
Assuring Quality and Usability
in Open Source Software Development

Henrik Hedberg, Netta Iivari, Mikko Rajanen & Lasse Harjumaa
Department of Information Processing Science, University of Oulu

{henrik.hedberg, netta.iivari, mikko.rajanen, lasse.harjumaa}@oulu.fi

Abstract

This paper reviews literature on quality and
usability assurance in open source software (OSS)
development, focusing specifically on OSS that is
targeted at a large user population, which does not
consist only of OSS developers anymore. In this type of
OSS development, the ‘naïve’, non computer
professional users should be taken into account and
usability of OSS improved. Furthermore, software
quality becomes a very relevant issue to be assured.
We contrast OSS literature on quality and usability
with prescriptive literatures derived from the fields of
software engineering and human computer interaction.
We present a summary of the current practices utilized
to assure quality and usability in OSS development,
and recommend practices to be used in this context. We
also point out limitations in the existing research and
suggest paths for future work.

1. Introduction

In this paper we review literature on quality and
usability assurance in open source software (OSS)
development, focusing specifically on OSS that is
targeted at a large user population, which does not
consist only of OSS developers themselves anymore.
In all, the user base of OSS is becoming larger and
larger, including a growing number of non-technical
users. In addition, during recent years firms have
started to consider how to gain competitive advantage
from OSS [8]. Software (SW) companies are releasing
the source code of their commercial products and
participating in OSS communities developing it further
[8, 16]. OSS is, therefore, no longer developed only to
serve particular developers and their needs [8]. Instead,
there will be more and more users without deep
technical knowledge. That leads to higher quality
expectations than earlier, when an end-user was seen as
a co-developer tolerating crashes, hunting defects, and
fixing the code.

In this paper it is acknowledged that the end user

population - including the ‘naïve’, non computer
professional users - is constantly growing, and
therefore usability of the OSS should be improved [2,
7, 17, 19, 22, 23]. SW quality, altogether, becomes a
very relevant issue to be assured. Typically OSS
developers rely on the large user base reporting defects
and the existence of volunteering co-developers that
can be compared with beta-testing. However, in this
new situation, quality assurance must be done before
the SW is delivered to the end-users, who may also pay
for it and thus expect smooth operation.

Therefore, we review OSS literature on quality and
usability assurance and contrast it with prescriptive
usability and quality assurance literatures derived from
the fields of software engineering (SE) and human
computer interaction (HCI), within which this kind of
issues have been considered as legitimate concerns for
decades. As a result, we present a summary of the
practices currently utilized to assure quality and
usability in OSS development. In addition, we propose
practices that could be used to produce high quality
and more usable OSS - especially for the non technical
users. Finally, we will also point out that the existing
research is somewhat limited, and thus suggest new,
interesting research topics to be explored.

2. Quality Assurance in OSS Development

The purpose of quality assurance in SW
development is to ensure the high quality of both the
final product and the process used to produce those
products. OSS development seems to challenge
traditional ways to achieve that.

2.1 Current research and practice

There are many evidences that OSS development
can produce high quality SW, such as Linux, and
Apache. However, the outcome of the OSS
development process depends on the skills of the
participating developers. There is no strict process to
follow, design and planning are rare, development
process is ad hoc style, and quality assurance

Hedberg, H., Iivari, N., Rajanen, M., Harjumaa, L. (2007). Assuring Quality and Usability in Open Source Software Development.
In Proceeding of the First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS 2007, in
conjunction with 29th International Conference on Software Engineering (ICSE 2007), 20 - 26 May 2007, Minneapolis, USA.
ISBN: 0-7695-2961-5, DOI: 10.1109/FLOSS.2007.2

techniques are mainly ignored, except for beta-testing
with the extension of the ability to review and fix the
actual source code [24]. The projects have been
successful, because developers were using the SW
themselves, which motivates them and gives them
excellent domain area knowledge [20]. It has been
argued that as volunteering professionals the OSS
developers belong to the top five percent of all SW
developers what comes to talent [9].

