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MATLAB Exercise 8

Statistical Linear Inverse Problem

Consider equation

Y = AX + E,

E ∼ N(0,Γn), Γn = CnC
T
n ,

X ∼ N(x0,Γpr), Γpr = CprC
T
pr.

The a posteriori density of X:
X ∼ N(x,Γpost),

where

x = x0 + ΓprA
T (AΓprA

T + Γn)−1(y −Ax0 − e0), (1)

Γpost = Γpr − ΓprA
T (AΓprA

T + Γn)−1AΓpr; (2)

or

Γpost = (Γ−1pr +ATΓnA)−1 (3)

x = Γpost(A
TΓ−1n (y − e0) + Γprx0). (4)

Note that the expectation value x in equation (4) can also be calculated by solving
the overdetermined problem (

C−1n y
C−1pr x0

)
︸ ︷︷ ︸

b

=

(
C−1n A
C−1pr

)
︸ ︷︷ ︸

B

x, (5)

and
Γpost = (BTB)−1.

If instead of a priori density we have an a priori model

x0 = LX + Epr, Epr ∼ N(0,Γpr), Γpr = CprC
T
pr,
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the equation (5) has the form (
C−1n y
C−1pr x0

)
︸ ︷︷ ︸

b

=

(
C−1n A
C−1pr L

)
︸ ︷︷ ︸

B

x.

Note also, that the a priori model

x0 = LX + Epr, Epr ∼ N(0,Γpr), Γpr = CprC
T
pr,

can be presented as a Gaussian prior as

X ∼ N(x′0,Γ
′
pr),

where

x′0 = L−1x0,

Γ′pr = L−1Γpr(L
−1)T .

If the prior is given as

X ∼ N(x0,Γpr), Γpr = CCT

it can be sampled (i.e. calculate realizations of it) by calculating

x = Cw + x0, w ∼ N(0, I).

A priori model

x0 = LX + Epr, Epr ∼ N(0,Γpr), Γpr = CprC
T
pr,

can be sampled by calculating

x = L−1(x0 − Cprw), w ∼ N(0, I).
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Exercises

1. Construct signal s and convolution matrix A with convolution kernel a as follows:

x = linspace(0,1,500);

s = (x+5).*(x-2).*(x-0.3).*(x-0.6).*(x-0.9);

a = 0:99;

a = [a a(100:-1:1)];

a = a/sum(a);

A = conmatrix(a,500);

Plot signal s and the kernel a.

2. Construct noisy data by calculating the convolution of signal s and the kernel a
and adding some random Gaussian noise ng, where

n_g = c * randn(size(data)),

and c ∈ (0.01, 0.1) (choose yourself!). Calculate the variance of error by

evar = var(data - noisy_data)

Note that in practice we do not know the noiseless measurement and the variance
must be estimated.

3. Write MATLAB functions L = L1(n) and L = L2(n) that construct first and sec-
ond order difference matrices of size n× n, respectively. Here

L1 =


1
−1 1

. . .
. . .

1 1

 L2 =


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2


Sample prior model (using different variances δ)

0 = LX + E, E ∼ N(0, δI),

where L is

a) white noise (identity matrix),

b) first order difference matrix,

c) second order difference matrix.
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4. Solve deconvolution problem of Problem 1 as a statistical inverse problem

y = AX + En, En ∼ N(0, δnI), (6)

0 = LX + Epr, Epr ∼ N(0, δprI), (7)

where δn is the error variance of the noisy measurement, and L is

a) white noise (identity matrix),

b) first order difference matrix,

c) second order difference matrix.

Try different a priori variances δpr.

Plot the calculated solution, and plot also 95% Bayesian credibility set, i.e. in this
Gaussian case, x± 2δpost, where δpost is the a posteriori standard deviation which
is the square root of the diagonal of the posterior covariance matrix.

5. Same as Problem 4, but this time set the a priori variances of the end-points much
larger, for example

delta(1) = 100000 * delta(1);

delta(end) = 100000 * delta(end);
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