-and-play mechanism  
for WSN 

The suggested sensor P&P mechanism for plain sensors 
connected to a WSN node includes four major operation 
stages: 

1 Detection of sensor connection and disconnection; 

2 Identification (ID) data retrieval from WSN; 

3 ID of connected sensor(s); 

4 Software driver retrieval for the identified sensors from 
a WSN. 

Therefore, its implementation requires the three following 
mechanisms: 

A Sensor connection/disconnection detection; 

B Connected sensor identification; 

C Mechanism for retrieval of the required data from the 
WSN (both the ID data and the microcontroller program 
code to be used with the new sensors (sensor driver)). 

2.1 Sensor connection/disconnection detection 
Smart sensors can announce their connection to a WSN 
node’s microcontroller, whereas plain sensors usually do 
not have this capability. The main reason for this is that the 
plain sensors with digital interfaces are implemented as 
slave devices for appropriate buses (e.g. SPI, I2C) (see NXP 
Semiconductors (2007) and Motorola Semiconductor 
(2003)). This requires that all of the communication with 
these devices must be initialised by the master device (for 
WSNs nodes, this will be a microcontroller or other 
controlling device of the WSN node (see Figure 1)). 
Therefore, an external mechanism is needed to inform the 
WSN node’s microcontroller that its peripherals have been 
changed. We suggest using the following four mechanisms 
for the sensor connection/disconnection detection by WSN 
node: 

1 External signal; 

2 Radio command; 

3 Periodic identification launching of connected devices; 

4 New device connection detection using the WSN 
node’s power consumption monitoring. 

The external signal usage assumes that when a sensor is 
connected or disconnected, this is the result of an intentional 
external impact. During this impact, the controls of the node 
could also be accessed, which can be used to inform the 
node about a sensor change. This can be implemented, e.g. 

• by equipping the sensor node with a button or switch 
that will be activated each time the sensor is changed; 

• by rebooting the sensor node (the sensor discovery 
should be launched automatically after each reboot)  

• by using a special design of P&P sensor interface  
(e.g. it can include a wire that will be connected on the 
sensor board to the ground or the power supply line 
thus signalising that the sensor has been attached). 

Another possibility for WSN nodes is to use a radio 
command to inform the node that its peripherals have been 
changed. In this case, after service operations that involve 
sensor changes, the node should receive a radio command 
that will trigger the sensor identification procedure.  
This command can be issued by the network access point or 
by the special nodes that are used during the service 
operations. 

The third option is a periodic launch of the device 
identification subroutine. A disadvantage of this method is 
its overhead processing due to inability to get actual 
information about the new sensor connection to the WSN 
node. This method also can cause significant delays 
between the actual sensor connection and detection and 
initiation of a new device. 

The fourth option is sensor connection detection based 
on the power consumption of the WSN node. Clearly,  
the addition or removal of a sensor also influences the 
overall node power consumption. The main difficulty in 
implementing this method is that many sensors, whenever 
they are not in use, switch automatically to a low-power 
mode with very low power consumption and thus become 
difficult to detect. 

In the real system, combination of several of these 
sensor connection detection methods is possible, depending 
on the required characteristics and available resources. 

The detection of a disconnection of a digital sensor is 
straightforward – if for some reason one of the sensors  
gets disconnected from the WSN node, the node will not get 
a reply from this sensor while trying to communicate  
with it. 

2.2 Connected sensors identification 

Once the WSN node’s microcontroller recognises the 
presence of new sensors, it should identify them. According 
to Avnet (2012), the most widespread digital interfaces (e.g. 
for temperature sensors) are I2C (57% of devices), SPI 
(10%), and 1-wire (6%) devices; the rest of the sensors 
utilise company-specific digital interfaces. Unfortunately, of 
the most widely utilised sensor digital interfaces, only the 1-
wire interface has a mechanism for a single-valued sensor 
identification (see e.g. Maxim Integrated Products, 2002). 
Among the rest interfaces, only the I2C has some support for 
sensor identification based on the sensor’s 7-bit address 
(suggested by Ptasinski and Sassi (2002)). However,  
the single-valued identification using the (suggested by  
Ptasinski and Sassi (2002)) mechanism is impossible 
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because the addresses for I2C sensors are not unique and  
multiple I2C sensors can use same address (NXP 
Semiconductors, 2007) (see Appendix A for an example). 
The other interfaces, such as SPI or the majority of the 
company-specific ones, have no identification mechanism 
available at all (Motorola Semiconductor, 2003). 

