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Abstract –The large-scale photospheric magnetic field is commonly thought to be mainly dipolar during
sunspot minima, when magnetic fields of opposite polarity cover the solar poles. However, recent studies
show that the octupole harmonics contribute comparably to the spatial power of the photospheric field at
these times. Also, the even harmonics are non-zero, indicating that the Sun is hemispherically asymmetric
with systematically stronger fields in the south during solar minima. We present here an analytical model of
two eccentric axial dipoles of different strength, which is physically motivated by the dipole moments pro-
duced by decaying active regions. With only four parameters, this model closely reproduces the observed
large-scale photospheric field and all significant coefficients of its spherical harmonics expansion, including
the even harmonics responsible for the solar hemispheric asymmetry. This two-dipole model of the pho-
tospheric magnetic field also explains the southward shift of the heliospheric current sheet observed during
recent solar minima.
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1 Introduction

It is known since the early 20th century that sunspot activity
is often different in the two solar hemispheres. A long period of
stronger sunspot activity in the northern hemisphere occurred
from the late 1950s to early 1970s, covering most of solar cycles
19 and 20. During the last several solar cycles, the northern
hemisphere has been more active in the ascending phase of
the solar cycle, and the southern hemisphere in the descending
phase. This disparate evolution between the two solar hemi-
spheres culminated during the ongoing cycle 24, where each
of the two hemispheres formed its distinct maximum, separated
in time by almost one and a half years.

Not only sunspots and other active regions (all different
forms of the toroidal magnetic field) depict hemispheric asym-
metry. The whole large-scale pattern of magnetic fields on the
solar surface (photosphere) has also been found to be systemat-
ically north–south asymmetric (Zhao et al., 2005; Virtanen &
Mursula, 2014; Petrie, 2015; Zieger et al., 2019). This is partic-
ularly true for the solar polar fields, which are unipolar around
solar minima. Polar fields develop when the magnetic fields of
decaying active regions that were generated at lower latitudes,
are transported to high latitudes. Therefore, the asymmetry of
polar fields naturally reflects asymmetry in poloidal magnetic
field generation and/or transport. Using polar faculae as proxies
of the polar fields, Goel & Choudhuri (2009) estimated the

hemispheric asymmetry at solar minima during the 20th
century. While the asymmetry of polar fields was negative
(southern hemisphere dominance) at the beginning of solar
cycles 21–24, it was predominantly positive (northern hemi-
sphere dominance) at the beginning of the earlier solar cycles
15–20, which is more or less in agreement with the observed
hemispheric asymmetry in the total sunspot area during these
solar cycles.

Measuring the polar fields in the photosphere is challenging
because of the small line-of-sight component of the magnetic
field at high solar latitudes. In addition, the solar poles are not
equally visible during most of the year because of the tilt of
the solar rotation axis with respect to the ecliptic, which is com-
monly referred to as the vantage point effect. The authors have
recently developed a new method of eliminating the vantage
point effect in photospheric magnetic field observations, which
allows a more accurate calculation of the spatial power spectrum
during solar minima (Zieger et al., 2019). It was shown that the
zonal octupole component has a large contribution to the spatial
power of the photospheric magnetic field during solar minimum
conditions, matching the power of the dipole component. Also,
the power of the low-degree even zonal harmonics was found to
be statistically significant (Zieger et al., 2019), confirming the
north–south asymmetry of the large-scale photospheric
magnetic field.

Several studies have verified by now that the southern polar
fields were stronger than the northern fields around solar
minima during the recent solar cycles (21–24). This difference
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gives one of the most tangible evidence for solar hemispheric
asymmetry that is systematically repeated from one solar mini-
mum to the next. The detailed harmonic structure of the photo-
spheric magnetic field, including its systematic hemispheric
asymmetry, cannot yet be explained by current solar dynamo
models (for a review, see Charbonneau, 2010). However,
neither the global structure of the photospheric field nor its
hemispheric asymmetry is only of academic or theoretical inter-
est. They affect the distribution of solar eruptions, flares and
coronal mass ejections, as well as the occurrence of high-speed
solar wind streams. They have, therefore a great practical signif-
icance for space weather observed at the Earth.

