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ABSTRACT

Aims. We study the difference in the shape of solar cycles for even and odd cycles using the Wolf sunspot numbers and group sunspot
numbers of solar cycles 1−23. We furthermore analyse the data of sunspot area sizes for even and odd cycles SC12−SC23 and sunspot
group data for even and odd cycles SC8−SC23 to compare the temporal evolution of even and odd cycles.
Methods. We applied the principal component analysis (PCA) to sunspot cycle data and studied the first two components, which
describe the average cycle shape and cycle asymmetry. We used a distribution analysis to analyse the temporal evolution of the even
and odd cycles and determined the skewness and kurtosis for even and odd cycles of sunspot group data.
Results. The PCA confirms the existence of the Gnevyshev gap (GG) for solar cycles at about 40% from the start of the cycle. The
temporal evolution of sunspot area data for even cycles shows that the GG exists at least at the 95% confidence level for all sizes of
sunspots. On the other hand, the GG is shorter and statistically insignificant for the odd cycles of aerial sunspot data. Furthermore,
the analysis of sunspot area sizes for even and odd cycles of SC12−SC23 shows that the greatest difference is at 4.2−4.6 years, where
even cycles have a far smaller total area than odd cycles. The average area of the individual sunspots of even cycles is also smaller
in this interval. The statistical analysis of the temporal evolution shows that northern sunspot groups maximise earlier than southern
groups for even cycles, but are concurrent for odd cycles. Furthermore, the temporal distributions of odd cycles are slightly more
leptokurtic than distributions of even cycles. The skewnesses are 0.37 and 0.49 and the kurtoses 2.79 and 2.94 for even and odd
cycles, respectively. The correlation coefficient between skewness and kurtosis for even cycles is 0.69, and for odd cycles, it is 0.90.
Conclusions. The separate PCAs for even and odd sunspot cycles show that odd cycles are more inhomogeneous than even cycles,
especially in GSN data. Even cycles, however, have two anomalous cycles: SC4 and SC6. The variation in the shape of the early
sunspot cycles suggests that there are too few and/or inaccurate measurements before SC8. According to the analysis of the sunspot
area size data, the GG is more distinct in even than odd cycles. This may be partly due to sunspot groups maximizing earlier in the
northern than in the southern hemisphere for even cycles. We also present another Waldmeier-type rule, that is, we find a correlation
between skewness and kurtosis of the sunspot group cycles.
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1. Introduction

Almost two hundred years ago, it was noted that the occur-
rence of sunspots is cyclic. However, there are differences in
the cycles; for instance, the length of the cycle changes from
9.0 to 13.7 years and the shape of the cycle changes some-
what between cycles and also between hemispheres. Waldmeier
(1935) found that each cycle is also asymmetric such that the
ascending phase is shorter than the declining phase, and that
there is anti-correlation between cycle amplitude and the length
of the ascending phase of the cycle (Waldmeier 1939).

Gnevyshev (1967) suggested that the solar cycle is char-
acterised by two periods of activity, and these lead to a dou-
ble peak with the so-called Gnevyshev gap (GG) in between
(Gnevyshev 1977). Feminella & Storini (1997) studied the long-
term behaviour of several solar activity parameters and found
that maxima occur at least twice: first, near the end of the ris-
ing phase, and then in the early years of the declining phase.
Norton & Gallagher (2010) analysed the sunspot cycle double
peak and the GG between them to determine if the double
peak is caused by averaging of two hemispheres that are out of
phase (Temmer et al. 2006). They confirmed previous findings,

however, that the GG is a phenomenon that occurs in the sep-
arate hemispheres and is not due to a superposition of sunspot
indices from hemispheres that are slightly out of phase.

Most of the even-odd cycle comparisons have concentrated
on the mutual strength of preceding cycles. These are referred to
as the so-called Gnevyshev-Ohl rule, which is an expression of
the general 22-year variation of cycle amplitudes and intensities,
according to which even cycles are on average about 10%−15%
lower than following odd cycles (Mursula et al. 2001). There
have been some violations of this rule, however; the last occurred
between the cycle pair SC22−SC23 (Javaraiah 2012, 2016).