Our suggested solution is to use the existing features of 
plain digital interfaces (e.g. the address mechanism 
available for I2C devices) and the features of the sensors 
themselves (e.g. the data within the sensor’s registers). This 
solution can be implemented by using a simple table-based 
trial-and-error algorithm, which is executed by the WSN 
node’s microcontroller to which the sensors are connected 
(see Figure 1). The suggested algorithm (see Figure 4) 
utilises a prefilled ID table – the table containing unique ID 
request and expected ID reply data for each sensor, which 
can be potentially connected to a WSN node. Depending on 
the P&P sensor specifics, as ID request can be used a single 
command or a set of commands sending which to the P&P 
sensor of this type will generate the specific unique ID 
reply. By going through this ID table (see Figure 4), sending 
the specified ID requests and comparing the obtained P&P 
sensor’s replies with the expected ones, a WSN node’s 
microcontroller detects which of the sensors in the ID table 
are attached to it. At the ID stage, a WSN node’s 
microcontroller does not need to have a complete driver for 
controlling a new sensor; instead it uses only a minimum set 
of commands that are required to obtain the reply from a 
sensor, which significantly limits the memory consumption 
for the ID algorithm. As already discussed, some plain 
digital interfaces do not have standard ID mechanisms and 
the devices do not include special ID information —  
for identification of these, we suggest using for ID request 
one or combination of several of the following four 
methods: 

1 Read from the ID registers or any other registers that 
contain known-in-advance data (this device identification 
is based on the facts of hardware connection settings 
correctness, register/command existence, and retrieved 
data correctness). 

2 Sequentially write to and read from a register with 
inaccessible bits (bits containing a value which cannot 
be changed) (device identification is based on the facts 
of hardware connection settings correctness, register 
existence, and inaccessible bit locations). 

3 Execute a command for which the range of possible 
return values is known (e.g. make a temperature 
measurement) (device identification is based on the 
facts of hardware connection settings correctness, 
command execution acknowledgement, and returned 
data falling within known limits). 

4 Sequentially write to and read from certain registers or 
certain command execution (device identification is 
based only on the facts of hardware connection setting 
correctness and register existence/command execution 
acknowledgement). 

 

Figure 4 Suggested sensor identification algorithm based on an 
ID table tryout (assuming that only a single sensor can 
be connected to an interface) (see online version for 
colours) 

 

The suggested mechanism assumes that each plain P&P 
sensor has a unique ID request-response sequence that can 
be constructed using four suggested above methods. 
Although the validity of this assumption for all of the 
available sensors is impossible to confirm, the material 
presented in Section 3 shows that the probability of two 
sensors having exactly same data in the same registers is 
rather low. However, in the case where two or more sensors 
do have absolutely the same data in all of the registers, the 
identification of these would not be possible using the 
suggested method. In that case, the identification data for 
the next stage (i.e. the driver retrieval) can be provided 
either manually (e.g. by sending the special radio packet 
containing the ID for attached sensor) or by using more 
complicated techniques (e.g. by trying out the drivers for all 
identical sensors and comparing the obtained value with the 
data from sensors of the same type on near-by WSN nodes).  

The required ID information and the connection features 
for implementing sensor P&P over the most widespread 
digital sensor interfaces are presented in Tables 1 and 2, 
respectively. 
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Table 1 Required ID information for devices with I2C, SPI,  
1-wire and proprietary digital buses 

Data I2C device SPI device 1-wire 
device 

Device with 
proprietary bus

Clock  required required not required required 

Addresses requireda not required required depend on bus 
ID request:     
send data required required requiredb required 
delays required required required required 
service 
operations not required not required not required required 

ID response required required not requiredbrequired 

Notes: aCan have several different addresses depending 
on connection. 

  bUses only the fact of response, thus only one 
command that generates a response is required, 
the actual response data are not important. 

