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[1] Recent studies have led to speculation that solar‐terrestrial
interaction, measured by sunspot number and geomagnetic
activity, has played an important role in global temperature
change over the past century or so. We treat this possibility
as an hypothesis for testing. We examine the statistical
significance of cross‐correlations between sunspot number,
geomagnetic activity, and global surface temperature for the
years 1868–2008, solar cycles 11–23. The data contain
substantial autocorrelation and nonstationarity, properties
that are incompatible with standard measures of cross‐
correlational significance, but which can be largely removed
by averaging over solar cycles and first‐difference
detrending. Treated data show an expected statistically‐
significant correlation between sunspot number and
geomagnetic activity, Pearson p < 10−4, but correlations
between global tempera ture and sunspot number
(geomagnetic activity) are not significant, p = 0.9954, (p =
0.8171). In other words, straightforward analysis does not
support widely‐cited suggestions that these data record a
prominent role for solar‐terrestrial interaction in global
climate change. With respect to the sunspot‐number,
geomagnetic‐activity, and global‐temperature data, three
alternative hypotheses remain difficult to reject: (1) the role
of solar‐terrestrial interaction in recent climate change is
contained wholly in long‐term trends and not in any
shorter‐term secular variation, or, (2) an anthropogenic
signal is hiding correlation between solar‐terrestrial variables
and global temperature, or, (3) the null hypothesis, recent
climate change has not been influenced by solar‐terrestrial
interaction. Citation: Love, J. J., K. Mursula, V. C. Tsai, and
D. M. Perkins (2011), Are secular correlations between sunspots,
geomagnetic activity, and global temperature significant?, Geophys.
Res. Lett., 38, L21703, doi:10.1029/2011GL049380.

1. Introduction

[2] The secular increase in global surface temperature since
the middle of the 20th century has been estimated to be mostly
anthropogenic in origin [e.g., Houghton, 2004]. But there is
also some evidence that driving part of the increase in global
temperature, especially over timescales of multiple decades to
centuries and longer, is the Sun [Reid, 2000; Rind, 2002].
Proposed causative mechanisms include: (1) change in solar
irradiance, with nonlinear feedbacks this would result in

warming of the Earth [e.g., Fröhlich and Lean, 2004], and
(2) change in interplanetary magnetic field strength, which
would result in a decrease in cosmic‐ray flux, and, in turn, a
lessening of atmospheric cloud production and a warming of
the Earth [Svensmark and Friis‐Christensen, 1997]. These
theories seem to be supported by correlations between sunspot
number, solar‐activity proxies, and global temperature [Hoyt
and Schatten, 1997; Friis‐Christensen, 2001]. Recently, geo-
magnetic observatory data have been introduced into the
discussion, with qualitative correlations reported between geo-
magnetic activity and temperature [Bucha and Bucha, 1998;
Cliver et al., 1998;Kishcha et al., 1999; Valev, 2006;Courtillot
et al., 2007; Le Mouël et al., 2008; Mufti and Shah, 2011].
[3] Are these correlations statistically significant? Ideally,

this question would be objectively answered by comparing
predictions of physics‐based theories against future data.
Unfortunately, theories relating the Sun, the geomagnetic
field, and the Earth’s climate require additional development
before useful quantitative predictions can be made [e.g.,
Bard and Frank, 2006]. And even if such predictions were
available, we would have to patiently wait for decades
before enough data could be collected to provide meaningful
tests of their accuracy. As a result, attempts to answer ques-
tions of correlational significance have been essentially
empirical; the data used are those that are already available;
and the inconsistency of results has led to controversy.
Laut [2003] and Pittock [2009] have expressed profound
reservations about the methods used to identify correlations
between sunspots and global temperature. Bard and
Delaygue [2008] and Courtillot et al. [2008] disagree on
whether or not historical geomagnetic activity data are
actually even correlated with global temperature.
[4] At least part of the difficulty in evaluating the signifi-

