INVERSIO-ONGELMIEN LASKENNALLINEN PERUSKURSSI 2012

MATLAB EXERCISE 5

- (1) (a) Construct signals u_i and s_i as in Exercise 4, Problem 1.
 - (b) Construct also the convolution kernels (boxcar and Hann window) as in Exercise 4.
 - (c) Construct the convolution matrices C_1 and C_2 as in Exercise 4.
- (2) Construct noisy measurement data m_n by convolving signals with convolution kernels and by adding gaussian noise

m = conv(kernel, signal); m_n = m + c * randn(size(m));

where c = 0.01 \star max(data). Calculate the error norm $||\varepsilon|| = ||m - m_n||.$

- (3) Try to solve deconvolution problems with noisy data.
- (4) Solve the deconvolution problems using truncated singular value decomposition and Morozov discrepancy principle:
 - (a) Calculate the SVD of the theory matrix

- (b) Calculate the truncated SVD solution $x^{(k)}$ with different values of k, plot the results.
- (c) Try to find the optimal k using the Morozov discrepancy principle.
- (5) Try to find optimal solution to the deconvolution problems using L-curve method:
 - (a) Start with k = 1, and calculate the truncated SVD solution $x^{(k)}$.
 - (b) Calculate the discrepancy $||Cx^{(k)} m_n||$ and the norm of the solution $||x^{(k)}||$.
 - (c) Plot the point $(\log ||x^{(k)}||, \log ||Cx^{(k)} m_n||)$
 - (d) Increase k by one, and go to (a)
- (6) Study how the measurement error affects to the optimal solution by solving problems with more and less noise.