2.3 ID data and driver storage and retrieval 
As well known (Kuorilehto et al., 2007; Mohammadi and 
Jadidoleslamy, 2011; Rajkamal and Ranjan, 2011), WSN 
nodes often have rather limited resources. Among these is the 
available memory, which complicates storage of the ID 
information and the program code for working with all 
potentially attachable sensors on each WSN node. Luckily, the 
networking capability of a WSN can be used to solve this 
problem. We suggest keeping only the program code for the 
actual connected sensors on the WSN node during normal 
operation, while the required ID data and the software drivers 
for potentially connectable sensors are stored elsewhere in the 
network ‘resource centre’ (RC). The main function of a RC is 
to provide the necessary ID data and the software drivers, by 
request (see Figure 5), to the end-device (ED) WSN nodes. A 
network access point (AP) or a separate node can be used as a 
RC (e.g. RC1 on Figure 5). As one of the options, the data for 
P&P implementation can be stored on remote location (e.g. on 
the internet) and the RC can act as an access point to  
this remote location using the appropriate communication 

technologies (e.g. RC2 on Figure 5). The network can have 

several RCs, but in this case, an appropriate access mechanism 
should be implemented. If a WSN node is not capable of 
storing the entire ID table, the table can be divided in several 
parts that the ED will sequentially download from the RC and 
go through. These solutions allow to handle the problem of ID 
table scalability. Updated versions of the ID table and the sensor 
drivers for EDs are also provided by the RC nodes. Needless to 
say, prior to connection of any new P&P sensor to a WSN 
node, the ID information for it should be included in ID table. 

Table 2 P&P properties for devices using I2C, SPI, 1-wire and 
proprietary digital buses 

Data I2C device SPI device 1-wire 
device 

Device with 
proprietary bus

Physical 
connectionaspecified specified specified depend  

on bus 
Number of 
physical 
lines 

2(2)b 2(2) b + 1 per 
device 1(2) b depend  

on bus 

Possible 
sensor ID 
methodsc 

-physical 
connection
-address 
-unique 
request/reply

-physical 
connection 
-unique 
request/reply 

-physical 
connection
-unique 
address 
 

-depend  
on bus 

Sensor 
connection 
detection 
method 

see II-A see II-A + 
using CS line see II-A depend  

on bus 

Notes: a Sensor connection (pinout) is predefined 

  b N (M) where N – number of communication 
lines, M – number of supply lines 

  c For factors used for device identification, see 
Section 2.2 

The implementation of the suggested approach obviously 
requires capability for secure and reliable data transmission 
between and ED and RC. In the current paper, we set aside 
the implementation of this and assume that it is already 
provided by the WSN (see e.g. Yi et al. (2007) and  
Yun et al. (2008)) through utilisation of error-detecting, 
error correcting and packet retransmission mechanisms. 

Figure 5 The structure of a WSN with on-node sensor P&P (ED – end device, AP – access point, RC – resource centre)  
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3 Implementation and evaluation for the 
developed sensor plug-and-play method 

The suggested plain sensor P&P mechanism was evaluated in 
two phases. First, the features of the currently existing plain 
digital sensors were analysed and the suggested sensor 
identification algorithm operation was simulated based on the 
information of 48 existing I2C devices. For the second phase, 
the suggested mechanisms were implemented and evaluated 
with hardware using several existing I2C sensors and WSN  

During the first phase of evaluation, we randomly chose 
48 different real-life I2C devices (of these, 42 were sensors 
and six were other devices). Based on the information 
provided in the device datasheets, we manually generated an 
ID table that could be used to distinguish these devices 
using the suggested ID algorithm (the ID table and the list 
of the tested devices can be found in the Appendix A).  
In addition, the further analysis of the device datasheets 
revealed that an ‘averaged’ I2C device uses five different 
I2C bus addresses and has 35 bytes of data in its registers, of 
which six bytes contain (after reset) either non-zero 
information or have some inaccessible bits.  

For estimating the applicability of the suggested solution, 
we have calculated the probability for two devices having at 
least one matching I2C address and the same data in all non-
zero registers (assuming that non-zero register addresses and 
data are random), which would make the suggested sensor ID 
mechanism inapplicable (see equation (1)). 

1
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0

1 1
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bytesbytes

n -
addr addr
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k= addr

nn -

k= bytes

N - n - k
P = 1-

N - k

× ×
N - k

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛ ⎞
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∏

∏
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In equation (1), the Naddr is the overall number of possible 
device addresses (e.g. 112 for I2C bus, one for SPI), naddr – is 
the number of addresses one device can use (e.g. five for 
‘average’ I2C device, one for SPI), Nbytes is the overall 
number of registers on a device, and nbytes is the number of 
non-zero registers on a device after reset. The resulting curves, 
showing the probability of the existence of two devices that 
cannot be identified using the suggested ID algorithm for I2C 
and SPI interfaces with different numbers of registers on the 
device, are presented in Figure 6. As shown in Figure 6, when 
the devices have at least two non-zero registers (which is true 
for more than 95% of the examined sensors), the probability of 
having two identical devices becomes lower than 10–5 and for 
an ‘averaged’ I2C device with five non-zero registers out of 32 
registers, this probability reaches 10–23. 