cance of cross‐correlations can be traced to the presence of
autocorrelation and nonstationarity in the data. Specifically,
the sunspot and geomagnetic time series contain significant
solar cycle variation that occurs continuously over timescales
that are short compared to global climate change, and all three
data types record trends over timescales that are long compared
to the total duration of each time series. Any and all of this can
obscure cross‐correlation of causal significance. In this con-
text, and in order to make progress in assessing hypotheses of
the causes of global climate change, we use simple methods to
remove autocorrelation and nonstationarity in the sunspot‐
number, geomagnetic‐activity, and global‐temperature data so
that reasonable estimates can be made of the statistical sig-
nificance of secular cross‐correlations.

2. Data

[5] We analyze 3 different standard data time series,
collectively denoted as X, for the period 1868–2008, solar
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cycles 11–23. (1) Sunspot number is often used as a proxy
measure of either general solar activity or total irradiance.
We use sunspot group numbers G [Hoyt and Schatten,
1998], which are generally considered to be an improve-
ment over international numbers Z [e.g., Hathaway et al.,
2002]. (2) The three‐hour aa geomagnetic activity index
measures storms and lower‐levels of general magnetic field
disturbance driven by the interaction of the solar wind with
the coupled magnetospheric‐ionospheric system. The aa
index starts at 1868; it is derived from K ‐index data from
British and Australian observatories [Mayaud, 1980]. We
checked the aa results presented here against separate results
for K data; our conclusions were unaffected. (3) HadCRUT3
is a time series representing global‐average anomalous
surface temperature T [Brohan et al., 2006], defined as the
deviation from the 1961–1990 average. We checked the
HadCRUT3 results against separate results using other
prominent global‐temperature time series, GISS and NCDC;
our conclusions were unaffected. HadCRUT3 starts at 1850,
and it covers the duration of aa time series.

3. Autocorrelation

[6] In Figures 1a–1c we show annual means of the X time
series: sunspot number G, geomagnetic activity aa, and
global temperature T. Note the prominent ∼11‐year solar
cycle waxing and waning in both G and aa, and generally
increasing trends in all three data sets of X over the 141‐year
timespan of solar cycles 11–23. A partial description of
continuous variation in time can be made in terms of lag‐
one Pearson autocorrelation r1 [Press et al., 1992], which is
high (low) if the values Xj+1 are similar to (different from)
the values Xj. For annual‐mean data, “lag‐one” corresponds

to autocorrelation with a one‐year lag. Results are listed in
Table 1; these show substantial autocorrelation in all three
data time series, for example, for G we have r1 = 0.82. From
the standpoint of statistics, the annual means are, in a sense,
partially redundant. This can be qualitatively measured in
terms of the “effective” number of independent data
[Priestley, 1981, chapter 5.3.2],

Ne ¼ N
1� r1

1þ r1
; ð1Þ

where N is the number of data we actually have, and, fol-
lowing Jones [1975], we use the Pearson autocorrelation.
Given high levels of autocorrelation, we see from Table 1
that the effective data numbers are much smaller than the
number of annual means, Ne � 141 = N. Therefore, the
significance of measured cross‐correlations, which we will
consider in section 5, might be artificially inflated [e.g., von
Storch and Zwiers, 2002] – with fewer independent data,
there is a higher probability that high measured values of
cross‐correlation are simply a statistical fluke. As a remedy,
we make a simple two‐step treatment of the data.

Figure 1. (a–c) Time series of annual‐mean (gray) sunspot group number G, aa geomagnetic activity index, and global
surface temperature anomaly T. Also shown are solar cycle averages (blue) G, aa, T. (d–f) First‐differences of solar cycle
averages (blue) DG, Daa, DT.