In this paper we present a novel, analytical model of the
large-scale photospheric magnetic field, which very accurately
reproduces the observed distribution of photospheric magnetic
fields during solar minima, and naturally explains the observed
hemispheric asymmetry. We introduce the model in Section 2
and validate it with photospheric magnetic field data in
Section 3. The modeling results of the photospheric and coronal
north–south asymmetry are discussed in Section 4. We present
our conclusions in Section 5.

2 Two-dipole model

Sunspots and other active regions are concentrations of
strong magnetic fields, which appear at low to mid-latitudes
on the solar surface in pairs of opposite magnetic polarity.
Sunspot pairs follow Hale’s law, according to which the polarity
of the leading spots in one hemisphere is opposite that of the
leading spots in the other hemisphere and the polarities reverse
from one solar cycle to the next. Thus, two solar cycles make
one 22-year Hale cycle of the solar magnetic field (Hale,
1924). The leading spots tend to appear slightly closer to the
equator than the trailing spots, a phenomenon known as Joy’s
law (Hale et al., 1919; Howard, 1991; Wang & Sheeley,
1991; Sivaraman et al., 1999; Dasi-Espuig et al., 2010). During
the rising phase of the solar cycle, the trailing spots have an
opposite magnetic polarity compared to the polar fields in the
same hemisphere during the previous minimum. Thus, as the
trailing fields of decaying active regions are transported towards

the pole (Wang et al., 1989; Hathaway & Rightmire, 2010),
they reverse the polar field around sunspot maximum. Accord-
ingly, solar polar fields change polarity from one minimum to
another, following the 22-year magnetic cycle. Joy’s law and
the poleward transport of trailing fields produce a north–south
(poloidal) component of the magnetic field in the declining to
minimum phase of the sunspot cycle. This was the observa-
tional motivation for the flux transport dynamo model intro-
duced by Babcock (1961) and Leighton (1964, 1969). These
empirical laws regulating the spatial distribution and temporal
evolution of the photospheric magnetic field form the physical
basis of the two-dipole model.

The trailing fields that are transported poleward and the
leading fields that are transported equatorward can be repre-
sented as a set of magnetic dipoles (ideally a ring of dipoles)
in each hemisphere, located at a typical latitude of active region
generation, as shown in Figure 1a for an ideal, axisymmetric
case. The authors would like to point out that this ring of dipoles
is not equivalent mathematically with the double ring of oppo-
site radial fluxes introduced as source terms in some early
axisymmetric dynamo simulations (Durney, 1995; Nandy &
Choudhuri, 2001) to mimic the Babcock–Leighton poloidal
magnetic flux emergence. The authors believe that it is more
physical to represent decaying bipolar active regions with their
dipole moments, which does not violate the divergence-free
nature of the magnetic field and does not introduce artificial
discontinuities in the magnetic potential.

The combined magnetic potential of several dipoles along
the solar circumference can be closely approximated by a virtual
north–south oriented (axial) dipole that is placed in the middle
of the dipole ring as shown in Figure 1b. Although the individ-
ual dipoles in Figure 1a possess non-zonal harmonic terms as
well, these terms vanish at the limit of axisymmetry when the
number of dipoles approaches infinity. Because the polarities
of the leading and trailing fields are oppositely ordered in
the two hemispheres by Hale’s law (Hale, 1924), the dipole
moments of the two axial dipoles in the northern and southern
hemisphere in Figure 1b should point in the same direction.
The superposition of the two dipole fields reduces the photo-
spheric magnetic field at low latitudes and enhances the
magnetic field at high latitudes, which leads to strong polar

Fig. 1. Two-dipole model. (a) Two rings of surface dipoles representing the north–south magnetic component of decaying active regions in the
photosphere at the latitude of about ±30� in an axisymmetric case. (b) Two axial dipoles placed at the center of each dipole ring of panel a. The
magnetic potential of the two dipole rings of panel a and of the two axial dipoles of panel b are nearly identical at the solar surface.
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fields, as demonstrated in Figure 3. We note that there is an ana-
lytical solution for the magnetic potential produced by such an
eccentric dipole (Hurwitz, 1960; Winch, 1968), which greatly
facilitates the calculation of the combined magnetic potential
produced by the many surface sources.