Another common subject has been the north-south asym-
metry in solar sunspots and other activity (see some of the
recent publications Carbonell et al. 2007; Li et al. 2009; Chang
2012; Hathaway 2015; Javaraiah 2016; Vernova et al. 2016;
Badalyan & Obridko 2017; Chowdhury et al. 2019). Many stud-
ies have also been conducted of the spatial (latitudinal)
distribution of sunspots and their migration throughout the
solar cycle (Ivanov et al. 2011; Chang 2012; Jiang et al. 2011;
Munoz-Jaramillo et al. 2015; Santos et al. 2015; Leussu et al.
2016a,b; Mandal et al. 2017; Zhang et al. 2018). Less attention
has been paid to the temporal distribution of the total strength
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of the sunspots, sunspot groups, and areas throughout the solar
cycle (except for the indices themselves). Leussu et al. (2016a)
in particular studied the latitude evolution and the timing of the
sunspot groups in butterfly wings by characterising three dif-
ferent categories: the latitude at which the first sunspot groups
appear, the maximum latitude of the sunspot group occurrence
in each wing, and the latitude at which the last sunspot group
appears. The authors derived several statistical measures based
on these variables. Some studies have investigated the distribu-
tion of the accumulated area or number of sunspots as a function
of area size (Zharkov et al. 2005; Santos et al. 2015).

In this study we use the principal component analysis (PCA)
to calculate the average shape of the sunspot cycles separately
for even and odd cycles using the SSN and GSN of sunspot
cycles 1−23 and sunspot areas for cycles SC12−SC23. Further-
more, we study the temporal evolution of sunspot areas for even
and odd cycles of SC12−SC23 and the temporal distribution for
sunspot group data for cycles SC8−SC12. This paper is organ-
ised as follows: Sect. 2 presents the data and methods. In Sect. 3
we present the results of the PCA for the cycle shape using
sunspot numbers and group sunspot numbers for even and odd
cycles. In Sect. 4 we analyse the sunspots area sizes for even and
odd cycles using the PCA. Section 5 presents the temporal anal-
ysis of sunspot areas and sunspot groups for even and odd solar
cycles. We give our conclusions in Sect. 6.

2. Data and methods

2.1. Sunspot indices

Because the first complete sunspot cycle included in the SSN
started in March 1755, it was numbered SC1 by Rudolf Wolf.
This numbering of sunspot cycles is still in use. The initial
sunspot number series (here called SSN1) was reconstructed at
the Zürich Observatory until 1980, and at the Royal Observa-
tory of Belgium since 1981. Following the change in reconstruc-
tion method in 1981, the current version of the SSN series is
called the international sunspot number (ISN). The ISN series
was recently modified to a version 2.0 that is supposed to present
a preliminary correction of the past inhomogeneities in the
SSN1 series (Clette et al. 2014). Figure 1a shows both sunspot
indices (SSN1 and SSN2) for the cycles SC1−SC23 and their
Gleissberg-smoothed (box-car smoothing over 13 months such
that the end points have half the weight of the other points)
indices. The new index 2.0 gives higher peaks than the old index
for the whole interval 1955−2009, but the shape of the cycles
is very similar. This is especially well seen in the smoothed
indices. In this study we use monthly indices of SSN1, but we
verified that using SSN2 gives very similar results. The dates of
the sunspot minima and the cycle lengths for SSN1 are shown in
Table 1.

2.2. GSN index

Although the group sunspot number (GSN) index starts as early
as 1610, see Hoyt & Schatten (1998), its coverage is scarce until
solar cycle 1 (SC1), and some monthly values up to SC5 are
still missing. The GSN series also ends in 1995, that is, SC23
is missing. We therefore filled in the gaps in the monthly GSN
data in SC1−SC4 using linear interpolation. In order to continue
the GSN after SC22, we used the recently published GSN time
series (Chatzistergos et al. 2017) and adjusted it to the level of
the average GSN time series in SC15−SC22 using SSN1 as ref-
erence index. It seems that the minima of the GSN index are not

always the same as in SSN1. Therefore we defined the minima of
the GSN data using GSN time series (Takalo & Mursula 2018).
The dates of GSN minima and their difference to SSN1 minima
are shown in Table 2.

2.3. Temporal sunspot area data

In the sunspot area analysis we used the database of the
Royal Observatory, Greenwich-USAF/NOAA Sunspot Data
(RGO-USAF/NOAA 2017) for 1874−2016. This database con-
tains among others the time, latitude, and area size (in millionths
of solar hemisphere, MH) for individual sunspots for cycles
SC12−SC23. Here we used the total (corrected) area consisting
of both the umbral (darker) and penumbral (lighter border area)
regions. The minima are same as in the SSN analysis, starting
from December 1878 (1878.9 in decimal year). Figure 1b shows
the sunspot area index (here the unit is 0.1 years) and its yearly
(10 points) smoothed index. It is evident that the area data are
different from the sunspot index. For example, the total areas of
cycles 12−16 are almost similar, while there are differences in
the heights of the sunspot number index. The reason is that the
sunspot number is calculated from sunspot groups and individ-
ual spots, regardless of their size. Furthermore, Takalo (2020)
has shown that large sunspots occur mainly at latitudes 10−25,
except for a gap (the GG) at about 15◦, while smaller sunspots
tend to be located at lower latitudes on average. As a conse-
quence, large sunspots are lacking at the start and near the end
of the sunspot cycle.