Table 1. Lag‐One Autocorrelation r1 and Effective Data Number
Ne, Each for Annual Means X, Solar Cycle Averages X , and First‐
Differences DX , Solar Cycles 11–23a

X, N = 141 X , N = 13 DX , N = 12

r1 Ne r1 Ne r1 Ne

G 0.82 14 0.70 2 −0.29 22
aa 0.73 22 0.84 1 −0.03 13
T 0.88 8 0.87 1 0.30 6

aAlso given are number of data N for each data type.
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[7] First, consider solar cycle variation. Since our interest
is in a possible secular relationship between solar‐terrestrial
interaction and global climate change, we choose to average
over the amplitude of intra‐solar cycle variation which
dominates sunspot number G and geomagnetic activity aa.
While this removes an important and interesting signal [e.g.,
van Loon and Labitzke, 2000], it is a signal that is very
different from the longer‐term secular variation that is the
focus of our analysis. For consistency, we also average
temperature T over solar cycles. We note that the 11‐year
timescale of a solar cycle is long compared to the 1–2 year
lag of aa after G [e.g., Richardson et al., 2000], and it is
much longer than the ∼3 month lag of T after solar irradi-
ance [Douglass and Clader, 2002]. Averages are formed
for bins defined from one sunspot minimum to the next;
we denote these with an overbar, X ; for solar cycles 11–23,
N = 13. The averages in Figures 1a–1c show that solar cycle
variation is effectively removed, but the results listed in
Table 1 show that substantial redundancy remains in the data
as measured by autocorrelation and effective data number.
[8] Second, consider long‐term trends. Many unrelated

time series with similar trends appear to be cross‐correlated,
and this can sometimes be misinterpreted as being causal. A
classic example of a “nonsense” correlation: from 1866–
1911 the proportion of marriages in Britain performed by
the Church of England declined, and simultaneously the
mortality rate declined; Pearson cross‐correlation rc = 0.95
[Yule, 1926]. Obviously, there is no causal relationship
between these two data sets, but a correlation is found
because both data sets are dominated by trends of the same
sign [e.g., Aldrich, 1995]. Acknowledging the need for
caution, we would be motivated to investigate plausible

hypothetical linkages if we had, for example, two time series
that tracked each other in some nontrivial, nonmonotonic
way. Usoskin et al. [2005] appreciated this, and in their
analysis of sunspot number, cosmic rays, and global tem-
perature, they detrended their data and then analyzed cor-
relations between the remaining residuals. Here, we follow
the simple advice of Granger and Newbold [1974] and take
first‐differences of the data,

DX j ¼ X jþ1 � X j: ð2Þ

Figures 1d–1f show that differencing removes most of the
long‐term trends in the data. From Table 1, we see that, in
size, autocorrelations r1 for DX are small and effective data
numbers Ne are the same order as the number of data we
have N = 12; we note that with modest anti‐autocorrelation,
r1 < 0, some of the effective data numbers are larger than the
actual data number, Ne > N. The important point is that
much of the redundancy in the data has now been removed.

4. Nonstationarity of Cross‐Correlation

[9] Another property that makes it difficult to estab-
lish cross‐correlational significance is nonstationarity. In
Figures 2a–2c we see that the statistical distributions of
data‐set pairs of both X and X have changed over time. We
illustrate this by breaking the data into two parts, cycles 11–
17 (red) and cycles 18–23 (black). Since red is offset from
black, it is clear that the relationships between the data are
nonstationary, a property that renders correlational signifi-
cance difficult to interpret – a reinforcement of the cautious
assessments made in section 3. More generally, the presence

Figure 2. (a–c) Cross‐correlation of annual‐mean (small dots) sunspot group number G, aa geomagnetic activity
index, and global surface temperature anomaly T. Also shown are solar cycle averages (large dots) G, aa, T, for solar
cycles 11–17 (red), 18–23 (black). (d–f) First‐differences of solar cycle averages (black) DG, Daa, DT, for solar cycles
11–16 (red), 17–22 (black).
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of nonstationarity represents a serious difficulty for back‐
in‐time extrapolation of proxy measures used for climate
studies [e.g., Bürger and Cubasch, 2005]. The situation is
different for first‐differences of solar cycle averages DX ,
Figures 2d–2f; here the detrended data for cycles 11–17
(red) and cycles 18–23 (black) are more‐or‐less similarly
distributed. There is apparently relatively little long‐term
nonstationarity in DX , they are what is sometimes called
“trend stationary” [e.g., DeJong et al., 1992]. We conclude
that we are justified in using simple statistical measures in
analyzing the significance of cross‐correlations between
the data sets of DX .