The ID table reveals (see the Appendix A) that, among the 
examined devices, only three (and of these, only one sensor) 
have no non-zero registers or registers with inaccessible bits at 
all after reset. Nonetheless, the suggested ID algorithm appears 
to be applicable even for these devices – these devices have 
been identified by writing some data to their registers and 
reading it back (the other examined devices with matching I2C 
addresses are unable to do this). In addition, three pairs of the 
examined devices appeared to have identical data in their 
registers. All of these devices were different modifications of 
the same sensor and had almost the same functionality and an 
identical set of commands. However, even these devices can be 
distinguished at a later stage by a proper driver implementation 
(the identification can be done using the returned measurement 
data – e.g. for LSM320DL registers, 0x2A and 0x2B do not 
contain measurement data as they have only a 2D gyroscope, 
while for LSM330DL, some data will be present as it 
encapsulates a 3D gyroscope). 

Figure 6 Probability for two devices not distinguishable by the suggested P&P mechanism  
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We estimated the complexity and evaluated the suggested 
sensor P&P mechanism in real-life during the second phase 
by realising a hardware implementation. For this, we used 
Texas Instruments’ (TI) EZ430-RF2500 (Texas Instruments, 
2009) development boards, which have an on-board 
MSP430F2274 16-bit microcontroller (Texas Instruments, 
2010) and a CC2500 2.4 GHz radio (Texas Instruments, 
2011). The suggested P&P mechanism was implemented  
in full (i.e. the mechanisms for detection of I2C device 
connection, retrieval of ID data from a resource centre, 
identification of the connected I2C device and software 
driver retrieval were realised – see Figure 7 for the WSN 
node operation algorithm) for three plain I2C devices, using 
the REBOS (Mikhaylov and Tervonen, 2011) operation 
system on the WSN node microcontrollers. The tested boards  
with P&P I2C devices were directly connected to a 
microcontroller of the WSN through simple 4-pin connector 
(see Figure 8(a)) using 4 cm long wires without using any 
external components. We implemented connection detection 
of a new I2C device by the WSN node by using the first two 
suggested options in Section 2.1 and the connected device 
was identified using the first of suggested methods in  
Section 2.2. Both the required ID information (i.e. the ID 
table) and the drivers during the test were stored on a special 
node (RC1 on Figure 8(b)) and access to it was implemented 
using an over-the-air reprogramming mechanism suggested in 
the work of Mikhaylov and Tervonen (2010) (before 
connecting to the WSN, the ED nodes had no ID data or 
sensor drivers at all). Since the main focal point of hardware 
evaluation was real-life testing of the suggested discovery, 
ID, and data retrieval mechanisms, we used a simple WSN 
with a single-hop star network topology (see Figure 8(b)) 
and a Carrier Sense Multiple Access with Collision 
Avoidance (CSMA/CA) mechanism for wireless channel 
access in our tests. In the implemented WSN, the RC1 node 
acted as both the resource centre for the suggested P&P 
mechanism and the access point to the WSN network. The 
task of the laptop connected to the RC1 was to monitor the 
network operation and to update the ID and driver data on 
the RC, if required. We ensured an errorless ID table and 
driver retrieval by the WSN nodes by implementing a two-
stage error detection mechanism (a Cyclic Redundancy 
Check (CRC) for the received packet using a radio and 
checksum control by a microcontroller) with full packet 
retransmission in the case of error at any stage. 