2.4. Temporal sunspot group data

In the group data analysis we used the data set of sunspot groups
in the southern and northern wings for cycles SC8−SC23 by
Leussu et al. (2016b). These data include the time and latitude
for sunspot groups for cycles SC8−SC23 and is shown as the
butterfly pattern in Fig. 2. Figure 1c shows the same data as an
index (unit 0.1 years) and its yearly smoothed index.

2.5. PCA method

The PCA is a technique for reducing the dimensionality of data
sets, that is, increasing interpret-ability, but at the same time
minimising information loss. For a large number of correlated
variables, the PCA finds combinations of a few uncorrelated
variables that describe the majority of the variability in the
data. The first principal component (PC1) carries most of the
variance and therefore describes the main feature of the whole
data set. The second principal component (PC2) is perpendic-
ular to PC1 and accounts for second largest part of the vari-
ance. The third principal component (PC3) is perpendicular to
both PC1 and PC2 and is usually less significant (Jolliffe 2002;
Jolliffe & Cadima 2016).

In our case, the two main components, PC1 and PC2, are
enough to describe the shape of the solar cycles because they
account for 80−90% of the whole variance in the data (except
for the sunspot area analysis, where the data are more hetero-
geneous). The PC1 gives the average shape of the solar cycle,
and PC2 is the leading correction component compared to the
average shape. The higher PCs usually describe some anoma-
lous features that are present only in some cycles of the data
set. Because the PCA is a matrix-based method, sunspot cycles
need to have equal length. To this end, we resampled the monthly
sunspot values so that all cycles had the same length of 133
time steps (months). Before applying the PCA to the resampled
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Fig. 1. a: sunspot indices, SSN1 and SSN2, for the cycles SC1−SC23 and their Gleissberg-smoothed indices. b: sunspot area index and its yearly
smoothed index for the cycles SC12−SC23. c: number of sunspot groups and their yearly smoothed number for cycles SC8−SC23.

sunspot cycles, we standardised each individual cycle to have
zero mean and unit standard deviation. This guarantees that
all cycles have the same weight in the study of their common
shape (see Takalo & Mursula 2018 and the appendix for a more
detailed description of the method).

2.6. Statistical methods

2.6.1. Generalised extreme value distribution

The probability density function (PDF) of the generalised
extreme value (GEV) distribution is expressed as

fS (s; k) = (1 + ks)((−1/k)−1) e−(1+ks)−1/k
, k , 0, (1)

and

fS (s; 0) = e−s exp[−e−s], k = 0, (2)

where s is the standardised variable s = (x − µ)/σ. Here µ
and σ are the location and scale parameters, respectively, and

k is the shape parameter. It is clear that this expression fol-
lows from the definition of the cumulative distribution function
(CDF) F = e−(1+ks)−1/k

, k , 0. If k equals zero, the probability
function is defined separately, but in our case, k , 0 is always
valid. An interesting fact of the GEV distribution is that if we
have N data sets from the same distribution and we create a new
data set that includes the extreme values from these N data sets,
the resulting data set can be described by the GEV distribution
(Kotz & Nadajarah 2000; Coles 2001).

2.6.2. Negative log-likelihood

The likelihood function L(θ) is defined as

L(θ) =

n∏
i=1

fθ(xi), (3)

if each variable xi is independent and from the same distribution
fθ. The set of parameters θ of the distribution, which maximises
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Table 1. Sunspot cycle lengths (in years) and dates (fractional years,
and year and month) of (starting) sunspot minima for SSN1 (NGDC
2013).

Sunspot cycle SSN1 fractional Year and month Cycle length
number year of minimum of SSN1 min (years)

1 1755.2 1775 March 11.3
2 1766.5 1766 June 9.0
3 1775.5 1775 June 9.2
4 1784.7 1784 September 13.7
5 1798.4 1798 May 12.2
6 1810.6 1810 August 12.7
7 1823.3 1823 April 10.6
8 1833.9 1833 November 9.6
9 1843.5 1843 July 12.5
10 1856.0 1855 December 11.2
11 1867.2 1867 March 11.8
12 1879.0 1878 December 10.6
13 1889.6 1889 August 12.1
14 1901.7 1901 September 11.8
15 1913.5 1913 July 10.1
16 1923.6 1923 August 10.1
17 1933.7 1933 September 10.4
18 1944.1 1944 February 10.2
19 1954.3 1954 April 10.5
20 1964.8 1964 October 11.7
21 1976.5 1976 June 10.2
22 1986.7 1986 September 10.1
23 1996.8 1996 October 12.2
24 2009.0 2008 December

L(θ) is called a maximum likelihood estimator (MLE) and is
denoted θL. It is often easier to maximise the log-likelihood
function, log L(θ), and because the (natural) logarithmic func-
tion increases monotonically, the same value maximises both
L(θ) and log L(θ). Because the log-likelihoods are here always
negative, we calculated the minimum value for the negative log-
likelihood (NLogL) (Forbes et al. 2011).