In an axially symmetric case of Figure 1b, only the zonal
Gauss coefficients g0l of the spherical harmonics expansion of
the magnetic potential are non-zero. We find the following form
for g0l for the eccentric two-dipole model (see detailed deriva-
tion in Appendix):

g0l ¼ la1zl�1
1 þ la2zl�1

2 ; ð1Þ
where l is the spherical harmonic degree, a1 and a2 are the
strengths of the two dipoles, and z1, z2 are their locations
along the z-axis of symmetry (effectively the latitudes of the

dipole rings). Note that for a north–south symmetric model
(a1 = a2, z1 = �z2), equation (1) gives zero for all even-degree
coefficients. Non-zero even-degree harmonics can be obtained
only by breaking the hemispheric symmetry either having
different strengths (a1 6¼ a2) or distances (|z1| 6¼ |z2|) for the
two dipoles.

3 Model validation with photospheric
magnetic field data

In order to estimate the success of the model of two eccen-
tric dipoles, we compare the model prediction to the spherical
harmonics expansion of the photospheric magnetic potential.
We use here the synoptic maps of the photospheric radial
magnetic field measured at the Mount Wilson Observatory
(MWO) during two-year periods of three solar minima in
1975–1976, 1985–1986, and 1995–1996. The large-scale pho-
tospheric magnetic field during solar minima is axisymmetric
and dominated by a few low harmonics (DeRosa et al., 2012;
Petrie, 2013; Zieger et al., 2019). Therefore, it is sufficient to
use only the lowest zonal Gauss coefficients (here up to
l = 24) of the magnetic potential. The method of deriving the
zonal Gauss coefficients from the synoptic maps of the radial
magnetic field and estimating their error is described in detail
in Zieger et al. (2019). Figure 2 presents the zonal Gauss
coefficients and the zonal spatial power spectra (for definition,
see Zieger et al., 2019) for the MWO photospheric magnetic
field as well as for the two-dipole model field during these
three solar minima. The Gauss coefficients and the power
spectra are normalized by the dipole term (l = 1) of the respec-
tive solar minimum so that the relative strengths of the harmon-
ics can be compared among the three minima with different
overall magnetic powers (Smith & Balogh, 2008; Zhou &
Smith, 2009). Note that the (normalized) Gauss coefficients
for the three minima agree with each other (at least up to
l = 8) within the estimated errors. This shows that the distribu-
tion of magnetic fields on the solar surface remains closely
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Fig. 2. Spherical harmonic structure of the photospheric magnetic
field. (a) Normalized zonal Gauss coefficients of the photospheric
magnetic potential for three consecutive solar minima. The two-
dipole model obtained from the first four Gauss coefficients is shown
in black. (b) Normalized zonal spatial power spectra of the
photospheric magnetic field for the same solar minima as in panel
a, showing the relative contributions of the different harmonics
(multipoles) to the total power.

-90-75-60-45-30-15 0 15 30 45 60 75 90

Latitude ( )

-10
-8
-6
-4
-2
0
2
4
6
8

10

B
r

1975-1976
1985-1986
1995-1996
mean

Fig. 3. Latitudinal distribution of the photospheric radial magnetic
field obtained from the best-fitting two-dipole model for each of the
three solar minima (1975–1976, 1985–1986 and 1995–1996). The
radial magnetic field has been normalized to the signed dipole term
(g01) at each solar minimum to allow direct comparison. The mean
latitudinal profile is plotted in black.
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similar from one solar minimum to the next, despite different
total powers.

The two-dipole model has four parameters (a1, a2, z1, z2),
which are exact solutions of equation (1). They depend on the
first four zonal Gauss coefficients as follows:

z1 ¼ ð9g01g04 � 6g02g
0
3 þ

ffiffiffi
3

p
ð27ðg01Þ2ðg04Þ2

� 108g01g
0
2g

0
3g

0
4 þ 64g01ðg03Þ3 þ 54ðg02Þ3g04

� 36ðg02Þ2ðg03Þ2Þ1=2Þ=ð24g01g03 � 18ðg02Þ2Þ; ð2Þ

z2 ¼ ð2g03 � 3g02z1Þ=ð3g02 � 6g01z1Þ; ð3Þ

a1 ¼ ðg02 � 2g01z2Þ=ð2z1 � 2z2Þ; ð4Þ

a2 ¼ g01 � a1: ð5Þ

We have used the average values of the first four Gauss coeffi-
cients of the synoptic maps during the three minima to derive
the values of these four parameters. Once the four model param-
eters were fixed, we calculated the higher-degree coefficients
(up to l = 24) of the two-dipole model using equation (1). This
two-dipole model was then plotted in black in Figures 2a and
2b. Figure 2 shows that the two-dipole model yields Gauss coef-
ficients and power spectra that have an excellent agreement with
observations. Moreover, Figure 2b shows that the octupole

component (l = 3) has even a slightly higher power in the power
spectrum than the dipole component (l = 1).

As seen in Figure 2b, the observed spatial power spectra
during the three solar minima are similar up to l = 8 but become
uncorrelated for higher degrees (l > 8). This suggests that the
MWO observations are dominated by noise beyond l = 8, in
agreement with earlier results (Zieger et al., 2019). Figure 2b
also shows that the two-dipole model closely reproduces the
observed power spectrum until l = 8. Accordingly, the two-
dipole model yields a close representation of the axisymmetric
magnetic field during solar minima, reproducing all the statisti-
cally significant zonal Gauss coefficients (l < 9) that are respon-
sible for most of the spectral power.

4 Modeling the north–south asymmetry
in the photosphere and in the corona

Most of the low even-degree Gauss coefficients (l = 2, 4, 6, 8)
in Figure 2a are small but significantly different from zero dur-
ing the three solar minima. This means that the photospheric
magnetic field is north–south asymmetric during these solar
minima. The fact that all significant even-degree coefficients
are negative implies that these terms weaken the northern polar
field but strengthen the southern polar field. Thus, Figure 2a
verifies the earlier result that the southern solar polar magnetic
fields were stronger than the northern fields during the recent
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Fig. 4. Parameters of the northern and southern dipoles. (a) Strengths of the northern and southern dipole for the three solar minima (1975–
1976, 1985–1986 and 1995–1996). The southern dipole is stronger than the northern dipole during all three solar minima. (b) Locations of the
northern and southern dipoles in solar latitude (southern latitudes are reversed to positive).
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solar minima (Zhao et al., 2005; Erdős & Balogh, 2010;
Virtanen & Mursula, 2010; Petrie, 2015).

In order to study this hemispheric asymmetry in more detail,
we fitted the four parameters of the two-dipole model to the first
four Gauss coefficients individually for each solar minimum.
The latitudinal profiles of the photospheric radial magnetic field
obtained from the first 24 Gauss coefficients of the two-dipole
model is plotted in Figure 3 for the three solar minima. We
normalized the radial magnetic field to the dipole term (g01) so
that the three solar minima would be directly comparable.
The mean of the three radial magnetic field profiles is shown
in black. The latitudinal distribution of the radial magnetic field
is very similar for the three solar minima, showing a clear
asymmetry with a southern polar field ~31% stronger than the
northern polar field.

The strengths of the northern and southern axial dipoles
(parameters a1 and a2) for the three minima are shown in
Figure 4a and the latitudinal locations of the dipoles (parameters
z1 and |z2| converted to solar latitude) in Figure 4b. Figure 4b
shows that the latitudes of the northern and southern dipoles
are almost exactly the same, about 30�, which is a typical
latitude of emerging active regions in the beginning of the solar
cycle (Petrie, 2013). Accordingly, flux emergence is roughly
symmetric with respect to the equator. Moreover, the fact that
the dipole latitudes remain the same from one solar minimum
to another suggests that the spatial location of processes produc-
ing new flux to the surface remains constant during time scales
of, at least, a few solar cycles.