As shown in Tables 3 and 4, the implementation of the 
suggested P&P mechanism resulted in rather moderate 
resource consumption. As revealed in Table 3, the overall 
size of the code, which realises the suggested P&P 
mechanism in full (including the microcontroller’s 
Operation System (OS) and the code for networking within 
WSN), is slightly above 10 kbytes (around 30% of the 
memory available on the microcontroller) and is not 
dependent of the number of possible I2C devices in the ID 
table. The overall size of the ID table for the three I2C 
devices used was 42 bytes (see the Table 4; an additional 
five bytes were required for the table header). As can be 
seen from the Table 4, the average size of the ID data for a  
 
 

single I2C device is around 13 bytes, while for the 
‘averaged’ I2C sensor discussed above (a device with five 
possible addresses and six non-zero registers) the size of the 
ID data would reach 30 bytes for the worst case scenario, 
which allows storage of the ID table on a WSN node  
(using Mikhaylov and Tervonen’s approach (2010)) 
simultaneously for at least 600 I2C sensors. The size of 
sensor drivers – the microcontroller specific code that 
implements the minimum required I2C sensor functionality 
(calibrates the sensor, orders it to make the measurement, 
processes the measurement, converts it to International 
System of Units (SI) and forwards the data to the 
application layer) – was 165 bytes for the TI TMP102, 179 
bytes for the ST MPR121, and 233 bytes for the ST 
STMPE801. 

Figure 7 Algorithm for the WSN node (ED) operation during 
P&P hardware testing 

 

The effect of the suggested P&P mechanism on the WSN 
node operation is shown by the values for energy and time 
consumption, as well as the inbound and outbound data 
traffic during different stages for the execution of the sensor 
P&P mechanism are presented in Table 5 and Figure 9. 
These measurements represent the case when the WSN 
node microcontroller was running at a 1 MHz clock 
frequency with a power supply of 3.6 V and no errors  
occurred in the radio communication. The data in Table 5 
are presented for the two contrasting scenarios: when the 
ED has just started and requires to download both the ID 
table and the drivers from RC (e.g. a new device attached to 
WSN); and for the opposite case, when the ED already had 
the latest versions of the ID data and required drivers  
(e.g. one of the sensors on the attached node has been 
removed). 
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Figure 8 I2C Testbed, (a) Schematics of connection for a P&P 
I2C plain sensor to a WSN node (b) Topology of the 
network used for testing the suggested P&P mechanism 

 
(a) 

 
(b) 

Table 3 WSN node microcontroller code and RAM consumption 
for suggested P&P algorithm implementation 

Program stage ED Code 
size, bytes

ED RAM 
sizeb, bytes 

RC Code 
size, bytes

RC RAM 
sizeb, bytes

OS core + required 
driversa 4676 160 3850 129 

ID table request 
/response 1912 8 2294c 5 

Connection 
detection and ID 1872 6 – – 

Driver 
request/response 1852 9 2294c 5 

Normal work 550 6 – – 

Notes: a ID data and device drivers not included, their 
size can be found in Table 4 

  b Temporary allocated memory from stack not 
included 

  c ID and driver request processing has been 
implemented as single function, full function 
size is calculated. 

Table 4 Structure and size of ID data and drivers (in bytes) 
for tested I2C devices 

Required data TI TMP102 ST MPR121 ST MPE801
Device ID 1 1 1 
ID Data length 1 1 1 
Clock  1 1 1 
I2C Addresses (overall) 3 5 5 

Number of I2C addresses 1 1 1 
Possible I2C addresses 2 4 4 

ID request (overall) 2 2 2 
Data length 1 1 1 
Data 1 1 1 

ID response (overall) 4 3 4 
Data length 1 1 1 
Data 3 2 3 

Overall ID data size 12 13 14 
Overall driver size:a 165 179 233 

Note: aDeveloped drivers provide the minimum 
required functionality. 

Figure 9 Energy and time consumption distribution between different operations for ED with different sensors (both ID data and device 
drivers were downloaded from RC) 
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Table 5 Time and energy consumption and amount of radio 
traffic for implemented I2C sensor P&P during 
different stages 

Required resources TI TMP102 ST MPR121 ST MPE801 
Initialisation: 
Required time, ms 3.9 3.9 3.9 
Power consumption, µJ 33.6 25.1 25.1 
ID table request: 
Data transmitted,  
bytes 

23/5a,c 

(7/1)b,c 
23/5a,c 

(7/1)b,c 
23/5a,c 

(7/1)b,c 
Data received,  
bytes 

68/44a,c 

(8/2) b,c 
68/44a,c 

(8/2) b,c 
68/44a,c 

(8/2) b,c 
Required time,  
ms 

69.5a 

13.5b 
69.9a 

13.3b 
69.7a 

13.3b 
Power  
consumption, µJ 

2560a 

581.8b 
2334.2a 

515.1b 
2337.5a 

515.6b 
Devices detection and identification: 
Required time, ms 69.6 69.5 69.7 
Power consumption, µJ 2093.6 1441 1378.9 
Driver request: 
Data transmitted,  
bytes 