5. Cross‐Correlational Significance

[10] To establish the significance of a Pearson cross‐cor-
relation rc, we calculate the probability p that a random
sampling of a normal distribution will yield an jrcj that is
greater than that which is actually measured; results are
listed in Table 2. For annual‐mean data X, the correlation
between sunspot number G and magnetic activity aa is rc =
0.58, and this is an unlikely outcome of random data, p <
10−4; the correlation between aa and global temperature T is
almost as seemingly significant, rc = 0.40, p < 10−4; and
even though the correlation between temperature and sun-
spot number seems modest rc = 0.17, this appears to be
reasonably significant as well, p = 0.0348. The problem with
all of this, of course, is that which we discussed in sections 3
and 4, the annual‐mean data X have autocorrelation and
nonstationarity. Therefore, the measures of correlational
significance are not meaningful. As for the averages X ,
which have had solar cycle autocorrelation removed, Pear-
son correlations are higher than they are for X, but sig-
nificances, estimated with fewer data, are lower.
[11] Of most interest, here, are the correlations between

first‐differences of solar cycle averages DX , Table 2, since
these time series have less autocorrelation and non-
stationarity than either X or X . The well‐known and physi-
cally well‐established relationship between sunspot number
and geomagnetic activity is seen as a significant correlation
between DG and Daa, rc = 0.90, p < 10−4. This simple fact
reinforces the confidence we have in the validity of the
averaging and differencing method used here. We get what
we expected to get. On the other hand, correlations between
global temperature DT and either of geomagnetic activity or
sunspot number are essentially insignificant; for DT and
Daa, rc = 0.07, p = 0.8171; for DT and DG, rc = 0.00, p =
0.9954. From this, it is tempting to conclude that there is no
causal connection between solar‐terrestrial interaction and
global temperature. This might be true. But in the spirit of
statistical hypothesis testing, all we can really do is not
reject the possibility that there is no causal connection, as

measured by cross‐correlations, between global temperature
and either of sunspot number or geomagnetic activity.

6. Nonparametric Cross‐Correlation

[12] In analyzing cross‐correlation between two physi-
cally‐distinct time series, it is common practice to develop a
parameterization of the data: linear, quadratic, power‐law,
etc. Ideally, the parameterization would be motivated by a
physical theory, otherwise the treatment can be considered
to be ad hoc. In circumstances where we lack a quantitative
theory, it is convenient to adopt a nonparametric approach
for estimating correlations [e.g., Chandler and Scott, 2011].
For each of the 12 first‐difference of solar cycle averages
DX , an integer rank is assigned according to its size, with
the largest of DX being assigned the number 12, the next
largest the number 11, etc. We represent this ranking by the
mapping DX → R(DX ). Kendall measures of correlation kc

and corresponding significance p‐levels [Press et al., 1992]
for the ranked data are listed in Table 2, cycles 11–23. Aswith
the Pearson results, Kendall correlation between sunspot
number and geomagnetic activity is both high and significant,
but those for temperature and either of sunspot number or
geomagnetic activity are neither.

