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Abstract We study the asymmetric distribution of weak photospheric magnetic field values in the two
hemispheres separately using synoptic maps from Solar Dynamics Observatory/Helioseismic and
Magnetic Imager, Synoptic Optical Long-term Investigations of the Sun/Vector SpectroMagnetograph, and
Wilcox Solar Observatory during Solar Cycles 21–24. We calculate the weak-field asymmetry (shift) by
fitting the distributions of weak-field values to a shifted Gaussian. Hemispheric shifts derived from the
three data sets agree very well and increase systematically when reducing the spatial resolution of the map.
Shifts of the Northern and Southern Hemispheres are typically opposite to each other. Shifts follow the
evolution of the trailing flux and have a strong solar cycle variation with maxima in the early to mid
declining phase of the solar cycle. The sign of the hemispheric weak-field shift is always the same as the
polarity of the polar field in the respective hemisphere and solar cycle. We also find that shifts in the south
are systematically larger in absolute value than in the north.

1. Introduction
Sunspot cycle is a manifestation of the waxing and waning of intense magnetic field regions like sunspots on
the solar surface. Since the magnetic polarity changes every 11 years (Hale et al., 1919), the solar magnetic
cycle (the Hale cycle) is 22 years, consisting of two sunspot cycles (for a historical review, see, e.g., Stenflo,
2015; van Driel-Gesztelyi & Green, 2015). While sunspot magnetic fields have been measured since the early
twentieth century (Hale et al., 1919), the magnetic field of the whole photosphere has been measured only
since 1950s (Babcock, 1953), with one of the longest consecutive series of measurements made at the Wilcox
Solar Observatory (WSO) since 1970s (Hoeksema, 1984, 2010; Svalgaard et al., 1978).

Sunspots emerge at low to mid latitudes of the solar surface, producing tilted bipolar magnetic regions
(BMRs). The large-scale magnetic field observed at the solar photospheric surface is mainly formed by the
evolution (diffusion, transport, etc.) of BMRs. According to Joy's law, the axis of the bipolar regions is tilted
with respect to the east-west direction, the leading polarity being at a slightly lower latitude than the trail-
ing one. The trailing polarity flux of the decaying BMRs forms poleward directed surges, which cancel the
old polar field and, eventually, create the new field of opposite polarity (Babcock, 1961; Leighton, 1969).
Because the magnetic polarity of BMRs is opposite in the two hemispheres, the polar fields are also oppo-
site to each other during most of the solar cycle. However, the evolution of surges is not identical in the
two hemispheres. Moreover, the leading flux may also cause surges (so called countersurges, Ulrich & Tran,
2013), which also affect the large-scale field at mid and high latitudes.

The measured photospheric magnetic field consists mainly of rather weak fields than strong field values,
irrespective of measurement accuracy. However, a small number of strong field values carry most of the total
magnetic flux (Stenflo, 1982). Due to improved observational and diagnostic capabilities, there has been
an increasing interest in the study of weak photospheric magnetic field values (e.g., Lites, 2002; Berger &
Lites, 2002, 2003; Stenflo, 2010, 2014). We have recently shown (Getachew et al., 2019) that the distribu-
tion of weak-field values of the photospheric magnetic field is often asymmetric so that the distribution is
slightly shifted toward either polarity. This shift was seen to be systematic in several simultaneous data sets.
We argued that these weak-field shifts reflect a real asymmetry in the distribution of positive and negative
weak-field values produced most effectively at the spatial scale of supergranulation (Getachew et al., 2019).
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In this paper we study the distribution of weak-field values and the related weak-field asymmetry (shift) sep-
arately for the Northern and Southern Hemispheres using high-resolution data from the Helioseismic and
Magnetic Imager (HMI) on board the Solar Dynamics Observatory and from the Synoptic Optical Long-term
Investigations of the Sun (SOLIS) Vector SpectroMagnetograph (VSM), as well as low-resolution data from
the WSO. The paper is organized as follows. Section 2 presents the data and methods used in this study.
Section 3 studies on the hemispheric weak-field shifts in HMI data, and section 4 the same for SOLIS/VSM
data. Section 5 presents the long-term evolution of hemispheric shifts using WSO data. Finally, we discuss
the results and give our conclusions in section 6.