53/12 a,c 

(8/2) b,c 
71/16 a,c 

(8/2) b,c 
53/12 a,c 

 (8/2) b,c 
Data received,  
bytes 

221/165 a,c

(9/3) b,c 
309/233 a,c 

(9/3) b,c 
235/179 a,c 

(9/3) b,c 
Required  
time, ms 

143a 

14.5b 
190a 

14.6b 
147a 

14.6b 
Power  
consumption, µJ 

6635.9a 

712.9b 
8245.2a 

659.1b 
6254.3a 

652.7b 
Overall: 
Data transmitted,  
bytes 

76/17a,c 

(15/3)b,c 
94/21 a,c 

(15/3) b,c 
76/17 a,c 

(15/3) b,c 
Data received,  
bytes 

289/209 a,c

(17/5) b,c 
377/277 a,c 

(17/5) b,c 
303/223 a,c 

(17/5) b,c 
Required time,  
ms 

283a 

101.5b 
330a 

101.5b 
283a 

98.5b 
Power  
consumption, µJ 

11308a 

3425b 
12034a 

2640b 
9970a 

2573b 

Notes: aDriver and ID data downloading required 
  bNo driver or ID data downloading required 
  cOverall data including wireless protocol and 

service data/actual I2C ID or driver data 

4 Discussion and conclusion 

The Plug-and-Play connection of sensors to the WSN nodes 
allows simplification of the application development, 
network deployment and further service procedures, and 
provides on-the-fly sensor changing capability. The reported 
implementations for sensor P&P connection to the WSN 
nodes usually use IEEE 1451 smart sensors, which have 
multiple useful features (e.g. self-identification, automatic 
calibration, self-diagnosis), but are rather complicated and 
thus expensive devices that are not really widespread on the 
current market. However, the majority of COTS plain 
digital transducers that are widely used on WSN nodes do 
not have any mechanisms for single-valued identification. 

Therefore, in the current paper, we have suggested a 
novel P&P mechanism for COTS plain digital transducers 

utilising most widespread wired digital serial interfaces 
connected to the WSN nodes. The suggested mechanism is 
a complete solution for sensor P&P and allows the WSN 
nodes: 

• to detect the connection of a new sensor; 

• to retrieve the required data for sensor identification 
from the WSN; 

• to identify the connected sensors (using a simple table-
based try-out algorithm and the specifics of sensors’ 
architecture); 

• to retrieve the software code for using the identified 
sensor from the WSN. 

The suggested P&P mechanism is not limited to any 
specific physical, data link, network or transport layers 
protocols of WSN and can be used with any protocol that 
ensures reliable transmission of P&P data in a WSN. Also, 
the suggested P&P mechanism involves the transmission of 
the service data only once the node with P&P sensor is 
attached to the WSN or once the sensors of the node are 
changed. This allows us to expect that, if the sensor changes 
will not happen too often, the suggested P&P mechanism 
will not have negative influence on the data traffic in the 
WSN.  

The major advantage of the suggested mechanism is that 
it uses the resources of the already existing WSN node 
processing devices and the resources available in the WSN, 
which allows implementation of the suggested P&P 
mechanism with COTS plain digital sensors, and without a 
single external component. This is especially important for 
the WSNs with restricted resources. The major disadvantage 
of the suggested method, which is a consequence of the 
external component usage refusal, is that it is not always 
applicable for the simple sensors that do not have any data 
in their registers. Nonetheless, as has been shown during the 
evaluation phase, the number of these sensors is sufficiently 
small. Other significant disadvantages, which are consequences 
of the sensor identification approach used, are following: 
the ID table should include information about all of the 
sensors that can be connected to a WSN node at any time.  
For the current implementation, the size of data in ID table 
for each sensor is around 14 bytes. The amount of data 
traffic in the WSN and the time required for sensor 
identification increases linearly with the number of P&P 
sensors that can potentially be connected to the WSN nodes. 
Nonetheless, in many cases, the suggested P&P mechanism 
could provide a much less expensive and simpler alternative 
to smart sensors and the IEEE 1451 interface. 