2.6.3. Two-sample T-test

The two-sample T-test for equal mean values is defined as fol-
lows: The null hypothesis assumes that the means of the sam-
ples are equal, that is, µ1 = µ2. The alternative hypothesis is that
µ1 , µ2. The test statistic is calculated as

T =
µ1 − µ2√

s2
1/N1 + s2

2/N2

, (4)

where N1 and N2 are the sample sizes, µ1 and µ1 are the sample
means, and s2

1 and s2
2 are the sample variances. If the sample

variances are assumed equal, the formula reduces to

T =
µ1 − µ2

sp
√

1/N1 + 1/N2
, (5)

where

s2
p =

(N1 − 1)s2
1 + (N2 − 1)s2

2

N1 + N2 − 2
· (6)

The rejection limit for the two-sided T-test is |T | > t1−α/2,ν,
where α denotes the significance level and ν the degrees of
freedom. The values of t1−α/2,ν are published in T-distribution
tables (Snedecor & Cochran 1989; Krishnamoorthy 2006;
Derrick et al. 2016).

Table 2. Dates (fractional years, and year and month) of (starting) min-
ima of GSN cycles, GSN cycle lengths, and their difference to SSN1
minima (in months).

Cycle Fractional year Year and month Cycle Diff. to
number of minimum of minimum length SSN1 min

1 1755.2 1775 March 11.2 0
2 1766.4 1766 May 9.1 −1
3 1775.5 1775 June 9.0 0
4 1784.5 1784 July 14.2 −2
5 1798.7 1798 September 11.8 +4
6 1810.5 1810 July 12.8 −1
7 1823.3 1823 April 10.6 0
8 1833.9 1833 November 9.7 0
9 1843.6 1843 August 12.5 +1
10 1856.1 1856 February 11.2 +2
11 1867.3 1867 April 11.7 +1
12 1879.0 1879 January 10.9 +1
13 1889.9 1889 November 12.1 +3
14 1902.0 1901 December 11.6 +3
15 1913.6 1913 August 10.2 +1
16 1923.8 1923 October 10.1 +2
17 1933.9 1933 November 10.4 +2
18 1944.3 1944 April 10.0 +2
19 1954.3 1954 April 10.4 0
20 1964.7 1964 September 11.8 −1
21 1976.5 1976 June 10.0 0
22 1986.5 1986 June 10.2 −3
23 1996.7 1996 September 12.4 −1
24 2009.1 2009 February +2

3. PCA of sunspot indices

We divided the cycles into two groups, even and odd num-
bered cycles between solar cycles 1−23. We then applied the
PCA separately to these groups in order to study the differ-
ences between even and odd cycles. Figure 3 shows the first and
second principal components of even and odd solar cycles in
panels 3a and b, respectively. The PC1s explain 77.2% and
79.6% and PC2s explain 7.7% and 8.2% of the total variance
of the even and odd cycles, respectively. These two main PCs
account for 84.9% (even cycles) and 87.8% (odd cycles) of the
variation. It is evident that the first PCs are quite similar, while
the PC2 differ more from each other. The correlation coefficients
of the first PCs is 0.986 (p < 10−100), and the correlation coef-
ficient of the PC2s is 0.765 (p < 10−26). PC1 has a gap after
the maximum, the so-called Gnevyshev gap (GG) (Gnevyshev
1967, 1977; Storini et al. 2003; Ahluwalia & Kamide 2004;
Bazilevskaya et al. 2006; Norton & Gallagher 2010; Du 2015;
Takalo & Mursula 2018), for both the even and odd cycles. They
have a different form and place for odd and even cycle PC1s,
however. Especially the gap for odd cycles is much narrower
than the gap for even cycles. Another difference is that PC1 for
even cycles has higher peaks in the declining phase of the cycle
than PC1 for odd cycles.

Figures 4a and b show the empirical orthogonal functions
(EOF) of the even and odd cycles, respectively. The EOF1s for
odd cycles have almost equal weight for PC1, except for cycle
7. However, all cycles in the18th century, cycles 2, 4, and 6,
have less weight than other cycles in the PC1 of even cycles. On
the other hand, the EOFs of PC2 for odd cycles vary consider-
ably between individual cycles, while the EOFs of PC2 for even
cycles have less variation. In particular, after the 18th century,
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Fig. 2. Butterfly pattern of the sunspot groups. The vertical lines are the corresponding cycle maxima (adopted from the National Geophysical
Data Center (NGDC), Boulder, Colorado, USA (ftp.ngdc.noaa.gov).