2. Data and Methods
In this paper we use synoptic maps of the photospheric pseudoradial (line of sight divided by cosine of
latitude) magnetic field measured at HMI, SOLIS/VSM, and WSO to calculate the hemispheric weak-field
asymmetry. HMI synoptic maps of the pseudoradial field have a resolution of 3,600 * 1,440 pixels equally
spaced in longitude and sine latitude (Hayashi et al., 2015; Hoeksema et al., 2014; Liu et al., 2012). We note
that the possible random zero offsets of the high-resolution HMI magnetograms are removed when con-
structing these maps (see Liu et al., 2012). The HMI synoptic maps included in this paper cover Carrington
rotations (CRs) 2,097–2,214, that is, the time interval from 2010.4–2019.1. We derived four additional sets
of medium- and low-resolution HMI synoptic maps (360 * 180, 180 * 72, 120 * 48, and 72 * 30) from the
3,600 * 1,440 synoptic maps using simple block averaging method (see Getachew et al., 2019) in order to
investigate the effect of data resolution on the hemispheric weak-field asymmetries.

High-resolution synoptic maps of the (pseudoradial) photospheric magnetic field have been produced at
the National Solar Observatory (NSO) using SOLIS/VSM instrument for CR 2007–2196, that is, between
2003.7–2017.8. The SOLIS/VSM synoptic maps used in this study have 1,800 * 900 pixels equally spaced in
longitude and sine latitude, from which we calculated four sets of lower-resolution synoptic maps (360 * 180,
180 * 75, 120 * 50, and 72 * 30). VSM synoptic maps give the pseudoradial fields without polar filling. (Details
on SOLIS/VSM data can be found, e.g., in Bertello et al., 2014).

The WSO synoptic maps (of the line-of-sight field) have a rather poor resolution of only 72 * 30 pixels in
longitude and sine latitude (Hoeksema, 1984). We calculated the pseudoradial field from the line-of-sight
magnetic fields. In this study we used all the 569 published F-data (where missing data are filled by interpo-
lation) WSO synoptic maps from CR 1642–2210, that is, between 1976.3 and 2018.8. Note that in 1996–1999
and in 2001.1–2001.5 the WSO data are erroneous and in clear disagreement with other data (see, e.g., Vir-
tanen & Mursula, 2016, 2017). This period of erroneous data is left out from the analysis of this paper. The
WSO measurements are good in that the same instrumentation has been in operation since measurements
have started. (Details about the WSO magnetograph, data calibration and reduction methods can be found,
e.g., in Hoeksema, 1984).

We calculate the weak-field shifts in the same way as in Getachew et al. (2019). The histogram distribution of
weak-field values (here within ±10G; note that results are insensitive to the range, as discussed by Getachew
et al., 2019) for each synoptic map, separately for Northern and Southern Hemispheres, is fitted with a shifted
Gaussian:

𝜙 = c exp

(
−1

2

(
Bi − a

b

)2
)
, (1)

where Bi are the observed (weak) field values and the three fit parameters a, b, and c give the position of the
peak (the weak-field shift), the width of the Gaussian distribution (standard deviation), and the amplitude,
respectively.

3. Hemispheric Weak-Field Shifts of HMI
Figure 1 shows the HMI weak-field shift values for each synoptic map at the five resolutions mentioned
above. The top panel presents the shift values using the full synoptic maps (cf. Figure 3 in Getachew et al.,
2019), and the middle and bottom panels show the shifts using only the Northern and Southern Hemispheres
of the synoptic map, respectively. The top panel shows that the full-map shifts mainly occur at the same time
and have the same sign (positive or negative) for all five resolutions. The same is true for the hemispheric
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Figure 1. Weak-field shifts of HMI synoptic maps of 3,600 * 1,440 (red line), 360 * 180 (green line), 180 * 72 (blue line),
120 * 48 (black line), and 72 * 30 (cyan line) resolution. The top panel uses data from full synoptic maps, while the
middle and bottom panels use data only from the Northern and Southern Hemispheres, respectively.
HMI = Helioseismic and Magnetic Imager.

weak-field shifts in the two other panels of Figure 1. Also, for all three cases (full-map, Northern and South-
ern Hemispheres) the weak-field shifts increase with decreasing resolution of the maps, as already found for
full maps in Getachew et al. (2019). Shifts increase significantly when the resolution decreases from 360 * 180
to 180 * 72, reflecting the approach to the supergranulation scale of the photospheric field (Getachew et al.,
2019). Note that the full-map shifts are typically quite close to the sum of the northern and southern shifts of
the respective rotation. However, this is not always exactly the case, because the hemispheric distributions
may be occasionally quite different.