7. A Recent Anthropogenic Signal?

[13] Of course, the present question of societal importance
concerns the anthropogenic role in affecting global climate
change. A seeming decrease, over the past few decades, in
the correlation between solar‐terrestrial data and global
temperature [Solanki and Krivova, 2003; Le Mouël et al.,
2005; Lockwood and Fröhlich, 2007] might be interpreted
as being anthropogenic. We see from Figure 1 that there is, in
comparison to sunspot number G and geomagnetic activity
aa, an apparent divergence of T with the start of cycle 22.
Whether or not we can confidently infer that this represents
the emergence of anthropogenic warming depends, in part,
on how confident we are that global temperature before
cycle 22 was controlled by solar‐terrestrial interaction. We
choose to examine data from cycles 14–21 (a subset of the
available data) because they appear to contain some visu-
ally‐significant cross‐correlation, but in choosing data this
way, our tests for statistical significance lose their objec-
tivity. Not surprisingly, the p‐values for DT from cycles
14–21 are smaller than for cycles 11–23; Kendall results are
listed in Table 2. Despite this, the correlations for cycles
14–21 are still not compelling; for DT and Daa, p = 0.1764;
for DT and DG, p = 0.2931. On the basis of our analysis of
DX , we cannot confidently reject the null hypothesis that
there is no causal relationship between solar‐terrestrial
interaction and global temperature for cycles 14–21, there-

Table 2. Pearson rc and Kendall kc Cross‐Correlation Coefficients and Their Corresponding Significance Levels p for Annual Means X,
Solar Cycle Averages X , and First‐Differences DX

a

Pearson, Cycles 11–23 Kendall, 11–23 Kendall, 14–21

X X DX DX DX

rc p rc p rc p kc p kc p

G‐aa 0.58 0.0000 0.96 0.0000 0.90 0.0000 0.78 0.0003 0.90 0.0043
aa‐T 0.40 0.0000 0.71 0.0062 0.07 0.8171 0.18 0.4105 0.42 0.1764
T‐G 0.17 0.0348 0.54 0.0559 0.00 0.9954 0.03 0.8909 0.33 0.2931

aResults are indicated for solar cycles 11–23 and for the subset solar cycles 14–21.
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fore, we cannot accept the hypothesis that an anthropogenic
signal can be detected in the data from cycle 22 onwards.
Furthermore, if future data of the same type record a super-
position of natural and anthropogenically‐driven global
warming, then this would lead to a continued lack of signif-
icant correlation and the same agnostic conclusion. We are
not convinced that the combination of sunspot‐number,
geomagnetic‐activity, and global‐temperature data can, with
a purely phenomenological correlational analysis, be used to
identify an anthropogenic affect on climate.

8. Conclusions

[14] One of the merits of using three separate data sets in a
correlational analysis is that intercomparisons can be made.
After treatment for removal of autocorrelation and non-
stationarity through simple averaging and differencing, we
find statistically‐significant secular correlation between
sunspot number and geomagnetic activity. This is expected,
and it serves as important support for our analysis method. On
the other hand, after making the same treatment to the global
surface temperature, correlations between temperature and
either sunspot number or geomagnetic activity are not sig-
nificant. We have not, in this study, considered derived proxy
metrics of relevance to climate change, such as reconstructed
total‐solar irradiance [e.g., Fröhlich and Lean, 2004] or
interplanetary magnetic field [e.g., Lockwood et al., 1999].
Still, we believe that our methods are general, that they could
be used for other data sets, even though our analysis, here, is
tightly focused on specific data sets.
[15] From analysis of sunspot‐number, geomagnetic‐

activity, and global‐temperature data, three hypotheses
remain difficult to reject; we list them. (1) The role of solar‐
terrestrial interaction in recent climate change is wholly
contained in the long‐term trends we removed in order to
reduce autocorrelation and nonstationarity. This possibility
seems artificial, but we acknowledge that our method requires
a nontrivial time‐dependence in the data that is different from
a simple trend. Still needed is a method for measuring the
significance of correlation between data sets with trends.
(2) An anthropogenic signal is hiding correlation between
solar‐terrestrial variables and global temperature. A phe-
nomenological correlational analysis, such as that used
here, is not effective for testing hypotheses when the data
record a superposition of different signals. Physics is required
to separate their sum. (3) Recent climate change has not been
influenced by solar‐terrestrial interaction. If this null
hypothesis is to be confidently rejected, it will require data
and/or methods that are different from those used here.
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