The simulations and hardware implementation of  
the suggested P&P mechanism using Texas Instruments 
eZ430-RF2500 boards and different I2C sensors showed that 
the suggested mechanism has rather moderate resource 
requirements (the suggested P&P algorithm occupied less 
than 30% of the available microcontroller’s memory). For 
the case of three different I2C devices, the suggested method 
is able to provide sensor P&P connection within one third of 
a second. The comparison of the suggested mechanism with 



60 K. Mikhaylov, T. Pitkäaho and J. Tervonen  

the reported implementations of the IEEE 1451 system (see 
e.g. Cummins et al. (1998) and Stepanenko et al. (2006)) 
shows that the suggested mechanism allows reduction of the 
required microcontroller code amount by more than 90%, 
while at the same time allowing exclusion of additional 
components (such as memory blocks for storing TEDS or 
additional processing devices for implementing additional 
smart features). In addition, the evaluation of the suggested 
P&P mechanism showed that it makes the initial WSN node 
program independent of the connected sensors – all of the 
required sensor drivers are retrieved automatically from the 
WSN by the node after start-up and peripheral identification. 

Although we focused primarily on the sensors connected 
to the WSN nodes, as these are the most often used peripheral 
devices, the suggested P&P mechanism can be extended to a 
broad range of other peripheral devices that use standard 
wired digital buses (e.g. memory chips, ADC/DAC, pin 
extenders etc.). Likewise, the suggested mechanisms for device 
connection detection and device identification can also be 
applied to other embedded processors besides microcontrollers 
and other system besides WSNs. 

As a further research we are planning to investigate the 
influence of proposed P&P mechanism on the power 
consumption and data flows within WSN consisting of 
multiple nodes for different scenarios and the networking 
and scalability issues within the WSN utilising suggested 
P&P mechanism. 
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Appendix A 