Figure 1 (middle panel) shows that the Northern Hemisphere has a weak negative shift in 2010–2011, a
clearly larger, positive shift in 2012 and then again a weak, mainly negative shift in 2013. Since 2014, until
the end of data in 2019, the Northern Hemisphere has a fairly large, systematically positive weak-field shift.

The Southern Hemisphere (Figure 1, bottom panel) has a rather weak, mostly positive shift in 2010–2012.
From 2013 onward, the southern shift is mostly negative and attains very large values in 2014–2015. Accord-
ingly, the shifts in the Northern and Southern Hemispheres were oppositely directed for most of the HMI
period. Out of 118 rotations included in Figure 1, the Northern and Southern Hemispheres have oppositely

Table 1
Mean Values of HMI Hemispheric Weak-Field Shifts (in Gauss) Using All Shifts and Dominantly Signed Shifts in Each Hemisphere

Hemisphere Mean value of 3,600 * 1,440 360 * 180 180 * 72 120 * 48 72 * 30
Northern all shifts −0.007 0.004 0.066 0.122 0.184

(−0.013, −0.0004) (−0.007, 0.015) ( 0.041, 0.091) (0.084, 0.160) (0.136, 0.233)
positive shifts 0.027 0.056 0.150 0.242 0.320

(0.023, 0.031) (0.049, 0.063) (0.130, 0.169) (0.210, 0.274) (0.280, 0.363)
Southern all shifts −0.013 −0.032 −0.107 −0.171 −0.244

(−0.021, −0.005) (−0.047, −0.018) (−0.147, −0.068) (−0.234, −0.108) (−0.330, −0.161)
negative shifts −0.042 −0.074 −0.204 −0.320 −0.420

(−0.050, −0.034) (−0.090, −0.058) ( −0.249, −0.159) (−0.395, −0.244) (−0.514, −0.317)

Note.The upper and lower confidence intervals are given in parentheses. HMI = Helioseismic and Magnetic Imager.
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Figure 2. Hemispheric weak-field shifts of SOLIS/VSM synoptic map for 1,800 * 900 (red line), 360 * 180 (green line),
180 * 75 (blue line), 120 * 50 (black line), and 72 * 30 (cyan line) resolutions. The upper panel is for the Northern
Hemisphere, and lower panel is for the Southern Hemisphere. The start time of Helioseismic and Magnetic Imager
data is marked by dashed vertical line. SOLIS = Synoptic Optical Long-term Investigations of the Sun; VSM = Vector
SpectroMagnetograph.

oriented shifts at least in 87 rotations (74%). Thus, there is a clear tendency for the simultaneous shifts to be
oppositely oriented in the Northern and Southern Hemispheres.

Table 1 gives the mean values of HMI hemispheric shifts with lower and upper limits at 95% given in paren-
thesis. In order to calculate the lower and upper confidence intervals (CI) of the mean values of shifts, we
applied the Student's t test given as

CI = 1
n

n∑
i=1

𝜇i ± S𝜇t𝛼,n−1 (2)

where S𝜇 is the error of the mean of individual shifts 𝜇i, and t𝛼,n−1 is the precalculated statistic value for the t
distribution, where 𝛼 is the significance level (for a 95% confidence interval, 𝛼 = 0.025) and n is the number
of shift values (n = 118 for all shifts of HMI data).

We have calculated the means of all shifts over the full time interval and also the means of the dominantly
signed shifts in either hemispheres, that is, positive in the north and negative in the south. Table 1 shows that
the positive shifts in the north and the negative shifts in the south increase (in absolute value) systematically
with reducing spatial resolution, from about 0.03 (−0.04) in the 3,600 * 1,440 maps to 0.32 (−0.42) in the
72 * 30 maps in the north (south, respectively). The largest step in this decadal increase occurs between
360 * 180 and 180 * 72, where shift increases roughly by a factor of 2.5 to 3. Note also that the negative
shifts in the south are systematically (for all resolutions) larger in absolute value than the positive shifts in
the north.