Figure 4a shows that the strength of the southern axial
dipole is systematically stronger than the northern dipole during
the three solar minima. Accordingly, the southern polar field is
stronger than the northern polar field during solar minima,
which confirms earlier results (Zhao et al., 2005; Erdős &
Balogh, 2010; Virtanen & Mursula, 2010; Petrie, 2015). The
southern dipole was 62% stronger than the northern dipole in
1975–1976, but only 22% stronger in 1985–1986 and 1995–
1996. Based on the results depicted in Figure 4, it is clear that
the observed hemispheric asymmetry of the photospheric
magnetic field is mainly due to the different strengths, not
due to different locations of decaying active regions in the
two hemispheres. We also note that a single eccentric axial
dipole can produce a north–south asymmetric magnetic field
and explain the dipole (l = 1) and quadrupole (l = 2) Gauss coef-
ficients (Wang, 1996; Pulkkinen et al., 1999; Mursula & Hiltula,
2004; Zhao et al., 2005; Virtanen & Mursula, 2016), but cannot
reproduce the higher-degree Gauss coefficients, especially the
observed strong octupole moment (l = 3).

An asymmetric photospheric field also affects the large-
scale structure of the solar coronal magnetic field. We have
investigated this by computing the potential-field source-surface
(PFSS) model of the coronal field (Wang & Sheeley, 1992)
between the solar surface and the coronal source surface at
2.5 solar radii, using the magnetic field of the two-dipole model
as an inner boundary condition. The coronal magnetic field
corresponding to the average two-dipole model for the three
minima is depicted in Figure 5, where we have also included
the MWO photospheric field observed during Carrington rota-
tion 1910 in year 1996, as a typical example of photospheric
magnetic field distribution during solar minimum. The dashed
circle at 2.5 solar radii marks the source surface, where the
coronal magnetic field becomes radial in the PFSS model.

Figure 5 shows that there is a significant north–south asym-
metry also in the large-scale structure of the solar corona. Most
notably, the heliospheric current sheet (HCS), the magnetic
equator outside the source surface (also called the ballerina
skirt), where the field lines of opposite polarity meet each other
(see Fig. 5), is shifted or coned southwards. Note also that the
magnetic field lines forming closed loops in the inner corona
are also asymmetric with respect to the solar equator. Interest-
ingly, some of the closed field lines at low southern latitudes
are anchored to the southern hemisphere at both ends. The
southward shift of the HCS is in a good agreement with earlier
results using the heliospheric magnetic field observed near the
Earth (Mursula & Hiltula, 2003; Koskela et al., 2018) and by
the Ulysses probe (Erdős & Balogh, 2010; Virtanen & Mursula,
2010). We find that the average shift angle of the HCS for the
three minima is 4.1�, and varies from 5.5� for the first minimum
to 3.6� for the second and 3.0� for the last minimum. These
estimates for the southward shift of the HCS agree with an
earlier estimate of HCS shift in the corona (Koskela et al.,
2018) and support the result that the HCS shift in the corona
is larger than the shift observed further out in the heliosphere
(Mursula & Hiltula, 2003; Erdős & Balogh, 2010; Virtanen &
Mursula, 2010; Koskela et al., 2018). The decreasing HCS shift
suggests that the asymmetry was larger during the earlier, stron-
ger cycles, and has decreased with the reduction of the overall

Fig. 5. Coronal magnetic field from the two-dipole model. Average
coronal magnetic field during the three solar minima obtained from
the two-dipole model of the photospheric field using the PFSS
model. The coronal source surface, where magnetic field lines
(in blue) become purely radial is marked with a dashed circle. The
photospheric radial magnetic field observed during Carrington
rotation 1910 in year 1996 is shown on the solar surface, featuring
typical unipolar regions at the poles, with yellow and blue colors
indicating positive (away from the Sun) and negative (toward the
Sun) magnetic polarity, respectively. The heliospheric current sheet
is shifted towards the south by 4.1�.
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solar activity. Accordingly, the north–south asymmetry of the
photospheric magnetic field is expected to be the smallest in
the beginning of low solar activity cycles like solar cycle 24.
As mentioned in Section 1, solar cycle 24 was exceptional in
many ways, therefore we did not include it in this study, but
it will be subject of future work.