Fig. 3. a: first and (b) second principal components for the SSN1 even and odd solar cycles 1−23.

Fig. 4. First two EOFs of (a) even sunspot cycles and (b) odd sunspot
cycles.

the EOFs of even cycles are very near zero, while the EOFs of
odd cycles vary more strongly.

Figures 5a and b show the scaled sums of PC1+PC2 of all
SSN1 even and odd cycles, respectively. Even though the vari-
ation is quite strong elsewhere, especially in the odd cycles, the
cycles are very similar to each other after the maximum in the
region of the Gnevyshev gap in both cases. This suggests that the
Gnevyshev gap is a common fundamental property of sunspot
cycles that divides the sunspot cycle into two rather disparate
parts: the ascending and maximum phase, and the declining phase
(Takalo & Mursula 2018). Moreover, the even cycles have a flat
and wide maximum, while odd cycles have a single-peak max-
imum and the ascending phase starts slightly after this. The red
(SC4) and blue curves (SC6) in Fig. 5a and the red curve (SC7)
in Fig. 5b show the cycles that differ most from the other cycles.

We applied a similar PCA to even and odd GSN cycles
separately. Figure 6 shows the first and second principal com-
ponents of even and odd solar cycles in panels 6a and b,
respectively, and Fig. 7 the corresponding EOF1s and EOF2s
in panels 7a and 7b, respectively. The PC1s explain 77.4% and
68.8%, and PC2s explain 7.7% and 14.5% of the total variance
of even and odd cycles, respectively. The total variation thus
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Fig. 5. Scaled sums of PC1+PC2 for (a) even SSN1 cycles and (b) odd GSN cycles.

Fig. 6. a: principal components 1 and (b) PC2s for GSN even and odd solar cycles 1−23.

explained by the first two PCs is 85.1% for even and 83.3% for
odd cycles. The main difference, however, is that PC1 explains
almost 9% more for the even cycles than for odd cycles. The rea-
son for this is shown in Fig. 8, where we show the scaled sums of
PC1+PC2 of all GSN even and odd cycles. Figure 8a shows that
except for the two cycles SC4 (red curve) and SC6 (blue curve),
the cycle curves are very similar to each other, while the cycle
curves of Fig. 8b for odd cycles have huge mutual variation. This
may partly be due to variance in the length of the cycles. When
we leave out the somewhat anomalously long cycles SC4 and
SC6, the variances in length are 128.4 and 155.5 for even and
odd cycles, respectively. When we leave SC4 and SC6 out of the
PCA, the PC1 alone accounts for 84.5% of the total variance for
even cycles. We note, especially, that the GG is more distinct for
even GSN cycles than for odd GSN cycles.

4. PCA of sunspot area data for even and odd
cycles 12−23

In studying the temporal distribution, we need to standardise
the lengths of the cycles in some way. Because the time stamps

Fig. 7. First two EOFs of (a) even GSN and (b) odd GSN cycles.

in the database of the sunspot area data is expressed as deci-
mal years and there are many simultaneous sunspots, we used a
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Fig. 8. Scaled sums of PC1+PC2 for (a) even GSN cycles and (b) odd GSN cycles.

Fig. 9. Principal components 1 of sunspot area data for even and odd
solar cycles 12−23.

different standardising than before. We resampled all cycles such
that their length was the average cycle length for SC12−SC23,
that is, 10.8 years, and presented this as multiples of 0.1 year.
Figure 9 shows the leading principal component for even and
odd solar cycles for the temporal evolution of the entire area in
SC12−SC23. The PC1s explain 61.6% and 62.2% and of the
total variance of even and odd cycles, respectively. The PC1s are
more peaky than for the earlier SSN1 data, but the peaks seem to
be (almost) in the same sites for even and odd data. The greatest
difference is at 42−46 decimal years (4.2−4.6 years), where even
cycles have a far smaller area than odd cycles. Figure 10 shows
the first EOFs for the even and odd solar cycle sunspot area data.
Although the EOF1 for all cycles is significant, cycles 18 and 19
have the greatest weight for even and odd PC1, respectively. The
other PCs are quite noisy and carry information only on some
individual cycles, therefore we do not show them here. Principal

Fig. 10. Empirical orthogonal function 1 of sunspot area data for even
and odd solar cycles 12−23.

components 2−4 account for 13.8, 8.0 and 7.0 % and 10.8, 9.5
and 7.5% for even and odd cycles, respectively.