4. Hemispheric Weak-Field Shifts of SOLIS/VSM
Figure 2 shows the hemispheric weak-field shifts for SOLIS/VSM synoptic maps at the five resolutions of
1,800 * 900, 360 * 180, 180 * 75, 120 * 50, and 72 * 30 in 2003.7–2017.8. Comparing Figures 1 and 2, in most
of the simultaneous rotations, the sign of both the Northern and Southern Hemisphere shifts is the same
in HMI and SOLIS/VSM. Out of the 100 rotations of the overlapping time, 74 (87) HMI shifts of 360 * 180
(72 * 30 maps, respectively) maps have the same sign as SOLIS/VSM maps in the Northern Hemisphere,
and 77 (82) shifts in the Southern Hemisphere. This gives strong evidence for the validity and universality
of the obtained hemispheric shifts.
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Figure 3. The top panel shows WSO synoptic map weak-field shifts separately for the Northern Hemisphere (red line),
Southern Hemisphere (blue line), and the full-disk maps (cyan line). Weak-field asymmetries during the erroneous
data period (1996–2001) are shown by a dashed line. The bottom panel shows photospheric magnetic field butterfly
diagram (supersynoptic map) from WSO synoptic maps. In the bottom panel plot, red color indicates positive
(outward) polarity and blue negative (inward) polarity. Units are in gauss.

We have also calculated the correlation coefficients (r) and the corresponding p values between SOLIS/VSM
and HMI shifts in the Northern and Southern Hemispheres for all possible resolution combinations (5
SOLIS/VSM × 5 HMI). For all 25 combinations and for both hemispheres, the correlations are high and
extremely significant. Correlations were overall slightly more important in the south than in the north. The
lowest correlation was found in the Northern Hemisphere between the highest SOLIS/VSM and lowest
HMI resolution (r = 0.6, p < 10−9) and the highest correlation in the Southern Hemisphere for the lowest
resolution of both data sets (r = 0.96, p < 10−51).

Figure 2 shows that the SOLIS/VSM shifts are mostly negative in the Northern Hemisphere in 2003–2011
and mostly positive thereafter (cf. Figure 1). The largest negative shifts in the north are found in 2005.
SOLIS/VSM shifts in the Southern Hemisphere are mostly positive in 2003–2012 and mostly negative there-
after. The highest positive shifts in the south are found in 2004–2005. These results further strengthen the
overall anticorrelation between the northern and southern shifts, as indicated earlier by HMI results. They
also suggest that there is a change in the sign of the hemispheric shifts from one solar cycle to the next.

The mean SOLIS/VSM shifts are systematically larger than the HMI shifts for the same resolution and hemi-
sphere (note the different scales of y axis in Figures 1 and 2). The SOLIS/HMI ratios vary from a factor
of about 2 for 360 * 180 resolution to only about 30–50% for 72 * 30 resolution. The hemispheric shifts of
SOLIS/VSM increase systematically when the resolution decreases, as already seen for HMI. Also similarly
with HMI, the SOLIS/VSM mean shifts are larger in the south than in the north.

5. Hemispheric Weak-Field Shifts of WSO
The top panel of Figure 3 shows the full-map and hemispheric weak-field shifts for WSO in CR 1,642–2,210,
that is, between 1976.3 and 2018.8, including four solar cycles. Figure 3 (top panel) verifies that the north-
ern and southern shifts evolve roughly in anticorrelation and depict a clear variation over the solar cycle.
Hemispheric shifts have maxima in the early to mid declining phase of the solar cycle and decrease to very
small absolute values until the solar minimum but change their sign typically only in the late ascending to
maximum phase of the solar cycle.

The bottom panel of Figure 3 shows the map of longitudinally averaged magnetic field derived from
WSO synoptic maps, the so-called photospheric supersynoptic map, also called the magnetic field butterfly
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Table 2
Mean Values of WSO Hemispheric Weak-Field Shifts in Gauss for Each Solar Cycle

Hemisphere SC21 SC22 SC23 SC24
Northern time 1979.6–1990.3 1990.3–1996 2001–2011.9 2011.9–2018.8

all shifts −0.388 (−0.437, −0.339) 0.367 (0.313, 0.421) −0.147 (−0.182, −0.112) 0.196 (0.161, 0.230)
dominant shift −0.403 (−0.451, −0.356) 0.367 ( 0.313, 0.421) −0.193 (−0.233, −0.154) 0.213 (0.179, 0.248)

Southern time 1980.4–1990.4 1990.4–1996 2001–2013.2 2013.9–2018.8
all shifts 0.396 (0.334, 0.459) −0.516 (−0.612, −0.419) 0.196 (0.166, 0.227) −0.272 (−0.343, −0.201)

dominant shift 0.444 (0.382, 0.506) −0.523 (−0.620, −0.426) 0.202 (0.171, 0.233) −0.314 (−0.388, −0.239)

Note. The upper and lower confidence intervals are given in parentheses. WSO = Wilcox Solar Observatory.

diagram. This diagram depicts the overall pattern of the solar magnetic cycle, that is, the alteration of mag-
netic polarity according to the 22-year cycle at the solar surface. It also shows the transport of surges of new
flux to the poles and the eventual reversal of the polar fields.