Typically, there is a lead developer or a small
amount of developers forming a core team that controls
the overall architectural design and the course of an
OSS project [7, 15]. Other developers participate by
reading the code and delivering patches, i.e. modified
source code extracts, to the core team [20]. It is
obvious that managing volunteering co-developers
without face to face contact by means of, for example,
discussion forums and email, necessitates good social
and communication skills [20].

The core team reviews patches and decides if those
are accepted. Typically the majority of modifications
requests delivered by users are not integrated into the
product. The Apache project is an extreme example of
this, because every patch is reviewed in developers'
mailing list by at least the core team. [15] In general, in
OSS development it is rarely required that the all of the
code is reviewed, but instead one relies on extensive
real-world testing by users and co-developers [24].

Users’ role is to find and report defects, which are
then fixed by developers not necessarily belonging to
the core team. Fast-paced release cycle satisfies users
and ensures that debugging efforts are not thrown
away. [20] However, most of the users are simply
using the application and not reviewing the code before
they mobilize it [9]. Therefore, users are plain beta
testers, who can only report annoying defects, if they
have enough interest and feel that the application is
worth it. Rarely users are skilled enough to locate the
defects and even less of them are able to fix them.
According to Linus Law, “given a large enough beta-
tester and co-developer base, almost every problem
will be characterized quickly and the fix obvious to
someone.” [20] At the same time, this implies the
existence of the problem in the application already
employed by a large number of users.

Testing is very limited in OSS projects. Usually
there is no testing plan, and the test coverage is not
addressed. In addition, despite OSS development
seems to be quite tool-centered, a relative small
number of projects utilize testing tools. However,
testing takes a significant portion of SW life time. [24]
That is an obvious dilemma.

Some parts of the process have widely been thought
as mature, such as configuration management and
project tracking [24]. Those are vital conditions for
projects due to the distributed nature of OSS
development, and thus highly employed. On the other

hand, those are also the only ways to find historical
data and to understand rationales of the selections,
since the level of other documentation is very low [24].

Another problem is that researchers have mostly
studied quite large and active projects (e.g. [15]), while
most of the OSS projects are small and sluggish [24]. It
is recognized that large and active user and developer
base usually implies high quality, but this is not
possible for all OSS projects simply, there is not
enough developers available in the planet.

While the interest in OSS rises, not all the
assumptions related to OSS development are valid
anymore. There will be more and more users without
technical background, and also the demand of
developers increases in quantity, which inevitably leads
to decrease in quality of developers. Leaning on most
talented professionals is not possible anymore.

2.2 Recommended research and practice

As the commercial usage of OSS increases and non
technical users start to employ OSS, quality
expectations are much higher than earlier, when end-
user was seen as a co-developer tolerating crashes,
hunting defects, and fixing the code. The quality
assurance must be advanced to development phase
before the product is delivered to users. Similarly, as an
increasing number of developers are taking part in OSS
development, the need for stricter methods and
processes becomes evident.

It is commonly believed that achieving high quality
SW products requires a precisely defined process to be
followed in the production of the SW. The more
systematic and manageable the process is, the higher
the quality of the outcome [6].

A number of models have been introduced for
evaluating, improving and standardizing the SW
production process, the most widely known being
CMMI and ISO 15504. However, the most prominent
SW process improvement models have some
deficiencies. In OSS development, the product
lifecycle and process that is used to produce the SW is
totally different from traditional development models.
Thus, generic process improvement models cannot be
applied and even traditional, proven quality assurance
techniques are challenged by distributed development,
dynamic instead of hierarchical development team
structures and even cultural issues. Adaptation to the
nature and philosophy of OSS development is needed.

The most effective quality assurance techniques are
testing and peer reviews. These are included in
virtually all modern SW development process models
and process improvement models in some form, but
typically not suitable for OSS development as is.
However, as a start point for adapting peer review
techniques into OSS development, there is, for

example, a variety of modified inspection processes
from lightweight to strict ones (e.g. [21]), and tools to
support geographically dispersed teams [12].

In the area of testing, more attention to test
coverage must be paid. There should be adequate test
plans, using of which ensures that most of the defects
are caught before the SW is delivered to an end-user.
Also regression testing should be used more widely,
since OSS development is very much evolutionary in
nature. Test driven development [1] could be used to
produce and execute test cases. As a code-centric
method, it is well suited for OSS development.