5 Conclusions

We have shown here that the large-scale structure of the
photospheric magnetic field during solar minima can be closely
described with an analytical model consisting of two eccentric
axial dipoles that represent the combined magnetic potential
of decaying active regions. We find that, while the effective
location of the dipoles is the same in the two hemispheres,
the southern dipole is systematically stronger than the northern
dipole during recent solar minima. This difference explains the
observed north–south asymmetry in the solar polar fields and in
the heliospheric current sheet location. Our analytical two-
dipole model also offers a new method for reconstructing the
poorly observed or missing values of the solar polar fields using
reliably measured lower-latitude observations, which is critical
for more accurate predictions of future solar activity (Choudhuri
et al., 2007; Hathaway & Upton, 2016), space weather, and
space climate. This novel polar field filling method is based
on an iterative procedure where the Gauss coefficients and the
high-latitude solar magnetic fields are updated in each iteration
step until the polar field converges to a constant value. More
specific details on this iterative procedure will be given in a fol-
low-up paper.
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Appendix

Potential of a shifted zonal dipole on the solar surface

For completeness, we derive the magnetic potential of an eccentric dipole on the solar surface. We use a different method of
derivation than those given by Hurwitz (1960) or Winch (1968), but we verified that our method led to the same solution.

Let us derive the photospheric potential of a zonal multipole of degree l that is shifted from the center of the Sun by
q ¼ nx̂þ gŷþ fẑ. The potential of a zonal multipole of degree l located at the center of the Sun has the following form in spherical
coordinates:

UðrÞ ¼ RS
RS

r

� �lþ1

g0l P
0
l ðcos hÞ; ðA:1Þ

where RS is the radius of the Sun and P0
l is the associated Legendre function. Normalizing the radial distance by RS, the potential

becomes,

UðrÞ ¼ r� lþ1ð Þg0l P
0
l ðcos hÞ : ðA:2Þ

First, we evaluate the potential U in Cartesian coordinates on a sphere of unit radius that is shifted by q ¼ nx̂þ gŷþ fẑ from the
center of the Sun. This can be done by the Taylor series expansion of U:

U r̂ þ qð Þ ¼ U r̂ð Þ þ 1
1!
rU r̂ð Þqþ 1

2!
r2U r̂ð Þq2 þ 1

3!
r3U r̂ð Þq3 þ . . .

¼ g0l P
0
l cos hð Þ � lþ 1ð Þg0l P 0

l cos hð Þ sin h cos/n� g0l
oP 0

l cos hð Þ
o cos h

sin h cos h cos/n� lþ 1ð Þg0l P 0
l cos hð Þ sin h sin/g

� g0l
oP 0

l cos hð Þ
o cos h

sin h cos h sin/g� lþ 1ð Þg0l P 0
l cos hð Þ cos hfþ g0l

oP 0
l cos hð Þ
o cos h

sin2 hfþ 1
2!
r2U r̂ð Þq2 þ . . .

¼ g0l P
0
l cos hð Þ � g0ln lþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 h

p
P 0
l cos hð Þ þ cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 h

p oP 0
l cos hð Þ
o cos h

� �
cos/

� g0lg lþ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 h

p
P 0
l cos hð Þ þ cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 h

p oP 0
l cos hð Þ
o cos h

� �
sin/

� g0l f lþ 1ð Þ cos hP 0
l cos hð Þ þ cos2 h� 1

� � oP 0
l cos hð Þ
o cos h

� �
þ 1
2!
r2U r̂ð Þq2 þ . . . : ðA:3Þ

Using the following recurrence formulae of the associated Legendre function,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Pm
l ðxÞ ¼

1
2lþ 1

�
�Pmþ1

lþ1 ðxÞ þ Pmþ1
l�1 ðxÞ

�
; ðA:4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p d

dx
Pm
l ðxÞ ¼

1
2

�
ðlþ mÞðl� mþ 1ÞPm�1

l ðxÞ � Pmþ1
l ðxÞ

�
; ðA:5Þ

ðx2 � 1Þ d

dx
Pm
l ðxÞ ¼ �ðlþ 1ÞxPm

l ðxÞ þ ðl� mþ 1ÞPm
lþ1ðxÞ; ðA:6Þ

ðl� mþ 1ÞPm
lþ1ðxÞ ¼ ð2lþ 1ÞxPm

l ðxÞ � ðlþ mÞPm
l�1ðxÞ; ðA:7Þ

P�m
l ¼ ð�1Þm ðl� mÞ!