ID Request 
No. Device Device description 

Address Request sequence 
ID Response Used device 

ID method 

1 SCP1000 Pressure sensor 0x11 R_0x00NNNN 0x0300 Register 
contents 

2 VCNL4000 Proximity + light sensor 0x13 R_0x81NN 0x11 Register 
contents 

3 LM83 Temperature sensor 
0x18-0x1A, 
0x29-0x2B, 
0x4C-0x4E 

R_0xFENN;R_0x05NN 0x01;0x7F Register 
contents 

4 MCP98242 Temperature sensor 0x18-0x1F W_0x01FFFF;R_0xNNNN 0x07FF Inaccessible 
bits 

5 STTS424E02 Temperature sensor 0x18-0x1F W_0x06;R_0xNNNN; 
W_0x07;R_0xNNNN 

0x104A;0x0000 or 
0x0001 

Register 
contents 

6 LSM303DLH Accelerometer + 
magnetometer 

0x18,0x19, 
0x1E,0x1F R_0x0ANNNNNN 0x0A0B0C Register 

contents 

7, 
8 

LSM320 
/LSM330DL 

Accelerometer + 
gyroscope 0x18,0x19 R_0x20NNNNNN 0x070000 Register 

contents 

9 TS3000B3A Temperature sensor 0x18-0x1F W_0x06;R_0xNNNN; 
W_0x07;R_0xNNNN 0x00B3;0x2903 Register 

contents 

10 SE98 Temperature sensor 0x18-0x1F W_0x06;R_0xNNNN; 
W_0x07;R_0xNNNN 0x1131;0xA102 Register 

contents 

11 MAX6650 Temperature sensor 0x1B, 0x1F,
0x48,0x49 R_0x12NN;R_0x14NN 0x00;0x1F Register 

contents 

12 MMA8452Q Accelerometer 0x1C,0x1D R_0x0DNN 0x2A Register 
contents 

13 ADXL345 Accelerometer 0x1D,0x53 R_0x00NN;R_0x2CNN 0xE5;0x0C Register 
contents 

14 CMR3000 Gyroscope 0x1E,0x1F R_0x00NNNN 0x0X21 Register 
contents 

15, 
16 

HMC5843/ 
HMC5883 Magnetometer 0x1E,0x3D,

0x3C R_0x10NNNNNN 0x483433 Register 
contents 

17 PCF8575C GPIO extender 0x20-0x27 W_0xXXXX;R_0xNNNN 0xXXXX Register 
existence 

18 DS3501 Temperature sensor 0x28-0x2B R_0x00NNNNNN 0x400000 Register 
contents 

19 APDS-9301 Light sensor 0x29,0x39, 
0x49 R_0x0ANNNN 0x0500 Register 

contents 

20 HMC6343 Compass 0x32 R_0x04NNNN 0x1101 Register 
contents 

21 MAX17043 Fuel gauge 0x36 R_0x0CNNNN 0x971C Register 
contents 

22 TCM8230 CMOS camera 0x3C R_0x00NNNNNN 0x701040 Register 
contents 

23 BMA250 Accelerometer 0x38-0x3F R_0x00NNNN 0x0321 Register 
contents 

24 MAX6633 Temperature sensor 0x40-0x4F R_0x02NNNNNNNN 0x10002800 Register 
contents 

25 ISL29002 Light sensor 0x40-0x47 W_0xFFXX;R_0xNN 0xXX Register 
existence 

26 STMPE801 GPIO extender 0x41, 0x44 R_0x00NNNNNN 0x010802 Register 
contents 

27 TMP102 Temperature sensor 0x48-0x4B R_0x02NNNN 0x60A0 Register 
contents 
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Appendix A (continued) 

ID Requests 
No. Device Device description 

Address Request sequence 
ID Response Used device 

ID method 

28 TMP100 Temperature sensor 0x48-0x4F W_0x01;R_0xNN 0x80 Inaccessible 
bits 

29 MAX6625 Temperature sensor 0x48-0x4B W_0x00FF;R_0xNN 0x03 Register 
contents 

30 MAX6642 Temperature sensor 0x48-0x4F R_0x02NNNNNNNN 0x46007800 Register 
contents 

31 ADT7411 Temperature sensor 0x48, 0x4A, 
0x4B R_0x23NNNN 0xC762 Register 

contents 

32 LM75A/B Temperature sensor 0x48-0x4F W_0x02;R_0xNN;W_0x05;R_0
xNN 0x4B;0x00 Register 

contents 

33 SE95 Temperature sensor 0x48-0x4F W_0xFE;R_0xNN;W_0x05;R_0
xNN 0x4B;0xA1 Register 

contents 

34 SA56004X Temperature sensor 0x48-0x4F R_0xFENN;R_0x05NN 0xA1;0x46 Register 
contents 

35, 36 MCP9801/ 
TCN75 Temperature sensor 0x48-0x4F W_0x02FFFF;R_0xNNNN 0xFF80 Inaccessible 

bits 

37 STDS75 Temperature sensor 0x48-0x4F W_0x02;R_0xNNNN; 
W_0x03;R_0xNNNN; 0x4800;0x5000 Register 

contents 

38 AT30TS75 Temperature sensor 0x48-0x4F W_0x12;R_0xNNNN; 
W_0x13;R_0xNNNN 0x4B00;0x5000 Register 

contents 

39 24XX256 EEPROM 0x50-0x57 W_0x001FXX;R_0x001FNN 0xXX Register 
existence 

40 DS1077 Oscillator 0x58-0x5F R_0x02NNNN 0x1800 Register 
contents 

41 Si1141 Proximity sensor 0x5A R_0x01NNNN 0x4101 Register 
contents 

42 Si1142 Proximity sensor 0x5A R_0x01NNNN 0x4102 Register 
contents 

43 Si1143 Proximity sensor 0x5A R_0x01NNNN 0x4103 Register 
contents 

44 MPR121 Touch sensor 0x5A-0x5D R_0x5CNNNN 0x1004 Register 
contents 

45 MPL115A2 Barometer 0x60 R_0x0CNXXXNXXX 0x0NNN0NNN Inaccessible 
bits 

46 MCP4725 DAC & Memory 0x60-0x67 R_0xNNNNNNNNNN 0x80NNNN0800 Register 
contents 

47 IMU-3000 Motion sensor 0x68,0x69 R_0x00NN 0x34 Register 
contents 

48 BMP085 Temperature + pressure 
sensor 0x77 R_0xAANNNN 0x20E3 Register 

contents 

Note: Used designations: 0xXX – some specified data (hex); 0xNN-any data (actual value not important); R_0x01NN – issue 
together with address read strobe, after that send byte “0x01” and receive 1 data byte; W_0x07XX issue together with 
address write strobe, after that send byte “0x07” and 1 data byte with value “0xXX”. 