The main challenge in OSS quality assurance is
commitment, since conventional OSS developer is not
paid or has no formal authorities. Typically quality
assurance has been thought as a boring job to do, and
developers tend to pick up tasks where they can utilize
their creativity. When commercial firms are involving
in OSS development with their high quality
requirements, it is obvious that there will be some
developers who get paid to perform source code
reviews and extensive tests.

In traditional SW development, adding developers
to late SW project makes them later [4]. OSS projects
have proven that quality assurance related tasks, such
as reviewing, testing and locating defects, can be
parallelized [20]. Thus, the more reviewers and testers
a project has, the higher quality it will produce.
However, commercially viable applications targeted
for the masses cannot rely on end-users' expertise on
that area. The quality assurance has to be implemented
as part of the actual OSS development process by
adopting established quality assurance techniques fitted
for the OSS philosophy.

3. Usability in OSS Development

Usability is an important quality characteristic of a
SW products and systems. The importance of usability
has been emphasized especially in HCI literature,
which is next discussed and related to the OSS context.
The importance of usability has been emphasized
especially in HCI literature, which is next discussed to
introduce the central concepts, and afterwards related
to the OSS context.

3.1 Recommended research and practice

Currently a widely accepted definition of usability
defines it as ’the extent to which a product can be used
by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified
context of use’ [14]. Related to the definition,
important is to acknowledge that usability is always
related to specific users, and to their specific goals and
tasks that are done in a specific context of use. User-

centered design (UCD), on the other hand, is an
approach to interactive system development focusing
specifically on making systems usable [14]. In the
standard, UCD is characterized by its goal of
producing usable systems, and by the principles of
active user participation, appropriate allocation of
functions between users and technology, iterative
design and multi-disciplinary design. [14] In addition,
the standard defines a set of UCD activities that
include planning the UCD process, understanding and
specifying the context of use, specifying the user
requirements, producing design solutions, and
evaluating the designs against the requirements [14].

However, UCD is a very vague concept with a
multiplicity of meanings attached to it. It has been
analyzed as a multi-dimensional concept, revealing a
number of dimensions of user centeredness (i.e. as user
focus, work-centered, user participation and system
personalization, [13]). Different UCD methodologies
acknowledge these dimensions to a different extent.
Some of the methodologies emphasize user focus. An
ideal is that the focus is on each individual user, but
typically the focus is limited to typical, average or even
fictive user (see e.g. [5]). Other methodologies,
instead, emphasize users’ work practices and tasks as
the main point to first understand in depth, and
afterwards to carefully redesign (see e.g. [3]). In some
methodologies, furthermore, active and direct user
participation has particularly been emphasized (see e.g.
[11]). Despite the differences, all these methodologies
emphasize the importance of understanding the user,
his/her tasks or work practices and the context of use.
Based on the understanding, the tasks or work practices
are to be carefully redesigned. User involvement in the
design process is argued for. User feedback should be
sought early, and the design solution should be iterated
based on the user feedback.

3.2 Current research and practice

In the OSS development literature usability and
UCD have been discussed to some extent. However,
there are many controversies and limitations in the
ways these constructs have been addressed in the
literature to date. In the literature search, we found
seven published OSS papers dealing with these issues.
We analyzed these papers to see how they approached
usability and UCD, and what kind of recommendations
they give to improve usability in OSS development.

First of all, none of the papers offered any clear
definition of usability or UCD. However, particularly
user involvement has been emphasized as an important
element of OSS development. Nevertheless, in OSS
development the distinction between user and
developer is blurred; typically the developers have also
been the users of the OSS. For that reason, however,

OSS development has been argued of utilizing a truly
‘user-driven’ approach [17, 23]. Nevertheless, the OSS
community is now starting to acknowledge that ‘we are
not our users’ [10]. People are starting to acknowledge
that from the point of view of naïve, ‘typical’, non
computer professional users, usability of the OSS is
poor, and the development process should be
characterized as anything but ‘user centered’ [2, 7, 17,
19, 22, 23]. Therefore, usability is becoming a relevant
topic of research in the OSS context, even though, to
date, it has not been examined much.