ðlþ mÞ! P
m
l ; ðA:8Þ
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the potential U at r̂ + q becomes,

U r̂ þ qð Þ ¼ g0l P
0
l cos hð Þ � g0ln

lþ 1
2lþ 1

�P 1
lþ1 cos hð Þ þ P 1

l�1 cos hð Þ	 
þ cos h
1
2

l lþ 1ð ÞP�1
l cos hð Þ � P 1

l cos hð Þ	 
� �
cos/

�g0lg
lþ 1
2lþ 1

�P 1
lþ1 cos hð Þ þ P 1

l�1 cos hð Þ	 
þ cos h
1
2

l lþ 1ð ÞP�1
l cos hð Þ � P 1

l cos hð Þ	 
� �
sin/� g0l f lþ 1ð ÞP 0

lþ1 cos hð Þ

þ 1
2!
r2U r̂ð Þq2 þ . . .

¼ g0l P
0
l cos hð Þ � 1

2 2lþ 1ð Þ g
0
ln

�2 lþ 1ð ÞP 1
lþ1 cos hð Þ þ 2 lþ 1ð ÞP 1

l�1 cos hð Þ
þ 2lþ 1ð Þl lþ 1ð Þ cos hP�1

l cos hð Þ � 2lþ 1ð Þ cos hP 1
l cos hð Þ

� �
cos/

� 1
2 2lþ 1ð Þ g

0
lg

�2 lþ 1ð ÞP 1
lþ1 cos hð Þ þ 2 lþ 1ð ÞP 1

l�1 cos hð Þ
þ 2lþ 1ð Þl lþ 1ð Þ cos hP�1

l cos hð Þ � 2lþ 1ð Þ cos hP 1
l cos hð Þ

� �
sin/� g0l f lþ 1ð ÞP 0

lþ1 cos hð Þ

þ 1
2!
r2U r̂ð Þq2 þ . . .

¼ g0l P
0
l cos hð Þ � 1

2 2lþ 1ð Þ g
0
ln

�2 lþ 1ð ÞP 1
lþ1 cos hð Þ þ 2 lþ 1ð ÞP 1

l�1 cos hð Þ
� 2lþ1ð Þl lþ1ð Þ l�1ð Þ!

lþ1ð Þ! cos hP 1
l cos hð Þ � 2lþ 1ð Þ cos hP 1

l cos hð Þ

" #
cos/

� 1
2 2lþ 1ð Þ g

0
lg

�2 lþ 1ð ÞP 1
lþ1 cos hð Þ þ 2 lþ 1ð ÞP 1

l�1 cos hð Þ
� 2lþ1ð Þl lþ1ð Þ l�1ð Þ!

lþ1ð Þ! cos hP 1
l cos hð Þ � 2lþ 1ð Þ cos hP 1

l cos hð Þ

" #
sin/� g0l f lþ 1ð ÞP 0

lþ1 cos hð Þ

þ 1
2!
r2U r̂ð Þq2 þ . . .

¼ g0l P
0
l cos hð Þ � 1

2lþ 1
g0ln � lþ 1ð ÞP 1

lþ1 cos hð Þ � lP 1
lþ1 cos hð Þ	 


cos/

� 1
2lþ 1

g0lg � lþ 1ð ÞP 1
lþ1 cos hð Þ � lP 1

lþ1 cos hð Þ	 

sin/� g0l f lþ 1ð ÞP 0

lþ1 cos hð Þ þ 1
2!
r2U r̂ð Þq2 þ . . .

¼ g0l P
0
l cos hð Þ þ g0lnP

1
lþ1 cos hð Þ cos/þ g0lgP

1
lþ1 cos hð Þ sin/� g0l f lþ 1ð ÞP 0

lþ1 cos hð Þ þ 1
2!
r2U r̂ð Þq2 þ . . . : ðA:9Þ

Let us now move the center of our coordinate system to q. Then the potential on the sphere of unit radius is the potential of a zonal
multipole that is shifted by �q from the center of the sphere. Thus, the potential of a shifted zonal multipole at the solar surface is,