5. Temporal analysis of sunspot areas and sunspot
groups for even and odd solar cycles

5.1. Temporal evolution of sunspot areas

Figures 11a and b show the total area for sunspots equal to or
exceeding 1000 MH, 500 MH, and 200 MH and for all sunspots,
respectively. The GG is shown in Fig. 11a as a cyan bar, and
it is seen even more clearly here in all of the aforementioned
groups of sunspots. The two-sample T-test gives p-values for
the unequal mean values for the interval 42−46 with p = 0.015
(area= 1000), p = 0.0094 (area= 500), p = 0.020 (area= 200),
and p = 0.037 (all sunspots) compared to the areas in the year
before and the year after the gap. If we a priori assume that the
GG interval might have a lower mean value, the p-values are
half of the aforementioned p-values (one-sided T-test). In this
way, the significance of the lower mean total area for the GG
interval is at least at a level of about 95% for all sunspots of
even cycles. In addition to the smaller number of sunspots in
this interval, they are smaller at the GG interval than in the sur-
rounding sunspots. The average size of the sunspots in the inter-
val 42−46 for even cycles is 152 MH, while the average area
of the surrounding sunspots (a year before and a year after) is
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Fig. 11. a: total area for sunspots equal to or exceeding 1000 MH, 500 MH, and 200 MH and for all sunspots of even cycles as a function of decimal
year (unit = 0.1 year). b: same as (a), but for sunspots of odd cycles.

188 MH. The T-test for the difference of the means is 0.0025 for
the period 42−46 against one year before and one year after the
period. The odd cycles (Fig. 11b) have only a small gap at 42−43
decimal year, and its is insignificant with p = 0.22 (p = 0.11
for one-sided T-test) compared against the null hypothesis with
similar mean values for the one-year intervals before and after
the gap. The average size of the sunspots in the small interval
42−43 for odd cycles is 153 MH, while the average area of the
surrounding sunspots is 168 MH, but for the interval 42−46, it is
the same size on average as for the surrounding sunspots.

5.2. Temporal distribution of sunspot groups for even and
odd cycles

Because the length of the wings of the sunspot groups varies and
they are not concurrent, we have to standardise the time axis.
Moreover, because the wings of the sunspots are partly overlaid
(see Fig. 2), we standardised them simply by calculating time as
xi = (ti − t)/std(t), where ti is the original decimal year of each
group, t is the mean time of the groups in each wing, and std(t)
is the standard deviation of the tis. Figures 12a and b show the
standardised temporal distributions of sunspot groups for even
and odd cycles between SC8−SC23, respectively. The negative
log-likelihood (NLogL) of the generalised extreme value (GEV)
distribution fits for even and odd wing sunspots is 33661 and
37176, while the NLogL for normal distribution fits is 34004
and 37787. The location (µ), scale (σ) and shape (k) for the even
and odd GEV fit (with standard errors) are −0.390 (0.0068),
0.937 (0.0049), −0.199 (0.0049), and −0.410 (0.0062), 0.903
(0.0044), −0.147 (0.00448), respectively. The most distinctive
difference between even and odd cycles is that the distribution
of odd cycles is more leptokurtic and skewed more to the right
than the distribution of even cycles. The skewnesses are 0.37 and
0.49 and the kurtoses are 2.79 and 2.94 for even and odd cycles,
respectively. Figures 12c and d show the same as Figs. 12a and
b, but for the distributions of the northern and southern sunspot
groups separately. Figure 12c shows that the double peak arises
partly because the peak of the northern groups occurs earlier than
the peak of the southern groups. This is because the distribution
of the even northern sunspot groups is far more skewed to the
right (positively) than the distribution of the even south sunspot

groups, that is, the skewnesses are 0.43 and 0.31 for the north-
ern and southern groups, respectively. The trough between them
is at about one-third of the total standardised time of the distri-
bution. This is probably the Gnevyshev gap, which is located
approximately 33−42% after the start of an individual cycle
(Takalo & Mursula 2018). The two-sample T-test shows that the
gap is significant at the 95% level with a p-value of 0.026. The
skewnesses of odd cycles are 0.52 and 0.46 for the northern and
southern groups, respectively.

Because of the differences in the skewness (third central
moment) and kurtosis (fourth central moment) of the even and
odd cycle sunspot groups, we studied their kurtoses as a function
of skewness separately. Figure 13 shows the skewness-kurtosis
plane for even southern (red squares) and northern (blue squares)
cycles and odd southern (red circles) and northern (blue cir-
cles) cycles in panels a and b, respectively. There is a signif-
icant correlation between skewness and kurtosis (R = 0.69,
p = 0.0033) for even cycles and a still better correlation
(R = 0.90, p = 0.0000053) for odd cycles. This resembles the
Waldmeier rule, that is, that the ascending phase length and cycle
height are anti-correlated. However, according to our studies, the
(anti-)correlation of the Waldmeier rule for all even GSN cycles
between SC1−SC23 is −0.715 (p = 0.013), which is signifi-
cant, but for all odd cycles it is only −0.242 (p = 0.45) and thus
insignificant. The sunspot group data are different than the GSN,
and the kurtosis does not mean that a cycle is high, therefore
these result are not as such comparable.