The field of HCI emphasizes the need of trained
usability specialists to contribute to the development.
The users can not act as usability specialists, because
they are not trained for developing and ensuring
usability, even thought they encounter the usability
problems while using the system. However,
problematic is that usability specialists do not typically
participate in the OSS development, and the OSS
developers do not have the knowledge and skills
needed. In addition, typically there are no resources for
UCD in OSS development. [2, 10, 17, 22, 23].
Furthermore, if usability is acknowledged, this
typically happens too late in the process. Finally, no
UCD methodology is typically employed, because this
can be seen as being in contrast with the ‘open source
philosophy’; it is assumed that in OSS development
there is no possibility for systematic UCD or formal
process models. [2, 10, 17, 22, 23]

However, it is argued that there is a great potential
for usability specialists to start to contribute to OSS
development. The papers recommend bringing
usability specialists to OS projects and use of expert
based evaluation methods [2, 17, 22, 23]. Another
solution suggested is the use of usability guidelines
that outline the best practices of HCI design [2, 17].
Large corporations that nowadays participate in OSS
development can provide both professional usability
resources and HCI guidelines for OSS development
[2]. Furthermore, automatic usability testing and bug
reporting are suggested as solutions. Typically there is
a large user base and existing procedures for bug
reporting. [2, 22, 23] Also empirical usability testing is
argued for [17, 22, 23]. However, a noteworthy
observation is that a lot of UCD methods that don’t
include real users at all are recommended. Finally, an
interesting issue to be considered is distributed UCD
for the OSS development context. In HCI, support for
this type of work has not been discussed much [17].
All in all, OSS development is a new, challenging
context to the HCI community to enter into.

4. Concluding discussion

This paper has reviewed literature on quality and
usability assurance in OSS development. The main
results are summarized in table 1.

Table 1. Quality and usability in open source software development.

Quality Usability
Current
practice

Developers are very talented, lead developer
checks patches, users assumed to report bugs

Users assumed to report bugs and to be the
co-developers with technical background

Current
research

Status quo reports, surveys on current quality
techniques in OSS development

Very few articles published, usability and
UCD very vaguely defined

Recommended
practice

Shift to stricter quality assurance methods
and processes as commercial interest
increases and more and more developers are
participating in development, produce plans
and documents to support communication,
use inspections and reviews, pay more
attention in test coverage, test-driven
development and testing performed by
developers, not users

Understand and specify the user, his/her work
practice/tasks and the context of use, and
carefully redesign the work practice/tasks
based on the understanding, actively involve
the user, gather early user feedback and
iterate the design solution based on the user
feedback

Recommended
research

How to adapt traditional quality assurance
methods, such as inspections, for distributed
development and to fit the OSS philosophy?

How to adapt traditional UCD methodologies
for distributed development and to fit the
OSS philosophy?

Typically OSS research tries to recognize silver
bullets of stunningly successful OSS development in
order to revolutionize traditional software engineering.
We took an opposite approach. In our viewpoint, as
commercial interest rises, as non-volunteer and non-
distinguishable-talented developers are taking part in
OSS development, as even more non-technical users

are entering into OSS world, the cornerstones of OSS
will break down. To ensure high quality and usability
in that situation, proven methods and processes must
be adapted to OSS philosophy and introduced into the
development.

Regarding practical implications, we emphasize the
gap that seems to exist between the current practice

and the recommended practice outlined in table 1.
Clearly, there is work to be done to make usability and
quality assurance as normal part of OSS development.
Regarding limitations and paths for future work,
clearly more empirical research in OSS development
context is needed - particularly qualitative empirical
research aiming at understanding in depth the current
ways and challenges involved with usability and
quality assurance in OSS development. Based on that
understanding, one might start to consider the
adaptation of the existing SE and HCI methods and
processes to OSS philosophy and to the distributed
environment of the OSS development.

References

[1] Beck, K. (2002): Test Drive Development: By Example,
Addison-Wesley. ISBN 0-3211-4653-0.

[2] Benson, C., Müller-Prove, M., Mzourek, J. (2004):
“Professional usability in open source projects: GNOME,
OpenOffice.org, NetBeans.” Extended Abstracts of the
CHI2004. Pp. 1083-1084.