Figure 3 suggests that hemispheric weak-field shifts are related to the poleward surges of magnetic flux and
the evolution of polar fields. The different timing of surges in the north and south (see, e.g., 1990 and 1991)
is also seen in the different time evolution of the Northern and Southern Hemisphere weak-field shifts.

Table 2 presents the mean shift for each hemisphere and each solar cycle, separately. The times were deter-
mined from the change of the sign of the shift in the corresponding hemisphere. Table 2 shows clearly that
the mean shifts follow the sign (polarity) of the solar pole in that hemisphere and cycle. Moreover, in each
cycle (and overall) the Southern Hemisphere shifts are somewhat larger than in the Northern Hemisphere.
This difference is particularly strong during the two even cycles where the shift ratios are about 1.42 and
1.47 for Solar Cycle 22 and Solar Cycle 24, while they are only about 1.1 and 1.05 for the two odd cycles.

The WSO hemispheric shifts agree very well with the signs of the corresponding SOLIS/VSM and HMI shifts,
and the absolute values of the WSO shifts are typically between those of HMI and SOLIS/VSM. Out of the
169 overlapping rotations, 117, 126, 133, 139, and 140 SOLIS/VSM (1,800 * 900, 360 * 180, 180 * 75, 120 * 50,
and 72 * 30) shifts had the same sign in the north as WSO and 136, 151, 158, 157 and 157 shifts in the south.
Correlation in hemispheric shifts between WSO and SOLIS/VSM are all high and statistically significant,
at least with r = 0.5 (p < 10−10). Correlations are slightly better for the south than north, as found earlier
between SOLIS/VSM and HMI.

6. Discussion and Conclusions
In this paper we have studied the hemispheric shifts of weak photospheric magnetic field values using HMI,
SOLIS/VSM and WSO data sets at different resolutions. Hemispheric shifts were calculated by fitting the
histogram distribution of hemispheric weak-field values (here within ±10G) for each synoptic map to a
shifted Gaussian (Getachew et al., 2019).

As found earlier for the full-map shifts (Getachew et al., 2019), the hemispheric shifts have systemati-
cally the same sign for different map resolutions and increase with reduced spatial resolution. The shifts
increase significantly in both hemispheres when the resolution decreases from 360 * 180 to 180 * 72, reflect-
ing the approach to the supergranulation scale of the photospheric field (Getachew et al., 2019). Moreover,
the shifts have mainly the same sign for simultaneous rotations for all the three independent instruments
(HMI, SOLIS/VSM, and WSO) in each hemisphere. The absolute values of the shifts are somewhat different,
with SOLIS/VSM shifts being largest and HMI smallest, but this difference decreases when reducing the
map resolution.

We find that the Northern and Southern Hemisphere shifts are typically opposite to each other, but the
simultaneous shifts do not often have the same (absolute) magnitude. These differences in the magni-
tudes and time evolutions of the hemispheric shifts explain the full-map shifts studied earlier in Getachew
et al. (2019).
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Hemispheric shifts depict a clear evolution over the solar cycle. They change their sign in the late ascending
or maximum phase of the cycle and attain their maximum in the early to mid declining phase. The hemi-
spheric shifts have always the same sign as the polarity of the respective pole of the future solar minimum.
Thus, the hemispheric shifts have a relation to the evolution of the polar fields.

We found that the Southern Hemisphere shifts are systematically larger than in the north in all the three data
sets and solar cycles. This is particularly true for the even solar cycles (SC22 and SC24), where the southern
shifts are roughly 50% larger at WSO resolution than the northern shifts. This difference may contribute to
the earlier observed stronger field intensity in the south and the related southward shift of the heliospheric
current sheet, also called the bashful ballerina phenomenon (Hiltula & Mursula, 2006; Mursula & Hiltula,
2003, 2004; Virtanen & Mursula, 2010; 2014, 2016; Zhao et al., 2005).
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