6. Conclusions

We have studied the Zürich sunspot number series and the group
sunspot number series for sunspot cycles 1−23 using the prin-
cipal component analysis separately for even and odd cycles.
We used the standard cycle minima and lengths for the SSN1
data (NGDC 2013), but calculated the minima and lengths for
the GSN using the 13-month Gleissberg filter. We resampled the
monthly sunspot values such that all cycles have the same length
of 133 months. Before applying the PCA, we standardised each
individual cycle to have zero mean and unit standard deviation
(Takalo & Mursula 2018). In this way, the cycle amplitudes do
not affect their common shape. The first two components of the
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Fig. 12. a: standardised temporal distributions of sunspot groups for even cycles between SC8−SC23. b: same as (a), but for odd cycles. c:
standardised temporal distribution for the northern and southern sunspot groups of even cycles. d: same as (c), but for odd cycles.

Fig. 13. a: skewness and kurtosis regression analysis for even cycles. b: same as (a), but for odd cycles.

analysis explain 77.2% and 79.6% of the total variance for even
and odd cycles of SSN, respectively, and 77.4% and 68.8% of
the total variance for even and odd cycles of GSN, respectively.
PC1 describes the average shape of the solar cycle (the “model”
cycle), and PC2 represents the leading correction of individual
cycles from the model cycle (Takalo & Mursula 2018).

We found that the shape of even cycles is more homoge-
neous than the shape of odd cycles. The variation in the shape
of the odd cycles in the declining part of the cycle is huge,

especially for GSN data. The analysis also suggests that we
have too few and/or inaccurate measurements during the early
cycles before SC8. Even cycles are more double peaked than
odd cycles, which seem to have only one clear peak and a small
gap after it, but no clear other peak, but the descending phase
starts gradually after the gap.

The temporal evolution of sunspot areas for even cycles shows
a lack of large sunspots after four years (exactly between 42 and
46 decimal years), that is, at about 40% after the start of the cycle.
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This gap is first seen in the PCA of sunspot area data and is then
better visible in the analysis of different size area data. This is
related to the Gnevyshev gap and is consistent with the earlier
result by Takalo & Mursula (2018). The significance level of this
gap for even cycles is at least 95% for all sunspots. Furthermore,
the average size of the sunspots is smaller in this gap than one
year before or one year after the gap. For odd cycles the gap is
narrower (42−43 decimal years), and it is insignificant according
to the two-sample T-test for all sunspots and large sunspots.

The sunspot group distribution analysis shows that the most
distinctive difference between even and odd cycles is that the
distribution of odd cycles is more leptokurtic and skewed more
to the right than the distribution of even cycles. The skewnesses
are 0.37 and 0.49 and kurtoses 2.79 and 2.94 for even and odd
cycles, respectively. We also find that the distribution of even
cycles has a double-peak structure, which arises partly because
the peak of the northern groups occurs earlier than the peak of
the southern groups. This is because the distribution of even
northern sunspots groups is much more skewed to the right (pos-
itively) than the distribution of even southern sunspot groups,
that is, the skewnesses are 0.43 and 0.31 for the northern and
southern groups, respectively.

We also present another Waldmeier-type rule, that is, we
find a correlation between skewness and kurtosis of the sunspot
group cycles. The correlation coefficient for even cycles is 0.69,
and for odd cycles, it is 0.90. The overall correlation (both even
and odd cycles) is R = .72 (p = 3.7 × 10−6).
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Appendix A: PCA method

Standardised sunspot cycles are collected into the columns of the
data matrix X, which can be decomposed as

X = U D VT , (A.1)

where U and V are orthogonal matrices and D is a diagonal
matrix D = diag (λ1, λ2, . . . , λn), with λi denoting the ith sin-
gular value of matrix X in order of decreasing importance. The
principal components are the column vectors of

P = UD. (A.2)

The column vectors of the matrix V are called empirical orthog-
onal functions (EOF) and represent the weights of each principal
component in the decomposition of each (standardised) cycle Xi,
which can be approximated as

Xi =

N∑
j=1

Pi jVi j, (A.3)

where N is the number of principal components (here N = 2).
The variance explained by each PC is proportional to the square
of the corresponding singular value λi. Hence the ith PC explains
a percentage

λ2
i∑n

k=1λ
2
k

· 100% (A.4)

of the variance in the data.