[3] Beyer, H., Holtzblatt, K., Contextual Design: Defining
Customer-Centered Systems. Morgan Kaufmann Publishers
Inc, San Francisco, 1998

[4] Brooks, F. P. (1975): The Mythical Man-Month: Essays
on Software Engineering, Addison-Wesley Publishing
Company.

[5] Cooper, A., The Inmates Are Running the Asylum: Why
high-tech products drive us crazy and how to restore sanity,
Macmillan, Indianapolis, 1999

[6] Deming, W.E. (1982): Quality, Productivity and the
Competitive Position, MIT Press, Mass.

[7] Feller, J. & Fitzgerald, B. (2000): A Framework Analysis
Of The Open Source Development Paradigm. In the Proc. of
21st International Conference on Information Systems,
December 10-13, 2000, Brisbane, Australia. Pp. 58-69.

[8] Fitzgerald, B. (2006): The Transformation of Open
Source Software. MISQ 30(3). Pp. 587-598.

[9] Fitzgerald, B. & Ågerfalk , P.J. (2005) The Mysteries of
Open Source Software: Black and White and Red All Over?
Proc. of the 38th Hawaii International Conference on System
Sciences, IEEE Computer Society Press.

[10] Frishberg, N., Dirks, A. M., Benson, C., Nickel, S. &
Smith, S. (2002): Getting to know you: open source
development meets usability. Extended Abstracts of the CHI
2002. Pp. 932-933.

[11] Greenbaum, J. and Kyng, M. (eds.), Design at Work.
Cooperative Design of Computer Systems, Lawrence Erl-
baum Associates, New Jersey, 1991

[12] Hedberg H (2004): Introducing the Next Generation of
Software Inspection Tools. Proc. of the 5th International
Conference of Product Focused Software Process
Improvement, pp. 34-247.

[13] Iivari, J. & Iivari, N. (2006): Varieties of User-
Centeredness. Proc. of the 39th Annual Hawaii International
Conference on System Sciences. IEEE Computer Society
Press.

[14] ISO 13407, Human-centered design processes for
interactive systems. International Standard, 1999

[15] Mockus, A., Fielding, R. & Herbsleb, J. (2000): A Case
Study of Open Source Software Development: The Apache
Server. Proc. of ICSE 2000, pp. 263-272.

[16] Nichols, D., Thomson, K. & Yeates, S. (2001): Usability
and Open Source Software Development. In the Proc. of the
Symposium on Computer Human Interaction. Pp. 49-54.

[17] Nichols, D. & Twidale, M. (2006): Usability Processes
in Open Source Projects. Software Process Improvement and
Practice 11. Pp. 149-162.

[18] Niederman, F., Davis, A. Greiner, M., Wynn, D. & York,
P. (2006): A Research Agenda for Studying Open Source I: A
Multilevel Framework. Communication of the Association
for Information Systems 18. pp. 19-149.

[19] Pemberton, S. (2004): Scratching Someone Else’s Itch
(Why Open Source Can’t Do Usability). Interactions January
+ February. P. 72.

[20] Raymond (1999): The Cathedral & the Bazaar: Musing
on Linux and Open Source by an Accidental Revolutionary,
O'Reilly & Assoc.

[21] Tervonen, I. Iisakka, J. & Harjumaa, L. (1998): Software
Inspection - A Blend of Discipline and Flexibility. Kusters R.,
Cowderoy A., Heemstra F., and Trienekens J., (ed.): Project
Control for 2000 and Beyond, Proc. of ENCRESS-98, Shaker
Publishing B.V., 1998, pp. 157-166.

[22] Zhao, L. & Deek, F. (2005): Improving Open Source
Software Usability. Proc. of the 11th Americas Conference on
Information Systems. Pp. 923-928.

[23] Zhao, L. & Deek, F. (2006): Exploratory inspection: a
learning model for improving open source software usability.
Extended Abstracts of the CHI2006. Pp. 1589-1594.

[24] Zhao, L. & Elbaum, S. (2003): Quality assurance under
the open source development model. Journal of Systems and
Software 66(1). Pp. 65-75.