Uðr̂Þ ¼ g0l P
0
l ðcos hÞ � g0lnP

1
lþ1 cos hð Þ cos/� g0lgP

1
lþ1 cos hð Þ sin/þ g0l fðlþ 1ÞP 0

lþ1ðcos hÞ þ
1
2!
r2Uðr̂Þð�qÞ2 þ . . . ðA:10Þ

where q ¼ nx̂þ gŷþ fẑ is the displacement of the zonal multipole from the center of the Sun.
Now we introduce the Schmidt semi-normalized associated Legendre functions defined as,

~P 0
l ðxÞ ¼ P 0

l ðxÞ ¼ P l xð Þ for m ¼ 0; and ~Pm
l ðxÞ ¼ ð�1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 l� mð Þ!
lþ mð Þ!

s
Pm
l xð Þ for m 6¼ 0 : ðA:11Þ

The potential of a shifted zonal multipole becomes,

Uðr̂Þ ¼ g0l ~P
0
l ðcos hÞ � g0lnð�1Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1þ 1ð Þ!

2 lþ 1� 1ð Þ!

s
~P 1
lþ1 cos hð Þ cos/� g0lgð�1Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1þ 1ð Þ!

2 lþ 1� 1ð Þ!

s
~P 1
lþ1 cos hð Þ sin/þ g0l fðl

þ 1Þ~P 0
lþ1ðcos hÞ þ

1
2!
r2Uðr̂Þð�qÞ2 þ . . .

¼ g0l ~P
0
l ðcos hÞ þ g0ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1ð Þ lþ 2ð Þ

2

r
~P 1
lþ1 cos hð Þ cos/þ g0lg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1ð Þ lþ 2ð Þ

2

r
~P 1
lþ1 cos hð Þ sin/þ g0l fðlþ 1Þ

� ~P 0
lþ1ðcos hÞ þ

1
2!
r2Uðr̂Þð�qÞ2 þ . . . : ðA:12Þ

From the general solution of equation (A.12), we obtain the potential of a shifted zonal dipole (l = 1) in terms of the Schmidt semi-
normalized associated Legendre functions:
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Uðr̂Þ ¼ g01~P
0
1ðcos hÞ þ g01n

ffiffiffi
3

p
~P 1
2 cos hð Þ cos/þ g01g

ffiffiffi
3

p
~P 1
2 cos hð Þ sin/þ g01f2~P

0
2ðcos hÞ þ

1
2!
r2Uðr̂Þð�qÞ2 þ . . . : ðA:13Þ

For a zonal dipole that is shifted along the symmetry axis (n = 0, g = 0), the potential can be written as,

Uzðr̂Þ ¼ g01~P
0
1ðcos hÞ þ 2fg01~P

0
2ðcos hÞ þ

1
2!

o2

oz2
Uðr̂Þð�fÞ2 þ 1

3!
o3

oz3
Uðr̂Þð�fÞ3 þ . . . : ðA:14Þ

We can rewrite equation (A.14) in recursive form where each term is calculated from the preceding term,

Uz r̂ð Þ ¼ g01~P
0
1 cos hð Þ � 1

1!
o
oz

U r̂ð Þf� 1
2!

o
oz

o
oz

U r̂ð Þ �fð Þ
� �

f� 1
3!

o
oz

o2

oz2
Uðr̂Þð�fÞ2

� �
f� . . .� 1

l� 1ð Þ!

� o
oz

ol�2

ozl�2
Uðr̂Þð�fÞl�2

� �
f� . . . : ðA:15Þ

Now we make use of equations (A.3) and (A.9), where it was shown that,

o
oz

r�ðlþ1Þg0l P
0
l ðcos hÞ

� � ����
r̂

¼ �g0l ðlþ 1ÞP 0
lþ1ðcos hÞ: ðA:16Þ

Inserting equation (A.16) into equation (A.15) recursively, the photospheric potential of a zonal dipole shifted in the ẑ direction
becomes,

Uzðr̂Þ ¼ g01~P
0
1ðcos hÞ þ g01

X1
l¼2

l!
ðl� 1Þ! f

l�1~P 0
l ðcos hÞ ¼ g01

X1
l¼1

lfl�1~P 0
l ðcos hÞ: ðA:17Þ

Thus, the Gauss coefficients of a dipole shifted by f along the symmetry axis are the following:

g0l ¼ g01lf
l�1; ðA:18Þ

which is used in the two-dipole model of equation (1).
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