A11, page 10 of 10

http://sidc.be/silso/
https://solarscience.msfc.nasa.gov/greenwch.shtml
https://solarscience.msfc.nasa.gov/greenwch.shtml
https://www.ngdc.noaa.gov/ftp.html
http://linker.aanda.org/10.1051/0004-6361/202037488/1
http://linker.aanda.org/10.1051/0004-6361/202037488/2
http://linker.aanda.org/10.1051/0004-6361/202037488/3
http://linker.aanda.org/10.1051/0004-6361/202037488/3
http://linker.aanda.org/10.1051/0004-6361/202037488/4
http://linker.aanda.org/10.1051/0004-6361/202037488/5
http://linker.aanda.org/10.1051/0004-6361/202037488/6
http://linker.aanda.org/10.1051/0004-6361/202037488/7
http://linker.aanda.org/10.1051/0004-6361/202037488/8
http://linker.aanda.org/10.1051/0004-6361/202037488/8
http://linker.aanda.org/10.1051/0004-6361/202037488/9
http://linker.aanda.org/10.1051/0004-6361/202037488/10
http://linker.aanda.org/10.1051/0004-6361/202037488/11
http://linker.aanda.org/10.1051/0004-6361/202037488/12
http://linker.aanda.org/10.1051/0004-6361/202037488/13
http://linker.aanda.org/10.1051/0004-6361/202037488/14
http://linker.aanda.org/10.1051/0004-6361/202037488/15
http://linker.aanda.org/10.1051/0004-6361/202037488/16
http://linker.aanda.org/10.1051/0004-6361/202037488/17
http://linker.aanda.org/10.1051/0004-6361/202037488/18
http://linker.aanda.org/10.1051/0004-6361/202037488/18
http://linker.aanda.org/10.1051/0004-6361/202037488/19
http://linker.aanda.org/10.1051/0004-6361/202037488/20
http://linker.aanda.org/10.1051/0004-6361/202037488/21
http://linker.aanda.org/10.1051/0004-6361/202037488/21
http://linker.aanda.org/10.1051/0004-6361/202037488/22
http://linker.aanda.org/10.1051/0004-6361/202037488/23
http://linker.aanda.org/10.1051/0004-6361/202037488/24
http://linker.aanda.org/10.1051/0004-6361/202037488/24
http://linker.aanda.org/10.1051/0004-6361/202037488/25
http://linker.aanda.org/10.1051/0004-6361/202037488/25
http://linker.aanda.org/10.1051/0004-6361/202037488/26
http://linker.aanda.org/10.1051/0004-6361/202037488/27
http://linker.aanda.org/10.1051/0004-6361/202037488/27
http://linker.aanda.org/10.1051/0004-6361/202037488/28
http://linker.aanda.org/10.1051/0004-6361/202037488/29
http://linker.aanda.org/10.1051/0004-6361/202037488/30
http://linker.aanda.org/10.1051/0004-6361/202037488/30
http://linker.aanda.org/10.1051/0004-6361/202037488/31
http://linker.aanda.org/10.1051/0004-6361/202037488/32
http://linker.aanda.org/10.1051/0004-6361/202037488/32
ftp.ngdc.noaa.gov
ftp.ngdc.noaa.gov
http://linker.aanda.org/10.1051/0004-6361/202037488/33
https://solarscience.msfc.nasa.gov/greenwch.shtml
https://solarscience.msfc.nasa.gov/greenwch.shtml
http://linker.aanda.org/10.1051/0004-6361/202037488/35
http://linker.aanda.org/10.1051/0004-6361/202037488/35
http://linker.aanda.org/10.1051/0004-6361/202037488/36
http://linker.aanda.org/10.1051/0004-6361/202037488/37
http://linker.aanda.org/10.1051/0004-6361/202037488/37
http://linker.aanda.org/10.1051/0004-6361/202037488/39
http://linker.aanda.org/10.1051/0004-6361/202037488/40
http://linker.aanda.org/10.1051/0004-6361/202037488/41
http://linker.aanda.org/10.1051/0004-6361/202037488/42
http://linker.aanda.org/10.1051/0004-6361/202037488/43
http://linker.aanda.org/10.1051/0004-6361/202037488/44
http://linker.aanda.org/10.1051/0004-6361/202037488/45
http://linker.aanda.org/10.1051/0004-6361/202037488/45

	Introduction
	Data and methods
	Sunspot indices
	GSN index
	Temporal sunspot area data
	Temporal sunspot group data
	PCA method
	Statistical methods
	Generalised extreme value distribution
	Negative log-likelihood
	Two-sample T-test


	PCA of sunspot indices
	PCA of sunspot area data for even and odd cycles 12-23
	Temporal analysis of sunspot areas and sunspot groups for even and odd solar cycles
	Temporal evolution of sunspot areas
	Temporal distribution of sunspot groups for even and odd cycles

	Conclusions
	References
	PCA method

